JPWO2013027432A1 - Method for producing positive electrode active material for lithium ion battery - Google Patents

Method for producing positive electrode active material for lithium ion battery Download PDF

Info

Publication number
JPWO2013027432A1
JPWO2013027432A1 JP2013523400A JP2013523400A JPWO2013027432A1 JP WO2013027432 A1 JPWO2013027432 A1 JP WO2013027432A1 JP 2013523400 A JP2013523400 A JP 2013523400A JP 2013523400 A JP2013523400 A JP 2013523400A JP WO2013027432 A1 JPWO2013027432 A1 JP WO2013027432A1
Authority
JP
Japan
Prior art keywords
lithium
positive electrode
lithium ion
active material
electrode active
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013523400A
Other languages
Japanese (ja)
Other versions
JP5567742B2 (en
Inventor
健太郎 岡本
健太郎 岡本
保大 川橋
保大 川橋
隆一 長瀬
隆一 長瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2013523400A priority Critical patent/JP5567742B2/en
Application granted granted Critical
Publication of JP5567742B2 publication Critical patent/JP5567742B2/en
Publication of JPWO2013027432A1 publication Critical patent/JPWO2013027432A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • C01G53/50Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [MnO2]n-, e.g. Li(NixMn1-x)O2, Li(MyNixMn1-x-y)O2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/136Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1397Processes of manufacture of electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/51Particles with a specific particle size distribution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

微小で且つバラツキが少ない粒径を有する電池特性の良好なリチウムイオン電池用正極活物質を効率良く製造する方法を提供する。リチウムイオン電池用正極活物質の製造方法は、リチウム塩と、金属硝酸塩とを含むリチウム金属硝酸塩溶液スラリーを準備する工程と、リチウム金属硝酸塩溶液スラリーを、マイクロミストドライヤーを用いて噴霧乾燥して、リチウム金属塩の複合体の粉末を得る工程と、粉末を焼成する工程とを含む。  Provided is a method for efficiently producing a positive electrode active material for a lithium ion battery having a small and small particle size and good battery characteristics. A method for producing a positive electrode active material for a lithium ion battery includes a step of preparing a lithium metal nitrate solution slurry containing a lithium salt and a metal nitrate, and spray drying the lithium metal nitrate solution slurry using a micro mist dryer. The method includes a step of obtaining a lithium metal salt composite powder and a step of firing the powder.

Description

本発明は、リチウムイオン電池用正極活物質の製造方法に関する。   The present invention relates to a method for producing a positive electrode active material for a lithium ion battery.

近年、高エネルギー密度電池として非水系のリチウムイオン二次電池の需要が急増しており、その性能向上に関して様々な観点からの研究が行われている。   In recent years, the demand for non-aqueous lithium ion secondary batteries as high energy density batteries has been increasing rapidly, and research from various viewpoints has been conducted on improving the performance.

このリチウムイオン二次電池は、正極及び負極、並びに両電極間に介在する電解質を保持したセパレータの3つの基本要素によって構成されており、正極及び負極には活物質、導電材、結着材及び必要に応じて可塑剤を分散媒に混合分散させて成るスラリーを金属箔や金属メッシュ等の集電体に塗工したものが使用されている。   This lithium ion secondary battery is composed of three basic elements: a positive electrode and a negative electrode, and a separator holding an electrolyte interposed between both electrodes. The positive electrode and the negative electrode include an active material, a conductive material, a binder, A slurry obtained by mixing and dispersing a plasticizer in a dispersion medium as required is coated on a current collector such as a metal foil or a metal mesh.

このうちの正極活物質としてはコバルト系複合酸化物(LiCoO2)、ニッケル系複合酸化物(LiNiO2)、マンガン系複合酸化物(LiMn24)といったリチウムと遷移金属との複合酸化物が適用されており、これまでにもこれらを基本とした種々の材料が提案されている。Among these, as the positive electrode active material, complex oxides of lithium and transition metals such as cobalt complex oxide (LiCoO 2 ), nickel complex oxide (LiNiO 2 ), manganese complex oxide (LiMn 2 O 4 ) are included. Various materials based on these have been proposed so far.

リチウムイオン二次電池用の正極材料として用いられる上記リチウム複合酸化物は、一般に、リチウムイオン二次電池用正極材料の主体となる元素の化合物(Co、Ni及びMn等の炭酸塩や酸化物など)とリチウム化合物(炭酸リチウム等)とを所定の割合で混合し、それを熱処理することにより合成されている。このようなリチウム複合酸化物の合成方法として、例えば、特許文献1には、炭酸リチウム懸濁液に、Ni、Mn又はCoの硝酸塩の1種以上を含む水溶液、あるいはこの水溶液とMg、Al、Ti、Cr、Fe、Cu又はZrの硝酸塩の1種以上を含む水溶液との混合液を投入してLiを含有する複合金属炭酸塩を析出させ、得られたLi含有複合金属炭酸塩を固液分離によって溶液中から分離した後、焼成させることを特徴とするリチウムイオン二次電池正極材料用前駆体材料の製造方法が開示されている。   The lithium composite oxide used as a positive electrode material for a lithium ion secondary battery is generally composed of a compound of an element that is a main component of a positive electrode material for a lithium ion secondary battery (such as carbonate, oxide such as Co, Ni, and Mn ) And a lithium compound (lithium carbonate or the like) are mixed at a predetermined ratio and heat-treated. As a method for synthesizing such a lithium composite oxide, for example, Patent Document 1 discloses an aqueous solution containing one or more nitrates of Ni, Mn, or Co in a lithium carbonate suspension, or an aqueous solution containing Mg, Al, A mixed solution with an aqueous solution containing one or more of Ti, Cr, Fe, Cu or Zr nitrate is added to precipitate Li-containing composite metal carbonate, and the resulting Li-containing composite metal carbonate is solid-liquid. Disclosed is a method for producing a precursor material for a positive electrode material for a lithium ion secondary battery, wherein the precursor material is fired after being separated from the solution by separation.

特開2006−004724号公報JP 2006-004724 A

リチウムイオン電池用正極活物質は、粒径が小さいこと、及び、粒径のバラツキが少ないことが良好な電池特性を得るため、特に急速な充放電を可能にするために有効である。このため、微小で且つバラツキが少ない粒径を有するリチウムイオン電池用正極活物質の製造方法についての研究・開発が盛んに行われている。   The positive electrode active material for a lithium ion battery is particularly effective for enabling rapid charge and discharge in order to obtain good battery characteristics that the particle size is small and the particle size variation is small. For this reason, research and development have been actively conducted on a method for producing a positive electrode active material for a lithium ion battery having a particle size that is small and has little variation.

そこで、本発明は、微小で且つバラツキが少ない粒径を有する電池特性(急速充放電特性)の良好なリチウムイオン電池用正極活物質を効率良く製造する方法を提供することを課題とする。   Then, this invention makes it a subject to provide the method of manufacturing efficiently the positive electrode active material for lithium ion batteries with the favorable battery characteristic (rapid charge / discharge characteristic) which has a particle size which is micro and has few variations.

本発明者らは、鋭意検討した結果、リチウム塩と、金属硝酸塩とを含むリチウム金属硝酸塩溶液スラリーを、マイクロミストドライヤーを用いて噴霧乾燥して、リチウム金属塩の複合体の粉末とした後に焼成することで、微小で且つバラツキが少ない粒径を有する電池特性の良好なリチウムイオン電池用正極活物質を効率良く製造することができることを見出した。   As a result of intensive studies, the inventors of the present invention sprayed and dried a lithium metal nitrate solution slurry containing a lithium salt and a metal nitrate using a micro mist dryer to obtain a lithium metal salt composite powder, followed by firing. As a result, it has been found that a positive electrode active material for a lithium ion battery having a small and small variation in particle size and good battery characteristics can be efficiently produced.

上記知見を基礎にして完成した本発明は一側面において、リチウム塩と、金属硝酸塩とを含むリチウム金属硝酸塩溶液スラリーを準備する工程と、前記リチウム金属硝酸塩溶液スラリーを、マイクロミストドライヤーを用いて噴霧乾燥して、リチウム金属塩の複合体の粉末を得る工程と、前記粉末を焼成する工程とを含むリチウムイオン電池用正極活物質の製造方法である。   In one aspect, the present invention completed on the basis of the above knowledge is a step of preparing a lithium metal nitrate solution slurry containing a lithium salt and a metal nitrate, and the lithium metal nitrate solution slurry is sprayed using a micro mist dryer. A method for producing a positive electrode active material for a lithium ion battery, comprising: a step of drying to obtain a lithium metal salt composite powder; and a step of firing the powder.

本発明に係るリチウムイオン電池用正極活物質の製造方法は一実施形態において、前記金属硝酸塩に含まれる金属が、Ni、Mn及びCoから選択された1種以上である。   In one embodiment of the method for producing a positive electrode active material for a lithium ion battery according to the present invention, the metal contained in the metal nitrate is at least one selected from Ni, Mn, and Co.

本発明に係るリチウムイオン電池用正極活物質の製造方法は別の実施形態において、前記金属硝酸塩に少なくともNiが含まれ、前記粉末に含有される金属中のNiのモル比率が0.3以上である。   In another embodiment of the method for producing a positive electrode active material for a lithium ion battery according to the present invention, the metal nitrate contains at least Ni, and the molar ratio of Ni in the metal contained in the powder is 0.3 or more. is there.

本発明に係るリチウムイオン電池用正極活物質の製造方法は更に別の実施形態において、前記金属塩に少なくともNi及びMnが含まれ、前記粉末に含有される金属中のNiのモル比率がMnのモル比率より大きい。   In still another embodiment of the method for producing a positive electrode active material for a lithium ion battery according to the present invention, the metal salt contains at least Ni and Mn, and the molar ratio of Ni in the metal contained in the powder is Mn. Greater than molar ratio.

本発明に係るリチウムイオン電池用正極活物質の製造方法は更に別の実施形態において、前記リチウム塩が炭酸リチウムである。   In still another embodiment of the method for producing a positive electrode active material for a lithium ion battery according to the present invention, the lithium salt is lithium carbonate.

本発明に係る製造方法によれば、リチウム金属硝酸塩溶液スラリーをマイクロミストドライヤーを用いて噴霧乾燥することで、粒子の粒度分布がシャープになり、粒径のバラツキを良好に抑制することができ、通常乾燥では20〜30μmの粒径であった乾燥粉末を数μmの微小粒径に形成することができる。そのため、本発明に係る製造方法で作製されたリチウムイオン電池用正極活物質を用いたリチウムイオン電池の種々の特性が良好となる。さらに、乾燥と微小粒子化とを同時に行うことができ、製造効率が良好となる。   According to the production method of the present invention, by spray-drying the lithium metal nitrate solution slurry using a micro mist dryer, the particle size distribution of the particles becomes sharp, and the variation in particle size can be well suppressed, Normally, dry powder having a particle size of 20 to 30 μm can be formed into a fine particle size of several μm. Therefore, various characteristics of the lithium ion battery using the positive electrode active material for a lithium ion battery produced by the production method according to the present invention are improved. Furthermore, drying and microparticulation can be performed at the same time, and the production efficiency is improved.

(リチウムイオン電池用正極活物質の構成)
本発明に係る製造方法で作製されるリチウムイオン電池用正極活物質の材料としては、一般的なリチウムイオン電池用正極用の正極活物質として有用な化合物を広く用いることができるが、特に、コバルト酸リチウム(LiCoO2)、ニッケル酸リチウム(LiNiO2)、マンガン酸リチウム(LiMn24)等のリチウム含有遷移金属酸化物を用いるのが好ましい。このような材料を用いて作製されるリチウムイオン電池用正極活物質は、
組成式:LixNi1-yy2
(前記式において、MはNi、Mn及びCoから選択される1種以上であり、0.9≦x≦1.1であり、0<y≦0.7である。)
で表される。
リチウムイオン電池用正極活物質における全金属に対するリチウムの比率が0.9〜1.1であるが、これは、0.9未満では、安定した結晶構造を保持し難く、1.1超では容量が低くなるためである。
(Configuration of positive electrode active material for lithium ion battery)
As a material for the positive electrode active material for lithium ion batteries produced by the production method according to the present invention, compounds useful as a positive electrode active material for general positive electrodes for lithium ion batteries can be widely used. It is preferable to use a lithium-containing transition metal oxide such as lithium oxide (LiCoO 2 ), lithium nickelate (LiNiO 2 ), or lithium manganate (LiMn 2 O 4 ). The positive electrode active material for a lithium ion battery produced using such a material is
Composition formula: Li x Ni 1- y My O 2
(In the above formula, M is at least one selected from Ni, Mn, and Co, 0.9 ≦ x ≦ 1.1, and 0 <y ≦ 0.7.)
It is represented by
The ratio of lithium to all metals in the positive electrode active material for a lithium ion battery is 0.9 to 1.1. This is less than 0.9, and it is difficult to maintain a stable crystal structure. This is because of a low.

本発明の製造方法によって作製されるリチウムイオン電池用正極活物質は、一次粒子を含む凝集体であり、一次粒子の平均粒径が1.0〜3.0μmである。
充放電時のリチウムイオンの移動距離を考えると、一次粒子の平均粒径は小さいほうが伝導距離が短くてすみ、急速充放電に有利であるが、平均粒径が小さいと電極作製における電極プレスの際に粒子が壊れる可能性が高くなる。従って、一次粒子の平均粒径には適切な範囲が存在し、1.0〜3.0μmであることが望ましい。平均粒径が1.0μm未満であると、電極作製時のプレス処理で一次粒子が破壊する可能性がある。また、平均粒径が3.0μm超であると充放電時のリチウムイオンの移動距離が長くなり、急速な充放電が困難となる。
また、一次粒子が凝集して形成される二次粒子の平均粒径は5.0〜9.0μmであることが望ましい。二次粒子の平均粒径が5.0μm未満ではスラリーを塗布する際に溶媒量が多く必要になり、工業生産の面で好ましくない。また、二次粒子の平均粒径が9.0μm超であると電解液との接触面積が少なくなり急速な充放電が困難となる。
また、粒径のばらつきについては、平均粒径を中心として、一般的な粒度分布計で頻度の粒度分布曲線を表示させた場合に、左右対称になることが最もばらつきが少ないと考え、以下の条件をばらつきの指標とした。
すなわち、最大径(μm)をdmax、平均径(μm)をd50、最小径(μm)をdminと表したとき、(dmax/d50)の比の常用対数と(d50/dmin)の比の常用対数がともに0.7未満であれば、上記ばらつきの少ない粒径を有することとなる。当該条件を式で示せば、下記の通りとなる:
Log(最大径(μm)/平均粒径(μm))<0.70
Log(平均粒径(μm)/最小径(μm))<0.70
The positive electrode active material for a lithium ion battery produced by the production method of the present invention is an aggregate containing primary particles, and the average particle size of the primary particles is 1.0 to 3.0 μm.
Considering the distance of movement of lithium ions during charging / discharging, the smaller primary particle size is advantageous for rapid charging / discharging as the conduction distance is shorter. In some cases, the possibility of the particles breaking up increases. Therefore, an appropriate range exists for the average particle size of the primary particles, and it is desirable that the average particle size is 1.0 to 3.0 μm. If the average particle size is less than 1.0 μm, the primary particles may be destroyed by the press treatment during electrode production. On the other hand, if the average particle size exceeds 3.0 μm, the movement distance of lithium ions during charging / discharging becomes long, and rapid charging / discharging becomes difficult.
The average particle size of the secondary particles formed by agglomeration of the primary particles is preferably 5.0 to 9.0 μm. If the average particle size of the secondary particles is less than 5.0 μm, a large amount of solvent is required when applying the slurry, which is not preferable in terms of industrial production. Further, if the average particle size of the secondary particles is more than 9.0 μm, the contact area with the electrolytic solution is reduced, and rapid charge / discharge is difficult.
In addition, regarding the variation in particle size, when the particle size distribution curve of the frequency is displayed with a general particle size distribution meter around the average particle size, it is considered that the variation is the least, and the following variation is The condition was used as an index of variation.
That is, when the maximum diameter (μm) is expressed as dmax, the average diameter (μm) is expressed as d50, and the minimum diameter (μm) is expressed as dmin, the common logarithm of the ratio (dmax / d50) and the common ratio (d50 / dmin) are used. If the logarithms are both less than 0.7, the particle diameter has little variation. The conditions can be expressed as follows:
Log (maximum diameter (μm) / average particle diameter (μm)) <0.70
Log (average particle diameter (μm) / minimum diameter (μm)) <0.70

(リチウムイオン電池用正極活物質の製造方法)
本発明の実施形態に係るリチウムイオン電池用正極活物質の製造方法について詳細に説明する。
まず、Ni、Mn及びCoから選択された1種以上の金属を含む金属硝酸塩を準備する。金属硝酸塩としては、例えば、硝酸ニッケル、硝酸コバルト、及び、硝酸マンガン等を用いることができる。このように、硝酸塩を用いると、焼成原料中に不純物として混入してもそのまま焼成できるため洗浄工程が省けること、及び、硝酸塩が酸化剤として機能し、焼成原料中の金属の酸化を促進する働きがあるためである。また、金属硝酸塩に含まれる上記各金属を所望のモル比率となるように調整する。これにより、正極活物質中の各金属のモル比率が決定する。金属硝酸塩溶液にNiが含まれる場合、当該金属中のNiのモル比率が0.3以上であるのが好ましい。Niのモル比率が0.3未満では正極材1モルを焼成するために必要な酸素量の絶対量が少なくなるためである。また、金属硝酸塩溶液に少なくともNi及びMnが含まれる場合、含まれる金属中のNiのモル比率がMnのモル比率より大きいことが好ましい。Niのモル比率がMnのモル比率以下の場合は、Niの価数が2価となり、熱処理中にNiを酸化する必要が無くなるためである。
(Method for producing positive electrode active material for lithium ion battery)
The manufacturing method of the positive electrode active material for lithium ion batteries which concerns on embodiment of this invention is demonstrated in detail.
First, a metal nitrate containing at least one metal selected from Ni, Mn, and Co is prepared. As the metal nitrate, for example, nickel nitrate, cobalt nitrate, manganese nitrate, and the like can be used. In this way, when nitrate is used, even if it is mixed as an impurity in the firing raw material, it can be fired as it is, so that the cleaning process can be omitted, and the function of the nitrate functioning as an oxidant and promoting the oxidation of the metal in the firing raw material. Because there is. Further, the respective metals contained in the metal nitrate are adjusted so as to have a desired molar ratio. Thereby, the molar ratio of each metal in the positive electrode active material is determined. When Ni is contained in the metal nitrate solution, the molar ratio of Ni in the metal is preferably 0.3 or more. This is because when the molar ratio of Ni is less than 0.3, the absolute amount of oxygen necessary for firing 1 mol of the positive electrode material is reduced. Further, when at least Ni and Mn are contained in the metal nitrate solution, it is preferable that the molar ratio of Ni in the contained metal is larger than the molar ratio of Mn. This is because when the molar ratio of Ni is less than or equal to the molar ratio of Mn, the valence of Ni becomes bivalent, and there is no need to oxidize Ni during the heat treatment.

次に、リチウム源として、例えば炭酸リチウムを純水に懸濁させ、その後、上記の金属の金属塩溶液を投入してリチウム金属硝酸塩溶液スラリーを調整する。
次に、リチウム金属硝酸塩溶液スラリーを、マイクロミストドライヤーで噴霧乾燥することにより、リチウム金属塩の複合体の粉末を得る。このときの反応は、金属塩の金属を「M」と表すと、次のいくつかの化学式で示される。当該工程について、以下に説明する。一般的に、金属の硝酸塩は、加熱により硝酸を失い、塩基性塩となることが知られており、乾燥時にこの反応が進行している。
M(NO32+1/2Li2CO3
→1/2MCO3+1/2M(NO32+LiNO3 (1)
M(NO32+1/2Li2CO3+5/6H2
→1/3M3(NO32(OH)4+LiNO3+1/3HNO3+1/2CO2 (2)
M(NO32+1/2Li2CO3+H2O+1/4O2
→MOOH+LiNO3+HNO3+1/2CO2 (3)
M(NO32+1/2Li2CO3+3/2H2
→1/2(M(NO32(OH)2・2H2O)+LiNO3+1/2CO2 (4)
マイクロミストドライヤーは、微粒化装置を利用した噴霧乾燥機であり、リチウム金属塩溶液スラリーを複数経路で高速気流によって薄く延ばし、それらを所定の衝突焦点で衝突させることにより衝撃波を起こし、これによって数μmのミストを形成することができる。微粒化装置としては、例えば四流体ノズルを備えたものが好ましい。四流体ノズルを備えた微粒化装置は、ノズルエッジを対称に、液体及び気体の系路が2つずつ設けられ、例えばエッジ先端での流体流動面と衝突焦点により微粒化を行う。
生成したミストはマイクロミストドライヤー内の乾燥室で乾燥されて、主に上記の式の右辺の化合物からなる微小粒径(数μm)を有するリチウム金属硝酸塩の複合体の乾燥粉末が生成する。
このように、マイクロミストドライヤーを用いることによって、少なくとも以下の効果が得られる:
(1)シングルミクロン液滴の大量噴霧が可能となる。
(2)気液比を変化させることで液滴平均径のコントロールが可能となる。
(3)粒子の粒度分布がシャープになって粒径のバラツキが良好に抑制される。
(4)外部混合方式で生じていたノズル詰まりが抑制されて長時間連続噴霧が可能となる。
(5)エッジ長さの調整により容易に必要噴霧量が得られる。
(6)通常乾燥では20〜30μmの粒径であった乾燥粉末を数μmの微小粒径に形成することができる。
(7)乾燥と微小粒子化とを同時に行うことができ、製造効率が良好となる。
Next, as a lithium source, for example, lithium carbonate is suspended in pure water, and then the above metal salt solution of metal is added to prepare a lithium metal nitrate solution slurry.
Next, the lithium metal nitrate solution slurry is spray-dried with a micro mist dryer to obtain a lithium metal salt composite powder. The reaction at this time is represented by the following several chemical formulas when the metal of the metal salt is represented by “M”. This process will be described below. In general, it is known that a metal nitrate loses nitric acid by heating to become a basic salt, and this reaction proceeds during drying.
M (NO 3 ) 2 + 1 / 2Li 2 CO 3
→ 1 / 2MCO 3 + 1 / 2M (NO 3 ) 2 + LiNO 3 (1)
M (NO 3 ) 2 + 1 / 2Li 2 CO 3 + 5 / 6H 2 O
1/3 M 3 (NO 3 ) 2 (OH) 4 + LiNO 3 +1/3 HNO 3 + 1 / 2CO 2 (2)
M (NO 3 ) 2 + 1 / 2Li 2 CO 3 + H 2 O + 1 / 4O 2
→ MOOH + LiNO 3 + HNO 3 + 1 / 2CO 2 (3)
M (NO 3 ) 2 + 1 / 2Li 2 CO 3 + 3 / 2H 2 O
→ 1/2 (M (NO 3 ) 2 (OH) 2 .2H 2 O) + LiNO 3 + 1 / 2CO 2 (4)
A micro mist dryer is a spray dryer that uses a pulverizer, and thinly spreads a lithium metal salt solution slurry by a high-speed air stream in multiple paths and causes them to collide at a predetermined collision focal point, thereby generating shock waves. A μm mist can be formed. As the atomizer, for example, an apparatus equipped with a four-fluid nozzle is preferable. The atomization apparatus equipped with the four-fluid nozzle is provided with two liquid and gas system paths symmetrically with respect to the nozzle edge, and for example, atomization is performed by the fluid flow surface and the collision focus at the edge tip.
The produced mist is dried in a drying chamber in a micro mist dryer to produce a dry powder of a lithium metal nitrate complex having a fine particle size (several μm) mainly composed of the compound on the right side of the above formula.
Thus, at least the following effects can be obtained by using the micro mist dryer:
(1) A large amount of single micron droplets can be sprayed.
(2) The average droplet diameter can be controlled by changing the gas-liquid ratio.
(3) The particle size distribution of the particles becomes sharp, and the variation in the particle size is satisfactorily suppressed.
(4) Nozzle clogging that has occurred in the external mixing method is suppressed, enabling continuous spraying for a long time.
(5) The necessary spray amount can be easily obtained by adjusting the edge length.
(6) A dry powder having a particle size of 20 to 30 μm in normal drying can be formed into a fine particle size of several μm.
(7) Drying and microparticulation can be performed at the same time, resulting in good production efficiency.

次に、上記乾燥粉末を、所定の大きさの焼成容器に所定の厚みとなるように充填し、大気中などの酸化性を保持しうる雰囲気中の大気圧下で所定時間加熱保持する酸化処理及び粉砕を行うことにより正極活物質の粉体を得る。このときの反応は、金属塩の金属を「M」と表すと、次の化学式で示される。いずれの式でも右辺に酸素項があり、焼成原料から酸素を発生することを表している。
1/2MCO3+1/2M(NO32+LiNO3
→LiMO2+2NO2+1/2CO2+1/4O2 (5)
1/3M3(NO32(OH)4+LiNO3
→LiMO2+5/3NO2+2/3H2O+1/6O2 (6)
MOOH+LiNO3
→LiMO2+NO2+1/2H2O+1/4O2 (7)
1/2(M2(NO32(OH)2・2H2O)+LiNO3
→LiMO2+2NO2+3/2H2O+1/4O2 (8)
酸化処理は、通常の静置炉の他、連続炉やその他の炉でも実施が可能である。
このように、本発明では、リチウム金属硝酸塩溶液スラリーをマイクロミストドライヤーを用いて噴霧乾燥することで、粒子の粒度分布がシャープになり、粒径のバラツキを良好に抑制することができ、通常乾燥では20〜30μmの粒径であった乾燥粉末を数μmの微小粒径に形成することができる。そのため、本発明に係る製造方法で作製されたリチウムイオン電池用正極活物質を用いたリチウムイオン電池の種々の特性が良好となる。さらに、乾燥と微小粒子化とを同時に行うことができ、製造効率が良好となる。
Next, the dry powder is filled in a baking container of a predetermined size so as to have a predetermined thickness, and is subjected to an oxidation treatment in which heat is maintained for a predetermined time under atmospheric pressure in an atmosphere that can maintain oxidizing properties such as in the air. And the powder of a positive electrode active material is obtained by grind | pulverizing. The reaction at this time is represented by the following chemical formula when the metal of the metal salt is represented by “M”. In either formula, there is an oxygen term on the right side, indicating that oxygen is generated from the firing raw material.
1 / 2MCO 3 + 1 / 2M (NO 3 ) 2 + LiNO 3
→ LiMO 2 + 2NO 2 + 1 / 2CO 2 + 1 / 4O 2 (5)
1 / 3M 3 (NO 3 ) 2 (OH) 4 + LiNO 3
→ LiMO 2 + 5 / 3NO 2 + 2 / 3H 2 O + 1 / 6O 2 (6)
MOOH + LiNO 3
→ LiMO 2 + NO 2 + 1 / 2H 2 O + 1 / 4O 2 (7)
1/2 (M 2 (NO 3 ) 2 (OH) 2 .2H 2 O) + LiNO 3
→ LiMO 2 + 2NO 2 + 3 / 2H 2 O + 1 / 4O 2 (8)
The oxidation treatment can be carried out in a continuous furnace or other furnaces in addition to a normal stationary furnace.
As described above, in the present invention, the lithium metal nitrate solution slurry is spray-dried using a micro mist dryer, so that the particle size distribution of the particles becomes sharp and the variation in the particle size can be well suppressed, and the normal drying is performed. Then, a dry powder having a particle diameter of 20 to 30 μm can be formed into a fine particle diameter of several μm. Therefore, various characteristics of the lithium ion battery using the positive electrode active material for a lithium ion battery produced by the production method according to the present invention are improved. Furthermore, drying and microparticulation can be performed at the same time, and the production efficiency is improved.

以下、本発明及びその利点をより良く理解するための実施例を提供するが、本発明はこれらの実施例に限られるものではない。   Examples for better understanding of the present invention and its advantages are provided below, but the present invention is not limited to these examples.

(実施例1)
まず、炭酸リチウム517gを純水1.06リットルに懸濁させた後、4.8リットルの金属塩溶液を投入した。ここで、金属塩溶液は、硝酸ニッケル、硝酸コバルト及び硝酸マンガンの各水和物をNi、Mn及びCoが所定の比率になるように調整し、またNi、Mn及びCoの各モル数の合計が14モルになるように調整した。
なお、炭酸リチウムの懸濁量は製品の化学式をLixNi1-yy2で表した際のx=1.0となる量であり、次式で算出されたものである。
W(g)=炭酸リチウム分子量×(Ni、Mn、Co全モル数)×0.5
=73.9×14×0.5=517
この式における「0.5」は製品(LixNi1-yy2)と炭酸リチウム(Li2CO3)とのLi含有量の比である。
また、Ni、Mn及びCoの比率は、Ni:Mn:Co=1:1:1になるように調整した。これは、製品の化学式をLixNi1-yy2で表した際のy=0.66に相当し、MにはMnとCoを同じ比率で調整したものである。
このように作製した炭酸リチウム懸濁液に金属の硝酸塩溶液を投入してスラリーとした。
続いて、このスラリーを藤崎電機社製マイクロミストドライヤー(MDL−100M)で噴霧乾燥し、リチウム金属硝酸塩の複合体の乾燥粉末(リチウムイオン二次電池正極材料用前駆体材料)2800gを得た。
この複合体のXRD回折から、複合体は硝酸リチウム(LiNO3)及び塩基性金属硝酸塩{M3(NO32(OH)4:Mは金属成分}から形成されていることを確認した。
次に、内部が縦×横=280mm×280mm、且つ、容器高さ=100mmの大きさに形成された焼成容器を準備し、この焼成容器内に複合体の高さが55mmになるように生成した複合体を充填し、空気雰囲気下で、温度980℃で12時間酸化処理した。得られた酸化物をボールミルで解砕し、リチウムイオン二次電池正極材の粉末を得た。
(Example 1)
First, 517 g of lithium carbonate was suspended in 1.06 liter of pure water, and then 4.8 liter of a metal salt solution was added. Here, the metal salt solution is prepared by adjusting nickel nitrate, cobalt nitrate, and manganese nitrate hydrates so that Ni, Mn, and Co have a predetermined ratio, and the total number of moles of Ni, Mn, and Co. Was adjusted to 14 mol.
The suspended amount of lithium carbonate is an amount that gives x = 1.0 when the chemical formula of the product is expressed by Li x Ni 1- y My O 2 , and is calculated by the following formula.
W (g) = lithium carbonate molecular weight x (total number of moles of Ni, Mn, Co) x 0.5
= 73.9 × 14 × 0.5 = 517
“0.5” in this equation is the ratio of the Li content between the product (Li x Ni 1- y My O 2 ) and lithium carbonate (Li 2 CO 3 ).
The ratio of Ni, Mn and Co was adjusted to be Ni: Mn: Co = 1: 1: 1. This corresponds to y = 0.66 when representing the chemical formula of product on Li x Ni 1-y M y O 2, the M is obtained by adjusting the Mn and Co in the same ratio.
A metal nitrate solution was added to the lithium carbonate suspension thus prepared to form a slurry.
Subsequently, this slurry was spray-dried with a micro mist dryer (MDL-100M) manufactured by Fujisaki Electric Co., Ltd. to obtain 2800 g of a dry powder of lithium metal nitrate composite (precursor material for lithium ion secondary battery positive electrode material).
From the XRD diffraction of this composite, it was confirmed that the composite was formed from lithium nitrate (LiNO 3 ) and basic metal nitrate {M 3 (NO 3 ) 2 (OH) 4 : M is a metal component}.
Next, a firing container is prepared in which the inside is vertical × width = 280 mm × 280 mm and the container height is 100 mm, and the composite is generated in this firing container so that the height of the composite is 55 mm. The composite was filled and oxidized in an air atmosphere at a temperature of 980 ° C. for 12 hours. The obtained oxide was pulverized with a ball mill to obtain a powder of a lithium ion secondary battery positive electrode material.

(比較例1)
実施例1と同様の方法で、炭酸リチウム懸濁液に金属の硝酸塩溶液を投入してスラリーを作製し、このスラリーを旭科学製熱風循環型乾燥機(BCL−20型)で乾燥し、リチウム金属硝酸塩の複合体の乾燥粉末(リチウムイオン二次電池正極材料用前駆体材料)2800gを得た。
乾燥後は25μmの篩を使用して整粒して、焼成用の原料とした。
次に、内部が縦×横=280mm×280mm、且つ、容器高さ=100mmの大きさに形成された焼成容器を準備し、この焼成容器内に複合体の高さが55mmになるように生成した複合体を充填し、空気雰囲気下で、温度980℃で12時間酸化処理した。得られた酸化物をボールミルで解砕し、リチウムイオン二次電池正極材の粉末を得た。
(Comparative Example 1)
In the same manner as in Example 1, a metal nitrate solution was added to the lithium carbonate suspension to prepare a slurry, and this slurry was dried with a hot air circulation dryer (BCL-20 type) manufactured by Asahi Kagaku. 2800 g of dry powder (precursor material for a lithium ion secondary battery positive electrode material) of a composite of metal nitrate was obtained.
After drying, the particle size was adjusted using a 25 μm sieve to obtain a raw material for firing.
Next, a firing container is prepared in which the inside is vertical × width = 280 mm × 280 mm and the container height is 100 mm, and the composite is generated in this firing container so that the height of the composite is 55 mm. The composite was filled and oxidized in an air atmosphere at a temperature of 980 ° C. for 12 hours. The obtained oxide was pulverized with a ball mill to obtain a powder of a lithium ion secondary battery positive electrode material.

(実施例2)
まず、炭酸リチウム517gを純水1.06リットルに懸濁させた後、4.8リットルの金属塩溶液を投入した。ここで、金属塩溶液は、硝酸ニッケル、硝酸コバルト及び硝酸マンガンの各水和物をNi、Mn及びCoが所定の比率になるように調整し、またNi、Mn及びCoの各モル数の合計が14モルになるように調整した。
なお、炭酸リチウムの懸濁量は製品の化学式をLixNi1-yy2で表した際のx=1.0となる量であり、次式で算出されたものである。
W(g)=炭酸リチウム分子量×(Ni、Mn、Co全モル数)×0.5
=73.9×14×0.5=517
この式における「0.5」は製品(LixNi1-yy2)と炭酸リチウム(Li2CO3)とのLi含有量の比である。
また、Ni、Mn及びCoの比率は、Ni:Mn:Co=0.6:0.25:0.15になるように調整した。これは、製品の化学式をLixNi1-yy2で表した際のy=0.4に相当し、MにはMnとCoをMn:Co=0.625:0.375で調整したものである。
このように作製した炭酸リチウム懸濁液に金属の硝酸塩溶液を投入してスラリーとした。
続いて、このスラリーを藤崎電機社製マイクロミストドライヤー(MDL−100M)で噴霧乾燥し、リチウム金属硝酸塩の複合体の乾燥粉末(リチウムイオン二次電池正極材料用前駆体材料)2800gを得た。
この複合体のXRD回折から、複合体は硝酸リチウム(LiNO3)及び塩基性金属硝酸塩{M3(NO32(OH)4:Mは金属成分}から形成されていることを確認した。
次に、内部が縦×横=280mm×280mm、且つ、容器高さ=100mmの大きさに形成された焼成容器を準備し、この焼成容器内に複合体の高さが55mmになるように生成した複合体を充填し、空気雰囲気下で、温度870℃で12時間酸化処理した。得られた酸化物をボールミルで解砕し、リチウムイオン二次電池正極材の粉末を得た。
(Example 2)
First, 517 g of lithium carbonate was suspended in 1.06 liter of pure water, and then 4.8 liter of a metal salt solution was added. Here, the metal salt solution is prepared by adjusting nickel nitrate, cobalt nitrate, and manganese nitrate hydrates so that Ni, Mn, and Co have a predetermined ratio, and the total number of moles of Ni, Mn, and Co. Was adjusted to 14 mol.
The suspended amount of lithium carbonate is an amount that gives x = 1.0 when the chemical formula of the product is expressed by Li x Ni 1- y My O 2 , and is calculated by the following formula.
W (g) = lithium carbonate molecular weight x (total number of moles of Ni, Mn, Co) x 0.5
= 73.9 × 14 × 0.5 = 517
“0.5” in this equation is the ratio of the Li content between the product (Li x Ni 1- y My O 2 ) and lithium carbonate (Li 2 CO 3 ).
The ratio of Ni, Mn and Co was adjusted to be Ni: Mn: Co = 0.6: 0.25: 0.15. This corresponds to y = 0.4 at the time of representing chemical formulas of product on Li x Ni 1-y M y O 2, the M of Mn and Co Mn: at 0.375: Co = 0.625 It is adjusted.
A metal nitrate solution was added to the lithium carbonate suspension thus prepared to form a slurry.
Subsequently, this slurry was spray-dried with a micro mist dryer (MDL-100M) manufactured by Fujisaki Electric Co., Ltd. to obtain 2800 g of a dry powder of lithium metal nitrate composite (precursor material for lithium ion secondary battery positive electrode material).
From the XRD diffraction of this composite, it was confirmed that the composite was formed from lithium nitrate (LiNO 3 ) and basic metal nitrate {M 3 (NO 3 ) 2 (OH) 4 : M is a metal component}.
Next, a firing container is prepared in which the inside is vertical × width = 280 mm × 280 mm and the container height is 100 mm, and the composite is generated in this firing container so that the height of the composite is 55 mm. The composite was filled and oxidized in an air atmosphere at a temperature of 870 ° C. for 12 hours. The obtained oxide was pulverized with a ball mill to obtain a powder of a lithium ion secondary battery positive electrode material.

(比較例2)
実施例2と同様の方法で、炭酸リチウム懸濁液に金属の硝酸塩溶液を投入してスラリーを作製し、このスラリーを旭科学製熱風循環型乾燥機(BCL−20型)で乾燥し、リチウム金属硝酸塩の複合体の乾燥粉末(リチウムイオン二次電池正極材料用前駆体材料)2800gを得た。
乾燥後は25μmの篩を使用して整粒して、焼成用の原料とした。
次に、内部が縦×横=280mm×280mm、且つ、容器高さ=100mmの大きさに形成された焼成容器を準備し、この焼成容器内に複合体の高さが55mmになるように生成した複合体を充填し、空気雰囲気下で、温度870℃で12時間酸化処理した。得られた酸化物をボールミルで解砕し、リチウムイオン二次電池正極材の粉末を得た。
(Comparative Example 2)
In the same manner as in Example 2, a metal nitrate solution was added to a lithium carbonate suspension to prepare a slurry, and this slurry was dried with a hot air circulating dryer (BCL-20 type) manufactured by Asahi Kagaku. 2800 g of dry powder (precursor material for a lithium ion secondary battery positive electrode material) of a composite of metal nitrate was obtained.
After drying, the particle size was adjusted using a 25 μm sieve to obtain a raw material for firing.
Next, a firing container is prepared in which the inside is vertical × width = 280 mm × 280 mm and the container height is 100 mm, and the composite is generated in this firing container so that the height of the composite is 55 mm. The composite was filled and oxidized in an air atmosphere at a temperature of 870 ° C. for 12 hours. The obtained oxide was pulverized with a ball mill to obtain a powder of a lithium ion secondary battery positive electrode material.

(実施例3)
まず、炭酸リチウム517gを純水1.06リットルに懸濁させた後、4.8リットルの金属塩溶液を投入した。ここで、金属塩溶液は、硝酸ニッケル、硝酸コバルト及び硝酸マンガンの各水和物をNi、Mn及びCoが所定の比率になるように調整し、またNi、Mn及びCoの各モル数の合計が14モルになるように調整した。
なお、炭酸リチウムの懸濁量は製品の化学式をLixNi1-yy2で表した際のx=1.0となる量であり、次式で算出されたものである。
W(g)=炭酸リチウム分子量×(Ni、Mn、Co全モル数)×0.5
=73.9×14×0.5=517
この式における「0.5」は製品(LixNi1-yy2)と炭酸リチウム(Li2CO3)とのLi含有量の比である。
また、Ni、Mn及びCoの比率は、Ni:Mn:Co=0.8:0.1:0.1になるように調整した。これは、製品の化学式をLixNi1-yy2で表した際のy=0.2に相当し、MにはMnとCoを同じ比率で調整したものである。
このように作製した炭酸リチウム懸濁液に金属の硝酸塩溶液を投入してスラリーとした。
続いて、このスラリーを藤崎電機社製マイクロミストドライヤー(MDL−100M)で噴霧乾燥し、リチウム金属硝酸塩の複合体の乾燥粉末(リチウムイオン二次電池正極材料用前駆体材料)2800gを得た。
この複合体のXRD回折から、複合体は硝酸リチウム(LiNO3)及び塩基性金属硝酸塩{M3(NO32(OH)4:Mは金属成分}から形成されていることを確認した。
次に、内部が縦×横=280mm×280mm、且つ、容器高さ=100mmの大きさに形成された焼成容器を準備し、この焼成容器内に複合体の高さが55mmになるように生成した複合体を充填し、空気雰囲気下で、温度820℃で12時間酸化処理した。得られた酸化物をボールミルで解砕し、リチウムイオン二次電池正極材の粉末を得た。
Example 3
First, 517 g of lithium carbonate was suspended in 1.06 liter of pure water, and then 4.8 liter of a metal salt solution was added. Here, the metal salt solution is prepared by adjusting nickel nitrate, cobalt nitrate, and manganese nitrate hydrates so that Ni, Mn, and Co have a predetermined ratio, and the total number of moles of Ni, Mn, and Co. Was adjusted to 14 mol.
The suspended amount of lithium carbonate is an amount that gives x = 1.0 when the chemical formula of the product is expressed by Li x Ni 1- y My O 2 , and is calculated by the following formula.
W (g) = lithium carbonate molecular weight x (total number of moles of Ni, Mn, Co) x 0.5
= 73.9 × 14 × 0.5 = 517
“0.5” in this equation is the ratio of the Li content between the product (Li x Ni 1- y My O 2 ) and lithium carbonate (Li 2 CO 3 ).
The ratio of Ni, Mn and Co was adjusted to be Ni: Mn: Co = 0.8: 0.1: 0.1. This corresponds to y = 0.2 at the time of representing chemical formulas of product on Li x Ni 1-y M y O 2, the M is obtained by adjusting the Mn and Co in the same ratio.
A metal nitrate solution was added to the lithium carbonate suspension thus prepared to form a slurry.
Subsequently, this slurry was spray-dried with a micro mist dryer (MDL-100M) manufactured by Fujisaki Electric Co., Ltd. to obtain 2800 g of a dry powder of lithium metal nitrate composite (precursor material for lithium ion secondary battery positive electrode material).
From the XRD diffraction of this composite, it was confirmed that the composite was formed from lithium nitrate (LiNO 3 ) and basic metal nitrate {M 3 (NO 3 ) 2 (OH) 4 : M is a metal component}.
Next, a firing container is prepared in which the inside is vertical × width = 280 mm × 280 mm and the container height is 100 mm, and the composite is generated in this firing container so that the height of the composite is 55 mm. The composite was filled and oxidized in an air atmosphere at a temperature of 820 ° C. for 12 hours. The obtained oxide was pulverized with a ball mill to obtain a powder of a lithium ion secondary battery positive electrode material.

(比較例3)
実施例3と同様の方法で、炭酸リチウム懸濁液に金属の硝酸塩溶液を投入してスラリーを作製し、このスラリーを旭科学製熱風循環型乾燥機(BCL−20型)で乾燥し、リチウム金属硝酸塩の複合体の乾燥粉末(リチウムイオン二次電池正極材料用前駆体材料)2800gを得た。
乾燥後は25μmの篩を使用して整粒して、焼成用の原料とした。
次に、内部が縦×横=280mm×280mm、且つ、容器高さ=100mmの大きさに形成された焼成容器を準備し、この焼成容器内に複合体の高さが55mmになるように生成した複合体を充填し、空気雰囲気下で、温度820℃で12時間酸化処理した。得られた酸化物をボールミルで解砕し、リチウムイオン二次電池正極材の粉末を得た。
(Comparative Example 3)
In the same manner as in Example 3, a metal nitrate solution was added to the lithium carbonate suspension to prepare a slurry, and this slurry was dried with a hot air circulation dryer (BCL-20 type) manufactured by Asahi Kagaku. 2800 g of dry powder (precursor material for a lithium ion secondary battery positive electrode material) of a composite of metal nitrate was obtained.
After drying, the particle size was adjusted using a 25 μm sieve to obtain a raw material for firing.
Next, a firing container is prepared in which the inside is vertical × width = 280 mm × 280 mm and the container height is 100 mm, and the composite is generated in this firing container so that the height of the composite is 55 mm. The composite was filled and oxidized in an air atmosphere at a temperature of 820 ° C. for 12 hours. The obtained oxide was pulverized with a ball mill to obtain a powder of a lithium ion secondary battery positive electrode material.

(評価)
実施例1〜3及び比較例1〜3について、ICP法により、Li、Ni、Mn及びCoの含有量を測定し、表1に示す結果を得た。
正極材の一次粒子の大きさは、SEM観察から装置付属の測定ソフトで測定し、表1に示す結果を得た。
正極材の粉末の二次粒子の平均粒径は、日機装製のMicrotrak MT3300EX IIによって測定した。測定結果から正極材の最小径、最大径、平均径(D50)を求め、最大径/平均径、平均径/最小径の比を計算し、その常用対数値を算出し、表1に示す結果を得た。
電池特性評価用の電極は、活物質:バインダー:導電材=85:8:7の比率で有機溶媒であるNMP(N−メチルピロリドン)に混錬したものをAl箔に塗布し、乾燥後にプレスして作製した。
これらを用いて対極をLiとした評価用の2032型コイン電池を作製し、電解液に1MのLiPF6を用い、電解質にはエチレンカーボネート(EC)及びジメチルカーボネート(DMC)を体積比1:1となるように溶解したものを使用し、充電は定電流定電圧モードで電圧を4.3V、放電は定電流モードで電圧を3.0Vとして充放電を行った。初期容量及び初期効率(放電量/充電量)は、0.1Cでの充放電で確認した。レート特性は、2Cでの放電容量と0.1Cでの放電容量の比で評価した。
評価結果を、表1に示す。
(Evaluation)
About Examples 1-3 and Comparative Examples 1-3, content of Li, Ni, Mn, and Co was measured by ICP method, and the result shown in Table 1 was obtained.
The primary particle size of the positive electrode material was measured by SEM observation using measurement software attached to the apparatus, and the results shown in Table 1 were obtained.
The average particle size of the secondary particles of the positive electrode powder was measured by Nikkiso Microtrak MT3300EX II. The minimum diameter, maximum diameter, and average diameter (D50) of the positive electrode material are obtained from the measurement results, the ratio of maximum diameter / average diameter, average diameter / minimum diameter is calculated, and the common logarithm values are calculated. Got.
The electrode for battery characteristic evaluation was applied to Al foil by kneading with NMP (N-methylpyrrolidone) as an organic solvent in a ratio of active material: binder: conductive material = 85: 8: 7, and pressed after drying. And produced.
Using these, a 2032 type coin battery for evaluation with Li as the counter electrode was prepared, 1M LiPF 6 was used as the electrolyte, and ethylene carbonate (EC) and dimethyl carbonate (DMC) were used as the electrolyte in a volume ratio of 1: 1. What was melt | dissolved so that it might become was used, charge was performed in constant current constant voltage mode, voltage was set to 4.3V, and discharge was performed in constant current mode and voltage was set to 3.0V. The initial capacity and initial efficiency (discharge amount / charge amount) were confirmed by charge and discharge at 0.1 C. The rate characteristics were evaluated by the ratio of the discharge capacity at 2C and the discharge capacity at 0.1C.
The evaluation results are shown in Table 1.

Figure 2013027432
Figure 2013027432

実施例1〜3では、いずれも一次粒子は大きく、二次粒子が小さく、粒径のばらつき、特に最小径と平均径のばらつきが良好に抑制され、急速な充放電に適した粒度分布を示した。放電容量およびレート特性のいずれも良好であった。
比較例1〜3では、一次粒子が小さく、二次粒子が大きい分布となり、粒径のばらつきが大きく、放電容量およびレート特性のいずれも悪い結果となった。
In Examples 1 to 3, all of the primary particles are large, the secondary particles are small, the particle size variation, particularly the minimum size and the average size variation are well suppressed, and a particle size distribution suitable for rapid charge and discharge is shown. It was. Both discharge capacity and rate characteristics were good.
In Comparative Examples 1 to 3, the distribution of the primary particles was small and the secondary particles were large, the particle size variation was large, and both the discharge capacity and the rate characteristics were bad.

上記知見を基礎にして完成した本発明は一側面において、炭酸リチウムと、金属硝酸塩とを含むリチウム金属硝酸塩溶液スラリーを準備する工程と、前記リチウム金属硝酸塩溶液スラリーを、マイクロミストドライヤーを用いて噴霧乾燥して、リチウム金属塩の複合体の粉末を得る工程と、前記粉末を焼成する工程とを含み、前記金属硝酸塩に、Ni、Mn及びCoが含まれ、前記粉末に含有される金属中のNiのモル比率が0.3以上であり、前記粉末に含有される金属中のNiのモル比率がMnのモル比率より大きいリチウムイオン電池用正極活物質の製造方法である。
The present invention completed on the basis of the above knowledge, in one aspect, a step of preparing a lithium metal nitrate solution slurry containing lithium carbonate and metal nitrate, and spraying the lithium metal nitrate solution slurry using a micro mist dryer dried, viewed contains a step of obtaining a powder of a complex of lithium metal salt, and a step of firing the powder, the metal nitrate, Ni, contains Mn and Co, in the metal contained in the powder This is a method for producing a positive electrode active material for a lithium ion battery in which the molar ratio of Ni is 0.3 or more and the molar ratio of Ni in the metal contained in the powder is larger than the molar ratio of Mn .

上記知見を基礎にして完成した本発明は一側面において、炭酸リチウムと、金属硝酸塩とを含むリチウム金属硝酸塩溶液スラリーを準備する工程と、前記リチウム金属硝酸塩溶液スラリーを、マイクロミストドライヤーを用いて噴霧乾燥して、リチウム金属塩の複合体の粉末を得る工程と、前記粉末を焼成する工程とを含み、前記金属硝酸塩に、硝酸ニッケル、硝酸マンガン及び硝酸コバルトが含まれ、前記粉末に含有される金属中のNiのモル比率が0.3以上であり、前記粉末に含有される金属中のNiのモル比率がMnのモル比率より大きいリチウムイオン電池用正極活物質の製造方法である。

The present invention completed on the basis of the above knowledge, in one aspect, a step of preparing a lithium metal nitrate solution slurry containing lithium carbonate and metal nitrate, and spraying the lithium metal nitrate solution slurry using a micro mist dryer A step of drying to obtain a powder of a lithium metal salt complex; and a step of firing the powder, wherein the metal nitrate includes nickel nitrate, manganese nitrate, and cobalt nitrate, and is contained in the powder. In this method, the molar ratio of Ni in the metal is 0.3 or more, and the molar ratio of Ni in the metal contained in the powder is larger than the molar ratio of Mn.

Claims (5)

リチウム塩と、金属硝酸塩とを含むリチウム金属硝酸塩溶液スラリーを準備する工程と、
前記リチウム金属硝酸塩溶液スラリーを、マイクロミストドライヤーを用いて噴霧乾燥して、リチウム金属塩の複合体の粉末を得る工程と、
前記粉末を焼成する工程と、
を含むリチウムイオン電池用正極活物質の製造方法。
Preparing a lithium metal nitrate solution slurry containing a lithium salt and a metal nitrate;
The lithium metal nitrate solution slurry is spray dried using a micro mist dryer to obtain a lithium metal salt composite powder;
Firing the powder;
The manufacturing method of the positive electrode active material for lithium ion batteries containing.
前記金属硝酸塩に含まれる金属が、Ni、Mn及びCoから選択された1種以上である請求項1に記載のリチウムイオン電池用正極活物質の製造方法。   The method for producing a positive electrode active material for a lithium ion battery according to claim 1, wherein the metal contained in the metal nitrate is at least one selected from Ni, Mn, and Co. 前記金属硝酸塩に少なくともNiが含まれ、前記粉末に含有される金属中のNiのモル比率が0.3以上である請求項1又は2に記載のリチウムイオン電池用正極活物質の製造方法。   The method for producing a positive electrode active material for a lithium ion battery according to claim 1 or 2, wherein the metal nitrate contains at least Ni, and a molar ratio of Ni in the metal contained in the powder is 0.3 or more. 前記金属硝酸塩に少なくともNi及びMnが含まれ、前記粉末に含有される金属中のNiのモル比率がMnのモル比率より大きい請求項1〜3のいずれかに記載のリチウムイオン電池用正極活物質の製造方法。   4. The positive electrode active material for a lithium ion battery according to claim 1, wherein the metal nitrate contains at least Ni and Mn, and the molar ratio of Ni in the metal contained in the powder is larger than the molar ratio of Mn. Manufacturing method. 前記リチウム塩が炭酸リチウムである請求項1〜4のいずれかに記載のリチウムイオン電池用正極活物質の製造方法。   The said lithium salt is lithium carbonate, The manufacturing method of the positive electrode active material for lithium ion batteries in any one of Claims 1-4.
JP2013523400A 2011-08-23 2012-03-21 Method for producing positive electrode active material for lithium ion battery Active JP5567742B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013523400A JP5567742B2 (en) 2011-08-23 2012-03-21 Method for producing positive electrode active material for lithium ion battery

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011181837 2011-08-23
JP2011181837 2011-08-23
PCT/JP2012/057203 WO2013027432A1 (en) 2011-08-23 2012-03-21 Method for producing positive electrode active material for lithium ion batteries
JP2013523400A JP5567742B2 (en) 2011-08-23 2012-03-21 Method for producing positive electrode active material for lithium ion battery

Publications (2)

Publication Number Publication Date
JP5567742B2 JP5567742B2 (en) 2014-08-06
JPWO2013027432A1 true JPWO2013027432A1 (en) 2015-03-05

Family

ID=47746190

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013523400A Active JP5567742B2 (en) 2011-08-23 2012-03-21 Method for producing positive electrode active material for lithium ion battery

Country Status (3)

Country Link
JP (1) JP5567742B2 (en)
TW (1) TWI460906B (en)
WO (1) WO2013027432A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9221693B2 (en) * 2011-03-29 2015-12-29 Jx Nippon Mining & Metals Corporation Method for producing positive electrode active material for lithium ion batteries and positive electrode active material for lithium ion batteries
TWI651271B (en) * 2016-05-27 2019-02-21 比利時商烏明克公司 Method for producing small-diameter nickel-lithium metal composite oxide powder
JP6646130B1 (en) * 2018-12-07 2020-02-14 住友化学株式会社 Lithium secondary battery positive electrode active material precursor, method for producing lithium secondary battery positive electrode active material precursor, and method for producing lithium composite metal compound
AU2021349358A1 (en) 2020-09-24 2023-02-09 6K Inc. Systems, devices, and methods for starting plasma
US11919071B2 (en) 2020-10-30 2024-03-05 6K Inc. Systems and methods for synthesis of spheroidized metal powders

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10316431A (en) * 1997-05-14 1998-12-02 Fuji Chem Ind Co Ltd Lithium-nickel complex oxide and its production, and active substance of cathod for lithium secondary battery
JP2000072445A (en) * 1998-08-28 2000-03-07 Konpon Kenkyusho:Kk Production of lithium-based metal multiple oxide
JP2006019310A (en) * 2005-08-26 2006-01-19 Sumitomo Chemical Co Ltd Active substance for battery
JP2008500259A (en) * 2004-05-21 2008-01-10 タイアックス エルエルシー Lithium metal oxide material, synthesis method and use
JP2008044836A (en) * 2001-10-11 2008-02-28 Mitsubishi Chemicals Corp Method for producing lithium-transition metal compound oxide
JP2010030808A (en) * 2008-07-25 2010-02-12 Mitsui Mining & Smelting Co Ltd Lithium transition metal oxide having layer structure

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4032624B2 (en) * 2000-09-26 2008-01-16 三菱化学株式会社 Method for producing lithium transition metal composite oxide
JP4253142B2 (en) * 2001-09-05 2009-04-08 日本電工株式会社 Lithium manganese composite oxide for secondary battery, method for producing the same, and nonaqueous electrolyte secondary battery
JP2005347134A (en) * 2004-06-04 2005-12-15 Sumitomo Metal Mining Co Ltd Manufacturing method of positive electrode active material for lithium ion secondary battery
JP2010257680A (en) * 2009-04-23 2010-11-11 Agc Seimi Chemical Co Ltd Method of manufacturing lithium transition metal complex oxide for lithium-ion secondary battery positive electrode active material
CN101916843A (en) * 2010-08-02 2010-12-15 中国科学院宁波材料技术与工程研究所 Method for preparing lithium battery anode material lithium transition metal composite oxide

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10316431A (en) * 1997-05-14 1998-12-02 Fuji Chem Ind Co Ltd Lithium-nickel complex oxide and its production, and active substance of cathod for lithium secondary battery
JP2000072445A (en) * 1998-08-28 2000-03-07 Konpon Kenkyusho:Kk Production of lithium-based metal multiple oxide
JP2008044836A (en) * 2001-10-11 2008-02-28 Mitsubishi Chemicals Corp Method for producing lithium-transition metal compound oxide
JP2008500259A (en) * 2004-05-21 2008-01-10 タイアックス エルエルシー Lithium metal oxide material, synthesis method and use
JP2006019310A (en) * 2005-08-26 2006-01-19 Sumitomo Chemical Co Ltd Active substance for battery
JP2010030808A (en) * 2008-07-25 2010-02-12 Mitsui Mining & Smelting Co Ltd Lithium transition metal oxide having layer structure

Also Published As

Publication number Publication date
JP5567742B2 (en) 2014-08-06
TWI460906B (en) 2014-11-11
WO2013027432A1 (en) 2013-02-28
TW201310758A (en) 2013-03-01

Similar Documents

Publication Publication Date Title
JP5812682B2 (en) Cathode active material for lithium ion battery and method for producing the same
JP6665060B2 (en) Li-Ni composite oxide particle powder, method for producing the same, and non-aqueous electrolyte secondary battery
JP5817143B2 (en) Positive electrode active material precursor particle powder, positive electrode active material particle powder, and non-aqueous electrolyte secondary battery
JP6112118B2 (en) Li-Ni composite oxide particle powder and non-aqueous electrolyte secondary battery
JP5218782B2 (en) Li-Ni composite oxide particle powder for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
WO2005112152A1 (en) Method for producing lithium-containing complex oxide for positive electrode of lithium secondary battery
WO2005106993A1 (en) Method for producing lithium-containing complex oxide for positive electrode of lithium secondary battery
JP2008153017A (en) Positive active material for nonaqueous electrolyte secondary battery
JP6499442B2 (en) Positive electrode active material for lithium ion battery and method for producing positive electrode active material for lithium ion battery
KR20120099118A (en) Positive electrode active material for lithium-ion battery, positive electrode for lithium-ion battery, and lithium-ion battery
JP5567742B2 (en) Method for producing positive electrode active material for lithium ion battery
JP4735617B2 (en) Method for producing lithium transition metal composite oxide
JP4553095B2 (en) Cobalt oxide particle powder and production method thereof, positive electrode active material for non-aqueous electrolyte secondary battery, production method thereof, and non-aqueous electrolyte secondary battery
JP6155957B2 (en) Positive electrode active material particle powder, method for producing the same, and nonaqueous electrolyte secondary battery
JP3733659B2 (en) Method for producing active material for non-aqueous electrolyte secondary battery
JP4472430B2 (en) Method for producing lithium composite oxide for positive electrode of lithium secondary battery
JP2009277667A (en) Method of manufacturing active material for battery
JP2007238434A (en) Manufacturing process of lithium transition metal complex oxide
JP2006004689A (en) Positive electrode active material for non-aqueous secondary battery, its manufacturing method and non-aqueous secondary battery using it

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140520

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140619

R150 Certificate of patent or registration of utility model

Ref document number: 5567742

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250