JP2007115917A - Thermal dissipation plate - Google Patents

Thermal dissipation plate Download PDF

Info

Publication number
JP2007115917A
JP2007115917A JP2005306177A JP2005306177A JP2007115917A JP 2007115917 A JP2007115917 A JP 2007115917A JP 2005306177 A JP2005306177 A JP 2005306177A JP 2005306177 A JP2005306177 A JP 2005306177A JP 2007115917 A JP2007115917 A JP 2007115917A
Authority
JP
Japan
Prior art keywords
heat
pore
working fluid
substrate
sectional area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005306177A
Other languages
Japanese (ja)
Inventor
Akio Adachi
昭夫 安達
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Holdings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Holdings Ltd filed Critical Fuji Electric Holdings Ltd
Priority to JP2005306177A priority Critical patent/JP2007115917A/en
Publication of JP2007115917A publication Critical patent/JP2007115917A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0233Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes the conduits having a particular shape, e.g. non-circular cross-section, annular
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0266Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with separate evaporating and condensing chambers connected by at least one conduit; Loop-type heat pipes; with multiple or common evaporating or condensing chambers

Abstract

<P>PROBLEM TO BE SOLVED: To provide a thermal dissipation plate capable of radiating heat efficiently with a low temperature difference by unifying the thermal distribution of an entire flat plate, by absorbing variations when the distribution of the heating value of an electrical heating element, such as a plurality of semiconductor devices provided on the flat plate, varies. <P>SOLUTION: In the thermal dissipation plate, a plurality of linear pores are dispersed in a flat substrate made of a high heat transfer material and are arranged in parallel to form pore rows, respective pores in the pore rows are connected by a header channel at both the upper and lower ends, and a working fluid for transporting heat by a phase change is sealed in the pore rows. In the thermal dissipation plate, the sectional area of each pore in the pore rows is set to a size for preventing a vibration flow from occurring in the sealed working fluid, the sectional area of the header channel is set to a sectional area that is larger than that of each pore in the pore rows, and nearly the half of the entire volume of a sealed space formed in the substrate is filled with the working fluid. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明は、半導体装置等の発熱密度の高い発熱体の冷却に適した熱分散プレートに関する。   The present invention relates to a heat dispersion plate suitable for cooling a heating element having a high heat generation density such as a semiconductor device.

半導体装置は高集積化、高出力化に伴って損失が増加し、発熱量が増大するので、これを効果的に冷却することが必要となる。   As semiconductor devices have higher integration and higher output, losses increase and the amount of heat generated increases, so it is necessary to cool them effectively.

半導体装置の発生損失が数Wレベルまでは半導体装置の表面からの自然放熱でもよいが、数十Wレベルでは、これまで図7に示すようにアルミニウム等の高熱伝導性材料で構成された基板51に放熱フィン52を多数取り付けて構成した放熱器50を用いるようにしていた。この放熱器50を半導体装置などの発熱体1に結合し、発熱体1の熱をこの放熱器50へ伝達し放熱フィン52から大気中への放熱することにより発熱体の熱の放熱が促進される。また、半導体装置などの発熱体の損失が数十W以上のレベルとなった場合は、この放熱器50に電動ファン60により送風することにより放熱(冷却)効果をさらに向上させるようにするのが一般的である。   Natural heat dissipation from the surface of the semiconductor device may be performed until the generated loss of the semiconductor device is several W level. However, when the loss is several tens W level, the substrate 51 made of a high thermal conductivity material such as aluminum as shown in FIG. A heat radiator 50 constituted by attaching a large number of heat radiation fins 52 is used. The radiator 50 is coupled to the heating element 1 such as a semiconductor device, and the heat of the heating element 1 is transmitted to the radiator 50 and radiated from the radiation fins 52 to the atmosphere. The When the loss of a heating element such as a semiconductor device reaches a level of several tens of watts or more, the heat dissipation (cooling) effect can be further improved by blowing air to the radiator 50 by the electric fan 60. It is common.

半導体装置の出力がさらに増大し、または実装密度が高密度化することにより、放熱器にさらに高い単位面積あたりの放熱量が要求されるが、この場合は、一般に、図8に示すように、放熱器50に設ける櫛歯状の放熱フィン52aの間隔を可能な限り小さくしたり、図9に示すように、放熱フィン52bを格子状にしたりするにより、放熱フィン52の放熱面積を増大させて放熱(冷却)効果を高め、半導体装置の温度上昇を抑制するようにしている。   As the output of the semiconductor device is further increased or the mounting density is increased, a higher heat dissipation amount per unit area is required for the heatsink. In this case, generally, as shown in FIG. By increasing the distance between the comb-shaped radiation fins 52a provided in the radiator 50 as much as possible, or by forming the radiation fins 52b in a lattice shape as shown in FIG. 9, the radiation area of the radiation fins 52 is increased. The heat dissipation (cooling) effect is enhanced and the temperature rise of the semiconductor device is suppressed.

このような放熱器の放熱(冷却)性能は次の(1)式の関係にある。   The heat dissipation (cooling) performance of such a radiator is in the relationship of the following equation (1).

放熱器の温度上昇ΔT[K]=熱抵抗R[K/W]×発熱量Q[W] ・・・(1)
ここで、熱抵抗R[K/W]は、次の(2)式で示すことができる。
Temperature rise ΔT [K] = Thermal resistance R [K / W] x Calorific value Q [W] (1)
Here, the thermal resistance R [K / W] can be expressed by the following equation (2).

熱抵抗R[K/W]=1/(放熱面積A[m2]×熱伝達率h[W/m2K]×フィン効率η)
・・・(2)
半導体装置等の発熱体1の発熱量Qが大きい場合、放熱器の温度上昇を抑制するには、放熱面積Aを大きくして、熱抵抗Rを小さくすることが必要であるため、図7に示す放熱器50の幅または長さを大きくすればよいのであるが、放熱器の基板51の熱抵抗により発熱体1の取付け部近傍と基板の端部との温度差は、放熱器の幅および長さを増加させるにしたがって大きくなるので、必ずしも、放熱器50の表面積拡大に比例して放熱器の温度上昇が低減されるものではない。
Thermal resistance R [K / W] = 1 / (Heat dissipation area A [m 2 ] × Heat transfer coefficient h [W / m 2 K] × Fin efficiency η)
... (2)
When the heat generation amount Q of the heating element 1 such as a semiconductor device is large, it is necessary to increase the heat dissipation area A and reduce the thermal resistance R in order to suppress the temperature rise of the heatsink. It is only necessary to increase the width or length of the radiator 50 shown, but the temperature difference between the vicinity of the mounting portion of the heating element 1 and the end of the substrate due to the thermal resistance of the substrate 51 of the radiator is the width of the radiator and Since it increases as the length is increased, the temperature rise of the radiator is not necessarily reduced in proportion to the increase in the surface area of the radiator 50.

このため、発熱体1で発生した熱を放熱器基板51の全面に低温度差で分散する手段が必要であり、特許文献1には、図10に示すような熱分散型放熱器が提案されている。   For this reason, means for dispersing the heat generated in the heating element 1 over the entire surface of the radiator substrate 51 with a low temperature difference is required. Patent Document 1 proposes a heat dispersion type radiator as shown in FIG. ing.

この図10の放熱器は、アルミニウム等の高熱伝導性の金属で形成された櫛歯状放熱フィン52を有する放熱器50の基板51内に設けた細孔内に2相凝縮性作動流体を封入して形成したヒートパイプ7を複数分散して配設し、基板51の一部に結合された半導体素子等の発熱体1から発生する熱をこのヒートパイプ7により基板51の全体に分散させて放熱フィン52に伝達するようにしたものである。これにより実効的な放熱器の放熱面積が拡大し、大気に対して低温度差での放熱が行えるようになり、放熱効果が高まる。   The radiator of FIG. 10 encloses a two-phase condensable working fluid in the pores provided in the substrate 51 of the radiator 50 having comb-like radiating fins 52 formed of a metal having high thermal conductivity such as aluminum. A plurality of heat pipes 7 formed in this manner are arranged in a dispersed manner, and heat generated from the heating element 1 such as a semiconductor element coupled to a part of the substrate 51 is dispersed throughout the substrate 51 by the heat pipe 7. This is transmitted to the heat radiating fins 52. As a result, the effective heat dissipating area of the radiator is expanded, and heat can be dissipated at a low temperature difference with respect to the atmosphere, so that the heat dissipating effect is enhanced.

また、特許文献2には、図11に示すような、金属平板61の内部に細孔62を複数並べて細孔列を形成し、この細孔列の各細孔を上下両端においてヘッダ流路63により連通したうえで、細孔62列内に相変化により熱の輸送を行う2相凝縮性の作動流体65を適量封入して構成した平板状ヒートパイプ60が開示されている。この平板状ヒートパイプ60は、極めた細い細孔列と両端で連通させるヘッダ流路により、作動流体の軸方向での振動現象と緩やかな循環により熱を輸送するであるため、ヘッダ流路も細孔列の各細孔と同様に細い孔で構成される。この構成では、作動流体に振動現象を生じさせて熱輸送を行い、単純な細管ヒートパイプに比べて熱輸送能力が増大するため、平板61内に形成された細孔列により形成されたヒートパイプにより半導体装置等の発熱体1から発生された熱を平板61の全体に拡散することができ平板61全体の温度分布を均一化でき、温度上昇を抑制でき、比較的大きな発熱量の大きな発熱体の放熱に対応可能となる。
特開2001−156299号公報(2〜4頁、図1) 特開平04−260791号公報
Further, in Patent Document 2, as shown in FIG. 11, a plurality of pores 62 are arranged inside a metal flat plate 61 to form a pore row, and each pore of this pore row is arranged at a header channel 63 at both upper and lower ends. A flat plate heat pipe 60 is disclosed that is configured by enclosing an appropriate amount of a two-phase condensable working fluid 65 that transports heat by phase change in a row of pores 62. This flat heat pipe 60 transports heat by the vibration phenomenon in the axial direction of the working fluid and gentle circulation by the header flow path communicating with the extremely narrow pore array at both ends. Like each pore of the pore row, it is composed of fine pores. In this configuration, a vibration phenomenon is generated in the working fluid to perform heat transport, and the heat transport capability is increased as compared with a simple thin tube heat pipe. Therefore, a heat pipe formed by a row of pores formed in the flat plate 61. The heat generated from the heating element 1 such as a semiconductor device can be diffused throughout the flat plate 61, the temperature distribution of the entire flat plate 61 can be made uniform, the temperature rise can be suppressed, and the heating element having a relatively large calorific value. It becomes possible to cope with heat dissipation.
JP 2001-156299 A (2-4 pages, FIG. 1) Japanese Patent Laid-Open No. 04-260791

半導体モジュールなどの半導体装置では、主な発熱部は半導体チップであり、半導体モジュールの取り付け面積の約1/10の部分を占める。半導体モジュールの平均発熱密度が10W/cm2の場合は、半導体チップの発熱密度は約100W/cm2となり、内半導体チップの配置によっても異なるが、半導体チップと半導体モジュールの端部では、10〜20℃の温度差が生じる。このため、半導体モジュールの発熱を分散して放熱することが半導体チップのジャンクション温度を許容値内に保つ上で重要となる。 In a semiconductor device such as a semiconductor module, the main heat generating part is a semiconductor chip, which occupies about 1/10 of the mounting area of the semiconductor module. When the average heat generation density of the semiconductor module is 10 W / cm 2 , the heat generation density of the semiconductor chip is about 100 W / cm 2 , which differs depending on the arrangement of the inner semiconductor chips. A temperature difference of 20 ° C. occurs. For this reason, it is important to dissipate the heat generated by the semiconductor module in order to keep the junction temperature of the semiconductor chip within an allowable value.

高集積化と実装密度の高密度化に対応して単位面積あたりの放熱量が10W/cm2レベルを超えるような発熱体を冷却する場合には、前記のようなヒートパイプを組み込んだ放熱器の採用が検討されているが、図10に示した放熱器の基板51内にヒートパイプ7を組み込む形式の放熱器の場合は、複数のヒートパイプ7が独立して形成されているので放熱器の基板51内での熱分散方向が、ヒートパイプ7の長手方向に限られるため、実効的な放熱面積の拡大はできても複数の半導体装置などの発熱体の発熱分布のバラツキを十分に吸収することができない。これを改善するためには、特に大容量の半導体変換装置の冷却装置に適用した場合、より多数のヒートパイプを設ける必要があり、基板51への細孔の加工およびヒートパイプにかかる費用が嵩む問題がある。 When cooling a heating element whose amount of heat radiation per unit area exceeds 10 W / cm 2 level in response to high integration and high mounting density, a radiator incorporating a heat pipe as described above However, in the case of a radiator of the type in which the heat pipe 7 is incorporated in the radiator substrate 51 shown in FIG. 10, a plurality of the heat pipes 7 are independently formed, so that the radiator Since the heat distribution direction in the substrate 51 is limited to the longitudinal direction of the heat pipe 7, even if the effective heat dissipation area can be expanded, the variation in the heat generation distribution of the heating elements such as a plurality of semiconductor devices is sufficiently absorbed. Can not do it. In order to improve this, particularly when applied to a cooling device for a large-capacity semiconductor conversion device, it is necessary to provide a larger number of heat pipes, which increases the cost of processing the pores in the substrate 51 and the heat pipe. There's a problem.

また、図11に示した平板状ヒートパイプ60は、図10の放熱器よりは放熱能力が高くなるが、作動流体の振動現象を利用したヒートパイプであるため、放熱能力に限界があり、100W/cm2以上の発熱のあるものに対して対応することができない。また、振動流による熱輸送は、周期的な間欠動作であるため時間的な温度変動も大きいという問題もある。 Further, the flat heat pipe 60 shown in FIG. 11 has a higher heat dissipation capability than the radiator of FIG. It is not possible to cope with a heat generation of / cm 2 or more. Moreover, since heat transport by an oscillating flow is a periodic intermittent operation, there is also a problem that a temporal temperature fluctuation is large.

この発明は、このような問題を解決するために、平板に取付けられた複数の半導体素子等の発熱体の発熱量の分布にバラツキが生じた場合、これを吸収して平板全体の熱分布をより均一化することにより低温度差で効率よく放熱を行うことのできる熱分散プレートを提供することを課題とする。   In order to solve such a problem, the present invention absorbs the variation in the calorific value distribution of the heat generating elements such as a plurality of semiconductor elements mounted on the flat plate, thereby reducing the heat distribution of the entire flat plate. It is an object of the present invention to provide a heat dispersion plate that can efficiently dissipate heat at a low temperature difference by making it more uniform.

この課題を解決するため、この発明は、高熱伝導性材からなる平板状の基板内に複数の直線状の細孔を分散して平行に配設して細孔列を形成し、この細孔列の各細孔を上下両端においてヘッダ流路により連通し、細孔列内に相変化により熱を輸送する作動流体を封入してなる熱分散プレートにおいて、前記細孔列の各細孔の断面積を封入された作動流体が振動流を起こさないように気化した作動流体が蒸気プラグを形成しない大きさとし、前記ヘッダ流路の断面積を前記細孔列の各細孔の断面積より大きい断面積とし、かつ前記作動流体を前記基板内形成される密閉空間にその全容積の40%以上封入したことを特徴とするものである
そしてこの発明においては、前記上下端のヘッダ流路を還流路を形成するパイプにより連結することができ、また、前記基板に放熱フィンを一体に接合するのがよい。
In order to solve this problem, the present invention forms a row of pores by dispersing a plurality of linear pores in a flat plate made of a high thermal conductivity material and arranging them in parallel. In a heat dispersion plate in which each pore in the row is communicated by a header channel at both upper and lower ends, and a working fluid that transports heat by phase change is enclosed in the pore row, the pores in the pore row are disconnected. The working fluid that is vaporized so that the working fluid encapsulated in the area does not generate an oscillating flow is sized so as not to form a vapor plug. And the working fluid is sealed in a sealed space formed in the substrate in an amount of 40% or more of its total volume. Can be connected by pipe to form In addition, it is preferable that heat radiating fins are integrally joined to the substrate.

この発明は、比較的断面積が作動流体の振動現象が生じない大きさの細孔かなる細孔列とこの細孔の断面面積より大きい断面積を有するヘッダ流路および通常よりも多量の作動流体を封入することにより、ループ型サーモサイフォン現象を発生させる構成となるので、輸送限界(安定して熱輸送の行える限界熱量)を、図10に示す細管形ヒートパイプを内蔵した放熱器の約40倍、図11に示す平板状ヒートパイプの約4倍以上に大きくすることができ、そして、平板状の基板に互いに連通された細孔列が分散して設けられることにより、基板に取付けられた複数の半導体素子等の発熱体の発熱量の分布にバラツキが生じた場合、これを吸収して平板全体の熱分布をより均一化し、より低温度差で効率よく放熱を行うことができる。   The present invention provides a header array having a pore array having a relatively small cross-sectional area that does not cause vibration of the working fluid, a header channel having a cross-sectional area larger than the cross-sectional area of the pore, and a larger amount of operation than usual. Since the configuration is such that a loop-type thermosiphon phenomenon is generated by enclosing the fluid, the transport limit (the limit heat amount that enables stable heat transport) is approximately the same as that of a radiator with a built-in thin tube heat pipe shown in FIG. The plate-shaped heat pipe shown in FIG. 11 can be made 40 times larger than the plate-shaped heat pipe, and can be attached to the substrate by providing the plate-shaped substrate with a row of fine pores communicating with each other. In addition, when variation occurs in the distribution of the heat generation amount of the heating elements such as a plurality of semiconductor elements, the heat distribution of the entire flat plate can be made more uniform by absorbing this, and heat can be efficiently radiated with a lower temperature difference.

以下に、この発明の実施の形態を図に示す実施例について説明する   Embodiments of the present invention will be described below with reference to the embodiments shown in the drawings.

図1はこの発明の熱分散プレートの実施例1を示すものであり、(A)は、一部を切欠いて内部を示す斜視図、(B)は正面断面図である。   FIG. 1 shows Embodiment 1 of the heat dispersion plate of the present invention, in which (A) is a perspective view showing the inside with a part cut away, and (B) is a front sectional view.

図1において、21は、高熱伝導性材により構成した平板状の基板であり、この中に複数の直線状の隔壁22により仕切って形成された複数の細孔を分散配列した細孔列23と、この細孔列23の上下端において個々の細孔を相互に連通する上部ヘッダ流路26および下部ヘッダ流路27が設けられる。細孔列23、ヘッダ流路26、27によって形成された基板内空間に、封止パイプ29から排気したのち、相変化により熱輸送を行う2相凝縮性作動流体31を注入し、封止パイプ29を封じ切り、基板内に作動流体の封入された密閉空間を形成する。   In FIG. 1, reference numeral 21 denotes a flat plate substrate made of a high thermal conductivity material, and a pore array 23 in which a plurality of pores formed by partitioning with a plurality of linear partition walls 22 are dispersedly arranged; An upper header channel 26 and a lower header channel 27 are provided at the upper and lower ends of the pore row 23 to communicate the individual pores with each other. A two-phase condensable working fluid 31 that injects heat into the space in the substrate formed by the pore array 23 and the header channels 26 and 27 from the sealing pipe 29 and then transports heat by phase change is injected into the sealing pipe. 29 is sealed off to form a sealed space in which the working fluid is sealed in the substrate.

細孔列23の個々の細孔は、封入された作動流体が細孔内で振動流現象を起こさないように断面の直径を3〜5mmとして、比較的断面積を大きくしている。そして、この細孔列23に連通されるヘッダ流路26、27は、細孔の断面積より大きい、例えば2倍以上の大きさの断面積とすることにより、基板内でループ型サーモサイフォン動作が行えるようにする。   The individual pores of the pore array 23 have a relatively large cross-sectional area with a diameter of 3 to 5 mm so that the encapsulated working fluid does not cause an oscillating flow phenomenon in the pores. The header channels 26 and 27 communicated with the pore row 23 have a cross-sectional area larger than the cross-sectional area of the fine pores, for example, twice or more, so that the loop thermosyphon operation is performed in the substrate. Be able to.

基板内に封入する作動流体の量(液相状態での量)は、基板内空間の容積のほぼ半分の40〜60%程度の量にする。作動流体としては、使用温度範囲(約−10〜100℃)において沸騰・凝縮の相変化が可能な流体、すなわち水、アルコール、フルオロカーボン系冷媒などを使用する。ヘッダ流路26、27は、細孔列23の上下2箇所に配置し、複数の細孔を連通するもので、平板内でループ型サーモサイフォン動作が行えるように、細孔の断面積に比して大きな断面積を有することが必要となる。また、作動流体の封入率は、作動流体の液相での量が基板21内の密閉空間の容積の約40%以上必要とする。作動流体の量がこれより少なくなるとループ型の作動流体循環動作が発生せず熱輸送能力が極めて低くなり、そして80%以上になると蒸気空間が過小になり沸騰不良および凝縮不良が生じる。   The amount of working fluid sealed in the substrate (the amount in the liquid phase state) is about 40 to 60%, which is almost half the volume of the space in the substrate. As the working fluid, a fluid capable of boiling / condensing phase change in the operating temperature range (about −10 to 100 ° C.), that is, water, alcohol, fluorocarbon refrigerant, or the like is used. The header channels 26 and 27 are arranged at two positions above and below the pore row 23 and communicate with a plurality of pores. The header channels 26 and 27 are in proportion to the cross-sectional area of the pores so that a loop thermosyphon operation can be performed in the flat plate. Therefore, it is necessary to have a large cross-sectional area. In addition, the working fluid sealing rate requires that the amount of the working fluid in the liquid phase is about 40% or more of the volume of the sealed space in the substrate 21. When the amount of the working fluid is less than this, the loop-type working fluid circulation operation does not occur and the heat transport capacity is extremely low. When the amount of the working fluid is 80% or more, the vapor space becomes too small to cause boiling failure and condensation failure.

このように構成された熱分散プレート20の動作を、図2を参照して説明する。   The operation of the heat distribution plate 20 configured as described above will be described with reference to FIG.

図2に示すとおり、熱分散プレート20は、細孔列23を形成する各細孔23の長手方向が垂直になるように配置され、このプレートの主面の一方の下方に冷却の必要な半導体装置などの発熱体1を取り付ける。基板21の内部空間の下部に液相状態の作動流体31が溜まっている。発熱体1が作動して発熱し、基板21が加熱されると、基板21内の液相状の作動流体31がその熱によって相変化(沸騰)し、蒸気泡34を発生する。この作動流体が気化する過程で発熱体から気化潜熱を吸収し、冷却する。この蒸気泡34は液相より密度が小さいため、浮力によって矢印で示すように細孔内を上方へ移動する。これが連続発生して蒸気流35となって基板21の上方へ移動する。発熱体1の設けられていない基板21の上部は、発熱体1の設けられた基板21の加熱部となる下部より温度が低いため放熱部となって、作動流体の蒸気を凝縮して液化し、気化潜熱を放出する。このようにして加熱部より放熱部へ熱輸送が行われる。凝縮した作動流体は、蒸気流35に同伴して移動し、気液2相流となって、上部ヘッダ流路26を経て、主として左右両外側の還流路25を形成する細孔23sを通って基板21の下部の加熱部へ還流し、下部ヘッダ流路27に液溜まりを形成して、定常的な沸騰・凝縮サイクルを形成する。   As shown in FIG. 2, the heat distribution plate 20 is arranged so that the longitudinal direction of each pore 23 forming the pore row 23 is vertical, and a semiconductor that needs to be cooled below one of the main surfaces of the plate. A heating element 1 such as a device is attached. A liquid-phase working fluid 31 is accumulated in the lower part of the internal space of the substrate 21. When the heating element 1 is activated to generate heat and the substrate 21 is heated, the liquid-phase working fluid 31 in the substrate 21 undergoes a phase change (boiling) due to the heat and generates a vapor bubble 34. In the process of vaporizing the working fluid, the latent heat of vaporization is absorbed from the heating element and cooled. Since the vapor bubbles 34 have a lower density than the liquid phase, they move upward in the pores as indicated by arrows by buoyancy. This continuously occurs and becomes a vapor flow 35 and moves above the substrate 21. Since the temperature of the upper part of the substrate 21 not provided with the heating element 1 is lower than that of the lower part serving as the heating part of the substrate 21 provided with the heating element 1, the upper part of the substrate 21 becomes a heat radiating part. Releases latent heat of vaporization. In this way, heat is transported from the heating part to the heat dissipation part. The condensed working fluid moves along with the vapor flow 35, becomes a gas-liquid two-phase flow, passes through the upper header flow path 26, and mainly passes through the pores 23s forming the right and left outer reflux paths 25. The mixture is refluxed to the heating section below the substrate 21 to form a liquid pool in the lower header flow path 27 to form a steady boiling / condensing cycle.

ループ型サーモサイフォンの作動流体循環動作を行わせるために必要なヘッダ流路26、27の断面積は、(1)式の関係が成立するように決められる。   The cross-sectional areas of the header channels 26 and 27 necessary for performing the working fluid circulation operation of the loop thermosyphon are determined so that the relationship of the expression (1) is established.

ΔHmax > ΔPh/(ρl × g) (1)
ただし、この(1)式において
ΔHmax:許容される平板(基板)の加熱部と放熱部の液面高さの差(m)
ΔPh :循環流の圧力損失(Pa)
ρl :作動流体の液密度(kg/m3
g :重力加速度(m/s2
である。
ΔHmax> ΔPh / (ρ l × g) (1)
However, in this equation (1)
ΔHmax: Allowable difference in liquid level between the heating part of the flat plate (substrate) and the heat dissipation part (m)
ΔPh: Pressure loss of circulating flow (Pa)
ρ l : density of working fluid (kg / m 3 )
g: Gravity acceleration (m / s 2 )
It is.

また、ΔPhは、次の2式の関係にある。   ΔPh is in the relationship of the following two formulas.

ΔPh = λ × l/d ×(u2/(2×v)) (2)
ただし、この2式において
λ:気液2相流の摩擦損失
l:流路の長さ(m)
d:流路の相当直径(m)
u:気液2相流の流速(m/s)、
v:気液2相流の比容積 、
である。
ΔPh = λ × 1 / d × (u 2 / (2 × v)) (2)
However, in these two formulas
λ: Friction loss of gas-liquid two-phase flow
l: Length of flow path (m)
d: Equivalent diameter of channel (m)
u: Flow velocity of gas-liquid two-phase flow (m / s),
v: specific volume of gas-liquid two-phase flow,
It is.

前記の気液2相流の流速uは、
u=V/A (3)
として求められ、Vは気液2相流の流量、Aは流路の断面積である。
The flow velocity u of the gas-liquid two-phase flow is
u = V / A (3)
V is the flow rate of the gas-liquid two-phase flow, and A is the cross-sectional area of the flow path.

循環流の圧力損失ΔPは(2)式に示すように、気液2相流の流速の増加、すなわち熱輸送量の増加とともに増加する。一方、気液2相流の流速は、(3)式の関係より、流路断面積に反比例する。   As shown in the equation (2), the pressure loss ΔP of the circulating flow increases as the flow velocity of the gas-liquid two-phase flow increases, that is, the heat transport amount increases. On the other hand, the flow velocity of the gas-liquid two-phase flow is inversely proportional to the flow path cross-sectional area from the relationship of equation (3).

この発明においては、ヘッダ流路の断面積を、細孔列23の各細孔の断面積より大きく形成することにより、前記(1)式における循環流の圧力損失ΔPを小さくしているで、加熱部と放熱部の液面高さの差の小さいものにおいても良好な作動流体循環現象を維持でき、また、熱分散プレートの大きさが同じであれば、熱輸送限界量を大きくすることができる。   In the present invention, the pressure loss ΔP of the circulating flow in the equation (1) is reduced by forming the cross-sectional area of the header channel larger than the cross-sectional area of each pore of the pore row 23, Even if the difference in liquid level between the heating part and the heat radiation part is small, good working fluid circulation phenomenon can be maintained, and if the size of the heat dispersion plate is the same, the heat transport limit can be increased. it can.

図3は、この実施例1の熱分散プレートを多穴平板により製作した変形例を示すものである。この図の(b)に示すように、3枚の押し出しまたは引き抜き加工により製造された複数の貫通孔を有する多穴平板21A,21B、21Cを並列に並べて一体に結合して、1枚の細孔列23を有する基板21を形成する(図3(a)参照)。   FIG. 3 shows a modification in which the heat dispersion plate of the first embodiment is manufactured by a multi-hole flat plate. As shown in (b) of this figure, the multi-hole flat plates 21A, 21B, and 21C having a plurality of through-holes manufactured by extruding or drawing three pieces are arranged in parallel and joined together to form a single thin plate. A substrate 21 having a hole array 23 is formed (see FIG. 3A).

この基板21の上下端に断面コ字形に形成された端板を26A、27Aを気密に結合して、細孔列23を相互に連通する上・下ヘッダ流路26、27を形成する。   End plates 26A and 27A are hermetically coupled to the upper and lower ends of the substrate 21 at the upper and lower ends thereof to form upper and lower header channels 26 and 27 that communicate the pore array 23 with each other.

これにより基板21内に細孔列23およびヘッダ流路26、27からなる密閉空間が形成される。封止パイプ29から、この密閉空間内の空気を排気した上で、作動流体を所要量注入し、封止パイプを29を封じきることによって、ループ型サーモサイフォン式熱分散プレートが完成する。   As a result, a sealed space including the pore array 23 and the header channels 26 and 27 is formed in the substrate 21. After the air in the sealed space is exhausted from the sealed pipe 29, a required amount of working fluid is injected, and the sealed pipe 29 is sealed to complete the loop thermosiphon heat dispersion plate.

このように多穴平板を用いると、基板内に細孔列を作るための加工が必要なくなるので、基板の製作が極めて容易になるので、製作コストを低減できる効果がある。   When a multi-hole flat plate is used in this way, processing for creating a pore array in the substrate is not necessary, and therefore the substrate can be manufactured very easily, and the manufacturing cost can be reduced.

図4に、この発明による熱分散プレート2を半導体装置の冷却装置に適用した例を示す。   FIG. 4 shows an example in which the heat dispersion plate 2 according to the present invention is applied to a cooling device for a semiconductor device.

この図4において、1は半導体装置であり、この発明による熱分散プレート2にねじ等により伝熱的に取り付けられる。熱分散プレート2は、放熱フィン11付きの冷却体10に伝熱的に結合される。   In FIG. 4, reference numeral 1 denotes a semiconductor device, which is attached to the heat distribution plate 2 according to the present invention by heat transfer by screws or the like. The heat distribution plate 2 is coupled to the cooling body 10 with the heat radiation fins 11 in a heat transfer manner.

半導体装置1の取り付けられた部分に局部的に発生された熱は、熱分散プレート2により熱分散プレート全体に分散されて冷却体10に伝達されるため、半導体装置1から冷却体10に伝達される熱が全体に平均化されることにより、冷却体の温度分布も平均化する。これにより、冷却体10全体の温度上昇が低下し、外気に対して低温度差で効率よく放熱することができる。   The heat generated locally in the portion where the semiconductor device 1 is attached is dispersed by the heat distribution plate 2 over the entire heat distribution plate and transmitted to the cooling body 10, so that the heat is transmitted from the semiconductor device 1 to the cooling body 10. As a result, the temperature distribution of the cooling body is also averaged. Thereby, the temperature rise of the whole cooling body 10 falls, and it can thermally radiate efficiently with a low temperature difference with respect to external air.

次に、この発明の実施例2を図5に示すので、これについて説明する。   Next, Embodiment 2 of the present invention will be described with reference to FIG.

この図5に示す実施例2は、基本的には前記実施例1と同じであるので、同一の構成要素は同一の符号を付している。実施例1と異なる点は、基板21内に複数の細孔を分散して並列に配列してなる細孔列23とこの細孔列の上下端において各細孔を連通する上・下ヘッダ流路26、27を設けて構成した熱分散プレート20の外側に、上、下のヘッダ流路26と27を連通する還流パイプ25aを設けた点である。   Since the second embodiment shown in FIG. 5 is basically the same as the first embodiment, the same components are denoted by the same reference numerals. The difference from the first embodiment is that a plurality of pores are dispersed in the substrate 21 and arranged in parallel, and an upper / lower header flow that connects the pores at the upper and lower ends of the pore row. This is the point that a reflux pipe 25 a that communicates the upper and lower header flow paths 26 and 27 is provided outside the heat distribution plate 20 configured by providing the paths 26 and 27.

還流パイプ25aは、上下のヘッダ流路26、27に連通されているため、基板21内の細孔列23と同様に作動流体が貯留される。そして、熱分散プレート20に半導体装置等の発熱体を取り付けて作動させた場合、実施例1の場合と同様に作動流体が加熱されて気液相変換作用により熱分散プレート内を循環し、熱輸送を行う。   Since the reflux pipe 25 a communicates with the upper and lower header flow paths 26 and 27, the working fluid is stored in the same manner as the pore row 23 in the substrate 21. When a heat generating member such as a semiconductor device is attached to the heat dissipating plate 20 and operated, the working fluid is heated and circulated in the heat dissipating plate by the gas-liquid phase conversion action as in the case of the first embodiment. Transport.

このとき、この実施例2においては還流パイプ25aが熱分散プレート20から離してヘッダ部に結合されることにより、熱分散プレート20からの熱の影響を受けにくくなるため、熱分散プレート20より低い温度となり、内部の圧力が細孔列内に比して低くなる。このため、作動流体は、発熱体により加熱されて気化することによって熱分散プレート20の上部ヘッダ流路26へ上昇し、自然と還流パイプ25aへ流れこみ、ここを還流路として下部ヘッダ流路27へ戻り、再び加熱により上部ヘッダ部へと上昇し、循環動作する。これにより、作動流体の循環経路の還流路が明確に区画され、熱分散プレート内を循環する作動流体の循環動作が安定するとともに、熱分散プレート内の細孔列の両外側の細孔部分も冷却に使用することができるので、熱分散プレートの有効面積を広くすることが可能となる。   At this time, in the second embodiment, since the reflux pipe 25a is separated from the heat dispersion plate 20 and coupled to the header portion, it is less affected by the heat from the heat dispersion plate 20, so that it is lower than the heat dispersion plate 20. The temperature becomes lower and the internal pressure becomes lower than in the pore row. For this reason, the working fluid is heated by the heating element and vaporized to rise to the upper header flow path 26 of the heat dispersion plate 20 and naturally flows into the reflux pipe 25a. Return to the upper header part by heating again and circulate. As a result, the return path of the working fluid circulation path is clearly defined, the circulation operation of the working fluid circulating in the heat dispersion plate is stabilized, and the pore portions on both outer sides of the pore row in the heat dispersion plate are also stabilized. Since it can be used for cooling, the effective area of the heat dispersion plate can be increased.

実施例1においては、半導体装置などの発熱体1を取付けた熱分散プレート2をフィン付きの冷却体10に取り付けるようにしているが、この発明においては、冷却体10を省略するため、図6に示すように、熱分散プレート2の基板21に一体的にフィン24を取り付けるようにすることもできる。   In the first embodiment, the heat dispersion plate 2 to which the heating element 1 such as a semiconductor device is attached is attached to the finned cooling body 10. However, in the present invention, since the cooling body 10 is omitted, FIG. As shown, the fins 24 may be integrally attached to the substrate 21 of the heat distribution plate 2.

このようにすると、熱分散プレート2に分散された熱が、放熱フィン24から直ちに放熱されるので、冷却体10を使用する場合より効率よく放熱でき、冷却効果が高まる。   If it does in this way, since the heat disperse | distributed to the heat-spreading plate 2 will be thermally radiated immediately from the radiation fin 24, it can thermally radiate more efficiently than the case where the cooling body 10 is used, and the cooling effect will increase.

この発明の実施例1による熱分散プレートを示すもので、(A)は、一部切欠き部を含む斜視図、(B)は正面断面図である。1 shows a heat distribution plate according to Embodiment 1 of the present invention, in which (A) is a perspective view including a partially cutout portion, and (B) is a front sectional view. FIG. この発明の実施例1の動作説明図であり、(A)は正面断面図、(B)は側面断面図である。It is operation | movement explanatory drawing of Example 1 of this invention, (A) is front sectional drawing, (B) is side sectional drawing. この発明の実施例1の変形した熱分散プレートを示すもので、(a)は正面断面図、(b)は平板状基板の底面図、(c)は側面図である。The deformation | transformation heat distribution plate of Example 1 of this invention is shown, (a) is front sectional drawing, (b) is a bottom view of a flat board | substrate, (c) is a side view. この発明の実施例1の熱分散プレートの使用状態を示す斜視図である。It is a perspective view which shows the use condition of the heat distribution plate of Example 1 of this invention. この発明の実施例2による熱分散プレートを示すもので、(a)は正面断面図、(b)は側面断面図である。The heat-distribution plate by Example 2 of this invention is shown, (a) is front sectional drawing, (b) is side sectional drawing. この発明の実施例3を示す斜視図である。It is a perspective view which shows Example 3 of this invention. 従来の放熱器の構成を示す斜視図である。It is a perspective view which shows the structure of the conventional heat radiator. 従来の放熱器の構成を示す図であり、(A)は平面図、(B)は側面図である。It is a figure which shows the structure of the conventional heat radiator, (A) is a top view, (B) is a side view. 従来の放熱器の構成を示す図であり、(A)は平面図、(B)は側面図である。It is a figure which shows the structure of the conventional heat radiator, (A) is a top view, (B) is a side view. 従来の放熱器の構成を示す図であり、(A)は平面図、(B)は側面図である。It is a figure which shows the structure of the conventional heat radiator, (A) is a top view, (B) is a side view. 従来の熱分散プレートの構成を示す図であり、(A)は正面断面図、(B)は側面断面図である。It is a figure which shows the structure of the conventional heat distribution plate, (A) is front sectional drawing, (B) is side sectional drawing.

符号の説明Explanation of symbols

1:発熱体
2:熱分散プレート 21:基板
23:細孔 25:還流路
26:上部ヘッダ流路 27:下部ヘッダ流路

1: Heating element 2: Heat distribution plate 21: Substrate 23: Fine pore 25: Return path 26: Upper header flow path 27: Lower header flow path

Claims (3)

高熱伝導性材からなる平板状の基板内に複数の直線状の細孔を分散して平行に配設して細孔列を形成し、この細孔列の各細孔を上下両端においてヘッダ流路により連通し、細孔列内に相変化により熱を輸送する作動流体を封入してなる熱分散プレートにおいて、前記細孔列の各細孔の断面積を封入された作動流体が振動流を起こさないように気化した作動流体が蒸気プラグを形成しない大きさとし、前記ヘッダ流路の断面積を前記細孔列の各細孔の断面積より大きい断面積とし、かつ前記作動流体を前記基板内形成される密閉空間にその全容積の40%以上封入したことを特徴とする熱分散プレート。   A plurality of linear pores are dispersed and arranged in parallel in a flat substrate made of a highly heat-conductive material to form a pore row. In a heat dispersion plate that is connected by a path and encloses a working fluid that transports heat by phase change in the pore array, the working fluid enclosing the cross-sectional area of each pore of the pore array generates an oscillating flow. The working fluid vaporized so as not to occur does not form a vapor plug, the header passage has a sectional area larger than the sectional area of each pore in the pore row, and the working fluid is placed in the substrate. A heat dispersion plate, wherein 40% or more of the total volume is sealed in a sealed space to be formed. 請求項1記載の熱分散プレートにおいて、前記上下端のヘッダ流路を還流路を形成するパイプにより連結したことを特徴とする熱分散プレート。   2. The heat distribution plate according to claim 1, wherein the header flow paths at the upper and lower ends are connected by a pipe forming a reflux path. 請求項1または2に記載の熱分散プレートにおいて、前記基板に放熱フィンを接合してなることを特徴とする熱分散プレート。

The heat distribution plate according to claim 1 or 2, wherein a heat radiation fin is joined to the substrate.

JP2005306177A 2005-10-20 2005-10-20 Thermal dissipation plate Pending JP2007115917A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005306177A JP2007115917A (en) 2005-10-20 2005-10-20 Thermal dissipation plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005306177A JP2007115917A (en) 2005-10-20 2005-10-20 Thermal dissipation plate

Publications (1)

Publication Number Publication Date
JP2007115917A true JP2007115917A (en) 2007-05-10

Family

ID=38097834

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005306177A Pending JP2007115917A (en) 2005-10-20 2005-10-20 Thermal dissipation plate

Country Status (1)

Country Link
JP (1) JP2007115917A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009041208A1 (en) * 2007-09-25 2009-04-02 Sanden Corporation Electric compressor integral with drive circuit
WO2013051587A1 (en) * 2011-10-04 2013-04-11 日本電気株式会社 Flat-plate cooling device and method for using same
JP2013069740A (en) * 2011-09-21 2013-04-18 Nec Corp Flat plate type cooling device and usage of the same
CN104684357A (en) * 2015-01-15 2015-06-03 山东超越数控电子有限公司 Novel radiator
CN105118811A (en) * 2015-07-27 2015-12-02 电子科技大学 Temperature equalizing device adopting vapor chamber and microchannel for radiating multi-heat-source device
CN108990257A (en) * 2018-08-01 2018-12-11 深圳市景旺电子股份有限公司 The production method of the reducing-flow structure and pcb board of pcb board
WO2022161342A1 (en) * 2021-01-28 2022-08-04 华为技术有限公司 Heat dissipation device, preparation method for heat dissipation device, and wireless communication base station

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61225582A (en) * 1985-03-29 1986-10-07 Akutoronikusu Kk Internal structure of heat pipe
JPH11173781A (en) * 1997-12-09 1999-07-02 Hitachi Ltd Heat accumulator
JP2002323292A (en) * 2001-04-24 2002-11-08 Fujine Sangyo:Kk Sealed flat plate heat transfer material and method for manufacturing radiator using the same
JP2003166793A (en) * 2001-11-30 2003-06-13 Fujine Sangyo:Kk Thermo-siphon type heat transfer body

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61225582A (en) * 1985-03-29 1986-10-07 Akutoronikusu Kk Internal structure of heat pipe
JPH11173781A (en) * 1997-12-09 1999-07-02 Hitachi Ltd Heat accumulator
JP2002323292A (en) * 2001-04-24 2002-11-08 Fujine Sangyo:Kk Sealed flat plate heat transfer material and method for manufacturing radiator using the same
JP2003166793A (en) * 2001-11-30 2003-06-13 Fujine Sangyo:Kk Thermo-siphon type heat transfer body

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009041208A1 (en) * 2007-09-25 2009-04-02 Sanden Corporation Electric compressor integral with drive circuit
JP2009074517A (en) * 2007-09-25 2009-04-09 Sanden Corp Drive circuit integral-type electric compressor
US8303271B2 (en) 2007-09-25 2012-11-06 Sanden Corporation Electric compressor integral with drive circuit
JP2013069740A (en) * 2011-09-21 2013-04-18 Nec Corp Flat plate type cooling device and usage of the same
WO2013051587A1 (en) * 2011-10-04 2013-04-11 日本電気株式会社 Flat-plate cooling device and method for using same
JPWO2013051587A1 (en) * 2011-10-04 2015-03-30 日本電気株式会社 Flat plate cooling device and method of using the same
CN104684357A (en) * 2015-01-15 2015-06-03 山东超越数控电子有限公司 Novel radiator
CN105118811A (en) * 2015-07-27 2015-12-02 电子科技大学 Temperature equalizing device adopting vapor chamber and microchannel for radiating multi-heat-source device
CN108990257A (en) * 2018-08-01 2018-12-11 深圳市景旺电子股份有限公司 The production method of the reducing-flow structure and pcb board of pcb board
CN108990257B (en) * 2018-08-01 2020-06-19 深圳市景旺电子股份有限公司 Flow choking structure of PCB and manufacturing method of PCB
WO2022161342A1 (en) * 2021-01-28 2022-08-04 华为技术有限公司 Heat dissipation device, preparation method for heat dissipation device, and wireless communication base station

Similar Documents

Publication Publication Date Title
US7369410B2 (en) Apparatuses for dissipating heat from semiconductor devices
JP4391366B2 (en) Heat sink with heat pipe and method of manufacturing the same
JP5702280B2 (en) Laminated thermoelectric module
US8773855B2 (en) Heat-dissipating device and electric apparatus having the same
JP2007115917A (en) Thermal dissipation plate
JP2010060164A (en) Heat pipe type heat sink
JP4953075B2 (en) heatsink
CN110557927A (en) Heat sink and method of manufacturing a heat sink
US20070056713A1 (en) Integrated cooling design with heat pipes
WO2015146110A1 (en) Phase-change cooler and phase-change cooling method
JP2006242455A (en) Cooling method and device
JP2007263427A (en) Loop type heat pipe
JP5057838B2 (en) Power semiconductor element cooling device
US20220123519A1 (en) Integrated thermal management of fiber coupled diode laser packaging
JP5874935B2 (en) Flat plate cooling device and method of using the same
JP2006202798A (en) Heat sink
JP2005229102A (en) Heatsink
JP4391351B2 (en) Cooling system
JP2006344636A (en) Parallel loop type heat dispersion plate
JP2008021697A (en) Heat dispersion radiator
JP2004340404A (en) Heat radiator for electronic refrigerator
JP2008218513A (en) Cooling device
JP2008244320A (en) Cooling apparatus
JP4360624B2 (en) Heat sink for semiconductor element cooling
JP2011096983A (en) Cooling device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080916

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101214

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110419