JPWO2012161002A1 - Flat plate cooling device and method of using the same - Google Patents

Flat plate cooling device and method of using the same Download PDF

Info

Publication number
JPWO2012161002A1
JPWO2012161002A1 JP2013516292A JP2013516292A JPWO2012161002A1 JP WO2012161002 A1 JPWO2012161002 A1 JP WO2012161002A1 JP 2013516292 A JP2013516292 A JP 2013516292A JP 2013516292 A JP2013516292 A JP 2013516292A JP WO2012161002 A1 JPWO2012161002 A1 JP WO2012161002A1
Authority
JP
Japan
Prior art keywords
flat plate
heat
heat receiving
cooling device
flat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013516292A
Other languages
Japanese (ja)
Other versions
JP5874935B2 (en
Inventor
吉川 実
実 吉川
坂本 仁
仁 坂本
正樹 千葉
正樹 千葉
賢一 稲葉
賢一 稲葉
有仁 松永
有仁 松永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2013516292A priority Critical patent/JP5874935B2/en
Publication of JPWO2012161002A1 publication Critical patent/JPWO2012161002A1/en
Application granted granted Critical
Publication of JP5874935B2 publication Critical patent/JP5874935B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0233Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes the conduits having a particular shape, e.g. non-circular cross-section, annular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/42Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
    • H01L23/427Cooling by change of state, e.g. use of heat pipes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

沸騰冷却方式を用いた冷却装置においては、装置の小型化を図ると、冷却性能が低下してしまうため、本発明の平板型冷却装置は、第1の平板と、第1の平板に対向する第2の平板とを備えた平板状容器と、平板状容器に封入された冷媒と、第1の平板と第2の平板を接続し、平板状容器内の冷媒の流動を制御する導壁部、とを有し、平板状容器は、第1の平板および第2の平板の少なくとも一方に配置される複数の発熱体と熱的に接続する複数の受熱領域と、第1の平板および第2の平板の少なくとも一方に配置される放熱部と熱的に接続する放熱領域、とを備え、複数の受熱領域は、放熱領域に配置される放熱部受熱領域を少なくとも一つ含み、導壁部は一対の導壁からなり、導壁は放熱部受熱領域に隣接する第1の隣接受熱領域を挟んで配置される。In the cooling device using the boiling cooling system, when the device is downsized, the cooling performance is deteriorated. Therefore, the flat plate cooling device of the present invention faces the first flat plate and the first flat plate. A flat wall container provided with a second flat plate, a refrigerant sealed in the flat plate container, a first guide plate and a second flat plate connected to each other, and a guide wall portion for controlling the flow of the refrigerant in the flat plate container The flat container has a plurality of heat receiving regions thermally connected to a plurality of heating elements arranged on at least one of the first flat plate and the second flat plate, and the first flat plate and the second flat plate container. A plurality of heat-receiving regions, including at least one heat-dissipating part heat-receiving region disposed in the heat-dissipating region. It consists of a pair of conducting walls, and the conducting walls sandwich the first adjacent heat receiving area adjacent to the heat radiating section heat receiving area. It is placed.

Description

本発明は、半導体装置や電子機器などの冷却装置に関し、特に、冷媒の気化と凝縮のサイクルによって熱の輸送・放熱を行う沸騰冷却方式を用いた平板型冷却装置及びその使用方法に関する。   The present invention relates to a cooling device such as a semiconductor device or an electronic device, and more particularly, to a flat plate cooling device using a boiling cooling system that transports and dissipates heat by a vaporization and condensation cycle of a refrigerant and a method of using the same.

近年、半導体装置や電子機器などの高性能化、高機能化に伴い、それらの発熱量も増大している。一方、携帯機器の普及等により半導体装置や電子機器などの小型化が進んでいる。このような背景から、高効率で小型の冷却装置が求められている。冷媒の気化と凝縮のサイクルによって熱の輸送・放熱を行う沸騰冷却方式を用いた冷却装置は、ポンプなどの駆動部を必要としない。そのため小型化に適していることから、半導体装置や電子機器などの冷却装置として期待されている。
このような沸騰冷却方式を用いた冷却装置(以下では、「沸騰冷却装置」とも言う)の一例が特許文献1に記載されている。図8は、特許文献1に記載された関連する沸騰冷却装置500の構成を示す断面図である。関連する沸騰冷却装置500は、内部が中空で低沸点冷媒510が封入された沸騰部520と、沸騰部520内の中空流路と連通し、低沸点冷媒510の蒸気512で満たされる凝縮部530とを有する平板型の密閉容器として構成される。そして、電力用半導体素子540が沸騰部520の外壁面である受熱部520Aに取り付けられる。
このように構成された関連する沸騰冷却装置においては、電力用半導体素子540の発熱損失は受熱部520Aを経て沸騰部520内の沸騰伝熱面520Bまで熱伝導により伝わる。沸騰伝熱面520Bの発泡点より気泡核が発生して気泡514に成長し、沸騰伝熱面520Bより離脱することにより沸騰伝熱面520Bから低沸点冷媒510に発熱損失が伝わる。
離脱した気泡514は浮力により液面に上昇し、発熱損失は凝縮部530に運ばれる。凝縮部530に運ばれた発熱損失は冷却風により放熱される。一方、蒸気512は冷却され凝縮して液化し凝縮液516となり沸騰部520に戻るサイクルを繰り返す。以上のようにして、電力用半導体素子540は冷却される。
特開平10−173115号公報(段落「0003」〜「0006」)
In recent years, the amount of heat generated by semiconductor devices and electronic devices has been increased with higher performance and higher functionality. On the other hand, downsizing of semiconductor devices and electronic devices is progressing due to the spread of portable devices. From such a background, a highly efficient and small cooling device is demanded. A cooling device using a boiling cooling method that transports and dissipates heat by a cycle of vaporization and condensation of the refrigerant does not require a drive unit such as a pump. Therefore, since it is suitable for downsizing, it is expected as a cooling device for semiconductor devices and electronic devices.
An example of a cooling device using such a boiling cooling system (hereinafter also referred to as “boiling cooling device”) is described in Patent Document 1. FIG. 8 is a cross-sectional view showing a configuration of a related boiling cooling device 500 described in Patent Document 1. As shown in FIG. The related boiling cooling apparatus 500 includes a boiling section 520 that is hollow inside and filled with a low boiling point refrigerant 510, and a condensing section 530 that is in communication with the hollow flow path in the boiling section 520 and is filled with the vapor 512 of the low boiling point refrigerant 510. It is comprised as a flat type airtight container which has. Then, the power semiconductor element 540 is attached to the heat receiving part 520 </ b> A that is the outer wall surface of the boiling part 520.
In the related boiling cooling device configured as described above, the heat loss of the power semiconductor element 540 is transmitted through the heat receiving portion 520A to the boiling heat transfer surface 520B in the boiling portion 520 by heat conduction. Bubble nuclei are generated from the foaming point of the boiling heat transfer surface 520B, grow into bubbles 514, and dissociate from the boiling heat transfer surface 520B, whereby heat loss is transmitted from the boiling heat transfer surface 520B to the low boiling point refrigerant 510.
The detached bubbles 514 rise to the liquid level by buoyancy, and the heat loss is carried to the condensing unit 530. The heat loss carried to the condenser 530 is radiated by the cooling air. On the other hand, the steam 512 is cooled, condensed and liquefied, and the cycle returns to the condensate 516 and returns to the boiling part 520. As described above, the power semiconductor element 540 is cooled.
Japanese Patent Laid-Open No. 10-173115 (paragraphs “0003” to “0006”)

上述したように、関連する沸騰冷却装置では、電力用半導体素子540などの発熱体は、低沸点冷媒510が充填された沸騰部520の外壁面に配置する必要がある。一方、低沸点冷媒510の気泡514は浮力により移動するので、凝縮部530は沸騰部520の上部に配置される。そのため、凝縮部530は発熱体から離れた位置に配置されることになる。その結果、関連する沸騰冷却装置では、発熱体が配置される領域に比べ装置が大型化してしまう、という問題があった。
ここで図9A、図9Bに示した関連する別の沸騰冷却装置600のように、発熱体640が配置される領域と同じ領域に放熱部630を備えた凝縮部を配置する構成により、装置の小型化を図ることを検討する。この場合、発熱体640からの熱を冷媒610に伝達するために、関連する別の沸騰冷却装置600を構成する容器620のほぼ全領域に冷媒610を注入する必要がある。そのため、容器610内で気相の冷媒が占める空間が減少することにより容器620の内圧が増加し、冷媒610の沸点の上昇を招く。その結果、関連する別の沸騰冷却装置600では冷却性能が低下することになる。
このように、関連する沸騰冷却装置においては、装置の小型化を図ると、冷却性能が低下してしまう、という問題があった。
本発明の目的は、上述した課題である、沸騰冷却方式を用いた冷却装置においては、装置の小型化を図ると、冷却性能が低下してしまう、という課題を解決する平板型冷却装置及びその使用方法を提供することにある。
As described above, in the related boiling cooling device, the heating element such as the power semiconductor element 540 needs to be disposed on the outer wall surface of the boiling portion 520 filled with the low boiling point refrigerant 510. On the other hand, since the bubbles 514 of the low boiling point refrigerant 510 move due to buoyancy, the condensing unit 530 is disposed above the boiling unit 520. Therefore, the condensing part 530 is arrange | positioned in the position away from the heat generating body. As a result, the related boiling cooling apparatus has a problem that the apparatus becomes larger than the area where the heating element is arranged.
Here, as in another related boiling cooling device 600 shown in FIG. 9A and FIG. 9B, the condensing unit having the heat radiating unit 630 is arranged in the same region as the region where the heating element 640 is arranged, thereby Consider miniaturization. In this case, in order to transfer the heat from the heating element 640 to the refrigerant 610, it is necessary to inject the refrigerant 610 into almost the entire region of the container 620 constituting another related boiling cooling device 600. For this reason, the space occupied by the gas-phase refrigerant in the container 610 decreases, so that the internal pressure of the container 620 increases and the boiling point of the refrigerant 610 increases. As a result, the cooling performance of the related another boiling cooling device 600 is lowered.
As described above, the related boiling cooling device has a problem that the cooling performance is lowered when the device is downsized.
An object of the present invention is a flat plate cooling device that solves the problem that cooling performance decreases when the size of the device is reduced in the cooling device using the boiling cooling system, which is the above-described problem, and the same It is to provide a method of use.

本発明の平板型冷却装置は、第1の平板と、第1の平板に対向する第2の平板とを備えた平板状容器と、平板状容器に封入された冷媒と、第1の平板と第2の平板を接続し、平板状容器内の冷媒の流動を制御する導壁部、とを有し、平板状容器は、第1の平板および第2の平板の少なくとも一方に配置される複数の発熱体と熱的に接続する複数の受熱領域と、第1の平板および第2の平板の少なくとも一方に配置される放熱部と熱的に接続する放熱領域、とを備え、複数の受熱領域は、放熱領域に配置される放熱部受熱領域を少なくとも一つ含み、導壁部は一対の導壁からなり、導壁は放熱部受熱領域に隣接する第1の隣接受熱領域を挟んで配置される。   The flat plate cooling device of the present invention includes a flat plate container provided with a first flat plate and a second flat plate facing the first flat plate, a refrigerant sealed in the flat plate container, a first flat plate, A plurality of guide plates arranged on at least one of the first flat plate and the second flat plate. The guide wall portion connects the second flat plate and controls the flow of the refrigerant in the flat plate container. A plurality of heat receiving regions thermally connected to the heat generating body, and a heat radiating region thermally connected to a heat radiating portion disposed on at least one of the first flat plate and the second flat plate, and a plurality of heat receiving regions Includes at least one heat-dissipating part heat-receiving region arranged in the heat-dissipating region, the conducting wall part is composed of a pair of conducting walls, and the conducting wall is arranged across the first adjacent heat-receiving region adjacent to the heat-radiating part heat-receiving region The

本発明の平板型冷却装置によれば、冷却性能に優れた、小型の沸騰冷却方式の平板型冷却装置が得られる。   According to the flat plate cooling device of the present invention, a small boiling cooling type flat plate cooling device having excellent cooling performance can be obtained.

図1Aは本発明の第1の実施形態に係る平板型冷却装置の構成を示す側面断面図である。
図1Bは本発明の第1の実施形態に係る平板型冷却装置の構成を示す平面断面図である。
図2Aは本発明の第1の実施形態に係る平板型冷却装置の別の構成を示す平面断面図である。
図2Bは本発明の第1の実施形態に係る平板型冷却装置の別の構成を示す平面断面図である。
図3は本発明の第1の実施形態に係る平板型冷却装置のさらに別の構成を示す平面断面図である。
図4は本発明の第2の実施形態に係る平板型冷却装置の構成を示す側面断面図である。
図5Aは本発明の第2の実施形態に係る平板型冷却装置の構成を示す平面断面図である。
図5Bは本発明の第2の実施形態に係る平板型冷却装置の構成を示す平面断面図である。
図6は本発明の第2の実施形態に係る平板型冷却装置の別の構成を示す平面断面図である。
図7Aは本発明の第3の実施形態に係る平板型冷却装置の構成を示す側面断面図である。
図7Bは本発明の第3の実施形態に係る平板型冷却装置の構成を示す平面断面図である。
図8は関連する平板型冷却装置の構成を示す断面図である。
図9Aは関連する平板型冷却装置の別の構成を示す側面図である。
図9Bは関連する平板型冷却装置の別の構成を示す平面図である。
FIG. 1A is a side sectional view showing a configuration of a flat plate cooling device according to a first embodiment of the present invention.
FIG. 1B is a cross-sectional plan view showing the configuration of the flat plate cooling device according to the first embodiment of the present invention.
FIG. 2A is a plan sectional view showing another configuration of the flat plate cooling device according to the first embodiment of the present invention.
FIG. 2B is a plan sectional view showing another configuration of the flat plate cooling device according to the first embodiment of the present invention.
FIG. 3 is a plan sectional view showing still another configuration of the flat plate cooling device according to the first embodiment of the present invention.
FIG. 4 is a side cross-sectional view showing the configuration of a flat plate cooling device according to the second embodiment of the present invention.
FIG. 5A is a plan sectional view showing a configuration of a flat plate cooling device according to a second embodiment of the present invention.
FIG. 5B is a cross-sectional plan view showing a configuration of a flat plate cooling device according to the second embodiment of the present invention.
FIG. 6 is a plan sectional view showing another configuration of the flat plate cooling device according to the second embodiment of the present invention.
FIG. 7A is a side cross-sectional view showing a configuration of a flat plate cooling device according to a third embodiment of the present invention.
FIG. 7B is a plan sectional view showing a configuration of a flat plate cooling device according to the third embodiment of the present invention.
FIG. 8 is a cross-sectional view showing a configuration of a related flat plate cooling device.
FIG. 9A is a side view showing another configuration of the related flat plate cooling device.
FIG. 9B is a plan view showing another configuration of the related flat plate cooling device.

以下に、図面を参照しながら、本発明の実施形態について説明する。
〔第1の実施形態〕
図1A、1Bは、本発明の第1の実施形態に係る平板型冷却装置100の構成を示す図であり、図1Aは側面断面図、図1Bは平面断面図である。平板型冷却装置100は、第1の平板111と、第1の平板111に対向する第2の平板112とを備えた平板状容器110と、平板状容器110に封入された冷媒120を有する。そして第1の平板111と第2の平板112を接続し、平板状容器110内の冷媒120の流動を制御する導壁部130を備える。冷媒120に低沸点の材料を用い、平板状容器110に冷媒120を注入した後に真空排気することにより、平板状容器110の内部は常に冷媒120の飽和蒸気圧に維持することができる。図中、平板状容器110内のハッチング部分は液相状態の冷媒を示し、ハッチング部分の点線は液相状態の冷媒と気相状態の冷媒の界面(以下では、「冷媒の気液界面」と言う。)を示す。冷媒としては例えば、絶縁性を有し不活性な材料であるハイドロフロロカーボンやハイドロフロロエーテルなどを用いることができる。また、平板状容器110および導壁部130を構成する材料には、熱伝導特性に優れた金属、例えばアルミニウム、銅などを用いることができる。
平板型冷却装置100は、第1の平板および第2の平板の少なくとも一方に、複数の発熱体180と放熱フィンなどからなる放熱部190をそれぞれ配置し、熱的に接続して使用する。図1Aでは、第1の平板111に複数の発熱体180を、第2の平板112に放熱部190を備えた場合を示す。発熱体180からの熱量が平板状容器110を介して冷媒120に伝達され、冷媒120が気化する。このとき、発熱体180からの熱量は気化熱として冷媒に奪われるため、発熱体180の温度上昇が抑制される。気化した冷媒は平板状容器110の内部を放熱部190側に拡散し、放熱部190の放熱フィン等を用いて放熱する。このように、平板型冷却装置100は冷媒の気化と凝縮のサイクルによって熱の輸送・放熱を行う沸騰冷却方式を用いた構成とした。
平板状容器110は、図1Bに示すように、複数の発熱体180と熱的に接続する複数の受熱領域140と、放熱部190と熱的に接続する放熱領域150を備える。ここで、複数の受熱領域140は、放熱領域150に配置される放熱部受熱領域140Aを少なくとも一つ含む。また、導壁部130は一対の導壁131、132からなり、導壁131、132は放熱部受熱領域140Aに隣接する第1の隣接受熱領域140Bを少なくとも挟んで配置される。図1Bでは、第1の隣接受熱領域140Bを含む3個の受熱領域140を挟んで導壁部130を配置した構成を示す。また、冷媒120の気液界面が、複数の受熱領域140が鉛直方向(図中の上下方向)に配置した状態において、放熱部受熱領域140Aと第1の隣接受熱領域140Bとの間に位置する場合を示す。
次に、本実施形態による平板型冷却装置100の動作について説明する。平板型冷却装置100において冷媒120が流動する経路を図1B中の矢印で示す。受熱領域140に存在する液相状態の冷媒は発熱体180から熱量を奪って気化し、浮力によって平板状容器110の内部を放熱領域150に向けて上昇する。放熱領域150に達した気相の冷媒は冷却されて凝縮し、重力により鉛直下方へ還流する。
このとき、本実施形態による平板型冷却装置100によれば、導壁部130が放熱部受熱領域140Aに隣接する第1の隣接受熱領域140Bを挟んで配置されている。そのため、第1の隣接受熱領域140Bにおいて発生した冷媒の気液二相流が放熱部受熱領域140Aに効率よく到達することが可能となる。ここで気液二相流とは、気相と液相の二相が混在した状態で流れることを言う。このように、放熱部受熱領域140Aには液相状態の冷媒は充填されていないが、第1の隣接受熱領域140Bにおいて発生した冷媒の気液二相流によって発熱体180からの熱量が奪われるため、放熱部受熱領域140Aの発熱体180の冷却を行うことができる。
上述したように、沸騰冷却装置においては、容器内で気相の冷媒が占める空間が減少すると容器の内圧が増加し、冷媒の沸点が上昇するため、沸騰冷却装置の冷却性能が低下してしまう。これを回避するため、関連する沸騰冷却装置では装置の大型化を招いていた。しかしながら、本実施形態による平板型冷却装置100によれば、平板状容器110の容積を増大させることなく、気相状態の冷媒が占める空間を拡大することができる。すなわち、気相状態の冷媒が放熱する放熱領域150にも発熱体を配置して冷却することが可能である。そのため、冷却性能に優れた、小型の沸騰冷却方式の平板型冷却装置が得られる。このとき、沸騰冷却方式における相変化冷却では、熱の輸送は潜熱で行うため、冷媒自体の温度は変わらない。つまり、顕熱による冷媒の温度上昇は伴わないため、放熱部受熱領域140Aにおける発熱体の温度が、気液二相流によって上昇することはない。
ここで、導壁部130の放熱領域150側の構成は、気相状態の冷媒が液相状態の冷媒を巻き込んだ気液二相流が上昇しやすいように、ループ形状ではなく開放端とすることが望ましい。また、一対の導壁131、132の間隔は、発生した気液二相流を効率よく上昇させるため、第1の隣接受熱領域140Bの幅の1倍以上とすることが望ましい。なお、気液二相流の発生量は受熱領域140の個数に比例するので、一対の導壁131、132の間隔は導壁部130に配置する受熱領域140の個数に応じて拡大することができる。すなわち、一対の導壁の間隔131、132は、第1の隣接受熱領域140Bの幅の1倍以上であり、かつ冷媒の気液界面よりも下方に配置された受熱領域140の個数倍以下とすることができる。
受熱領域140および導壁部130の配置は図1Bに示す場合に限らず、図2Aに示すように、導壁部130以外の領域にも受熱領域140を配置した構成としてもよい。また図2Bに示すように、一の放熱領域150に複数の放熱部受熱領域140Aを配置し、各放熱部受熱領域140Aに対して導壁部130をそれぞれ配置することとしてもよい。
また、図3に示すように、冷媒120の気液界面(図中のハッチング部分の点線)が、第1の隣接受熱領域140Bと、これと隣接する第2の隣接受熱領域140Cとの間に位置する構成とすることができる。なお、ここでの気液界面の位置は、複数の受熱領域140が鉛直方向(図中の上下方向)に配置した状態における位置である。このとき、導壁部130は少なくとも第2の隣接受熱領域140Cを挟んで配置される。また、導壁部130を構成する一対の導壁131、132の間隔は、上述と同様の理由により、第2の隣接受熱領域140Cの幅の1倍以上であり、かつ冷媒の気液界面よりも下方に配置された受熱領域140の個数倍以下とすることが望ましい。
この場合も、液相冷媒中の第2の隣接受熱領域140Cにおいて発生した冷媒の気液二相流が、導壁部130によって第1の隣接受熱領域140Bおよび放熱部受熱領域140Aに到達することが可能となる。すなわち、液相状態の冷媒が充填されていない第1の隣接受熱領域140Bおよび放熱部受熱領域140Aにおいても、冷媒の気液二相流によって発熱体180からの熱量が奪われるため、発熱体180の冷却を行うことが可能である。このような構成によれば、冷媒120の気液界面がさらに下がり、気相状態の冷媒が占める体積が増大するので、内圧の増加による冷媒の沸点の上昇を抑制することができる。その結果、冷却性能がより優れた、小型の沸騰冷却方式の平板型冷却装置が得られる。
〔第2の実施形態〕
次に、本発明の第2の実施形態について説明する。図4は、本発明の第2の実施形態による平板型冷却装置200の構成を示す側面断面図、図5A、5Bは平面断面図である。平板型冷却装置200は、第1の平板211と、第1の平板211に対向する第2の平板212とを備えた平板状容器210と、平板状容器210に封入された冷媒220を有する。そして第1の平板211と第2の平板212を接続し、平板状容器210内の冷媒220の流動を制御する導壁部230を備える。
平板型冷却装置200は、第1の平板および第2の平板の少なくとも一方に、複数の発熱体280と放熱フィンなどからなる放熱部290をそれぞれ配置し、熱的に接続して使用する。ここで本実施形態の平板型冷却装置200は、例えば平板状容器210の上部および下部の二箇所に配置される放熱部290と熱的に接続される。すなわち、平板状容器210は、図4、5A、5Bに示すように、複数の発熱体280と熱的に接続する複数の受熱領域240と、二個の放熱部290と熱的に接続する放熱領域250を二箇所に備える。ここで、複数の受熱領域240は、二箇所の放熱領域250に配置される二個の放熱部受熱領域240Aと、放熱領域250の間に配置された受熱領域240とを含む。また、導壁部230は一対の導壁231、232からなり、導壁231、232は放熱部受熱領域240Aに隣接する第1の隣接受熱領域240Bを少なくとも挟んで配置される。
このように本実施形態による平板型冷却装置200は、二箇の放熱部290と熱的に接続した二個の放熱部受熱領域240Aを備えているので、図5Aおよび5Bに示すように、平板状容器210の上下を反転させた構成であっても使用することができる。すなわち、本実施形態によれば、平板型冷却装置200を使用する際の配置の自由度を増大させることができる。
さらに図5A、図5B、図6に示すように、導壁部230を構成する一対の導壁231、232が、放熱部受熱領域240Aと第1の隣接受熱領域240Bを結び平板状容器210の一辺に平行な直線に対して傾斜して配置した構成とすることができる。この傾斜した導壁231、232により、冷媒に対する流動抵抗に差が生じるので、平板状容器210内に冷媒が循環する流路を形成することができる。その結果、図6に示すように、平板型冷却装置200を図5A、5Bの使用状態に対して90度回転させた構成においても使用することが可能となる。このとき平板型冷却装置200は、冷媒220の気液界面が二個所の放熱領域250を結び平板状容器210の一辺に平行な直線に対して平行であり、複数の受熱領域240が気液界面よりも液相側に配置された構成となる。
上述したように、平板型冷却装置200は、図5A、5Bに示したように、放熱部受熱領域240Aと第1の隣接受熱領域240Bを結び平板状容器210の一辺に平行な直線が、鉛直方向と平行である配置状態(第1の配置状態)で使用することができる。さらに図6に示すように、傾斜した導壁構造を採用することにより、放熱部受熱領域240Aと第1の隣接受熱領域240Bを結び平板状容器210の一辺に平行な直線が、鉛直方向と垂直である配置状態(第2の配置状態)においても使用することができる。すなわち、本実施形態の平板型冷却装置200は、第1の配置状態と第2の配置状態との間で切り換えて使用することが可能である。これにより、平板型冷却装置200を使用する際の配置の自由度をさらに増大させることができる。
〔第3の実施形態〕
次に、本発明の第3の実施形態について説明する。図7A、7Bは、本発明の第3の実施形態に係る平板型冷却装置300の構成を示す図であり、図7Aは側面断面図、図7Bは平面断面図である。平板型冷却装置300は、第1の平板111と、第1の平板111に対向する第2の平板112とを備えた平板状容器110と、平板状容器110に封入された冷媒120を有する。そして第1の平板111と第2の平板112を接続し、平板状容器110内の冷媒120の流動を制御する導壁部130を備える。
平板状容器110は、複数の発熱体180と熱的に接続する複数の受熱領域140と、放熱部190と熱的に接続する放熱領域150を備える。ここで、複数の受熱領域140は、放熱領域150に配置される放熱部受熱領域140Aを少なくとも一つ含む。また、導壁部130は一対の導壁131、132からなり、導壁131、132は放熱部受熱領域140Aに隣接する第1の隣接受熱領域140Bを少なくとも挟んで配置される。ここまでの構成は第1の実施形態による平板型冷却装置100と同様であるので、詳細な説明は省略する。
本実施形態による平板型冷却装置300では、放熱領域150における第1の平板111と第2の平板112を接続し、発熱体180と放熱部190とを熱的に接続する伝熱部材350を備えた構成とした。伝熱部材350を構成する材料には、熱伝導特性に優れた金属、例えばアルミニウム、銅などを用いることができる。
この構成により、液相の冷媒が充填されていない放熱部受熱領域140Aに配置された発熱体である放熱部発熱体380だけが動作する場合であっても、放熱部発熱体380を冷却することが可能である。これは、液相の冷媒が充填された受熱領域の発熱体は動作していないため気液二相流は発生しないが、伝熱部材350によって放熱部発熱体380で発生した熱が放熱部190に伝達され、放出されるからである。なお、放熱部受熱領域140A以外の受熱領域180には伝熱部材350を配置しない構成とすることにより、流路抵抗の増大による冷却効率の低下を防止することができる。以上より、本実施形態によれば、発熱体の動作状態にかかわらず優れた冷却性能を示す、小型の沸騰冷却方式の平板型冷却装置が得られる。
本発明は上記実施形態に限定されることなく、特許請求の範囲に記載した発明の範囲内で、種々の変形が可能であり、それらも本発明の範囲内に含まれるものであることはいうまでもない。
この出願は、2011年5月20日に出願された日本出願特願2011−113684を基礎とする優先権を主張し、その開示の全てをここに取り込む。
Embodiments of the present invention will be described below with reference to the drawings.
[First Embodiment]
1A and 1B are views showing a configuration of a flat plate cooling device 100 according to a first embodiment of the present invention, in which FIG. 1A is a side sectional view and FIG. 1B is a plan sectional view. The flat plate cooling device 100 includes a flat plate container 110 including a first flat plate 111 and a second flat plate 112 facing the first flat plate 111, and a refrigerant 120 sealed in the flat plate container 110. And the 1st flat plate 111 and the 2nd flat plate 112 are connected, and the guide wall part 130 which controls the flow of the refrigerant | coolant 120 in the flat container 110 is provided. By using a material having a low boiling point for the refrigerant 120 and injecting the refrigerant 120 into the flat container 110 and then evacuating it, the inside of the flat container 110 can always be maintained at the saturated vapor pressure of the refrigerant 120. In the figure, the hatched portion in the flat container 110 indicates a refrigerant in a liquid phase state, and a dotted line in the hatched portion indicates an interface between the liquid phase state refrigerant and a gas phase state refrigerant (hereinafter referred to as “refrigerant gas-liquid interface”). Say.) As the refrigerant, for example, hydrofluorocarbon or hydrofluoroether, which is an insulating and inert material, can be used. Moreover, the material which comprises the flat container 110 and the conducting-wall part 130 can use the metal excellent in the heat conductivity, for example, aluminum, copper, etc.
The flat plate cooling apparatus 100 is used by disposing a plurality of heat generating elements 180 and heat dissipating portions 190 including heat dissipating fins on at least one of the first flat plate and the second flat plate, and thermally connecting them. FIG. 1A shows a case where a plurality of heating elements 180 are provided on the first flat plate 111 and a heat radiating portion 190 is provided on the second flat plate 112. The amount of heat from the heating element 180 is transmitted to the refrigerant 120 through the flat container 110, and the refrigerant 120 is vaporized. At this time, since the amount of heat from the heating element 180 is lost to the refrigerant as heat of vaporization, the temperature rise of the heating element 180 is suppressed. The vaporized refrigerant diffuses inside the flat container 110 toward the heat radiating portion 190 and radiates heat using the heat radiating fins of the heat radiating portion 190. As described above, the flat plate cooling device 100 is configured to use a boiling cooling system in which heat is transported and radiated by a refrigerant vaporization and condensation cycle.
As shown in FIG. 1B, the flat container 110 includes a plurality of heat receiving regions 140 that are thermally connected to the plurality of heating elements 180, and a heat radiating region 150 that is thermally connected to the heat radiating unit 190. Here, the plurality of heat receiving areas 140 include at least one heat radiating portion heat receiving area 140 </ b> A disposed in the heat radiating area 150. Further, the guiding wall portion 130 is composed of a pair of guiding walls 131 and 132, and the guiding walls 131 and 132 are arranged with at least the first adjacent heat receiving region 140B adjacent to the heat radiating portion heat receiving region 140A interposed therebetween. In FIG. 1B, the structure which has arrange | positioned the guide wall part 130 on both sides of the three heat receiving area | regions 140 including the 1st adjacent heat receiving area | region 140B is shown. Further, the gas-liquid interface of the refrigerant 120 is located between the heat radiating portion heat receiving area 140A and the first adjacent heat receiving area 140B in a state where the plurality of heat receiving areas 140 are arranged in the vertical direction (vertical direction in the drawing). Show the case.
Next, the operation of the flat plate cooling device 100 according to the present embodiment will be described. A path through which the refrigerant 120 flows in the flat plate cooling device 100 is indicated by an arrow in FIG. 1B. The liquid-phase state refrigerant present in the heat receiving area 140 takes the amount of heat from the heating element 180 and vaporizes, and rises inside the flat container 110 toward the heat radiating area 150 by buoyancy. The gas-phase refrigerant that has reached the heat radiation area 150 is cooled and condensed, and is refluxed downward by gravity.
At this time, according to the flat plate cooling device 100 according to the present embodiment, the conducting wall portion 130 is arranged with the first adjacent heat receiving region 140B adjacent to the heat radiating portion heat receiving region 140A interposed therebetween. Therefore, the gas-liquid two-phase flow of the refrigerant generated in the first adjacent heat receiving area 140B can efficiently reach the heat radiating section heat receiving area 140A. Here, the gas-liquid two-phase flow means that the gas phase and the liquid phase flow in a mixed state. Thus, although the heat radiation part heat receiving area 140A is not filled with the liquid phase refrigerant, the heat quantity from the heating element 180 is deprived by the gas-liquid two-phase flow of the refrigerant generated in the first adjacent heat receiving area 140B. Therefore, the heating element 180 in the heat radiating portion heat receiving area 140A can be cooled.
As described above, in the boiling cooling device, when the space occupied by the gas-phase refrigerant in the container decreases, the internal pressure of the container increases and the boiling point of the refrigerant rises, so that the cooling performance of the boiling cooling device decreases. . In order to avoid this, the related boiling cooling apparatus has led to an increase in the size of the apparatus. However, according to the flat plate cooling device 100 according to the present embodiment, the space occupied by the refrigerant in the gas phase can be expanded without increasing the volume of the flat container 110. That is, it is possible to cool by disposing a heating element also in the heat radiation region 150 where the refrigerant in the gas phase radiates heat. Therefore, a small boiling cooling type flat plate cooling device having excellent cooling performance can be obtained. At this time, in the phase change cooling in the boiling cooling method, since the heat is transferred by latent heat, the temperature of the refrigerant itself does not change. That is, since the refrigerant temperature does not increase due to sensible heat, the temperature of the heating element in the heat radiating portion heat receiving region 140A does not increase due to the gas-liquid two-phase flow.
Here, the structure on the heat radiation region 150 side of the guide wall portion 130 is not a loop shape but an open end so that the gas-liquid two-phase flow in which the gas-phase refrigerant entrains the liquid-phase refrigerant is likely to rise. It is desirable. In addition, the distance between the pair of guide walls 131 and 132 is preferably set to be equal to or larger than the width of the first adjacent heat receiving region 140B in order to efficiently increase the generated gas-liquid two-phase flow. Since the amount of gas-liquid two-phase flow generated is proportional to the number of heat receiving regions 140, the distance between the pair of heat conducting walls 131 and 132 can be increased according to the number of heat receiving regions 140 arranged on the conducting wall portion 130. it can. That is, the distance 131, 132 between the pair of conductive walls is not less than one time the width of the first adjacent heat receiving region 140B and not more than the number of heat receiving regions 140 disposed below the gas-liquid interface of the refrigerant. can do.
The arrangement of the heat receiving region 140 and the conducting wall portion 130 is not limited to the case shown in FIG. 1B, and the heat receiving region 140 may be arranged in a region other than the conducting wall portion 130 as shown in FIG. 2A. Further, as shown in FIG. 2B, a plurality of heat radiating part heat receiving areas 140A may be arranged in one heat radiating area 150, and the conducting wall part 130 may be arranged for each heat radiating part heat receiving area 140A.
Also, as shown in FIG. 3, the gas-liquid interface of the refrigerant 120 (the dotted line in the hatched portion in the figure) is between the first adjacent heat receiving area 140B and the second adjacent heat receiving area 140C adjacent thereto. It can be set as the structure located. In addition, the position of the gas-liquid interface here is a position in a state where the plurality of heat receiving regions 140 are arranged in the vertical direction (vertical direction in the drawing). At this time, the guide wall 130 is disposed with at least the second adjacent heat receiving region 140C interposed therebetween. Further, for the same reason as described above, the distance between the pair of guide walls 131 and 132 constituting the guide wall portion 130 is one or more times the width of the second adjacent heat receiving region 140C, and from the gas-liquid interface of the refrigerant. Also, it is desirable that the number of heat receiving regions 140 disposed below is less than the number of heat receiving regions 140.
Also in this case, the gas-liquid two-phase flow of the refrigerant generated in the second adjacent heat receiving region 140C in the liquid phase refrigerant reaches the first adjacent heat receiving region 140B and the heat radiating unit heat receiving region 140A by the guide wall 130. Is possible. That is, also in the first adjacent heat receiving region 140B and the heat radiating portion heat receiving region 140A that are not filled with the liquid phase refrigerant, the heat generator 180 takes heat away from the heat generator 180 due to the gas-liquid two-phase flow of the refrigerant. It is possible to perform cooling. According to such a configuration, the gas-liquid interface of the refrigerant 120 is further lowered, and the volume occupied by the refrigerant in the gas phase is increased, so that an increase in the boiling point of the refrigerant due to an increase in internal pressure can be suppressed. As a result, a small-sized boiling cooling type flat plate cooling device with better cooling performance can be obtained.
[Second Embodiment]
Next, a second embodiment of the present invention will be described. FIG. 4 is a side sectional view showing a configuration of a flat plate cooling device 200 according to the second embodiment of the present invention, and FIGS. 5A and 5B are plan sectional views. The flat plate cooling device 200 includes a flat plate container 210 having a first flat plate 211 and a second flat plate 212 facing the first flat plate 211, and a refrigerant 220 enclosed in the flat plate container 210. And the 1st flat plate 211 and the 2nd flat plate 212 are connected, and the guide wall part 230 which controls the flow of the refrigerant | coolant 220 in the flat container 210 is provided.
The flat plate cooling device 200 uses a plurality of heat generating elements 280 and heat dissipating portions 290 made of heat dissipating fins on at least one of the first flat plate and the second flat plate, and is used by thermally connecting them. Here, the flat plate cooling device 200 according to the present embodiment is thermally connected to, for example, the heat dissipating units 290 disposed in two places, an upper portion and a lower portion of the flat plate container 210. That is, as shown in FIGS. 4, 5 </ b> A, and 5 </ b> B, the flat container 210 has a plurality of heat receiving regions 240 that are thermally connected to the plurality of heating elements 280 and a heat dissipation that is thermally connected to the two heat radiating units 290. The region 250 is provided in two places. Here, the plurality of heat receiving areas 240 include two heat radiating portion heat receiving areas 240 </ b> A arranged in the two heat radiating areas 250 and the heat receiving areas 240 arranged between the heat radiating areas 250. In addition, the guide wall portion 230 includes a pair of guide walls 231 and 232, and the guide walls 231 and 232 are disposed with at least the first adjacent heat receiving region 240B adjacent to the heat radiating portion heat receiving region 240A interposed therebetween.
As described above, the flat plate cooling apparatus 200 according to the present embodiment includes the two heat radiating portion heat receiving regions 240A thermally connected to the two heat radiating portions 290, and therefore, as shown in FIGS. Even if it is the structure which turned the container 210 upside down, it can be used. That is, according to this embodiment, the freedom degree of arrangement | positioning at the time of using the flat type cooling device 200 can be increased.
Further, as shown in FIGS. 5A, 5B, and 6, the pair of guide walls 231 and 232 constituting the guide wall portion 230 connects the heat radiating portion heat receiving area 240A and the first adjacent heat receiving area 240B to the plate-like container 210. It can be set as the structure which inclined and arrange | positioned with respect to the straight line parallel to one side. Since the inclined guiding walls 231 and 232 cause a difference in flow resistance to the refrigerant, a flow path through which the refrigerant circulates in the flat container 210 can be formed. As a result, as shown in FIG. 6, the flat plate cooling device 200 can be used even in a configuration in which the flat plate cooling device 200 is rotated 90 degrees with respect to the use state of FIGS. 5A and 5B. At this time, in the flat plate cooling apparatus 200, the gas-liquid interface of the refrigerant 220 is parallel to a straight line connecting two heat radiation areas 250 and parallel to one side of the flat container 210, and the plurality of heat receiving areas 240 are gas-liquid interfaces. It becomes the structure arrange | positioned rather than the liquid phase side.
As described above, as shown in FIGS. 5A and 5B, the flat plate cooling device 200 has a straight line connecting the heat radiating portion heat receiving area 240A and the first adjacent heat receiving area 240B and parallel to one side of the flat container 210. It can be used in an arrangement state (first arrangement state) parallel to the direction. Further, as shown in FIG. 6, by adopting an inclined guide wall structure, a straight line connecting the heat radiating portion heat receiving area 240A and the first adjacent heat receiving area 240B and parallel to one side of the plate-like container 210 is perpendicular to the vertical direction. It can also be used in the arrangement state (second arrangement state). That is, the flat plate cooling device 200 of the present embodiment can be used by switching between the first arrangement state and the second arrangement state. Thereby, the freedom degree of arrangement | positioning at the time of using the flat type cooling device 200 can further be increased.
[Third Embodiment]
Next, a third embodiment of the present invention will be described. 7A and 7B are views showing a configuration of a flat plate cooling device 300 according to the third embodiment of the present invention, in which FIG. 7A is a side sectional view and FIG. 7B is a plan sectional view. The flat plate cooling apparatus 300 includes a flat plate container 110 including a first flat plate 111 and a second flat plate 112 facing the first flat plate 111, and a refrigerant 120 sealed in the flat plate container 110. And the 1st flat plate 111 and the 2nd flat plate 112 are connected, and the guide wall part 130 which controls the flow of the refrigerant | coolant 120 in the flat container 110 is provided.
The flat container 110 includes a plurality of heat receiving regions 140 that are thermally connected to the plurality of heating elements 180, and a heat radiating region 150 that is thermally connected to the heat radiating unit 190. Here, the plurality of heat receiving areas 140 include at least one heat radiating portion heat receiving area 140 </ b> A disposed in the heat radiating area 150. Further, the guiding wall portion 130 is composed of a pair of guiding walls 131 and 132, and the guiding walls 131 and 132 are arranged with at least the first adjacent heat receiving region 140B adjacent to the heat radiating portion heat receiving region 140A interposed therebetween. Since the configuration up to here is the same as that of the flat plate cooling device 100 according to the first embodiment, detailed description thereof is omitted.
The flat plate cooling apparatus 300 according to the present embodiment includes a heat transfer member 350 that connects the first flat plate 111 and the second flat plate 112 in the heat dissipation region 150 and thermally connects the heat generator 180 and the heat dissipating unit 190. The configuration was as follows. As a material constituting the heat transfer member 350, a metal having excellent thermal conductivity, such as aluminum or copper, can be used.
With this configuration, even when only the heat dissipating part heating element 380 that is the heating element disposed in the heat dissipating part heat receiving area 140A not filled with the liquid-phase refrigerant operates, the heat dissipating part heating element 380 is cooled. Is possible. This is because the heat-receiving region heating element filled with the liquid-phase refrigerant does not operate, and thus a gas-liquid two-phase flow does not occur, but the heat generated by the heat-dissipating part heating element 380 by the heat-transfer member 350 It is because it is transmitted to and released. Note that, by adopting a configuration in which the heat transfer member 350 is not disposed in the heat receiving region 180 other than the heat radiating portion heat receiving region 140A, it is possible to prevent a decrease in cooling efficiency due to an increase in flow path resistance. As described above, according to the present embodiment, a small boiling cooling type flat plate cooling device that exhibits excellent cooling performance regardless of the operating state of the heating element can be obtained.
The present invention is not limited to the above-described embodiment, and various modifications are possible within the scope of the invention described in the claims, and it is also included within the scope of the present invention. Not too long.
This application claims the priority on the basis of Japanese application Japanese Patent Application No. 2011-113684 for which it applied on May 20, 2011, and takes in those the indications of all here.

100、200 平板型冷却装置
110、210 平板状容器
111、211 第1の平板
112、212 第2の平板
120、220 冷媒
130、230 導壁部
131、132、231、232 導壁
140、240 受熱領域
140A、240A 放熱部受熱領域
140B、240B 第1の隣接受熱領域
140C 第2の隣接受熱領域
150、250 放熱領域
180、280 発熱体
190、290 放熱部
350 伝熱部材
380 放熱部発熱体
500 関連する沸騰冷却装置
510 低沸点冷媒
512 蒸気
514 気泡
516 凝縮液
520 沸騰部
520A 受熱部
520B 沸騰伝熱面
530 凝縮部
540 電力用半導体素子
600 関連する別の沸騰冷却装置
610 冷媒
620 容器
630 放熱部
640 発熱体
100, 200 Flat plate cooling device 110, 210 Flat container 111, 211 First flat plate 112, 212 Second flat plate 120, 220 Refrigerant 130, 230 Conducting wall 131, 132, 231, 232 Conducting wall 140, 240 Heat receiving Area 140A, 240A Heat radiation part heat receiving area 140B, 240B First adjacent heat receiving area 140C Second adjacent heat receiving area 150, 250 Heat radiation area 180, 280 Heating element 190, 290 Heat radiation part 350 Heat transfer member 380 Boiling cooling device 510 Low boiling point refrigerant 512 Steam 514 Bubble 516 Condensate 520 Boiling part 520A Heat receiving part 520B Boiling heat transfer surface 530 Condensing part 540 Electric power semiconductor element 600 Another boiling cooling apparatus 610 Refrigerant 620 Container 630 Heat radiation part 640 Heating element

Claims (10)

第1の平板と、前記第1の平板に対向する第2の平板とを備えた平板状容器と、
前記平板状容器に封入された冷媒と、
前記第1の平板と前記第2の平板を接続し、前記平板状容器内の前記冷媒の流動を制御する導壁部、とを有し、
前記平板状容器は、前記第1の平板および前記第2の平板の少なくとも一方に配置される複数の発熱体と熱的に接続する複数の受熱領域と、前記第1の平板および前記第2の平板の少なくとも一方に配置される放熱部と熱的に接続する放熱領域、とを備え、
前記複数の受熱領域は、前記放熱領域に配置される放熱部受熱領域を少なくとも一つ含み、
前記導壁部は一対の導壁からなり、前記導壁は前記放熱部受熱領域に隣接する第1の隣接受熱領域を挟んで配置される
平板型冷却装置。
A flat container comprising a first flat plate and a second flat plate facing the first flat plate;
A refrigerant sealed in the flat container;
A guide wall for connecting the first flat plate and the second flat plate and controlling the flow of the refrigerant in the flat container,
The flat container includes a plurality of heat receiving regions thermally connected to a plurality of heating elements disposed on at least one of the first flat plate and the second flat plate, the first flat plate, and the second flat plate A heat dissipating region thermally connected to a heat dissipating part disposed on at least one of the flat plates,
The plurality of heat receiving regions include at least one heat radiating portion heat receiving region disposed in the heat radiating region,
The said conducting wall part consists of a pair of conducting walls, and the said conducting wall is arrange | positioned on both sides of the 1st adjacent heat receiving area | region adjacent to the said heat radiating part heat receiving area | region.
請求項1に記載した平板型冷却装置において、
前記冷媒の気液界面は、前記複数の受熱領域が鉛直方向に配置した状態において、前記放熱部受熱領域と前記第1の隣接受熱領域との間に位置する平板型冷却装置。
In the flat plate cooling device according to claim 1,
A gas-liquid interface of the refrigerant is a flat plate type cooling device positioned between the heat radiating portion heat receiving area and the first adjacent heat receiving area in a state where the plurality of heat receiving areas are arranged in a vertical direction.
請求項1に記載した平板型冷却装置において、
前記複数の受熱領域は、前記第1の隣接受熱領域と隣接する第2の隣接受熱領域を含み、
前記冷媒の気液界面は、前記複数の受熱領域が鉛直方向に配置した状態において、前記第1の隣接受熱領域と第2の隣接受熱領域との間に位置し、
前記導壁は前記第2の隣接受熱領域を挟んで配置される平板型冷却装置。
In the flat plate cooling device according to claim 1,
The plurality of heat receiving regions include a second adjacent heat receiving region adjacent to the first adjacent heat receiving region,
The gas-liquid interface of the refrigerant is located between the first adjacent heat receiving region and the second adjacent heat receiving region in a state where the plurality of heat receiving regions are arranged in the vertical direction.
The plate-type cooling device, wherein the guide wall is disposed across the second adjacent heat receiving region.
請求項2に記載した平板型冷却装置において、
前記一対の導壁の間隔は、前記第1の隣接受熱領域の幅の1倍以上、かつ前記冷媒の気液界面よりも下方に配置された前記受熱領域の個数倍以下である平板型冷却装置。
In the flat plate cooling device according to claim 2,
The distance between the pair of guide walls is not less than one time the width of the first adjacent heat receiving region and not more than the number of the heat receiving regions arranged below the gas-liquid interface of the refrigerant. .
請求項3に記載した平板型冷却装置において、
前記一対の導壁の間隔は、前記第2の隣接受熱領域の幅の1倍以上、かつ前記冷媒の気液界面よりも下方に配置された前記受熱領域の個数倍以下である平板型冷却装置。
In the flat plate cooling device according to claim 3,
The distance between the pair of guide walls is not less than one time the width of the second adjacent heat receiving area and not more than the number of the heat receiving areas arranged below the gas-liquid interface of the refrigerant. .
請求項1から5のいずれか一項に記載した平板型冷却装置において、
前記放熱領域を二箇所に備え、
前記複数の受熱領域は、二個の前記放熱部受熱領域と、前記放熱領域の間に配置された前記受熱領域とを含む平板型冷却装置。
In the flat plate cooling device according to any one of claims 1 to 5,
The heat dissipation area is provided in two places,
The plurality of heat receiving regions include a flat plate type cooling device including two heat radiating portion heat receiving regions and the heat receiving region disposed between the heat radiating regions.
請求項6に記載した平板型冷却装置において、
前記冷媒の気液界面は、前記放熱領域を結び前記平板状容器の一辺に平行な直線に対して平行であり、
前記複数の受熱領域は、前記気液界面よりも液相側に配置されている平板型冷却装置。
The flat plate cooling device according to claim 6,
The gas-liquid interface of the refrigerant is parallel to a straight line connecting the heat dissipation region and parallel to one side of the flat container,
The plurality of heat receiving regions are flat plate cooling devices arranged on the liquid phase side with respect to the gas-liquid interface.
請求項1から7のいずれか一項に記載した平板型冷却装置において、
前記放熱部受熱領域における前記第1の平板と前記第2の平板を接続し、前記発熱体と前記放熱部とを熱的に接続する伝熱部材を備える平板型冷却装置。
In the flat plate type cooling device according to any one of claims 1 to 7,
A flat plate cooling device comprising a heat transfer member that connects the first flat plate and the second flat plate in the heat radiating portion heat receiving region and thermally connects the heat generating element and the heat radiating portion.
請求項1から8のいずれか一項に記載した平板型冷却装置において、
前記導壁は、前記放熱部受熱領域と前記第1の隣接受熱領域を結び前記平板状容器の一辺に平行な直線に対して傾斜して配置している平板型冷却装置。
In the flat plate cooling device according to any one of claims 1 to 8,
The plate-type cooling device, wherein the guide wall is arranged to be inclined with respect to a straight line that connects the heat-radiating part heat-receiving region and the first adjacent heat-receiving region and is parallel to one side of the flat-plate container.
請求項9に記載した平板型冷却装置を、
前記放熱部受熱領域と前記第1の隣接受熱領域を結び前記平板状容器の一辺に平行な直線が、鉛直方向と平行である第1の配置状態と、
前記放熱部受熱領域と前記第1の隣接受熱領域を結び前記平板状容器の一辺に平行な直線が、鉛直方向と垂直である第2の配置状態、との間で切り換えて使用する
平板型冷却装置の使用方法。
A flat plate cooling device according to claim 9,
A first arrangement state in which a straight line connecting the heat radiation portion heat receiving area and the first adjacent heat receiving area and parallel to one side of the flat container is parallel to the vertical direction;
Flat type cooling used by switching between the second arrangement state in which the straight line connecting the heat radiating part heat receiving area and the first adjacent heat receiving area and parallel to one side of the flat container is perpendicular to the vertical direction How to use the device.
JP2013516292A 2011-05-20 2012-05-07 Flat plate cooling device and method of using the same Active JP5874935B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013516292A JP5874935B2 (en) 2011-05-20 2012-05-07 Flat plate cooling device and method of using the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011113684 2011-05-20
JP2011113684 2011-05-20
PCT/JP2012/062241 WO2012161002A1 (en) 2011-05-20 2012-05-07 Flat plate cooling device, and method for using same
JP2013516292A JP5874935B2 (en) 2011-05-20 2012-05-07 Flat plate cooling device and method of using the same

Publications (2)

Publication Number Publication Date
JPWO2012161002A1 true JPWO2012161002A1 (en) 2014-07-31
JP5874935B2 JP5874935B2 (en) 2016-03-02

Family

ID=47217082

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013516292A Active JP5874935B2 (en) 2011-05-20 2012-05-07 Flat plate cooling device and method of using the same

Country Status (2)

Country Link
JP (1) JP5874935B2 (en)
WO (1) WO2012161002A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6024665B2 (en) * 2011-10-04 2016-11-16 日本電気株式会社 Flat plate cooling device and method of using the same
US10746474B2 (en) 2016-04-11 2020-08-18 Qualcomm Incorporated Multi-phase heat dissipating device comprising piezo structures
US10353445B2 (en) 2016-04-11 2019-07-16 Qualcomm Incorporated Multi-phase heat dissipating device for an electronic device
US9999157B2 (en) 2016-08-12 2018-06-12 Qualcomm Incorporated Multi-phase heat dissipating device embedded in an electronic device
US11181323B2 (en) 2019-02-21 2021-11-23 Qualcomm Incorporated Heat-dissipating device with interfacial enhancements

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6327052U (en) * 1986-08-02 1988-02-22
JPH10173115A (en) * 1996-12-06 1998-06-26 Toshiba Corp Ebullient cooling device and its manufacture
JP2000074536A (en) * 1998-08-31 2000-03-14 Denso Corp Evaporative cooler
JP2010010204A (en) * 2008-06-24 2010-01-14 Toyota Industries Corp Ebullient cooling device
JP2010007893A (en) * 2008-06-24 2010-01-14 Toyota Industries Corp Evaporative cooling device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6327052U (en) * 1986-08-02 1988-02-22
JPH10173115A (en) * 1996-12-06 1998-06-26 Toshiba Corp Ebullient cooling device and its manufacture
JP2000074536A (en) * 1998-08-31 2000-03-14 Denso Corp Evaporative cooler
JP2010010204A (en) * 2008-06-24 2010-01-14 Toyota Industries Corp Ebullient cooling device
JP2010007893A (en) * 2008-06-24 2010-01-14 Toyota Industries Corp Evaporative cooling device

Also Published As

Publication number Publication date
JP5874935B2 (en) 2016-03-02
WO2012161002A1 (en) 2012-11-29

Similar Documents

Publication Publication Date Title
US7369410B2 (en) Apparatuses for dissipating heat from semiconductor devices
US7188484B2 (en) Heat dissipating structure for mobile device
JP4978401B2 (en) Cooling system
US20130056178A1 (en) Ebullient cooling device
US8773855B2 (en) Heat-dissipating device and electric apparatus having the same
US20100269517A1 (en) Module for cooling semiconductor device
JP4551261B2 (en) Cooling jacket
JPWO2013102973A1 (en) COOLING DEVICE AND ELECTRONIC DEVICE USING THE SAME
US10962297B2 (en) Multidimensional heat transfer system for cooling electronic components
JP2005229047A (en) Cooling system for electronic equipment, and the electronic equipment using same
JP5874935B2 (en) Flat plate cooling device and method of using the same
JP2009088125A (en) Cooling unit, and electronic equipment equipped with the same
JP6308207B2 (en) Electronic device and cooling device
JP5262473B2 (en) Electronic equipment and its components
WO2015146110A1 (en) Phase-change cooler and phase-change cooling method
JP2007010211A (en) Cooling device of electronics device
JP2007263427A (en) Loop type heat pipe
JP2013007501A (en) Cooling device
JP2007115917A (en) Thermal dissipation plate
EP3518072B1 (en) Heat transferring module
JP2008278576A (en) Cooling device of power semiconductor element
JP2006202798A (en) Heat sink
US20070295488A1 (en) Thermosyphon for operation in multiple orientations relative to gravity
Mohammed et al. Performance improvements of air-cooled thermal tool with advanced technologies
WO2013089162A1 (en) Cooling structure for thin-profile electronics, and electronic device employing same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150417

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151224

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160106

R150 Certificate of patent or registration of utility model

Ref document number: 5874935

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150