JPWO2012049801A1 - 赤外線センサ材料の作製方法、赤外線センサ材料、赤外線センサ素子、赤外線イメージセンサ - Google Patents

赤外線センサ材料の作製方法、赤外線センサ材料、赤外線センサ素子、赤外線イメージセンサ Download PDF

Info

Publication number
JPWO2012049801A1
JPWO2012049801A1 JP2012538554A JP2012538554A JPWO2012049801A1 JP WO2012049801 A1 JPWO2012049801 A1 JP WO2012049801A1 JP 2012538554 A JP2012538554 A JP 2012538554A JP 2012538554 A JP2012538554 A JP 2012538554A JP WO2012049801 A1 JPWO2012049801 A1 JP WO2012049801A1
Authority
JP
Japan
Prior art keywords
infrared sensor
cnt
sensor material
thin film
infrared
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2012538554A
Other languages
English (en)
Inventor
省治 関野
省治 関野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Publication of JPWO2012049801A1 publication Critical patent/JPWO2012049801A1/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/168After-treatment
    • C01B32/174Derivatisation; Solubilisation; Dispersion in solvents
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • G01J5/0853Optical arrangements having infrared absorbers other than the usual absorber layers deposited on infrared detectors like bolometers, wherein the heat propagation between the absorber and the detecting element occurs within a solid

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本発明の赤外線センサ材料の作製方法は、CNTを溶媒中に分散させてCNT分散液を調製し、調製されたCNT分散液を原料としてCNT薄膜を成膜し、成膜したCNT薄膜をアニール処理して−10〜50℃における抵抗温度係数の絶対値が1%/K以上とする工程を含んでいる。

Description

本発明は、非冷却型赤外線センサに用いるボロメータ材料に適した赤外線センサ材料の作製方法、この作製方法で作製された赤外線センサ材料、この赤外線材料を利用した赤外線センサ素子、この赤外線センサ素子を利用した赤外線イメージセンサ、に関する。
全ての物質は、その物質の温度に由来する赤外線を放射している。その赤外線を検知し、観測対象の温度を検出する素子は、一般に赤外線センサと呼ばれる。このような赤外線センサをマイクロレベルでアレイ化したものが、赤外線イメージング技術に用いられる。
赤外線イメージング技術を用いることによって、観測対象の温度を画像化できるため、夜間などの暗視野においてもビデオ撮影が可能となる。そのため、赤外線イメージング技術は、防犯カメラや監視カメラなどには必須な技術となっている。また、近年では、赤外線イメージング技術はインフルエンザなどによって発熱している人を判別する用途としても、注目が集まっている。
赤外線は、可視光よりも長い波長領域の電磁波の総称である。近赤外(〜約3μm)、中赤外(約3〜8μm)、遠赤外(約8〜14μm)などが、赤外線センサで応用される波長範囲となる。
遠赤外線は、大気による吸収が少ないこと、人間の体温が放射する遠赤外線が10μmを中心とすることなどの理由から、人間の生活環境を観測対象とした赤外線センサとして特に重要となる。
赤外線センサ材料として、HgCdTeをセンサ材料とした量子型赤外線センサが広く使われている。しかしながら、量子型赤外線センサは、素子温度を少なくとも液体窒素温度(77K)まで冷却する必要があるため、機器を冷却するための冷却装置が必要であった。よって、量子型赤外線センサは、機器の小型化に制約があった。
そこで、近年では、赤外線センサ材料として、素子を低温まで冷却する必要が無い非冷却型赤外線センサが広まっている。非冷却型赤外線センサとしては、ボロメータが広く用いられている。ボロメータは、素子の温度変化に伴う電気抵抗の変化を検出することを原理とする。特に、ボロメータとして、酸化バナジウム(以下、VOxと略す)やアモルファスSiなどを薄膜状に形成させた材料が製品化されている。
ボロメータの性能指標としては、いくつかのパラメータがあげられる。抵抗温度係数(TCR)と呼ばれる電気抵抗の温度変化率(抵抗の温度変化率を抵抗値で割った値)と、比抵抗というパラメータが特に重要となる。
具体的には、TCRの絶対値が大きく、非抵抗が小さい材料が求められている。ボロメータで用いられる材料としては、半導体的な性質を示すものが適当である。TCRは負の値となる。
現在、非冷却型ボロメータに用いられているVOxは、室温におけるTCRが約−4%/Kを超えるものも報告されている(特許文献1)。量産されている製品レベルでは−1.5%/Kのものが使われている。
しかしながら、VOxには様々な結晶相が存在し、それぞれ特有の性質を示す。成膜時にそれらの混在比率を一定にしにくいなどの理由により、アレイ化した際に、同一ウェハ内部でも、アレイ間での性能ばらつきが必ずしも十分に小さいとはいえない。
また、VOxを成膜する際には、通常のシリコンプロセスではなく、専用のプロセスを導入する必要があるため、作製ライン自体をVOx専用にするという制約がある。また、アニール温度を400℃以上にする必要があるなど、配線などへの影響も懸念されている。
さらに、1990年代には、シリコンプロセスで一貫生産が可能なアモルファスSiをセンサ材料としたボロメータが開発された。アモルファスSiは作製プロセスを簡略化できるため、生産性において有利である。
しかしながら、アモルファスSiは比抵抗が桁違いに大きいことや、結晶構造(アモルファス)を一様にすることが難しいという問題点もある。このような背景の中で、赤外線センサ材料としてCNT薄膜を用いる研究が報告され始めた(特許文献1)。特に、CNTの中でも、シングルウォールナノチューブ(以下、SWNT:Single Wall carbon NanoTube)を用いることが効果的であることが提示されている。
特許文献1に示されたSWNT薄膜は、溶媒に分散させたCNTを吸引ろ過によって膜化したものや、ステンレスメッシュを基材としてその場合成したものがあげられている。特に後者は大きなTCRを示すことが報告されている。
また、赤外線センサが吸収する赤外線波長が、CNTの直径に依存する性質を利用する点をより明確に示した提案もある(特許文献2)。
CNT薄膜の性状を変える試みは、CNT薄膜をアニールすることなどが提示されている(特許文献3)。ただし、特許文献3においては、CNT薄膜にポリマーを混入させており、ポリマーの性状がアニールによって変化する効果を利用している。また、特許文献3で提示されたCNT薄膜は、導電性薄膜として用いられており、赤外線センサ材料としては用いられることは言及されていない。
さらに、CNTは、揮発性の高いジクロロエタンなどの溶媒に分散性がよいため、スピンコート法、塗布法、印刷法などといった比較的良好な生産性のプロセスを用いることができる。そのため、CNTは、必ずしもシリコンプロセスのような大掛かりなプロセス設備を必要とはしない。
US7,723,684B1 特開2003−282924号公報 特開2009−074072号公報
従来の赤外線センサ材料としては、VOxなどの材料が普及している。しかしながら、VOxの成膜がシリコンプロセスとは必ずしも整合性が高くはないため、赤外線センサの生産性を低くする要因となっている。
また、赤外線センサ材料としては、アモルファスシリコンなども普及している。しかしながら、やはりシリコンプロセスを用いる必要があるため、生産性をあるレベルよりも向上させることが難しいという問題点がある。
特許文献1で示されたCNT薄膜のTCRは、温度依存性が大きく、液体窒素温度近辺において始めて十分なTCRが得られる程度のものである。そのため、特許文献1で示されたCNT薄膜は、室温では十分なTCRが得られないという問題点がある。
特許文献2で提示された原理では、SWNTの直径に依存するバンドギャップを利用するため、HgCdTeなどの量子型赤外線センサのように、低温にする必要がある。そのため、特許文献2で提示された原理は、室温近辺での使用には適していない。
特許文献3で示されたCNT薄膜は、ポリマーを主成分とするため、電気抵抗を低くするためには厚膜化する必要があるという問題点がある。
本発明は上述のような課題に鑑みてなされたものであり、比較的良好な生産性で作製できるCNT薄膜を、比較的低温でアニール処理することによって、従来よりも良好な生産性で作製できる赤外線センサ材料の作製方法を提供するものである。
本発明の赤外線センサ材料の作製方法は、CNTを溶媒中に分散させてCNT分散液を作製し、作製されたCNT分散液を原料としてCNT薄膜を成膜し、成膜したCNT薄膜をアニール処理して−10〜50℃における抵抗温度係数の絶対値が1%/K以上とする工程を含んでいる。
本発明の赤外線センサ材料は、本発明の作製方法で作製され、上記抵抗温度係数の絶対値が1%/K以上である。
本発明の赤外線センサ材料は、 −10〜50℃における抵抗温度係数の絶対値が1%/K以上であるCNT薄膜を含んでいる。
本発明の赤外線センサ素子は、本発明の赤外線センサ材料を利用する。
本発明の赤外線イメージセンサは、本発明の赤外線センサ素子が二次元状に配列されている。
本発明の作製方法によれば、比較的成膜の簡単なCNTを薄膜化すればよいため、プロセス生産性を向上させることができる。また、比較的低温である300℃以下のアニールによっても、十分に大きなTCRをもつ赤外線センサ材料を得ることができる。具体的には、−10〜50℃におけるTCRの絶対値が1%/Kを超える赤外線センサ材料を得ることが可能となる。これらの利点を生かすと、必ずしもシリコン基板を用いる必要はなく、例えば、ポリイミド基板などのプラスチック基板を用いた、良好な生産性の赤外線センサを作製することも可能となる。
上述した目的、およびその他の目的、特徴および利点は、以下に述べる好適な実施の形態、およびそれに付随する以下の図面によってさらに明らかになる。
本発明の実施形態における赤外線センサにおける一素子の平面図およびA−A'部の断面図である。 赤外線センサの平面図である。 CNT薄膜の作製プロセスのフローである。 CNT薄膜の表面SEM像である。 CNT薄膜のTCRのアニール温度依存性を示したグラフである。 CNT薄膜の電気抵抗のアニール温度依存性を示したグラフである。
以下、本発明の実施形態について、図面を用いて説明する。なお、すべての図面において、同様な構成要素には同様の符号を付し、適宣説明を省略する。ただし、本実施形態で例示した構造および構成は、その効果を発現させるための一例である。その構造および構成は、これ以降に示したものに限定されるわけではない。
本実施形態の赤外線センサ材料の作製方法は、CNTを溶媒中に分散させてCNT分散液を調製し、調製されたCNT分散液を原料としてCNT薄膜を成膜し、成膜したCNT薄膜をアニール処理してTCRの絶対値を1%/K以上とする工程を含んでいる。
本実施形態の作製方法によれば、比較的成膜の簡単なCNTを薄膜化すればよいため、プロセス生産性を向上させることができる。また、比較的低温である300℃以下のアニールによっても、十分に大きなTCRをもつ赤外線センサ材料を得ることができる。
具体的には、本実施形態の作製方法によれば、TCRの絶対値が1%/Kを超える赤外線センサ材料を得ることが可能となる。これらの利点を生かすと、必ずしもシリコン基板を用いる必要はなく、例えば、ポリイミド基板などのプラスチック基板を用いた、良好な生産性で赤外線センサを作製することも可能となる。以下、より詳細に説明する。
(分散液調整方法)
CNT分散液は、CNT(SWNT)を適正な溶媒に分散することで得ることができる。溶媒としては、例えば、1,2−ジクロロエタン(以下、ジクロロエタン)などが適当である。
ただし、溶媒に関しては、ここであげたものに限らず、CNTの分散性が高く、かつ揮発性が高いものが適当である。このような溶媒としては、例えば、DMF(N,N-dimethylformamide)などの有機溶媒、メタノール、エタノール、IPA(Isopropyl Alcohol)などのアルコール系溶媒、アセトンなどのケトン系溶媒、さらには水などの極性溶媒が利用できる。
(薄膜作製方法)
薄膜作製方法としては、スピンコート法、滴下法、印刷法などを用いることができる。成膜においては、一回の滴下で行うことが望ましいが、所定の膜厚を得るために複数回滴下してもよい。ただし、成膜方法はここであげた方法に限定はせず、その他の方法を用いてもよい。
(CNT薄膜のアニール処理)
CNT薄膜に関しては、大気中で150〜350℃の範囲で行うことが適当である。より望ましくは200〜340℃、さらに望ましくは240〜320℃の範囲である。これは図5および図6の結果で示したとおり、280℃程度でアニールしたサンプルにおいて、抵抗温度係数が最も大きく、かつ電気抵抗も小さいため、電気抵抗と抵抗温度係数のバランスが最もよくなっている。
下限温度に関しては、150℃アニールでも多少の効果がみられ、200℃、240℃ではさらに抵抗温度係数が大きくなっていく。また、上限温度に関しては、300℃を超えると、CNT自体の焼失が起こるため、下限値に対応させて上限値を下げ、より範囲を限定している。電気抵抗に関しては、320℃以上ではさらに大きくなることが予想され、TCRも低下する方向に向かっているので、最終的には320℃が上限の適値である。ただし、実際には、300℃くらいで抑えておくのが良い。以上の考えを元に、最終的に240〜320℃という温度範囲に設定した。
上述のようなアニール処理の雰囲気は酸素を含むとよい。その場合、酸素の濃度は、20%程度が適切である。これは、通常の大気中でのアニールで十分な効果が得られるためである。また、上述のようなアニール処理は、2時間未満で完了することがよい。例えば、30分程度でも十分である。これは、アニール時間が短いほうが、CNT自体の焼失を進行させないですむためである。ただし、ここで示した酸素濃度は一具体例であり、本願発明を限定するものではない。また、アニール時間に関しては、200〜260℃といった比較的低温においては、2時間以上アニールしてもよい。
なお、上述のようなアニール処理によってCNT薄膜中に含有されるCNTのうち、CNT骨格の50%以上を損傷させないことがよい。これは、CNT骨格の50%以上が焼失・損傷してしまうと、著しい電気抵抗の増大が起こるためである。
また、上述のように形成されるCNT薄膜を構成するCNTの主成分がシングルウォールナノチューブであるとよい。これは、前述の通り、ボロメータ材料としては、半導体成分が多い方が抵抗温度係数を増大させるためには有利であり、シングルウォールナノチューブが、半導体成分と金属成分を分離できること、また、半導体成分が多い材料を作製することが容易であることなどの要因のためである。
(CNT薄膜の素子化)
CNT薄膜は、適当な構造をもった赤外線センサの赤外線センサ材料として用いる。赤外線センサとしては、単素子のものであってもよく、イメージセンサに用いられるような二次元に配列したアレイ状であってもよい。
赤外線センサ素子11の各々は、図1に示したように、Si基板14などの基板を中空にした構造を取り、絶縁膜13上に形成された二つの電極12の間に、CNT薄膜15を成膜した構成となっている。
二次元的な画像を得る場合には、例えば、図2に示したような赤外線センサ10からなる赤外線センサ素子11のアレイを形成し、読出し回路による電気的な信号処理によって、画像化することができる。図1および図2においては、読出し回路などの周辺部分を省略してある。
ただし、赤外線センサ素子11の構造は、図1に示した構成に限らず、例えば、中空部分を設けなかったり、Si基板14の変わりにプラスチック製基板を用いたりしてもよい。CNT薄膜15の電気抵抗の温度変化をとらえることができる構造であればよい。
CNT薄膜を用いた赤外線センサの作製工程は、例えば、従来のVOxを赤外線センサ材料とした赤外線センサの作製において、赤外線センサ材料を成膜する条件が異なるだけであり、その他の工程には従来の作製プロセスを用いることができる。そのため、赤外線センサを用いた赤外線イメージセンサのような微細構造にも容易に適用することができる。
また、CNT薄膜を用いた赤外線センサは、成膜プロセスおよびアニールプロセスで300℃未満でも作製することが可能であるため、ポリイミド基板などのプラスチックを基材としたセンサにも応用可能である。
なお、シングルウォールナノチューブの90%以上が半導体成分でもよい。SWNTが半導体的であると、抵抗温度係数が負の方向に向かう。SWNTが金属的だと、抵抗温度係数は正の方向に向かう。
SWNT薄膜では、これらが混合した状態であり、それぞれを足し合わせた結果が、実質的な抵抗温度係数となる。通常は、半導体的な温度依存性の方が大きいため、抵抗温度係数は負の値を示す。
通常、半導体の抵抗温度係数は負である。ボロメータ材料としては、半導体の抵抗温度係数が大きいということを利用するので、半導体成分が90%以上あることが有利である。数値的には、半導体成分が50%を超える、より好ましくは90%以上である。
[実施例]
以下、実施例を示すことにより、本発明のCNT薄膜について具体的に説明する。
(実施例1)
SWNT(Southwest Nanotechnologies,Inc社製)10mgを、ジクロロエタン100mg中に入れ、超音波分散し、CNT分散液を作製した。さらに、作製したCNT分散液を適度な濃度に希釈した。
前述のCNT分散液を、SiO基板上に適量滴下し、スピンコート法によってCNT薄膜を作製した(以下、SiO基板上に成膜したCNT薄膜を、単にCNT薄膜と呼称する)。
前述のCNT薄膜を、80℃のオーブンで数10分乾燥し、余分な溶媒を揮発させた。さらに、このCNT薄膜を、150℃のホットプレート上で30分程度加熱した。このCNT薄膜を、大気中280℃で1時間アニールした。ここで示した一連のCNT薄膜作製プロセスは、図3にまとめた。
(実施例2)
実施例1と同様に作製したCNT薄膜を、大気中200℃で1時間アニール処理を行った。
(実施例3)
実施例1と同様に作製したCNT薄膜を、大気中240℃で1時間アニール処理を行った。
(実施例4)
実施例1と同様に作製したCNT薄膜を、大気中320℃で1時間アニール処理を行った。
(比較例1)
SWNT(Southwest Nanotechnologies,Inc社製)10mgを、ジクロロエタン100mg中に入れ、超音波分散し、CNT分散液を作製した。さらに、作製したCNT分散液を適度な濃度に希釈した。
CNT分散液を、SiO基板上に適量滴下し、スピンコート法によってCNT薄膜を作製した(以下、SiO基板上に成膜したCNT薄膜を、単にCNT薄膜と呼ぶ)。前述のCNT薄膜を、80℃のオーブンで数10分乾燥し、余分な溶媒を揮発させた。比較例1においては、80℃乾燥後、特別な熱処理を加えなかった。
(比較例2)
比較例1と同様に作製したCNT薄膜を、150℃のホットプレート上で30分程度加熱した。比較例2では、150℃加熱後、特別な熱処理を加えなかった。
(比較例3)
比較例1と同様に作製したCNT薄膜を、150℃のホットプレート上で30分程度加熱した。比較例3では、さらに、大気中350℃で1時間アニールした。
(比較例4)
比較例1と同様に作製したCNT薄膜を、150℃のホットプレート上で30分程度加熱した。比較例4では、さらに、大気中280℃で2時間アニールした。
(比較例5)
比較例1と同様に作製したCNT薄膜を、150℃のホットプレート上で30分程度加熱した。比較例5では、さらに、大気中280℃で3時間アニールした。
(実験結果)
実施例1で作製したCNT薄膜の表面SEM像を、図4に示した。低倍率(×1000)では、均一に成膜されていることが確認でき、均一にポアが形成されているようにみえる。
高倍率(×5000)では、比較的大きなポアと比較的小さなポアが散りばめられていることが確認でき、これらがCNTのネットワーク構造からなることが確認できる。
実施例および比較例のCNT薄膜の膜厚を以下のようにして測定した。まず、CNT薄膜を塗布したSiO基板を割ることで断面を出す。そして、その断面をSEMで観察することでCNT薄膜の膜厚を測定した。
実施例および比較例に示したCNT薄膜の膜厚は、0.5〜1.0μmの範囲内にあり、平均的な膜厚は0.7〜0.8μmであった。なお、CNT薄膜の製膜条件によるばらつきや、アニール処理によるCNTの一部焼失などによって、実際の数値は変動する。
サンプルの電気測定結果を、図5および図6に示した。図5が抵抗温度係数(TCR)、図6が電気抵抗のアニール温度による変化を示している。電気測定においては、それぞれのサンプル表面に箔状の電極をあて、それぞれのサンプルに最適な電流値を通電し、電圧値の温度変化(−10〜50℃)を測定することで求めた。
赤外線センサ材料としては、TCRの絶対値が大きく、電気抵抗が小さいことが求められる。この条件から判断すると、電気抵抗がやや大きくなるものの、TCRの観点からみて、実施例1のサンプルが最もよいことが確認できる。
実施例2および実施例3のサンプルでも、TCRの絶対値が1%を超えているが、実施例1のサンプルには及ばないことが確認できる。また、実施例4のサンプルでは、TCRが低下しているとともに、電気抵抗が倍増してしまうため、アニール温度が高すぎると不適切であることが確認できる。
実際に、比較例3のサンプルでは、CNT自体の焼失が始まるため、電気抵抗が著しく増加して測定不能となった。また、比較例1および比較例2では、十分なアニール効果が得られていないことが確認できる。
比較例4では、TCRは−1.6%/Kであったが、電気抵抗が50MΩに増大した。また、比較例5では、電気抵抗が著しく増加して測定不能となった。これは、アニール時間を増大すると、CNT薄膜中のCNTの消失する割合が大きくなることに起因している。すなわち、280℃でアニールする場合のアニール時間は、2時間未満に設定することが望ましい。
上述のように、本発明の方法を用いることによって、赤外線センサに最適な赤外線センサ材料を得られることが確認できた。なお、本発明は本実施形態に限定されるものではなく、その要旨を逸脱しない範囲で各種の変形を許容する。
この出願は、2010年10月13日に出願された日本特許出願特願2010−230225を基礎とする優先権を主張し、その開示のすべてをここに取り込む。

Claims (11)

  1. CNT(Carbon NanoTube)を溶媒中に分散させてCNT分散液を調製し、
    前記CNT分散液を原料としてCNT薄膜を成膜し、
    前記CNT薄膜をアニール処理して、前記CNT薄膜の−10〜50℃における抵抗温度係数の絶対値を1%/K以上とする工程を含む、
    赤外線センサ材料の作製方法。
  2. 請求項1に記載の赤外線センサ材料の作製方法において、
    前記アニール処理を行う雰囲気が酸素を含む、赤外線センサ材料の作製方法。
  3. 請求項1または2に記載の赤外線センサ材料の作製方法において、
    前記アニール処理の温度が200〜340℃の範囲内である、赤外線センサ材料の作製方法。
  4. 請求項1ないし3いずれか一項に記載の赤外線センサ材料の作製方法において、
    前記アニール処理の時間が2時間未満である、赤外線センサ材料の作製方法。
  5. 請求項1ないし4いずれか一項に記載の赤外線センサ材料の作製方法において、
    前記アニール処理によって前記CNT薄膜中に含有されるCNTのうちCNT骨格の50%以上を損傷させない、赤外線センサ材料の作製方法。
  6. 請求項1ないし5いずれか一項に記載の作製方法で作製され、−10〜50℃における前記抵抗温度係数の絶対値が1%/K以上である、赤外線センサ材料。
  7. −10〜50℃における抵抗温度係数の絶対値が1%/K以上であるCNT薄膜を含む、赤外線センサ材料。
  8. 請求項6または7に記載の赤外線センサ材料において、
    前記CNT薄膜を構成するCNTの主成分がシングルウォールナノチューブである、赤外線センサ材料。
  9. 請求項8に記載の赤外線センサ材料において、
    前記シングルウォールナノチューブの90%以上が半導体成分である、赤外線センサ材料。
  10. 請求項6ないし9のいずれか一項に記載の赤外線センサ材料を利用する赤外線センサ素子。
  11. 請求項10に記載の赤外線センサ素子が二次元状に配列されている赤外線イメージセンサ。
JP2012538554A 2010-10-13 2011-09-01 赤外線センサ材料の作製方法、赤外線センサ材料、赤外線センサ素子、赤外線イメージセンサ Withdrawn JPWO2012049801A1 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010230225 2010-10-13
JP2010230225 2010-10-13
PCT/JP2011/004898 WO2012049801A1 (ja) 2010-10-13 2011-09-01 赤外線センサ材料の作製方法、赤外線センサ材料、赤外線センサ素子、赤外線イメージセンサ

Publications (1)

Publication Number Publication Date
JPWO2012049801A1 true JPWO2012049801A1 (ja) 2014-02-24

Family

ID=45938044

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012538554A Withdrawn JPWO2012049801A1 (ja) 2010-10-13 2011-09-01 赤外線センサ材料の作製方法、赤外線センサ材料、赤外線センサ素子、赤外線イメージセンサ

Country Status (4)

Country Link
US (1) US20130216469A1 (ja)
JP (1) JPWO2012049801A1 (ja)
CN (1) CN103153850A (ja)
WO (1) WO2012049801A1 (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6547163B2 (ja) * 2013-06-06 2019-07-24 公立大学法人首都大学東京 熱電変換材料及び熱電変換素子
WO2015005340A1 (ja) * 2013-07-08 2015-01-15 富士フイルム株式会社 熱電変換材料、熱電変換素子ならびにこれを用いた熱電発電用物品およびセンサー用電源
EP3582264B1 (en) * 2015-07-08 2020-10-07 Panasonic Intellectual Property Management Co., Ltd. Imaging device
US10908025B2 (en) 2016-12-07 2021-02-02 Carbon Solutions, Inc. Patterned focal plane arrays of carbon nanotube thin film bolometers with high temperature coefficient of resistance and improved detectivity for infrared imaging
JP7255612B2 (ja) * 2019-01-29 2023-04-11 日本電気株式会社 カーボンナノチューブを用いた赤外線センサー及びその製造方法
US20220221346A1 (en) * 2019-05-23 2022-07-14 Nec Corporation Bolometer having an alignment layer of carbon nanotubes and method for manufacturing same
JP2022025052A (ja) 2020-07-28 2022-02-09 日本電気株式会社 ボロメータ及びその製造方法
JP2022174871A (ja) 2021-05-12 2022-11-25 日本電気株式会社 ボロメータおよびその製造方法
JP2022174894A (ja) 2021-05-12 2022-11-25 日本電気株式会社 ボロメータ及びその製造方法
CN115849346A (zh) * 2022-11-25 2023-03-28 深圳大学 一种mwcnt多孔气凝胶薄膜及其制备方法与应用

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6706402B2 (en) * 2001-07-25 2004-03-16 Nantero, Inc. Nanotube films and articles
JP2005059135A (ja) * 2003-08-11 2005-03-10 Canon Inc カーボンナノチューブを用いたデバイス及びその製造方法
KR101458846B1 (ko) * 2004-11-09 2014-11-07 더 보드 오브 리전츠 오브 더 유니버시티 오브 텍사스 시스템 나노섬유 리본과 시트 및 트위스팅 및 논-트위스팅 나노섬유 방적사의 제조 및 애플리케이션
US7723684B1 (en) * 2007-01-30 2010-05-25 The Regents Of The University Of California Carbon nanotube based detector
US8110883B2 (en) * 2007-03-12 2012-02-07 Nantero Inc. Electromagnetic and thermal sensors using carbon nanotubes and methods of making same
FR2923601B1 (fr) * 2007-11-12 2010-01-01 Commissariat Energie Atomique Detecteur de rayonnement electromagnetique a connexion par nanofil et procede de realisation
WO2010144457A2 (en) * 2009-06-09 2010-12-16 Ramesh Sivarajan Solution based nanostructured carbon materials (ncm) coatings on bipolar plates in fuel cells
CN101871818B (zh) * 2010-06-25 2012-05-23 清华大学 红外探测器

Also Published As

Publication number Publication date
US20130216469A1 (en) 2013-08-22
WO2012049801A1 (ja) 2012-04-19
CN103153850A (zh) 2013-06-12

Similar Documents

Publication Publication Date Title
WO2012049801A1 (ja) 赤外線センサ材料の作製方法、赤外線センサ材料、赤外線センサ素子、赤外線イメージセンサ
KR101498522B1 (ko) 마이크로 볼로미터용 고특성 산화물 박막 제조방법
CN101900607A (zh) 一种用于红外探测器的氧化钒薄膜及其制作方法
Ma et al. Infrared micro-detectors with high sensitivity and high response speed using VO 2-coated helical carbon nanocoils
Lee et al. Effect of mesoscale grains on thermoelectric characteristics of aligned ZnO/PVP composite nanofibers
Wu et al. Quick response PZT/P (VDF-TrFE) composite film pyroelectric infrared sensor with patterned polyimide thermal isolation layer
Nam et al. Electrical properties of vanadium tungsten oxide thin films
Zhai et al. Study on the resistance characteristic of Pt thin film
Whatmore et al. Pyroelectric ceramics and thin films for applications in uncooled infra-red sensor arrays
US7442933B2 (en) Bolometer having an amorphous titanium oxide layer with high resistance stability
JP5423234B2 (ja) ボロメータ材料の製造方法
Ebrahim et al. Pyroelectric infrared detector based on polyaniline/polyvinylidene fluoride blend
CN104659152B (zh) 一种基于扭转双层石墨烯的光电探测器及其制备方法
JP2018082022A (ja) 光電変換素子、固体撮像素子および電子装置
WO2011135975A1 (ja) SiGe積層薄膜それを用いた赤外線センサ
Shen et al. A low-cost infrared absorbing structure for an uncooled infrared detector in a standard CMOS process
Alaboz et al. Comparative study of annealing and gold dopant effect on DC sputtered vanadium oxide films for bolometer applications
Wang et al. Modification of electrical properties of amorphous vanadium oxide (a-VOx) thin film thermistor for microbolometer
Li et al. Pyroelectricity induced by Schottky interface above the Curie temperature of bulk materials
JP2006003301A (ja) 赤外線検出素子、赤外線検出装置および固体撮像装置、および赤外線検出装置の製造方法
Tang et al. A micro graphene high temperature sensor with a single Si3N4 protective layer
CA3087748C (en) Thermal radiation detectors with carbon-nanotube-based optical absorbers
JP2002118004A (ja) 感温抵抗変化膜およびその製造方法並びに感温抵抗変化膜を用いた赤外線センサ
Fu et al. Conformal Broad‐Spectra Laser Sensing Array from Ferroelectric Polymer Composites
Grayli et al. Room temperature deposition of highly sensitive vanadium oxide films for infrared light sensing applications

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20141104