JP2006004689A - Positive electrode active material for non-aqueous secondary battery, its manufacturing method and non-aqueous secondary battery using it - Google Patents

Positive electrode active material for non-aqueous secondary battery, its manufacturing method and non-aqueous secondary battery using it Download PDF

Info

Publication number
JP2006004689A
JP2006004689A JP2004177922A JP2004177922A JP2006004689A JP 2006004689 A JP2006004689 A JP 2006004689A JP 2004177922 A JP2004177922 A JP 2004177922A JP 2004177922 A JP2004177922 A JP 2004177922A JP 2006004689 A JP2006004689 A JP 2006004689A
Authority
JP
Japan
Prior art keywords
lithium
active material
inorganic salt
positive electrode
nickel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004177922A
Other languages
Japanese (ja)
Inventor
Satoru Matsumoto
哲 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2004177922A priority Critical patent/JP2006004689A/en
Publication of JP2006004689A publication Critical patent/JP2006004689A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a positive electrode active material made of lithium nickelate containing vanadium and indium which can improve thermal stability at over-discharge and high-temperature storage of a non-aqueous secondary battery manufactured using the same and, at the same time, can suppress deterioration of battery capacity, cycle life, and output, its efficient manufacturing method, and a non-aqueous secondary battery using it. <P>SOLUTION: The positive electrode active material for non-aqueous secondary battery has vanadium acid lithium or indium acid lithium dispersed uniformly inside particles and the shape of the particles is made of spherical or elliptic spherical secondary particles which are formed by aggregating the primary particles. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、非水系二次電池用の正極活物質、その製造方法及びそれを用いた非水系二次電池に関し、さらに詳しくは、ニッケル酸リチウム粒子に、添加元素としてバナジウム又はインジウムを添加してなる正極活物質において、それを用いて製造した非水系二次電池の過充電及び高温保存時の熱的安定性を向上させ、一方、電池容量、サイクル寿命及び出力の低下を抑えることができる正極活物質とその効率的な製造方法、及びそれを用いてなる非水系二次電池に関する。   The present invention relates to a positive electrode active material for a non-aqueous secondary battery, a method for producing the same, and a non-aqueous secondary battery using the positive electrode active material. More specifically, vanadium or indium is added as an additive element to lithium nickelate particles. A positive electrode that can improve overheating of a non-aqueous secondary battery produced using the positive electrode active material and thermal stability during high-temperature storage, while suppressing a decrease in battery capacity, cycle life, and output. The present invention relates to an active material, an efficient manufacturing method thereof, and a non-aqueous secondary battery using the active material.

近年、高度情報化時代を担う携帯電子機器の発展にともない、それに用いられる二次電池の高出力、長寿命等の高機能化が望まれ、そのため二次電池用の正極活物質に関しても粉体特性の解明とその製造技術の向上が求められている。
例えば、ハイブリッド自動車用二次電池に代表される大型二次電池の主力製品としては、安全性と出力のバランスの良いニッケル水素二次電池が使用されているが、そのほかに、小型軽量であるリチウムイオン二次電池がニッケル水素二次電池を代替品として注目されていた。その実用化のため、まず、リチウムイオン二次電池に用いる正極活物質の高出力化が課題として挙げられ、その解決が求められた。この課題に関しては、ここ数年の材料開発によりおおよその目処がたち、非水系二次電池であるリチウムイオン二次電池を搭載したハイブリッド自動車が市場で販売されている。しかしながら、このようなリチウムイオン二次電池の正極材料の新たな課題として、実用に際して起る過充電又は高温環境下において安全性のより一層の向上が挙げられている。すなわち、これを解決することで、リチウムイオン二次電池の保護回路の簡素化及び小型化を実現することができ、ハイブリッド自動車用二次電池としてその有用性が高まる。
In recent years, with the development of portable electronic devices that are responsible for the advanced information era, it is desired to improve the functions of secondary batteries used for them, such as high output and long life. Elucidation of characteristics and improvement of manufacturing technology are required.
For example, as the main products of large-sized secondary batteries represented by secondary batteries for hybrid vehicles, nickel-hydrogen secondary batteries with a good balance between safety and output are used. Ion secondary batteries have attracted attention as nickel-hydrogen secondary batteries as alternatives. In order to put it to practical use, firstly, the problem was to increase the output of the positive electrode active material used in the lithium ion secondary battery, and the solution was required. With regard to this issue, material development in recent years has provided an approximate target, and hybrid vehicles equipped with lithium ion secondary batteries, which are non-aqueous secondary batteries, are on the market. However, as a new problem of the positive electrode material of such a lithium ion secondary battery, there is a further improvement in safety in an overcharge or high temperature environment that occurs during practical use. That is, by solving this, simplification and miniaturization of the protection circuit of the lithium ion secondary battery can be realized, and its usefulness is enhanced as a secondary battery for a hybrid vehicle.

上記非水系二次電池の正極活物質としては、一般に、リチウムイオンを可逆的に挿入及び脱離することができる層状構造を有するリチウム複合酸化物が用いられている。この中で、大型二次電池用の正極活物質としては、低価格と高容量化を実現することができるとともに、充放電時の電圧のプラトー領域が少ないため電圧制御が比較的容易であることから、主成分としてニッケルを含むリチウム複合酸化物であるニッケル酸リチウムが最有力である。   As the positive electrode active material of the non-aqueous secondary battery, a lithium composite oxide having a layered structure that can reversibly insert and desorb lithium ions is generally used. Among these, as a positive electrode active material for a large-sized secondary battery, it is possible to realize low cost and high capacity, and voltage control is relatively easy because of a small plateau region of voltage during charging and discharging. Therefore, lithium nickelate, which is a lithium composite oxide containing nickel as a main component, is the most prominent.

しかしながら、ニッケル酸リチウムには、他のリチウム複合酸化物、例えばコバルト酸リチウムやマンガン酸リチウムと比べて加熱に際して熱的安定性が劣るという問題点を有している。そのため、非水系二次電池の正極活物質としてニッケル酸リチウムを用いる際には、出力は確保することができるが安全性が低下するので、保護回路の強化が必要不可欠であるとされていた。すなわち、リチウムイオン二次電池では、過充電又は高温での保存に際して、ニッケル酸リチウムの分解による酸素放出を発端とする発熱現象により有機電解液の分解およびそれに伴うガス発生が連鎖的に起こり、破裂又は発火の危険性があるとされている。したがって、ニッケル酸リチウムの正極活物質としての熱的安定性の確保が求められていた。   However, lithium nickelate has a problem that thermal stability is inferior upon heating as compared with other lithium composite oxides such as lithium cobaltate and lithium manganate. For this reason, when lithium nickelate is used as the positive electrode active material of the non-aqueous secondary battery, the output can be secured, but the safety is lowered, so that the protection circuit must be strengthened. That is, in lithium ion secondary batteries, when overcharged or stored at high temperatures, the decomposition of the organic electrolyte and the accompanying gas generation occur in a chain due to the exothermic phenomenon that begins with the release of oxygen due to the decomposition of lithium nickelate. Or there is a risk of fire. Therefore, ensuring of thermal stability as a positive electrode active material of lithium nickelate has been demanded.

この解決策として、ニッケル酸リチウムの添加元素としてバナジウム又はインジウムを用いることが提案されており、また、バナジウム又はインジウムを含むニッケル酸リチウムの製造方法として、これらの元素をニッケル酸リチウム中に固溶させる方法(例えば、特許文献1参照。)とニッケル酸リチウム粒子中に分散させる方法(例えば、特許文献2、3参照。)が挙げられている。   As a solution to this problem, it has been proposed to use vanadium or indium as an additive element of lithium nickelate, and as a method for producing lithium nickelate containing vanadium or indium, these elements are dissolved in lithium nickelate. (For example, refer to Patent Document 1) and a method for dispersing in lithium nickelate particles (for example, refer to Patent Documents 2 and 3).

例えば、前者の方法では、ニッケルの一部をバナジウム又はインジウムと置き換えるようにして共沈させて原子レベルで粒子内拡散を実現したニッケル含有を原料として用いて、リチウム無機塩と反応させることにより、バナジウム又はインジウムが固溶したニッケル酸リチウム粉末を製造する。しかしながら、この方法で得られたバナジウム又はインジウムが固溶したニッケル酸リチウムは、正極活物質としての熱的安定性を向上させることができるが、一方、高い熱的安定性を得るためには、非常に多くの固溶量が必要とされるので電池容量が大きく低下してしまうという問題がある。また、共沈法では、単位体積当たりの電池容量を示す体積エネルギー密度を高くするために有効である高嵩密度の球状形状の二次粒子を得ることが非常に難しいという問題がある。   For example, in the former method, by using nickel-containing material that has been co-precipitated by replacing a part of nickel with vanadium or indium to achieve intra-particle diffusion at the atomic level, and reacting with a lithium inorganic salt, A lithium nickelate powder in which vanadium or indium is dissolved is produced. However, lithium nickelate in which vanadium or indium obtained by this method is solid-solved can improve the thermal stability as the positive electrode active material, while on the other hand, in order to obtain high thermal stability, Since a very large amount of solid solution is required, there is a problem that the battery capacity is greatly reduced. Further, the coprecipitation method has a problem that it is very difficult to obtain spherical secondary particles having a high bulk density, which is effective for increasing the volume energy density indicating the battery capacity per unit volume.

また、後者の方法では、得られるニッケル酸リチウムに含まれるリチウム以外の金属の無機塩をボールミル等で粉砕混合した後、これをリチウム無機塩と混合し、次いで焼成することによって、ニッケル酸リチウムの二次粒子内部にバナジウム含有リチウム複合酸化物又はインジウム含有リチウム複合酸化物を分散させたニッケル酸リチウム粉末を製造する。しかしながら、この方法で得られた粉末は、嵩密度が非常に低くなるため単位体積当たりの電池容量を示す体積エネルギー密度が大幅に低下することのほか、多量の微粉を含むので発熱又は発火を起こし易いという問題がある。   In the latter method, the inorganic salt of the metal other than lithium contained in the obtained lithium nickelate is pulverized and mixed with a ball mill or the like, then mixed with the lithium inorganic salt, and then fired, whereby lithium nickelate A lithium nickelate powder in which vanadium-containing lithium composite oxide or indium-containing lithium composite oxide is dispersed inside the secondary particles is produced. However, since the powder obtained by this method has a very low bulk density, the volume energy density indicating the battery capacity per unit volume is greatly reduced, and it contains a large amount of fine powder, so it generates heat or ignites. There is a problem that it is easy.

また、他の方法として、バナジウム又はインジウムの酸化物等の無機塩を、球状又は楕円球状の二次粒子形状を有するニッケル無機塩及びリチウム無機塩と混合した後、これを焼成して反応させる方法も考えられるが、この方法ではバナジウム及びインジウムの固相内拡散速度が極めて遅いので、ニッケル酸リチウム粒子表面にバナジウム又はインジウムのリチウム複合酸化物が被膜状に存在する状態となる。このような粉体を用いた電池では、熱的安定性は向上するものの、表面に存在する被膜が充放電に際してリチウムイオンの挿入脱離を阻害するので内部抵抗が高くなるほか、電池容量とサイクル寿命までもが低下するという問題が起る。   As another method, an inorganic salt such as an oxide of vanadium or indium is mixed with a nickel inorganic salt and a lithium inorganic salt having a spherical or oval spherical secondary particle shape, and then calcined and reacted. However, in this method, since the diffusion speed of vanadium and indium in the solid phase is extremely slow, a lithium composite oxide of vanadium or indium is present in the form of a film on the surface of the lithium nickelate particles. In batteries using such powders, the thermal stability is improved, but the coating on the surface inhibits the insertion and release of lithium ions during charge and discharge, resulting in an increase in internal resistance, as well as battery capacity and cycle. There arises a problem that the lifetime is lowered.

特開平5−242891号公報(第1頁)JP-A-5-242891 (first page) 特開2002−260660号公報(第1頁、第2頁)JP 2002-260660 A (first page, second page) 特開2003−123750号公報(第1頁、第2頁)JP2003-123750A (first page, second page)

本発明の目的は、上記の従来技術の問題点に鑑み、ニッケル酸リチウム粒子に添加元素としてバナジウム又はインジウムを添加してなる正極活物質において、それを用いて製造した非水系二次電池の過充電及び高温保存時の熱的安定性を向上させ、一方、電池容量、サイクル寿命及び出力の低下を抑えることができる正極活物質とその効率的な製造方法、及びそれを用いてなる非水系二次電池を提供することにある。   An object of the present invention is to provide a positive electrode active material obtained by adding vanadium or indium as an additive element to lithium nickelate particles in view of the above-described problems of the prior art, and a nonaqueous secondary battery manufactured using the positive electrode active material. Cathode active material capable of improving thermal stability during charging and storage at high temperature, while suppressing decrease in battery capacity, cycle life and output, efficient production method thereof, and non-aqueous two The next battery is to provide.

本発明者は、上記目的を達成するために、ニッケル酸リチウム粒子に添加元素としてバナジウム又はインジウムを添加してなる正極活物質について、鋭意研究を重ねた結果、特定の組成式で表される層状構造を有するニッケル酸リチウムの粒子内部に、上記添加元素がリチウム複合酸化物を形成して均一に分散されており、かつ特定形状に調製された粉末を非水系二次電池用の正極活物質として用いたところ、二次電池の過充電及び高温保存時の熱的安定性を向上させる一方、電池容量、サイクル寿命及び出力の低下を抑えることができることを見出した。また、特定の工程に基づいて製造された球状又は楕円球状のニッケル含有無機塩粉末とリチウム無機塩とを混合し焼成する方法によって、本発明の正極活物質が効率的に製造することができることを見出した。以上により、本発明を完成するに至った。   In order to achieve the above object, the present inventor conducted extensive research on a positive electrode active material obtained by adding vanadium or indium as an additive element to lithium nickelate particles, and as a result, a layered form represented by a specific composition formula Inside the particles of lithium nickelate having a structure, the above additive element is uniformly dispersed by forming a lithium composite oxide, and a powder prepared in a specific shape is used as a positive electrode active material for a non-aqueous secondary battery As a result, it has been found that the secondary battery can be overcharged and improved in thermal stability during high-temperature storage, while the decrease in battery capacity, cycle life and output can be suppressed. In addition, the positive electrode active material of the present invention can be efficiently produced by a method of mixing and baking a spherical or ellipsoidal nickel-containing inorganic salt powder and a lithium inorganic salt produced based on a specific process. I found it. Thus, the present invention has been completed.

すなわち、本発明の第1の発明によれば、下記(1)の組成式で表される層状構造を有するニッケル酸リチウム粒子に、添加元素としてバナジウム(V)又はインジウム(In)を添加してなる正極活物質であって、
上記添加元素は、バナジウム酸リチウム又はインジウム酸リチウムを形成して粒子内部に均一に分散され、かつ粒子の形状は、一次粒子が集合した球状又は楕円球状の二次粒子であることを特徴とする非水系二次電池用の正極活物質が提供される。
LiNi1−a …(1)
(式中、Mは、Mg、Ca、Ti、Mn、Cr、Fe、Ni、Co、Cu、Zn、Mo、Ag、W、B、Al、Ga、Nb、Sn、Pb、Sr、Sb又はPから選ばれる少なくとも1種の元素を示し、aは、0.01≦a≦0.5である。)
That is, according to the first aspect of the present invention, vanadium (V) or indium (In) is added as an additive element to lithium nickelate particles having a layered structure represented by the composition formula (1) below. A positive electrode active material comprising:
The additive element forms lithium vanadate or lithium indium oxide and is uniformly dispersed inside the particles, and the shape of the particles is spherical or elliptical secondary particles in which primary particles are aggregated A positive electrode active material for a non-aqueous secondary battery is provided.
LiNi 1-a M a O 2 (1)
(In the formula, M is Mg, Ca, Ti, Mn, Cr, Fe, Ni, Co, Cu, Zn, Mo, Ag, W, B, Al, Ga, Nb, Sn, Pb, Sr, Sb or P. And at least one element selected from: a is 0.01 ≦ a ≦ 0.5.)

また、本発明の第2の発明によれば、第1の発明において、前記添加元素の添加量は、(V又はIn)/(Liを除く全金属元素)原子比で、0.002〜0.1であることを特徴とする非水系二次電池用の正極活物質が提供される。   According to the second invention of the present invention, in the first invention, the addition amount of the additive element is 0.002 to 0 in terms of (V or In) / (all metal elements excluding Li) atomic ratio. A positive electrode active material for a non-aqueous secondary battery is provided.

また、本発明の第3の発明によれば、第1又は2の発明において、タップ密度が2.0g/mL以上であることを特徴とする非水系二次電池用の正極活物質が提供される。   According to a third aspect of the present invention, there is provided a positive electrode active material for a non-aqueous secondary battery, wherein the tap density is 2.0 g / mL or more in the first or second aspect. The

また、本発明の第4の発明によれば、第1〜3いずれかの発明において、下記(イ)〜(ハ)の工程を含むことを特徴とする非水系二次電池用の正極活物質の製造方法が提供される。
(イ)ニッケル無機塩に、バナジウム又はインジウムの無機塩と、リチウムを除く正極活物質の成分である全金属元素の無機塩とを所定比率で混合した後、湿式超微粉砕してニッケル含有無機塩スラリーを調製する。
(ロ)上記ニッケル含有無機塩スラリーを噴霧乾燥に付し、球状又は楕円球状のニッケル含有無機塩粉末を調製する。
(ハ)上記ニッケル含有無機塩粉末とリチウム無機塩とを混合し焼成する。
According to a fourth invention of the present invention, in any one of the first to third inventions, the following positive electrode active material for a non-aqueous secondary battery comprising the following steps (a) to (c) A manufacturing method is provided.
(B) After mixing inorganic salt of vanadium or indium and inorganic salt of all metal elements, which are components of the positive electrode active material excluding lithium, in a predetermined ratio with nickel inorganic salt, wet ultrafine pulverization and nickel-containing inorganic A salt slurry is prepared.
(B) The nickel-containing inorganic salt slurry is spray-dried to prepare a spherical or elliptical nickel-containing inorganic salt powder.
(C) The nickel-containing inorganic salt powder and the lithium inorganic salt are mixed and fired.

また、本発明の第5の発明によれば、第1〜3いずれかの発明の正極活物質を用いてなる、二次電池の過充電及び高温保存時の熱的安定性が高い非水系二次電池が提供される。   Further, according to the fifth invention of the present invention, the non-aqueous secondary battery having high thermal stability during secondary battery overcharge and high-temperature storage, comprising the positive electrode active material of any one of the first to third inventions. A secondary battery is provided.

本発明の非水系二次電池用の正極活物質は、ニッケル酸リチウム粒子に添加元素としてバナジウム又はインジウムを添加してなる正極活物質であって、それを用いてなる非水系二次電池の過充電及び高温保存時の熱的安定性を向上させる一方、電池容量、サイクル寿命及び出力の低下を抑えることができるので、非水系二次電池用の正極活物質として好適であり、また、その製造方法は、前記正極活物質を効率的に製造することができるので、その工業的価値は極めて大きい。   The positive electrode active material for a non-aqueous secondary battery according to the present invention is a positive electrode active material obtained by adding vanadium or indium as an additive element to lithium nickelate particles, and is used for a non-aqueous secondary battery using the positive electrode active material. While improving the thermal stability during charging and storage at high temperature, it is possible to suppress the decrease in battery capacity, cycle life and output, so it is suitable as a positive electrode active material for non-aqueous secondary batteries, and its production Since the method can efficiently produce the positive electrode active material, its industrial value is extremely large.

以下、本発明の非水系二次電池用の正極活物質、その製造方法及びそれを用いた非水系二次電池を詳細に説明する。
1.非水系二次電池用の正極活物質
本発明の非水系二次電池用の正極活物質は、下記(1)の組成式で表される層状構造を有するニッケル酸リチウム粒子に、添加元素としてバナジウム又はインジウムを添加してなる正極活物質であって、上記添加元素は、バナジウム酸リチウム又はインジウム酸リチウムを形成して粒子内部に均一に分散され、かつ粒子の形状は、一次粒子が集合した球状又は楕円球状の二次粒子であることを特徴とするものである。
LiNi1−a …(1)
(式中、Mは、Mg、Ca、Ti、Mn、Cr、Fe、Ni、Co、Cu、Zn、Mo、Ag、W、B、Al、Ga、Nb、Sn、Pb、Sr、Sb又はPから選ばれる少なくとも1種の元素を示し、aは、0.01≦a≦0.5である。)
Hereinafter, a positive electrode active material for a non-aqueous secondary battery of the present invention, a manufacturing method thereof, and a non-aqueous secondary battery using the same will be described in detail.
1. Positive electrode active material for non-aqueous secondary battery The positive electrode active material for a non-aqueous secondary battery of the present invention includes vanadium as an additive element in lithium nickelate particles having a layered structure represented by the composition formula (1) below. Or a positive electrode active material formed by adding indium, wherein the additive element forms lithium vanadate or lithium indium oxide and is uniformly dispersed inside the particle, and the shape of the particle is a spherical shape in which primary particles are aggregated Or it is an elliptical secondary particle.
LiNi 1-a M a O 2 (1)
(In the formula, M is Mg, Ca, Ti, Mn, Cr, Fe, Ni, Co, Cu, Zn, Mo, Ag, W, B, Al, Ga, Nb, Sn, Pb, Sr, Sb or P. And at least one element selected from: a is 0.01 ≦ a ≦ 0.5.)

本発明の非水系二次電池用の正極活物質において、組成式(1)で表される層状構造を有するニッケル酸リチウムの粒子内部に添加元素をバナジウム酸リチウム又はインジウム酸リチウムとして均一に分散された状態で含み、かつ粒子の形状は一次粒子が集合した球状又は楕円球状の二次粒子からなることが重要である。これによって、それを用いてなる非水系二次電池の過充電及び高温保存時の熱的安定性を向上させる一方、電池容量、サイクル寿命及び出力の低下を抑えることができる。   In the positive electrode active material for a non-aqueous secondary battery of the present invention, the additive element is uniformly dispersed as lithium vanadate or lithium indium acid inside the lithium nickelate particles having a layered structure represented by the composition formula (1). It is important that the shape of the particles is composed of spherical or elliptical secondary particles in which primary particles are aggregated. As a result, it is possible to improve the thermal stability of the non-aqueous secondary battery using the same when it is overcharged and stored at a high temperature, while suppressing a decrease in battery capacity, cycle life and output.

すなわち、ニッケル酸リチウム等のリチウム複合酸化物を二次電池の正極活物質として用いる場合、二次電池の充放電は、結晶構造からリチウムイオンが挿入脱離することによって行われる。一般に、金属元素で置換されていない純粋なニッケル酸リチウム(LiNiO)では、熱的安定性、特に電池の過充電時の発熱開始温度に問題があるといわれる。これは、充電時には活物質の結晶構造からリチウムイオンの脱離量が多くなるにつれ結晶構造が不安定になり、ここに熱エネルギーが加えられると結晶構造が崩れて酸素放出による発熱が起こり、これを契機に、急激に発熱さらに発火すると考えられている。 That is, when a lithium composite oxide such as lithium nickelate is used as the positive electrode active material of the secondary battery, charging / discharging of the secondary battery is performed by inserting and desorbing lithium ions from the crystal structure. In general, it is said that pure lithium nickelate (LiNiO 2 ) that is not substituted with a metal element has a problem in thermal stability, in particular, a heat generation start temperature when a battery is overcharged. This is because during charging, the crystal structure becomes unstable as the amount of lithium ions desorbed from the crystal structure of the active material, and when heat energy is applied to this, the crystal structure collapses and heat is generated due to oxygen release. It is believed that suddenly fever and further fire will occur.

この熱的安定性を向上させるためには、前述のように、バナジウムやインジウムを固溶させずともリチウム複合酸化物としてニッケル酸リチウム粉末中に分散させるだけでも有効であるが、このときの電池容量及びサイクル寿命の低下を抑えるためには、バナジウム酸リチウム又はインジウム酸リチウムがニッケル酸リチウムの粒子内部に均一に分散された状態にすることが有効である。これに対して、不均一な分散状態、例えばニッケル酸リチウム粒子表面にバナジウム又はインジウムのリチウム複合酸化物が被膜状に存在する状態では、表面に存在する被膜が充放電に際してリチウムイオンの挿入脱離を阻害するので内部抵抗が高くなり、出力が低下するほか、電池容量とサイクル寿命までもが低下するという問題が起る。   In order to improve the thermal stability, as described above, it is effective to simply disperse vanadium or indium in lithium nickelate powder as a lithium composite oxide without dissolving it in solid solution. In order to suppress a decrease in capacity and cycle life, it is effective to make lithium vanadate or lithium indium oxide uniformly dispersed inside lithium nickelate particles. In contrast, in a non-uniform dispersion state, for example, when a lithium composite oxide of vanadium or indium is present in the form of a film on the surface of the lithium nickelate particles, the lithium ion insertion / extraction of the lithium ions during charge / discharge As a result, the internal resistance increases, the output decreases, and the battery capacity and cycle life also decrease.

また、粒子の形状を一次粒子が集合した二次粒子を球状又は楕円球状にすることによって、嵩密度が高くなるので、単位体積当たりの電池容量を示す体積エネルギー密度を上昇させることができるとともに、発熱又は発火を防止することができる。   In addition, since the bulk density is increased by making the secondary particles in which the primary particles are aggregated into a spherical shape or an elliptical spherical shape, the volume energy density indicating the battery capacity per unit volume can be increased. Heat generation or ignition can be prevented.

上記層状構造を有するニッケル酸リチウムとしては、組成式:LiNi1−aで表され、ニッケルを主成分金属として含み、置換成分金属(M)としてMg、Ca、Ti、Mn、Cr、Fe、Ni、Co、Cu、Zn、Mo、Ag、W、B、Al、Ga、Nb、Sn、Pb、Sr、Sb又はPから選ばれる少なくとも1種の元素を、aが0.01≦a≦0.5を満足する条件で含むリチウム複合酸化物を用いる。 The lithiated nickel dioxide having the above layer structure, the composition formula: represented by LiNi 1-a M a O 2 , comprising nickel as a main component metal, as a replacement component metal (M), Mg, Ca, Ti, Mn, At least one element selected from Cr, Fe, Ni, Co, Cu, Zn, Mo, Ag, W, B, Al, Ga, Nb, Sn, Pb, Sr, Sb, or P, a is 0.01 A lithium composite oxide containing ≦ a ≦ 0.5 is used.

上記添加元素の添加量を表す(V又はIn)/(Liを除く全金属元素)原子比は、特に限定されるものではないが、0.002〜0.1であることが好ましく、0.005〜0.05がより好ましい。すなわち、前記原子比が0.002未満では、熱的安定性の改善効果が見られず、一方、0.1を超えると、添加量が多いので固溶させる方法と同様に電池容量が大きく低下してしまう。   The atomic ratio (V or In) / (all metal elements excluding Li) representing the addition amount of the additive element is not particularly limited, but is preferably 0.002 to 0.1. 005 to 0.05 is more preferable. That is, when the atomic ratio is less than 0.002, no effect of improving the thermal stability is observed. On the other hand, when the atomic ratio exceeds 0.1, the battery capacity is greatly reduced in the same manner as the solid solution method because the addition amount is large. Resulting in.

上記正極活物質のタップ密度は、特に限定されるものではないが、2.0g/mL以上が好ましく、2.2〜2.4g/mLがより好ましい。すなわち、タップ密度が2.0g/mL未満では、電池当たりの充填量が少なくなり、電池容量が現状品よりも劣る性能になってしまう。   The tap density of the positive electrode active material is not particularly limited, but is preferably 2.0 g / mL or more, and more preferably 2.2 to 2.4 g / mL. That is, when the tap density is less than 2.0 g / mL, the filling amount per battery is reduced, and the battery capacity is inferior to the current product.

2.製造方法
本発明の非水系二次電池用正極活物質の製造方法は、下記(イ)〜(ハ)の工程を含むことを特徴とする。
(イ)ニッケル無機塩に、バナジウム無機塩又はインジウム無機塩と、リチウムを除く正極活物質の成分である全金属元素の無機塩とを所定比率で混合した後、湿式超微粉砕してニッケル含有無機塩スラリーを調製する。
(ロ)上記ニッケル含有無機塩スラリーを噴霧乾燥に付し、球状又は楕円球状のニッケル含有無機塩粉末を調製する。
(ハ)上記ニッケル含有無機塩粉末とリチウム無機塩とを混合し焼成する。
2. Manufacturing method The manufacturing method of the positive electrode active material for non-aqueous secondary batteries of this invention is characterized by including the process of the following (A)-(C).
(B) After mixing a nickel inorganic salt with a vanadium inorganic salt or an indium inorganic salt and an inorganic salt of all the metal elements that are components of the positive electrode active material excluding lithium in a predetermined ratio, wet ultrafine pulverization to contain nickel An inorganic salt slurry is prepared.
(B) The nickel-containing inorganic salt slurry is spray-dried to prepare a spherical or elliptical nickel-containing inorganic salt powder.
(C) The nickel-containing inorganic salt powder and the lithium inorganic salt are mixed and fired.

本発明の非水系二次電池用正極活物質の製造方法において、ニッケル含有無機塩粉末を製造するに際して、前記無機塩の混合物を所定の粒子径になるように湿式超微粉砕することと噴霧乾燥に付すことが重要である。これによって、バナジウム無機塩又はインジウム無機塩が均一に分散された球状又は楕円球状のニッケル含有無機塩粉末が得られる。さらに、このニッケル含有無機塩粉末を用いてリチウム無機塩とを混合し焼成することによって、バナジウム又はインジウムを含有するニッケル酸リチウム粒子からなる熱的安定性が改善された正極活物質が得られる。   In the method for producing a positive electrode active material for a non-aqueous secondary battery according to the present invention, when producing a nickel-containing inorganic salt powder, the mixture of the inorganic salt is subjected to wet ultrafine pulverization to a predetermined particle size and spray drying. It is important to attach to As a result, a spherical or oval nickel-containing inorganic salt powder in which the vanadium inorganic salt or the indium inorganic salt is uniformly dispersed is obtained. Furthermore, a positive electrode active material having improved thermal stability made of lithium nickelate particles containing vanadium or indium is obtained by mixing and firing a lithium inorganic salt using this nickel-containing inorganic salt powder.

上記製造方法において、ニッケル含有無機塩スラリーを得る(イ)の工程では、ニッケル無機塩にバナジウム無機塩又はインジウム無機塩とリチウムを除く正極活物質の成分である全金属元素の無機塩とを所定比率で混合し、その後平均粒子径が0.1〜1μmになるように湿式超微粉砕する。   In the above production method, in the step (a) of obtaining the nickel-containing inorganic salt slurry, the vanadium inorganic salt or the indium inorganic salt and the inorganic salt of all metal elements that are components of the positive electrode active material excluding lithium are predetermined in the nickel inorganic salt. After mixing at a ratio, wet ultrafine pulverization is performed so that the average particle size is 0.1 to 1 μm.

上記(イ)の工程で用いるニッケル無機塩としては、特に限定されるものではないが、酸化ニッケル、水酸化ニッケル、オキシ水酸化ニッケル及び炭酸ニッケルが用いられる。 また、Mg、Ca、Ti、Mn、Cr、Fe、Ni、Co、Cu、Zn、Mo、Ag、W、B、Al、Ga、Nb、Sn、Pb、Sr、Sb又はPから選ばれる少なくとも1種の元素を添加するためには、これらの元素を含有する酸化物、水酸化物、オキシ水酸化物及び炭酸塩を用いることができる。   The nickel inorganic salt used in the step (a) is not particularly limited, and nickel oxide, nickel hydroxide, nickel oxyhydroxide, and nickel carbonate are used. Also, at least one selected from Mg, Ca, Ti, Mn, Cr, Fe, Ni, Co, Cu, Zn, Mo, Ag, W, B, Al, Ga, Nb, Sn, Pb, Sr, Sb or P In order to add seed elements, oxides, hydroxides, oxyhydroxides and carbonates containing these elements can be used.

上記(イ)の工程で用いるバナジウム無機塩としては、特に限定されるものではないが、酸化バナジウム及び水酸化バナジウムが用いられる。また、上記工程で用いるインジウム無機塩としては、特に限定されるものではないが、酸化インジウム及び水酸化インジウムが用いられる。   The vanadium inorganic salt used in the step (a) is not particularly limited, but vanadium oxide and vanadium hydroxide are used. The indium inorganic salt used in the above step is not particularly limited, but indium oxide and indium hydroxide are used.

上記(イ)の工程で用いる粉砕方法としては、ビーズミル、アトマイザー等を用いる湿式超微粉砕が好ましい。すなわち、上記ニッケル含有無機塩スラリーの分散状態としては、後工程であるニッケル含有無機塩粉末とリチウム無機塩を焼成する際に得られるニッケル酸リチウム中で、バナジウム又はインジウムが固溶するほど、すなわち原子レベル迄均一に分散させずに、適度の大きさに粉砕された粒子が均一に分散された状態を作ることが望ましい。   As the pulverization method used in the step (a), wet ultrafine pulverization using a bead mill, an atomizer or the like is preferable. That is, as the dispersion state of the nickel-containing inorganic salt slurry, as the vanadium or indium is dissolved in the lithium nickelate obtained when the nickel-containing inorganic salt powder and the lithium inorganic salt that are the subsequent steps are fired, It is desirable to create a state in which particles pulverized to an appropriate size are uniformly dispersed without being uniformly dispersed to the atomic level.

この手法としては、固相内拡散を利用する方法が用いられ、例えば、ニッケル無機塩、置換金属無機塩及びバナジウム無機塩又はインジウム無機塩の混合物をスラリーにしてそれらの二次粒子の形骸ができるだけ壊れるように混合粉砕し、その後リチウム無機塩をさらに添加混合して焼成する方法が好ましい。ここで、固相内拡散を利用する方法のように置換元素が均一に拡散しにくい方法では、二次粒子の形骸をできるだけ崩し粉末粒子を予め微細にして混ぜ合わせておかなければ均一な置換元素、バナジウム及びインジウムの分散が得られない。   As this method, a method using diffusion in a solid phase is used. For example, a mixture of a nickel inorganic salt, a substituted metal inorganic salt, and a vanadium inorganic salt or an indium inorganic salt is made into a slurry to form the secondary particles as much as possible. A method in which the mixture is pulverized so that it breaks, and then a lithium inorganic salt is further added and mixed, followed by firing. Here, in the method in which the substitution element is difficult to uniformly diffuse, such as the method using the diffusion in the solid phase, the uniform substitution element is required unless the shape of the secondary particles is broken as much as possible and the powder particles are finely mixed in advance. , Dispersion of vanadium and indium cannot be obtained.

上記(イ)の工程で得られるスラリー中の固形物の平均粒子径は、0.1〜1μmであり、好ましくは0.1〜0.5μm、より好ましくは0.1〜0.3μmである。すなわち、スラリー中の固形物の平均粒子径が1μmを超えると、後工程である噴霧乾燥で得られる粉末の球形度が低下し、電池に使用する際の最終的な粉体充填密度及び得られる粉体の強度が低くなる傾向にある。一方、平均粒子径が0.1μm未満では、粉砕のコストアップになる。   The average particle size of the solid in the slurry obtained in the step (a) is 0.1 to 1 μm, preferably 0.1 to 0.5 μm, more preferably 0.1 to 0.3 μm. . That is, when the average particle size of the solid matter in the slurry exceeds 1 μm, the sphericity of the powder obtained by spray drying, which is a subsequent process, is lowered, and the final powder packing density and the obtained powder density when used in a battery are obtained. The strength of the powder tends to be low. On the other hand, if the average particle size is less than 0.1 μm, the cost for grinding increases.

上記(イ)の工程で用いるスラリーの分散媒としては、特に限定されるものではなく、水のほか、各種有機溶媒が用いられるが、特に、不純物は電池特性の劣化を引き起こすので、水が好ましく、純水がより好ましい。   The dispersion medium for the slurry used in the step (a) is not particularly limited, and various organic solvents can be used in addition to water. In particular, since impurities cause deterioration of battery characteristics, water is preferable. Pure water is more preferable.

上記製造方法において、ニッケル含有無機塩粉末を得る(ロ)の工程では、上記ニッケル含有無機塩スラリーを噴霧乾燥に付し、球状又は楕円球状のニッケル含有無機塩粉末を得る。ここで、球状又は楕円球状のニッケル含有無機塩粉末を得ることによって、前述したように単位体積当たりの電池容量を示す体積エネルギー密度を上昇させることができるとともに、発熱又は発火を防止することができる。   In the manufacturing method, in the step (b) of obtaining the nickel-containing inorganic salt powder, the nickel-containing inorganic salt slurry is subjected to spray drying to obtain a spherical or elliptical nickel-containing inorganic salt powder. Here, by obtaining a spherical or oval spherical nickel-containing inorganic salt powder, the volume energy density indicating the battery capacity per unit volume can be increased as described above, and heat generation or ignition can be prevented. .

すなわち、上記湿式超微粉砕において得られるスラリーの固形物には細かい粒子が多数存在し正極活物質としての充填性に直接影響する嵩密度が低くなる。これをそのままの形状で用いた際には、電極を形成する際の成形性が悪くなるほか、導電剤又は導電助剤として添加するカーボンや成形性を向上させる結着剤、さらには電解液量を多くしなければならなくなる。その結果として、成形された正極単位体積中の活物質量は少なくなるので体積エネルギー密度が大幅に低下してしまうという問題のほか、微粉が多いため発熱の原因となる活性な粒子が増えてしまい添加元素による熱的安定性の付与の効果が相殺されるという問題があるからである。   That is, a large number of fine particles are present in the slurry solid obtained in the wet ultrafine pulverization, and the bulk density that directly affects the filling property as the positive electrode active material is lowered. When this is used as it is, the moldability when forming an electrode is deteriorated, carbon added as a conductive agent or conductive auxiliary agent, a binder that improves moldability, and the amount of electrolyte Will have to be increased. As a result, the amount of active material in the formed positive electrode unit volume is reduced, so that the volume energy density is greatly reduced, and active particles that cause heat generation are increased due to the large amount of fine powder. This is because there is a problem that the effect of imparting thermal stability by the additive element is offset.

上記(ロ)の工程で用いる噴霧乾燥としては、特に限定されるものではなく、一般に微粉末を含む無機物スラリーから粉末を得る際に用いられる種々の方法が適用することができる。例えば、乾燥塔の上部からスラリーを噴霧し、下部に向かいダウンフローで乾燥ガスを導入する構造が好ましい。このような構造とすることにより、乾燥塔単位容積あたりの処理量を大幅に向上させることができる。   The spray drying used in the step (b) is not particularly limited, and various methods generally used for obtaining powder from an inorganic slurry containing fine powder can be applied. For example, a structure in which the slurry is sprayed from the upper part of the drying tower and the drying gas is introduced in a downward flow toward the lower part is preferable. By setting it as such a structure, the processing amount per unit capacity of a drying tower can be improved significantly.

上記噴霧乾燥で用いる乾燥ガス温度は、特に限定されるものではなく、通常50〜120℃が好ましく、70〜100℃がより好ましい。すなわち、温度が120℃を超えると、得られる乾燥造粒粒子に中空構造のものが多くなり、粉体の充填密度を下げる。一方、50℃未満では、噴霧乾燥装置の粉体出口部分での水分結露による粉体固着及び閉塞などの問題が生ずる。   The drying gas temperature used in the spray drying is not particularly limited, and is usually preferably 50 to 120 ° C, more preferably 70 to 100 ° C. That is, when the temperature exceeds 120 ° C., the dry granulated particles obtained have a hollow structure, and the packing density of the powder is lowered. On the other hand, when the temperature is lower than 50 ° C., problems such as powder sticking and blockage due to moisture condensation at the powder outlet of the spray drying apparatus occur.

上記噴霧乾燥で用いるスラリー濃度は、特に限定されるものではなく、1〜70重量%が好ましく、10〜70重量%がより好ましく、20〜30重量%がさらに好ましい。すなわち、スラリー濃度が1重量%未満では、蒸発水分の体積が大きすぎ、噴霧量が非常に少なくなるため生産性が低くなる。一方、スラリー濃度が70重量%を超えると、噴霧に用いるノズル内でスラリーが乾燥し粉体が詰まって閉塞するため噴霧ができなくなる。   The slurry concentration used in the spray drying is not particularly limited and is preferably 1 to 70% by weight, more preferably 10 to 70% by weight, and further preferably 20 to 30% by weight. That is, when the slurry concentration is less than 1% by weight, the volume of evaporated water is too large, and the amount of spray becomes very small, resulting in low productivity. On the other hand, when the slurry concentration exceeds 70% by weight, the slurry is dried in the nozzle used for spraying, and the powder is clogged and blocked, so that spraying cannot be performed.

上記噴霧乾燥により球状又は楕円球状のニッケル含有無機塩粉末が得られる。得られる粉末の平均粒子径は、噴霧形式、ノズル形状、加圧気体流供給速度、スラリー供給速度、及び乾燥温度を適宜選定することにより制御することができる。本発明のニッケル含有無機塩粉末としては、特に限定されるものではなく、3〜15μmが好ましく、5〜10μmがより好ましく、5〜8μmがさらに好ましい。すなわち、3μm未満では、充填密度が低下する。   A spherical or oval spherical nickel-containing inorganic salt powder is obtained by the spray drying. The average particle size of the obtained powder can be controlled by appropriately selecting the spray format, nozzle shape, pressurized gas flow supply rate, slurry supply rate, and drying temperature. The nickel-containing inorganic salt powder of the present invention is not particularly limited, preferably 3 to 15 μm, more preferably 5 to 10 μm, and further preferably 5 to 8 μm. That is, if it is less than 3 μm, the packing density decreases.

上記製造方法において、ニッケル酸リチウム粒子を得る(ハ)の工程では、上記ニッケル含有無機塩粉末と、リチウム無機塩とを混合して混合物を得た後、これを焼成する。   In the manufacturing method, in the step (c) of obtaining lithium nickelate particles, the nickel-containing inorganic salt powder and the lithium inorganic salt are mixed to obtain a mixture, which is then fired.

上記(ハ)の工程で用いるリチウム無機塩としては、特に限定されるものではなく、水酸化物、炭酸塩、フッ化物、塩化物及び硝酸塩が挙げられる。   The lithium inorganic salt used in the step (c) is not particularly limited, and examples thereof include hydroxides, carbonates, fluorides, chlorides and nitrates.

上記(ハ)の工程で行うニッケル含有無機塩粉末と上記リチウム無機塩との混合は、所望の組成になるよう行われる。例えば、リチウム無機塩中のリチウムとニッケル含有無機塩粉末中の全金属の原子比は、1:1.02〜1:1.10が好ましい。また、用いる混合装置としては、特に限定されるものではなく、Vブレンダー等の乾式混合機、又は混合造粒装置等が挙げられる。   The mixing of the nickel-containing inorganic salt powder and the lithium inorganic salt performed in the step (c) is performed so as to have a desired composition. For example, the atomic ratio of lithium in the lithium inorganic salt to all metals in the nickel-containing inorganic salt powder is preferably 1: 1.02 to 1: 1.10. Moreover, it does not specifically limit as a mixing apparatus to be used, A dry mixer, such as V blender, a mixing granulator, etc. are mentioned.

上記(ハ)の工程の焼成条件としては、特に限定されるものではないが、例えば、酸素雰囲気下、焼成温度は500〜900℃が好ましく、650〜800℃がより好ましく、焼成保持時間は1〜60時間が好ましく、10〜30時間がより好ましい。すなわち、温度が500℃未満では、結晶性が良い、組成式(1)で表される層状構造を有するニッケル酸リチウムが形成されないため電池容量が小さくなり、一方、900℃を超えると、層状構造を持たず、充放電を行えないリチウムニッケル複合酸化物が生成される。また、焼成保持時間が1時間未満では、温度が500℃未満のときと同様に電池容量が小さくなり、一方、30時間を超えると、それ以上の焼成の効果がなくなる。   The firing conditions in the step (c) are not particularly limited. For example, the firing temperature is preferably 500 to 900 ° C., more preferably 650 to 800 ° C., and the firing holding time is 1 in an oxygen atmosphere. -60 hours are preferable, and 10-30 hours are more preferable. That is, when the temperature is less than 500 ° C., the battery capacity is reduced because the lithium nickelate having the layered structure represented by the composition formula (1) is not formed, and the battery capacity is reduced. Lithium nickel composite oxide that does not have charge and discharge cannot be generated. In addition, when the firing holding time is less than 1 hour, the battery capacity becomes small as in the case where the temperature is less than 500 ° C., whereas when it exceeds 30 hours, the effect of further firing is lost.

以上の製造方法によつて、組成式(1)で表される層状構造を有するニッケル酸リチウムの粒子内部に添加元素としてバナジウム又はインジウムをバナジウム酸リチウム又はインジウム酸リチウムとして均一に分散された状態で含むとともに、粒子の形状は一次粒子が集合した球状又は楕円球状の二次粒子からなり、かつ2.0g/mL以上のタップ密度を有する粉末が得られる。   According to the above manufacturing method, vanadium or indium as an additive element is uniformly dispersed as lithium vanadate or lithium indium oxide inside the particles of lithium nickelate having a layered structure represented by the composition formula (1). In addition, a powder having a tap density of 2.0 g / mL or more can be obtained.

3.非水系二次電池
本発明の非水系二次電池は、二次電池の過充電及び高温保存時の熱的安定性が高い非水系二次電池であって、本発明の正極活物質を用いてなる非水系二次電池である。
上記非水系二次電池は、正極活物質として、組成式(1)で表される層状構造を有するニッケル酸リチウム粒子に、添加元素としてバナジウム又はインジウムを添加してなる正極活物質であって、上記添加元素は、バナジウム酸リチウム又はインジウム酸リチウムを形成して粒子内部に均一に分散され、かつ粒子の形状は一次粒子が集合した球状又は楕円球状の二次粒子からなる粉末を用いているので、電池の熱的安定性が高く、一方電池容量、サイクル寿命及び出力の低下を抑えることができる高性能小型二次電池である。
3. Non-aqueous secondary battery The non-aqueous secondary battery of the present invention is a non-aqueous secondary battery having high thermal stability during secondary battery overcharge and high-temperature storage, and using the positive electrode active material of the present invention. This is a non-aqueous secondary battery.
The non-aqueous secondary battery is a positive electrode active material obtained by adding vanadium or indium as an additive element to lithium nickelate particles having a layered structure represented by the composition formula (1) as a positive electrode active material, The additive element forms lithium vanadate or lithium indium oxide and is uniformly dispersed inside the particle, and the particle shape is a powder composed of spherical or oval spherical secondary particles in which primary particles are aggregated. This is a high-performance small secondary battery that has high thermal stability of the battery, and can suppress a decrease in battery capacity, cycle life, and output.

以下に、本発明の実施例及び比較例によって本発明をさらに詳細に説明するが、本発明は、これらの実施例によってなんら限定されるものではない。なお、実施例及び比較例で用いたバナジウム又はインジウムの分布状況、タップ密度の測定及び電池の充放電特性(初期放電容量、容量維持率及び発熱ピーク比)の評価方法は、以下の通りである。
(1)バナジウム又はインジウムの分布状況の評価:EPMA面分析で行った。ここで、均一に分散するとは、無作為に選んだ粒子20個の断面の各元素の濃度分布において、極端な濃淡すなわち濃度のばらつきがない状態を意味する。
(2)タップ密度の測定:20mLメスシリンダーに試料10gを入れ、500回タッピングした時の体積で重量を割った値である。
Hereinafter, the present invention will be described in more detail by way of examples and comparative examples of the present invention, but the present invention is not limited to these examples. In addition, the distribution method of vanadium or indium used in the examples and comparative examples, the measurement of tap density, and the evaluation method of the charge / discharge characteristics (initial discharge capacity, capacity retention rate and exothermic peak ratio) of the battery are as follows. .
(1) Evaluation of vanadium or indium distribution: It was performed by EPMA surface analysis. Here, “uniformly dispersed” means a state in which there is no extreme shading, that is, no concentration variation in the concentration distribution of each element in the cross section of 20 randomly selected particles.
(2) Measurement of tap density: 10 g of sample was put into a 20 mL graduated cylinder, and the weight was divided by the volume when tapped 500 times.

(3)電池の充放電特性(初期放電容量、容量維持率及び発熱ピーク比)の測定:リチウムコイン二次電池を作製して、評価した。
まず、図を用いて、電池の構成と作製方法を説明する。図1に、作製した2032型のコイン電池の概略図を示す。調製した正極1のほか、負極3としてはリチウム金属を、電解液には1モルのLiClOを支持塩とするエチレンカーボネート(EC)とジエチルカーボネート(DEC)の等量混合溶液を用いた。ポリエチレンからなるセパレータ2に電解液を染み込ませ、露点が−80℃に管理されたアルゴン雰囲気下のグローブボックス中で、正極1、負極3、セパレータ2をガスケット4、正極缶5、及び負極缶6中に格納してコイン電池を作製した。その後、作製された電池を24時間程度放置し、OCV(開回路電圧)が安定した後、サイクル特性を調べる場合は正極に対する電流密度を0.5mA/cmとし、カットオフ電圧4.3〜3.0Vの条件で充放電試験を行った。
(3) Measurement of charge / discharge characteristics (initial discharge capacity, capacity retention ratio and exothermic peak ratio) of the battery: A lithium coin secondary battery was prepared and evaluated.
First, the structure and manufacturing method of the battery will be described with reference to the drawings. FIG. 1 shows a schematic diagram of a manufactured 2032 type coin battery. In addition to the prepared positive electrode 1, lithium metal was used as the negative electrode 3, and an equivalent mixed solution of ethylene carbonate (EC) and diethyl carbonate (DEC) using 1 mol of LiClO 4 as a supporting salt was used as the electrolyte. A separator 2 made of polyethylene is impregnated with an electrolytic solution, and a positive electrode 1, a negative electrode 3, and a separator 2 are made into a gasket 4, a positive electrode can 5, and a negative electrode can 6 in a glove box under an argon atmosphere whose dew point is controlled at −80 ° C. A coin battery was made by storing the battery inside. After that, the produced battery is allowed to stand for about 24 hours, and after OCV (open circuit voltage) is stabilized, when examining cycle characteristics, the current density with respect to the positive electrode is set to 0.5 mA / cm 2 , and the cut-off voltage is 4.3 to 4.3. The charge / discharge test was conducted under the condition of 3.0V.

ここで、初期放電容量及びそれに対する20サイクル目の放電容量の比(容量維持率)を求めた。さらに、1サイクル目の充電カット電圧を4.5Vとして過充電させた状態のコイン電池を解体し、正極合剤を取り出してその熱的安定性をDSCによって測定し、発熱ピーク比を求めた。なお、発熱ピーク比は、バナジウム含有活物質とインジウム含有活物質のそれぞれで基準値を決めて他は相対比で表した。   Here, the ratio of the initial discharge capacity and the discharge capacity at the 20th cycle with respect to the initial discharge capacity (capacity maintenance ratio) was determined. Further, the coin battery in an overcharged state with the charge cut voltage at the first cycle set to 4.5 V was disassembled, the positive electrode mixture was taken out, and its thermal stability was measured by DSC to obtain the exothermic peak ratio. The exothermic peak ratio was expressed as a relative ratio with reference values determined for each of the vanadium-containing active material and the indium-containing active material.

また、実施例及び比較例で原料として用いた金属無機塩は、いずれも試薬1級であった。   In addition, the metal inorganic salts used as raw materials in the examples and comparative examples were all reagent grades.

(実施例1)
無機塩が均一分散した球状又は楕円球状のニッケル含有無機塩粉末と水酸化リチウムからニッケル酸リチウムを合成した。
(1)ニッケル含有無機塩スラリーの調製
まず、水酸化ニッケル、水酸化コバルト、水酸化アルミニウム、及び酸化バナジウム(V)を、原子比でNi:Co:Al:V=80:15:4:1となるようにそれぞれ秤量し、攪拌用タンク内に投入後、純水を加えてスラリー濃度を20重量%に調整した。次に、このスラリーをビーズミル(浅田鉄工株式会社製)に投入し、スラリー中の固形物の平均粒子径が0.2μmになるまで粉砕して、ニッケル含有無機塩スラリーを得た。
Example 1
Lithium nickelate was synthesized from spherical or oval spherical nickel-containing inorganic salt powder in which inorganic salt was uniformly dispersed and lithium hydroxide.
(1) Preparation of nickel-containing inorganic salt slurry First, nickel hydroxide, cobalt hydroxide, aluminum hydroxide, and vanadium oxide (V 2 O 5 ) are mixed at an atomic ratio of Ni: Co: Al: V = 80: 15: Each was weighed so as to be 4: 1, put into a stirring tank, and then added with pure water to adjust the slurry concentration to 20% by weight. Next, this slurry was put into a bead mill (manufactured by Asada Tekko Co., Ltd.) and pulverized until the average particle size of the solids in the slurry became 0.2 μm to obtain a nickel-containing inorganic salt slurry.

(2)ニッケル含有無機塩粉末の調製
上記ニッケル含有無機塩スラリーを、噴霧乾燥機(マイクロミストドライヤー、藤崎電機株式会社製)を用いて下記条件で処理して球状又は楕円球状のニッケル含有無機塩粉末を得た。
エアー流量:40L/min
スラリー供給量:50mL/min
入口温度:200℃
出口温度:70℃
(2) Preparation of nickel-containing inorganic salt powder The above-mentioned nickel-containing inorganic salt slurry is treated using a spray dryer (Micro Mist Dryer, manufactured by Fujisaki Electric Co., Ltd.) under the following conditions to form a spherical or ellipsoidal nickel-containing inorganic salt. A powder was obtained.
Air flow rate: 40L / min
Slurry supply amount: 50 mL / min
Inlet temperature: 200 ° C
Outlet temperature: 70 ° C

(3)ニッケル酸リチウム粉末の製造
まず、上記ニッケル含有無機塩粉末に対して、水酸化リチウム一水和物を原子比でLi:Ni:Co:Al:V=105:80:15:4:1になるように添加し、これらと純水を混合造粒装置に装入し混合造粒した。次に、この造粒粉末を、酸素雰囲気に調整した電気炉中にて加熱した。なお、加熱条件は、一度500℃で3時間仮焼した後、730℃で20時間焼成し、その後室温まで炉内で冷却した。ここで、球状及び楕円球状からなり、二次粒子の平均粒子径が6μmで、バナジウムのリチウム複合酸化物を粒子内部に均一に拡散させているニッケル酸リチウム粉末が得られた。その後、得られた粉体のタップ密度を測定した。結果を表1に示す。
(3) Production of lithium nickelate powder First, with respect to the nickel-containing inorganic salt powder, lithium hydroxide monohydrate is expressed in terms of atomic ratio of Li: Ni: Co: Al: V = 105: 80: 15: 4: 1 was added, and these and pure water were charged into a mixing granulator and mixed and granulated. Next, this granulated powder was heated in an electric furnace adjusted to an oxygen atmosphere. In addition, after heating once at 500 degreeC for 3 hours, after baking for 20 hours at 730 degreeC, the heating conditions were cooled in the furnace to room temperature after that. Here, a lithium nickelate powder having a spherical shape and an elliptical shape, the average particle diameter of the secondary particles being 6 μm, and the lithium composite oxide of vanadium being uniformly diffused inside the particles was obtained. Thereafter, the tap density of the obtained powder was measured. The results are shown in Table 1.

(4)電池の作製と特性評価
上記粉体を正極活物質として用いて、以下のように正極を作製し、上記電池の充放電特性の測定に従って、作製したリチウムコイン二次電池の初期放電容量、容量維持率及び発熱ピーク比を評価した。結果を表1に示す。なお、発熱ピーク比は、このバナジウム含有活物質の最大発熱ピークの大きさを1(基準)とした。
(4) Battery production and characteristic evaluation Using the powder as a positive electrode active material, a positive electrode was produced as follows, and the initial discharge capacity of the lithium coin secondary battery produced according to the measurement of charge / discharge characteristics of the battery was as follows. The capacity retention rate and the exothermic peak ratio were evaluated. The results are shown in Table 1. As for the exothermic peak ratio, the size of the maximum exothermic peak of this vanadium-containing active material was 1 (reference).

[正極の作製方法]
まず、上記粉末90重量部に、アセチレンブラック5重量部及びPVDF(ポリ沸化ビニリデン)5重量部を混合し、さらにNMP(n−メチルピロリドン)を加えペースト化した。次に、20μm厚のアルミニウム箔に乾燥後の活物質重量が0.05g/cmになるようにペーストを塗布した後、120℃で真空乾燥を行った。得られた乾燥物から直径1cmの円板状に打ち抜いて正極を得た。
[Production method of positive electrode]
First, 5 parts by weight of acetylene black and 5 parts by weight of PVDF (polyvinylidene fluoride) were mixed with 90 parts by weight of the powder, and NMP (n-methylpyrrolidone) was further added to form a paste. Next, the paste was applied to a 20 μm thick aluminum foil so that the weight of the active material after drying was 0.05 g / cm 2 , and then vacuum drying was performed at 120 ° C. The obtained dried product was punched into a disk shape having a diameter of 1 cm to obtain a positive electrode.

(実施例2)
無機塩が均一分散した球状又は楕円球状のニッケル含有無機塩粉末と水酸化リチウムからニッケル酸リチウムを合成した。
ニッケル含有無機塩スラリーの調製において、酸化バナジウムの代わりに酸化インジウム(In)を用いた以外は、実施例1と同様に行い、平均粒子径6μmの二次粒子で、インジウムのリチウム複合酸化物を粒子内部に均一に拡散させているニッケル酸リチウム粉末を得て、得られた粉体のタップ密度、及び作製したリチウムコイン二次電池の初期放電容量、容量維持率及び発熱ピーク比を評価した。結果を表1に示す。なお、発熱ピーク比は、このインジウム含有活物質の最大発熱ピークの大きさを1(基準)とした。
(Example 2)
Lithium nickelate was synthesized from spherical or oval spherical nickel-containing inorganic salt powder in which inorganic salt was uniformly dispersed and lithium hydroxide.
Preparation of the nickel-containing inorganic salt slurry was performed in the same manner as in Example 1 except that indium oxide (In 2 O 3 ) was used instead of vanadium oxide, and secondary particles having an average particle diameter of 6 μm were used. Obtain a lithium nickelate powder in which the oxide is uniformly diffused inside the particle, and determine the tap density of the obtained powder, and the initial discharge capacity, capacity retention rate, and heat generation peak ratio of the manufactured lithium coin secondary battery. evaluated. The results are shown in Table 1. As for the exothermic peak ratio, the size of the maximum exothermic peak of this indium-containing active material was 1 (reference).

(実施例3)
無機塩が均一分散した球状又は楕円球状のニッケル含有無機塩粉末と水酸化リチウムからニッケル酸リチウムを合成した。
ニッケル含有無機塩スラリーの調製において、酸化バナジウムの配合比を変えて各無機塩の原子比をNi:Co:Al:V=80.8:15:4:0.2とした以外は、実施例1と同様に行い、平均粒子径6μmの二次粒子で、バナジウムのリチウム複合酸化物を粒子内部に均一に拡散させているニッケル酸リチウム粉末を得て、得られた粉体のタップ密度、及び作製したリチウムコイン二次電池の初期放電容量、容量維持率及び発熱ピーク比を評価した。結果を表1に示す。なお、発熱ピーク比は、実施例1で得られたバナジウム含有活物質の最大発熱ピークの大きさを1として相対値で示した。
Example 3
Lithium nickelate was synthesized from spherical or oval spherical nickel-containing inorganic salt powder in which inorganic salt was uniformly dispersed and lithium hydroxide.
Example of preparation of nickel-containing inorganic salt slurry, except that the atomic ratio of each inorganic salt was changed to Ni: Co: Al: V = 80.8: 15: 4: 0.2 by changing the compounding ratio of vanadium oxide 1 to obtain lithium nickelate powder in which lithium composite oxide of vanadium is uniformly diffused inside the particles with secondary particles having an average particle diameter of 6 μm, and the tap density of the obtained powder, and The initial discharge capacity, capacity retention rate, and exothermic peak ratio of the produced lithium coin secondary battery were evaluated. The results are shown in Table 1. The exothermic peak ratio was expressed as a relative value with the maximum exothermic peak size of the vanadium-containing active material obtained in Example 1 as 1.

(実施例4)
無機塩が均一分散した球状又は楕円球状のニッケル含有無機塩粉末と水酸化リチウムからニッケル酸リチウムを合成した。
ニッケル含有無機塩スラリーの調製において、酸化インジウムの配合比を変えて各無機塩の原子比をNi:Co:Al:In=80.8:15:4:0.2とした以外は、実施例2と同様に行い、平均粒子径6μmの二次粒子で、インジウムのリチウム複合酸化物を粒子内部に均一に拡散させているニッケル酸リチウム粉末を得て、得られた粉体のタップ密度、及び作製したリチウムコイン二次電池の初期放電容量、容量維持率及び発熱ピーク比を評価した。結果を表1に示す。なお、発熱ピーク比は、実施例2で得られたインジウム含有活物質の最大発熱ピークの大きさを1として相対値で示した。
Example 4
Lithium nickelate was synthesized from spherical or oval spherical nickel-containing inorganic salt powder in which inorganic salt was uniformly dispersed and lithium hydroxide.
Example of preparation of nickel-containing inorganic salt slurry, except that the atomic ratio of each inorganic salt was changed to Ni: Co: Al: In = 80.8: 15: 4: 0.2 by changing the compounding ratio of indium oxide 2 to obtain lithium nickelate powder in which indium lithium composite oxide is uniformly diffused inside the particles with secondary particles having an average particle diameter of 6 μm, and the tap density of the obtained powder, and The initial discharge capacity, capacity retention rate, and exothermic peak ratio of the produced lithium coin secondary battery were evaluated. The results are shown in Table 1. The exothermic peak ratio was expressed as a relative value with the size of the maximum exothermic peak of the indium-containing active material obtained in Example 2 being 1.

(実施例5)
無機塩が均一分散した球状又は楕円球状のニッケル含有無機塩粉末と水酸化リチウムからニッケル酸リチウムを合成した。
ニッケル含有無機塩スラリーの調製において、酸化バナジウムの配合比を変えて各無機塩の原子比をNi:Co:Al:V=71:15:4:10とした以外は、実施例1と同様に行い、平均粒子径6μmの二次粒子で、バナジウムのリチウム複合酸化物を粒子内部に均一に拡散させているニッケル酸リチウム粉末を得て、得られた粉体のタップ密度、及び作製したリチウムコイン二次電池の初期放電容量、容量維持率及び発熱ピーク比を評価した。結果を表1に示す。なお、発熱ピーク比は、実施例1で得られたバナジウム含有活物質の最大発熱ピークの大きさを1として相対値で示した。
(Example 5)
Lithium nickelate was synthesized from spherical or oval spherical nickel-containing inorganic salt powder in which inorganic salt was uniformly dispersed and lithium hydroxide.
In the preparation of the nickel-containing inorganic salt slurry, the same as in Example 1, except that the atomic ratio of each inorganic salt was changed to Ni: Co: Al: V = 71: 15: 4: 10 by changing the compounding ratio of vanadium oxide. To obtain lithium nickelate powder in which lithium composite oxide of vanadium is uniformly diffused inside the particles with secondary particles having an average particle diameter of 6 μm, and the tap density of the obtained powder and the manufactured lithium coin The initial discharge capacity, capacity retention rate, and exothermic peak ratio of the secondary battery were evaluated. The results are shown in Table 1. The exothermic peak ratio was expressed as a relative value with the maximum exothermic peak size of the vanadium-containing active material obtained in Example 1 as 1.

(実施例6)
無機塩が均一分散した球状又は楕円球状のニッケル含有無機塩粉末と水酸化リチウムからニッケル酸リチウムを合成した。
ニッケル含有無機塩スラリーの調製において、酸化インジウムの配合比を変えて各無機塩の原子比をNi:Co:Al:In=71:15:4:10とした以外は、実施例2と同様に行い、平均粒子径6μmの二次粒子で、インジウムのリチウム複合酸化物を粒子内部に均一に拡散させているニッケル酸リチウム粉末を得て、得られた粉体のタップ密度、及び作製したリチウムコイン二次電池の初期放電容量、容量維持率及び発熱ピーク比を評価した。結果を表1に示す。なお、発熱ピーク比は、実施例2で得られたインジウム含有活物質の最大発熱ピークの大きさを1として相対値で示した。
(Example 6)
Lithium nickelate was synthesized from spherical or oval spherical nickel-containing inorganic salt powder in which inorganic salt was uniformly dispersed and lithium hydroxide.
In the preparation of the nickel-containing inorganic salt slurry, the mixture ratio of indium oxide was changed and the atomic ratio of each inorganic salt was changed to Ni: Co: Al: In = 71: 15: 4: 10, as in Example 2. To obtain lithium nickelate powder in which lithium composite oxide of indium is uniformly diffused inside the particles with secondary particles having an average particle diameter of 6 μm, and the tap density of the obtained powder and the manufactured lithium coin The initial discharge capacity, capacity retention rate, and exothermic peak ratio of the secondary battery were evaluated. The results are shown in Table 1. The exothermic peak ratio was expressed as a relative value with the size of the maximum exothermic peak of the indium-containing active material obtained in Example 2 being 1.

(比較例1)
共沈法で作製したバナジウム、コバルト及びアルミニウムを固溶させた球状水酸化ニッケルと、水酸化リチウムとからニッケル酸リチウムを合成した。
まず、所定量の純水をはった吐出口付き攪拌反応槽に、ニッケル、コバルト、アルミニウム、バナジウムの原子比が80:15:4:1となるように硫酸ニッケル、硫酸コバルト、硫酸アルミニウム及び酸化硫酸バナジウムを溶解して水溶液を作製した。次に、水溶液にアンモニア水を滴下しながら、かつ苛性ソーダを滴下してpHを12に調整し、滞留時間を10時間に設定して連続運転を行った。これによって、平均粒子径6μmで、バナジウム、コバルト及びアルミニウムを固溶させた球状水酸化ニッケルが得られた。
(Comparative Example 1)
Lithium nickelate was synthesized from lithium nickel hydroxide and spherical nickel hydroxide in which vanadium, cobalt and aluminum were prepared by coprecipitation.
First, in a stirred reaction tank with a discharge port with a predetermined amount of pure water, nickel sulfate, cobalt sulfate, aluminum sulfate and nickel sulfate so that the atomic ratio of nickel, cobalt, aluminum, and vanadium is 80: 15: 4: 1. An aqueous solution was prepared by dissolving vanadium oxide sulfate. Next, while aqueous ammonia was added dropwise to the aqueous solution, caustic soda was added dropwise to adjust the pH to 12, and the residence time was set to 10 hours for continuous operation. Thereby, spherical nickel hydroxide having an average particle diameter of 6 μm and solid-dissolving vanadium, cobalt and aluminum was obtained.

次いで、ニッケル含有無機塩粉末の代わりに、上記球状水酸化ニッケルを用いた以外は、実施例1のニッケル酸リチウム粉末の製造と同様の条件で行い、平均粒子径6μmの二次粒子で、バナジウム、コバルト及びアルミニウムを固溶させたニッケル酸リチウムを得て、得られた粉体のタップ密度、及び作製したリチウムコイン二次電池の初期放電容量、容量維持率及び発熱ピーク比を評価した。結果を表1に示す。なお、発熱ピーク比は、実施例1で得られたバナジウム含有活物質の最大発熱ピークの大きさを1として相対値で示した。   Subsequently, it carried out on the same conditions as manufacture of the lithium nickelate powder of Example 1 except having used the said spherical nickel hydroxide instead of the nickel containing inorganic salt powder, and it was a secondary particle with an average particle diameter of 6 micrometers, and vanadium. Then, lithium nickelate in which cobalt and aluminum were dissolved was obtained, and the tap density of the obtained powder, and the initial discharge capacity, capacity retention rate and exothermic peak ratio of the produced lithium coin secondary battery were evaluated. The results are shown in Table 1. The exothermic peak ratio was expressed as a relative value with the maximum exothermic peak size of the vanadium-containing active material obtained in Example 1 as 1.

(比較例2)
共沈法で作製したインジウム、コバルト及びアルミニウムを固溶させた球状水酸化ニッケルと、水酸化リチウムとからニッケル酸リチウムを合成した。
酸化硫酸バナジウムに代えて、硫酸インジウムを用いた以外は、比較例1と同様に行って、平均粒子径6μmで、インジウム、コバルト及びアルミニウムを固溶させた球状水酸化ニッケルを得た。
次いで、ニッケル含有無機塩粉末の代わりに、上記球状水酸化ニッケルを用いた以外は、実施例1のニッケル酸リチウム粉末の製造と同様の条件で行い、平均粒子径6μmの二次粒子で、インジウム、コバルト及びアルミニウムを固溶させたニッケル酸リチウムを得て、得られた粉体のタップ密度、及び作製したリチウムコイン二次電池の初期放電容量、容量維持率及び発熱ピーク比を評価した。結果を表1に示す。なお、発熱ピーク比は、実施例2で得られたインジウム含有活物質の最大発熱ピークの大きさを1として相対値で示した。
(Comparative Example 2)
Lithium nickelate was synthesized from spherical nickel hydroxide with solid solution of indium, cobalt and aluminum produced by the coprecipitation method and lithium hydroxide.
A spherical nickel hydroxide having an average particle diameter of 6 μm and having indium, cobalt and aluminum dissolved therein was obtained in the same manner as in Comparative Example 1 except that indium sulfate was used instead of vanadium oxide.
Subsequently, in place of the nickel-containing inorganic salt powder, except that the above spherical nickel hydroxide was used, it was performed under the same conditions as in the production of the lithium nickelate powder of Example 1, and secondary particles with an average particle diameter of 6 μm were used. Then, lithium nickelate in which cobalt and aluminum were dissolved was obtained, and the tap density of the obtained powder, and the initial discharge capacity, capacity retention rate and exothermic peak ratio of the produced lithium coin secondary battery were evaluated. The results are shown in Table 1. The exothermic peak ratio was expressed as a relative value with the size of the maximum exothermic peak of the indium-containing active material obtained in Example 2 being 1.

(比較例3)
リチウム、ニッケル、バナジウム、コバルト及びアルミニウム無機塩の粉砕混合物からニッケル酸リチウムを合成した。
まず、水酸化リチウム一水和物、水酸化ニッケル、水酸化コバルト、水酸化アルミニウム及び酸化バナジウム(V)を用いて、原子比でLi:Ni:Co:Al:V=105:80:15:4:1となるようにそれぞれを秤量し、これらをボールミルに投入して24時間粉砕して、粉砕混合物を得た。
次いで、得られた粉砕混合物を酸素雰囲気に調整した電気炉中にて加熱した。なお、加熱条件は、一度500℃で3時間仮焼した後、730℃で20時間焼成し、その後室温まで炉内で冷却した。その後、得られた粉体のタップ密度、及び作製したリチウムコイン二次電池の初期放電容量、容量維持率及び発熱ピーク比を評価した。結果を表1に示す。なお、発熱ピーク比は、実施例1で得られたバナジウム含有活物質の最大発熱ピークの大きさを1として相対値で示した。
(Comparative Example 3)
Lithium nickelate was synthesized from a ground mixture of lithium, nickel, vanadium, cobalt and aluminum inorganic salts.
First, using lithium hydroxide monohydrate, nickel hydroxide, cobalt hydroxide, aluminum hydroxide and vanadium oxide (V 2 O 5 ), the atomic ratio of Li: Ni: Co: Al: V = 105: 80 Was weighed so that the ratio was 15: 4: 1, and these were put into a ball mill and pulverized for 24 hours to obtain a pulverized mixture.
Next, the obtained pulverized mixture was heated in an electric furnace adjusted to an oxygen atmosphere. In addition, after heating once at 500 degreeC for 3 hours, after baking for 20 hours at 730 degreeC, the heating conditions were cooled in the furnace to room temperature after that. Thereafter, the tap density of the obtained powder and the initial discharge capacity, capacity retention rate and exothermic peak ratio of the produced lithium coin secondary battery were evaluated. The results are shown in Table 1. The exothermic peak ratio was expressed as a relative value with the maximum exothermic peak size of the vanadium-containing active material obtained in Example 1 as 1.

(比較例4)
リチウム、ニッケル、インジウム、コバルト及びアルミニウム無機塩の粉砕混合物からニッケル酸リチウムを合成した。
酸化バナジウム(V)に代えて、酸化インジウム(In)を用いた以外は比較例3と同様に行い、得られた粉体のタップ密度、及び作製したリチウムコイン二次電池の初期放電容量、容量維持率及び発熱ピーク比を評価した。結果を表1に示す。なお、発熱ピーク比は、実施例1で得られたインジウム含有活物質の最大発熱ピークの大きさを1として相対値で示した。
(Comparative Example 4)
Lithium nickelate was synthesized from a ground mixture of lithium, nickel, indium, cobalt and aluminum inorganic salts.
The tap density of the obtained powder and the manufactured lithium coin secondary battery were the same as in Comparative Example 3 except that indium oxide (In 2 O 3 ) was used instead of vanadium oxide (V 2 O 5 ). The initial discharge capacity, capacity retention rate, and exothermic peak ratio were evaluated. The results are shown in Table 1. The exothermic peak ratio was expressed as a relative value with the size of the maximum exothermic peak of the indium-containing active material obtained in Example 1 being 1.

(比較例5)
共沈法で作製したコバルト及びアルミニウムを固溶させた球状水酸化ニッケル、酸化バナジウム、及び水酸化リチウムからニッケル酸リチウムを合成した。
まず、所定量の純水をはった吐出口付き攪拌反応槽に、ニッケル、コバルト、アルミニウムの原子比が80:15:4となるように硫酸ニッケル、硫酸コバルト及び硫酸アルミニウムを溶解して水溶液を作製した。次に、水溶液にアンモニア水を滴下しながら、かつ苛性ソーダを滴下してpHを12に調整し、滞留時間を10時間に設定して連続運転を行った。これによって、平均粒子径6μmで、コバルト及びアルミニウムを固溶させた球状水酸化ニッケルが得られた。
(Comparative Example 5)
Lithium nickelate was synthesized from spherical nickel hydroxide, vanadium oxide, and lithium hydroxide in which cobalt and aluminum were prepared by coprecipitation.
First, nickel sulfate, cobalt sulfate, and aluminum sulfate are dissolved in an agitated reaction tank with a discharge port with a predetermined amount of pure water so that the atomic ratio of nickel, cobalt, and aluminum is 80: 15: 4. Was made. Next, while aqueous ammonia was added dropwise to the aqueous solution, caustic soda was added dropwise to adjust the pH to 12, and the residence time was set to 10 hours for continuous operation. Thereby, spherical nickel hydroxide having an average particle diameter of 6 μm and solid-solving cobalt and aluminum was obtained.

次いで、上記球状水酸化ニッケルに原子比でNi:Co:Al:V=80:15:4:1となるように酸化バナジウム(V)を添加し、コバルト及びアルミニウムを固溶させた球状水酸化ニッケルと酸化バナジウム粉末の混合物を得た。なお、酸化バナジウムとしては、ボールミル粉砕により細かく砕いたもの(平均粒子径6μm)を用いた。
最後に、ニッケル含有無機塩粉末の代わりに、上記混合物を用いた以外は、実施例1のニッケル酸リチウム粉末の製造と同様の条件で行い、平均粒子径6μmの二次粒子で、バナジウム、コバルト及びアルミニウムを固溶させたニッケル酸リチウムを得て、得られた粉体のタップ密度、及び作製したリチウムコイン二次電池の初期放電容量、容量維持率及び発熱ピーク比を評価した。結果を表1に示す。なお、発熱ピーク比は、実施例1で得られたバナジウム含有活物質の最大発熱ピークの大きさを1として相対値で示した。
Next, vanadium oxide (V 2 O 5 ) was added to the spherical nickel hydroxide so that the atomic ratio of Ni: Co: Al: V = 80: 15: 4: 1, and cobalt and aluminum were dissolved. A mixture of spherical nickel hydroxide and vanadium oxide powder was obtained. The vanadium oxide used was finely pulverized by ball milling (average particle size 6 μm).
Finally, except that the above mixture was used in place of the nickel-containing inorganic salt powder, it was performed under the same conditions as in the production of the lithium nickelate powder of Example 1, and the secondary particles with an average particle diameter of 6 μm were vanadium, cobalt. In addition, lithium nickelate in which aluminum was dissolved in solid was obtained, and the tap density of the obtained powder, and the initial discharge capacity, capacity retention rate, and exothermic peak ratio of the produced lithium coin secondary battery were evaluated. The results are shown in Table 1. The exothermic peak ratio was expressed as a relative value with the maximum exothermic peak size of the vanadium-containing active material obtained in Example 1 as 1.

(比較例6)
共沈法で作製したコバルト及びアルミニウムを固溶させた球状水酸化ニッケル、酸化インジウム、及び水酸化リチウムからニッケル酸リチウムを合成した。
酸化バナジウム(V)に代えて、酸化インジウム(In)を用いた以外は比較例5と同様に行い、得られた粉体のタップ密度、及び作製したリチウムコイン二次電池の初期放電容量、容量維持率及び発熱ピーク比を評価した。結果を表1に示す。なお、発熱ピーク比は、実施例1で得られたインジウム含有活物質の最大発熱ピークの大きさを1として相対値で示した。
(Comparative Example 6)
Lithium nickelate was synthesized from spherical nickel hydroxide, indium oxide, and lithium hydroxide in which cobalt and aluminum were prepared by coprecipitation.
The tap density of the obtained powder and the manufactured lithium coin secondary battery were the same as in Comparative Example 5 except that indium oxide (In 2 O 3 ) was used instead of vanadium oxide (V 2 O 5 ). The initial discharge capacity, capacity retention rate, and exothermic peak ratio were evaluated. The results are shown in Table 1. The exothermic peak ratio was expressed as a relative value with the size of the maximum exothermic peak of the indium-containing active material obtained in Example 1 being 1.

Figure 2006004689
Figure 2006004689

表1より、実施例1〜6では、ニッケル含有金属無機塩粉末の製造が湿式超微粉砕と噴霧乾燥を含む本発明の方法に従って行われたので、それを用いてバナジウム又はインジウムのリチウム複合酸化物を粒子内部に均一に拡散させているニッケル酸リチウム粉末が得られ、これを正極活物質として熱的安定性と電池特性に優れた二次電池が得られるることが分かる。これに対して、比較例1〜6では、金属無機塩の調製方法がこれらの条件に合わないので、タップ密度、放電容量の維持率又は熱的安定性(発熱ピーク比)のいずれかにおいて満足すべき結果が得られないことが分かる。   From Table 1, in Examples 1-6, since manufacture of the nickel-containing metal inorganic salt powder was performed according to the method of the present invention including wet ultra-fine grinding and spray drying, lithium complex oxidation of vanadium or indium was performed using it. It can be seen that a lithium nickelate powder in which the product is uniformly diffused inside the particles is obtained, and that this is used as a positive electrode active material to obtain a secondary battery excellent in thermal stability and battery characteristics. On the other hand, in Comparative Examples 1-6, since the preparation method of a metal inorganic salt does not meet these conditions, it is satisfied in any of a tap density, a discharge capacity maintenance factor, or thermal stability (exothermic peak ratio). It turns out that the result which should be cannot be obtained.

以上より明らかなように、本発明の非水系二次電池用の正極活物質とその製造方法は、特にハイブリッド自動車用二次電池に代表される大型二次電池分野で利用されるリチウムイオン二次電池の正極活物質とその製造方法として好適である。また、それを用いた非水系二次電池は、リチウムイオン二次電池の保護回路の簡素化及び小型化を実現することができ、ニッケル水素二次電池にかわって小型高容量電池として有用である。   As is clear from the above, the positive electrode active material for a non-aqueous secondary battery and the method for producing the same according to the present invention are lithium ion secondary batteries that are used particularly in the field of large-sized secondary batteries represented by secondary batteries for hybrid vehicles. It is suitable as a positive electrode active material of a battery and a manufacturing method thereof. In addition, the non-aqueous secondary battery using the same can realize simplification and miniaturization of the protection circuit of the lithium ion secondary battery, and is useful as a small high capacity battery in place of the nickel metal hydride secondary battery. .

実施例で作製した2032型のコイン電池の概略図である。It is the schematic of the 2032 type coin battery produced in the Example.

符号の説明Explanation of symbols

1 正極
2 セパレーター
3 負極
4 ガスケット
5 正極缶
6 負極缶
DESCRIPTION OF SYMBOLS 1 Positive electrode 2 Separator 3 Negative electrode 4 Gasket 5 Positive electrode can 6 Negative electrode can

Claims (5)

下記(1)の組成式で表される層状構造を有するニッケル酸リチウム粒子に、添加元素としてバナジウム(V)又はインジウム(In)を添加してなる正極活物質であって、
上記添加元素は、バナジウム酸リチウム又はインジウム酸リチウムを形成して粒子内部に均一に分散され、かつ粒子の形状は、一次粒子が集合した球状又は楕円球状の二次粒子であることを特徴とする非水系二次電池用の正極活物質。
LiNi1−a …(1)
(式中、Mは、Mg、Ca、Ti、Mn、Cr、Fe、Ni、Co、Cu、Zn、Mo、Ag、W、B、Al、Ga、Nb、Sn、Pb、Sr、Sb又はPから選ばれる少なくとも1種の元素を示し、aは、0.01≦a≦0.5である。)
A positive electrode active material obtained by adding vanadium (V) or indium (In) as an additive element to lithium nickelate particles having a layered structure represented by the following composition formula (1):
The additive element forms lithium vanadate or lithium indium oxide and is uniformly dispersed inside the particles, and the shape of the particles is spherical or elliptical secondary particles in which primary particles are aggregated Positive electrode active material for non-aqueous secondary batteries.
LiNi 1-a M a O 2 (1)
(In the formula, M is Mg, Ca, Ti, Mn, Cr, Fe, Ni, Co, Cu, Zn, Mo, Ag, W, B, Al, Ga, Nb, Sn, Pb, Sr, Sb or P. And at least one element selected from: a is 0.01 ≦ a ≦ 0.5.)
前記添加元素の添加量は、(V又はIn)/(Liを除く全金属元素)原子比で、0.002〜0.1であることを特徴とする請求項1に記載の非水系二次電池用の正極活物質。   2. The non-aqueous secondary according to claim 1, wherein the addition amount of the additive element is 0.002 to 0.1 in terms of (V or In) / (all metal elements excluding Li) atomic ratio. Positive electrode active material for batteries. タップ密度が2.0g/mL以上であることを特徴とする請求項1又は2に記載の非水系二次電池用の正極活物質。   The positive electrode active material for a non-aqueous secondary battery according to claim 1 or 2, wherein the tap density is 2.0 g / mL or more. 下記(イ)〜(ハ)の工程を含むことを特徴とする請求項1〜3のいずれか1項に記載の非水系二次電池用の正極活物質の製造方法。
(イ)ニッケル無機塩に、バナジウム又はインジウムの無機塩と、リチウムを除く正極活物質の成分である全金属元素の無機塩とを所定比率で混合した後、湿式超微粉砕してニッケル含有無機塩スラリーを調製する。
(ロ)上記ニッケル含有無機塩スラリーを噴霧乾燥に付し、球状又は楕円球状のニッケル含有無機塩粉末を調製する。
(ハ)上記ニッケル含有無機塩粉末とリチウム無機塩とを混合し焼成する。
The manufacturing method of the positive electrode active material for non-aqueous secondary batteries of any one of Claims 1-3 including the process of following (I)-(C).
(B) After mixing inorganic salt of vanadium or indium and inorganic salt of all metal elements, which are components of the positive electrode active material excluding lithium, in a predetermined ratio with nickel inorganic salt, wet ultrafine pulverization and nickel-containing inorganic A salt slurry is prepared.
(B) The nickel-containing inorganic salt slurry is spray-dried to prepare a spherical or elliptical nickel-containing inorganic salt powder.
(C) The nickel-containing inorganic salt powder and the lithium inorganic salt are mixed and fired.
請求項1〜3のいずれか1項に記載の正極活物質を用いてなる、二次電池の過充電及び高温保存時の熱的安定性が高い非水系二次電池。   A non-aqueous secondary battery using the positive electrode active material according to claim 1, wherein the secondary battery has high thermal stability during overcharge and high-temperature storage.
JP2004177922A 2004-06-16 2004-06-16 Positive electrode active material for non-aqueous secondary battery, its manufacturing method and non-aqueous secondary battery using it Pending JP2006004689A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004177922A JP2006004689A (en) 2004-06-16 2004-06-16 Positive electrode active material for non-aqueous secondary battery, its manufacturing method and non-aqueous secondary battery using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004177922A JP2006004689A (en) 2004-06-16 2004-06-16 Positive electrode active material for non-aqueous secondary battery, its manufacturing method and non-aqueous secondary battery using it

Publications (1)

Publication Number Publication Date
JP2006004689A true JP2006004689A (en) 2006-01-05

Family

ID=35772910

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004177922A Pending JP2006004689A (en) 2004-06-16 2004-06-16 Positive electrode active material for non-aqueous secondary battery, its manufacturing method and non-aqueous secondary battery using it

Country Status (1)

Country Link
JP (1) JP2006004689A (en)

Similar Documents

Publication Publication Date Title
US9601772B2 (en) Cathode active material for a nonaqueous electrolyte secondary battery and manufacturing method thereof, and a nonaqueous electrolyte secondary battery that uses cathode active material
JP6094591B2 (en) Nickel-cobalt composite hydroxide and its production method and production apparatus, positive electrode active material for non-aqueous electrolyte secondary battery, its production method, and non-aqueous electrolyte secondary battery
US10236506B2 (en) Method of producing transition metal composite hydroxide capable of serving as precursor of positive electrode active material for nonaqueous electrolyte secondary batteries and method for producing positive electrode active material for nanaqueous electrolye secondary batteries
KR101587293B1 (en) Li-Ni-BASED COMPOSITE OXIDE PARTICLE POWDER FOR RECHARGEABLE BATTERY WITH NONAQUEOUS ELECTROLYTE, PROCESS FOR PRODUCING THE POWDER, AND RECHARGEABLE BATTERY WITH NONAQUEOUS ELECTROLYTE
JP6631320B2 (en) Nickel composite hydroxide, method for producing the same, positive electrode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
JP2008153017A (en) Positive active material for nonaqueous electrolyte secondary battery
JP2016204239A (en) Aluminum coated nickel cobalt composite hydroxide particle and manufacturing method therefor, cathode active material for non-aqueous electrolyte secondary battery and manufacturing method therefor and non-aqueous electrolyte secondary battery
JP5572268B1 (en) Spinel-type lithium manganese nickel-containing composite oxide
JP2008147068A (en) Lithium composite oxide for nonaqueous electrolyte secondary battery
JP6499442B2 (en) Positive electrode active material for lithium ion battery and method for producing positive electrode active material for lithium ion battery
JP2005347134A (en) Manufacturing method of positive electrode active material for lithium ion secondary battery
JP2017188211A (en) Positive electrode active material for nonaqueous electrolyte secondary battery, method for manufacturing the same, positive electrode mixture paste for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP2008117729A (en) Positive electrode active material for nonaqueous electrolyte secondary battery, its manufacturing method, and non-aqueous type electrolyte secondary battery using it
WO2015076323A1 (en) Positive electrode active material for nonaqueous electrolyte secondary batteries, method for producing same, and nonaqueous electrolyte secondary battery
JP2010199001A (en) Cathode material for lithium-ion secondary battery, and lithium-ion secondary battery using it
JP2018190720A (en) Positive electrode active material for nonaqueous electrolytic secondary battery, and nonaqueous electrolytic secondary battery
JP6511965B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
JP2006228604A (en) Anode active substance for lithium ion secondary batterry, and its manufacturing method
JP2004006277A (en) Positive electrode material for lithium secondary batteries, rechargeable battery therewith and manufacturing process thereof
JP2005050582A (en) Positive pole for lithium secondary battery and lithium secondary battery using it
JP2009064585A (en) Manufacturing method of transition metal based compound for lithium secondary battery
JP7163624B2 (en) Positive electrode active material for lithium ion secondary battery, method for producing the same, and lithium ion secondary battery using the positive electrode active material
JP2022177291A (en) Positive electrode active material for high-strength lithium ion secondary battery, and lithium ion secondary battery employing the positive electrode active material
JP6008578B2 (en) Method for producing positive electrode active material for secondary battery and secondary battery
JP2016115621A (en) Positive electrode active material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery