JPWO2011052042A1 - 空気調和装置 - Google Patents

空気調和装置 Download PDF

Info

Publication number
JPWO2011052042A1
JPWO2011052042A1 JP2011538143A JP2011538143A JPWO2011052042A1 JP WO2011052042 A1 JPWO2011052042 A1 JP WO2011052042A1 JP 2011538143 A JP2011538143 A JP 2011538143A JP 2011538143 A JP2011538143 A JP 2011538143A JP WO2011052042 A1 JPWO2011052042 A1 JP WO2011052042A1
Authority
JP
Japan
Prior art keywords
heat
refrigerant
heat medium
heat exchanger
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011538143A
Other languages
English (en)
Other versions
JP5279919B2 (ja
Inventor
山下 浩司
浩司 山下
裕之 森本
裕之 森本
祐治 本村
祐治 本村
傑 鳩村
傑 鳩村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of JPWO2011052042A1 publication Critical patent/JPWO2011052042A1/ja
Application granted granted Critical
Publication of JP5279919B2 publication Critical patent/JP5279919B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/06Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the arrangements for the supply of heat-exchange fluid for the subsequent treatment of primary air in the room units
    • F24F3/065Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the arrangements for the supply of heat-exchange fluid for the subsequent treatment of primary air in the room units with a plurality of evaporators or condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B25/00Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00
    • F25B25/005Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00 using primary and secondary systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/006Compression machines, plants or systems with reversible cycle not otherwise provided for two pipes connecting the outdoor side to the indoor side with multiple indoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/007Compression machines, plants or systems with reversible cycle not otherwise provided for three pipes connecting the outdoor side to the indoor side with multiple indoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0231Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units with simultaneous cooling and heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/0272Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using bridge circuits of one-way valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02732Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using two three-way valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02741Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using one four-way valve

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Other Air-Conditioning Systems (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

省エネルギー化を図ることができる空気調和装置を得る。第1冷媒流路切替装置11、第2冷媒流路切替装置18、及び開閉装置17aの切替状態によらず、第2冷媒流路切替装置18の室外機1からの熱源側冷媒が流入する流路の圧力が、室外機1に熱源側冷媒を流出する流路の圧力より高いものである。

Description

本発明は、たとえばビル用マルチエアコン等に適用される空気調和装置に関するものである。
ビル用マルチエアコンなどの空気調和装置においては、たとえば建物外に配置した熱源機である室外機と建物の室内に配置した室内機との間に冷媒を循環させる。そして、冷媒が放熱、吸熱して、加熱、冷却された空気により空調対象空間の冷房または暖房を行なっていた。冷媒としては、たとえばHFC(ハイドロフルオロカーボン)冷媒が多く使われている。また、二酸化炭素(CO2 )等の自然冷媒を使うものも提案されている。
また、チラーと呼ばれる空気調和装置においては、建物外に配置した熱源機にて、冷熱または温熱を生成する。そして、室外機内に配置した熱交換器で水、不凍液等を加熱、冷却し、これを室内機であるファンコイルユニット、パネルヒーター等に搬送して冷房または暖房を行なっていた(たとえば、特許文献1参照)。
また、排熱回収型チラーと呼ばれる、熱源機と室内機の間に4本の水配管を接続し、冷却、加熱した水等を同時に供給し、室内機において冷房または暖房を自由に選択できるものもある(たとえば、特許文献2参照)。
また、1次冷媒と2次冷媒の熱交換器を各室内機の近傍に配置し、室内機に2次冷媒を搬送するように構成されているものもある(たとえば、特許文献3参照)。
また、室外機と熱交換器を持つ分岐ユニット間を2本の配管で接続し、室内機に2次冷媒を搬送するように構成されているものもある(たとえば、特許文献4参照)。
特開2005−140444号公報(第4頁、図1等) 特開平5−280818号公報(第4、5頁、図1等) 特開2001−289465号公報(第5〜8頁、図1、図2等) 特開2003−343936号公報(第5頁、図1)
従来のビル用マルチエアコン等の空気調和装置では、室内機まで冷媒を循環させているため、冷媒が室内等に漏れる可能性があった。一方、特許文献1及び特許文献2に記載されているような空気調和装置では、冷媒が室内機を通過することはない。しかしながら、特許文献1及び特許文献2に記載されているような空気調和装置では、建物外の熱源機において熱媒体を加熱または冷却し、室内機側に搬送する必要がある。このため、熱媒体の循環経路が長くなる。ここで、熱媒体により、所定の加熱あるいは冷却の仕事をする熱を搬送しようとすると、搬送動力等によるエネルギーの消費量が冷媒よりも高くなる。そのため、循環経路が長くなると、搬送動力が非常に大きくなる。このことから、空気調和装置において、熱媒体の循環をうまく制御することができれば省エネルギー化を図れることがわかる。
特許文献2に記載されているような空気調和装置においては、室内機毎に冷房または暖房を選択できるようにするためには室外側から室内まで4本の配管を接続しなければならず、工事性が悪いものとなっていた。特許文献3に記載されている空気調和装置においては、ポンプ等の2次媒体循環手段を室内機個別に持つ必要があるため、高価なシステムとなるだけでなく、騒音も大きいものとなり、実用的なものではなかった。加えて、熱交換器が室内機の近傍にあるため、冷媒が室内に近い場所で漏れるという危険性を排除することができなかった。
特許文献4に記載されているような空気調和装置においては、熱交換後の1次冷媒が熱交換前の1次冷媒と同じ流路に流入しているため、複数の室内機を接続した場合に、各室内機にて最大能力を発揮することができず、エネルギー的に無駄な構成となっていた。また、分岐ユニットと延長配管との接続が冷房2本、暖房2本の合計4本の配管でなされているため、結果的に室外機と分岐ユニットとが4本の配管で接続されているシステムと類似の構成となっており、工事性が悪いシステムとなっていた。
本発明は、上記の課題を解決するためになされたもので、省エネルギー化を図ることができる空気調和装置を得るものである。また、室内機または室内機の近傍まで冷媒を循環させずに安全性の向上を図ることができる空気調和装置を得るものである。また、室外機と分岐ユニット(熱媒体変換機)または室内機との接続配管を減らし、工事性の向上を図るとともに、エネルギー効率を向上させることができる空気調和装置を得るものである。
本発明に係る空気調和装置は、圧縮機、熱源側熱交換器、複数の絞り装置、複数の熱媒体間熱交換器、複数のポンプ、及び、複数の利用側熱交換器を少なくとも備え、前記圧縮機、前記熱源側熱交換器、前記複数の絞り装置、及び、前記複数の熱媒体間熱交換器が冷媒配管で接続されて冷媒を循環させる冷媒循環回路が形成され、前記複数のポンプ、前記複数の利用側熱交換器、及び、前記複数の熱媒体間熱交換器が接続されて熱媒体を循環させる熱媒体循環回路が形成された空気調和装置であって、前記圧縮機及び前記熱源側熱交換器は室外機に収容され、前記複数の絞り装置、前記複数の熱媒体間熱交換器及び前記複数のポンプは熱媒体変換機に収容され、前記室外機における前記冷媒の循環経路を切り替える第1冷媒流路切替装置と、前記第1冷媒流路切替装置の切替状態によらず、前記室外機と前記熱媒体変換機との間の前記冷媒配管を流れる冷媒の向きを一定にする冷媒整流装置と、前記複数の熱媒体間熱交換器ごとに設けられ、前記室外機からの冷媒が前記熱媒体間熱交換器に流入する流路と、前記熱媒体間熱交換器からの冷媒が前記室外機に流出する流路とを切り替える複数の第2冷媒流路切替装置と、前記室外機からの冷媒が前記絞り装置に流入する流路と、前記室外機からの冷媒が前記第2冷媒流路切替装置に流入する流路とを切り替える第3冷媒流路切替装置とを備え、前記第1冷媒流路切替装置、前記第2冷媒流路切替装置、及び第3冷媒流路切替装置の切替状態によらず、前記第2冷媒流路切替装置の前記室外機からの冷媒が流入する流路の圧力が、前記室外機に冷媒を流出する流路の圧力より高いものである。
本発明は、熱媒体が循環する配管を短くでき、搬送動力が少なくて済むため、省エネルギー化を図ることができる。また、第2冷媒流路切替装置が切り替えを行う流路間に圧力差を生じさせることができ、第2冷媒流路切替装置として四方弁を用いることが可能となる。
本発明の実施の形態に係る空気調和装置の設置例を示す概略図である。 本発明の実施の形態に係る空気調和装置の設置例を示す概略図である。 本発明の実施の形態に係る空気調和装置の回路構成の一例を示す概略回路構成図である。 本発明の実施の形態に係る空気調和装置の回路構成の別の一例を示す概略回路構成図である。 本発明の実施の形態に係る空気調和装置の全冷房運転モード時における冷媒の流れを示す冷媒回路図である。 本発明の実施の形態に係る空気調和装置の全暖房運転モード時における冷媒の流れを示す冷媒回路図である。 本発明の実施の形態に係る空気調和装置の冷房主体運転モード時における冷媒の流れを示す冷媒回路図である。 本発明の実施の形態に係る空気調和装置の暖房主体運転モード時における冷媒の流れを示す冷媒回路図である。 本発明の実施の形態に係る空気調和装置の運転状態を表すP−h線図である。 本発明の実施の形態に係る空気調和装置の設置例を示す概略図である。 本発明の実施の形態に係る空気調和装置の回路構成の更に別の一例を示す概略回路構成図である。
以下、図面に基づいて本発明の実施の形態について説明する。
図1及び図2は、本発明の実施の形態に係る空気調和装置の設置例を示す概略図である。図1及び図2に基づいて、空気調和装置の設置例について説明する。この空気調和装置は、冷媒(熱源側冷媒、熱媒体)を循環させる冷凍サイクル(冷媒循環回路A、熱媒体循環回路B)を利用することで各室内機が運転モードとして冷房モードあるいは暖房モードを自由に選択できるものである。なお、図1を含め、以下の図面では各構成部材の大きさの関係が実際のものとは異なる場合がある。
図1においては、実施の形態に係る空気調和装置は、熱源機である1台の室外機1と、複数台の室内機2と、室外機1と室内機2との間に介在する熱媒体変換機3と、を有している。熱媒体変換機3は、熱源側冷媒と熱媒体とで熱交換を行なうものである。室外機1と熱媒体変換機3とは、熱源側冷媒を導通する冷媒配管4で接続されている。熱媒体変換機3と室内機2とは、熱媒体を導通する配管(熱媒体配管)5で接続されている。そして、室外機1で生成された冷熱あるいは温熱は、熱媒体変換機3を介して室内機2に配送されるようになっている。
図2においては、実施の形態に係る空気調和装置は、1台の室外機1と、複数台の室内機2と、室外機1と室内機2との間に介在する複数に分割した熱媒体変換機3(親熱媒体変換機3a、子熱媒体変換機3b)と、を有している。室外機1と親熱媒体変換機3aとは、冷媒配管4で接続されている。親熱媒体変換機3aと子熱媒体変換機3bとは、冷媒配管4で接続されている。子熱媒体変換機3bと室内機2とは、配管5で接続されている。そして、室外機1で生成された冷熱あるいは温熱は、親熱媒体変換機3a及び子熱媒体変換機3bを介して室内機2に配送されるようになっている。
室外機1は、通常、ビル等の建物9の外の空間(たとえば、屋上等)である室外空間6に配置され、熱媒体変換機3を介して室内機2に冷熱又は温熱を供給するものである。室内機2は、建物9の内部の空間(たとえば、居室等)である室内空間7に冷房用空気あるいは暖房用空気を供給できる位置に配置され、空調対象空間となる室内空間7に冷房用空気あるいは暖房用空気を供給するものである。熱媒体変換機3は、室外機1及び室内機2とは別筐体として、室外空間6及び室内空間7とは別の位置に設置できるように構成されており、室外機1及び室内機2とは冷媒配管4及び配管5でそれぞれ接続され、室外機1から供給される冷熱あるいは温熱を室内機2に伝達するものである。
図1及び図2に示すように、実施の形態に係る空気調和装置においては、室外機1と熱媒体変換機3とが2本の冷媒配管4を用いて、熱媒体変換機3と各室内機2とが2本の配管5を用いて、それぞれ接続されている。このように、実施の形態に係る空気調和装置では、2本の配管(冷媒配管4、配管5)を用いて各ユニット(室外機1、室内機2及び熱媒体変換機3)を接続することにより、施工が容易となっている。
図2に示すように、熱媒体変換機3を、1つの親熱媒体変換機3aと、親熱媒体変換機3aから派生した2つの子熱媒体変換機3b(子熱媒体変換機3b(1)、子熱媒体変換機3b(2))と、に分けることもできる。このようにすることにより、1つの親熱媒体変換機3aに対し、子熱媒体変換機3bを複数接続できるようになる。この構成においては、親熱媒体変換機3aと子熱媒体変換機3bとを接続する冷媒配管4は、3本になっている。この回路の詳細については、後段で詳細に説明するものとする(図3A参照)。
なお、図1及び図2においては、熱媒体変換機3が、建物9の内部ではあるが室内空間7とは別の空間である天井裏等の空間(以下、単に空間8と称する)に設置されている状態を例に示している。熱媒体変換機3は、その他、エレベーター等がある共用空間等に設置することも可能である。また、図1及び図2においては、室内機2が天井カセット型である場合を例に示してあるが、これに限定するものではなく、天井埋込型や天井吊下式等、室内空間7に直接またはダクト等により、暖房用空気あるいは冷房用空気を吹き出せるようになっていればどんな種類のものでもよい。
図1及び図2においては、室外機1が室外空間6に設置されている場合を例に示しているが、これに限定するものではない。たとえば、室外機1は、換気口付の機械室等の囲まれた空間に設置してもよく、排気ダクトで廃熱を建物9の外に排気することができるのであれば建物9の内部に設置してもよく、あるいは、水冷式の室外機1を用いる場合にも建物9の内部に設置するようにしてもよい。このような場所に室外機1を設置するとしても、特段の問題が発生することはない。
また、熱媒体変換機3は、室外機1の近傍に設置することもできる。ただし、熱媒体変換機3から室内機2までの距離が長すぎると、熱媒体の搬送動力がかなり大きくなるため、省エネの効果は薄れることに留意が必要である。さらに、室外機1、室内機2及び熱媒体変換機3の接続台数を図1及び図2に図示してある台数に限定するものではなく、本実施の形態に係る空気調和装置が設置される建物9に応じて台数を決定すればよい。
図3は、実施の形態に係る空気調和装置(以下、空気調和装置100と称する)の回路構成の一例を示す概略回路構成図である。図3に基づいて、空気調和装置100の詳しい構成について説明する。図3に示すように、室外機1と熱媒体変換機3とが、熱媒体変換機3に備えられている熱媒体間熱交換器15a及び熱媒体間熱交換器15bを介して冷媒配管4で接続されている。また、熱媒体変換機3と室内機2とも、熱媒体間熱交換器15a及び熱媒体間熱交換器15bを介して配管5で接続されている。
[室外機1]
室外機1には、圧縮機10と、四方弁等の第1冷媒流路切替装置11と、熱源側熱交換器12と、アキュムレーター19とが冷媒配管4で直列に接続されて搭載されている。また、室外機1には、第1接続配管4a、第2接続配管4b、逆止弁13a、逆止弁13b、逆止弁13c、及び、逆止弁13dが設けられている。第1接続配管4a、第2接続配管4b、逆止弁13a、逆止弁13b、逆止弁13c、及び、逆止弁13dを設けることで、室内機2の要求する運転に関わらず、熱媒体変換機3に流入させる熱源側冷媒の流れを一定方向にすることができる。
圧縮機10は、熱源側冷媒を吸入し、その熱源側冷媒を圧縮して高温・高圧の状態にするものであり、たとえば容量制御可能なインバータ圧縮機等で構成するとよい。第1冷媒流路切替装置11は、暖房運転時(全暖房運転モード時及び暖房主体運転モード時)における熱源側冷媒の流れと冷房運転時(全冷房運転モード時及び冷房主体運転モード時)における熱源側冷媒の流れとを切り替えるものである。熱源側熱交換器12は、暖房運転時には蒸発器として機能し、冷房運転時には凝縮器(または放熱器)として機能し、図示省略のファン等の送風機から供給される空気と熱源側冷媒との間で熱交換を行ない、その熱源側冷媒を蒸発ガス化又は凝縮液化するものである。アキュムレーター19は、圧縮機10の吸入側に設けられており、過剰な冷媒を貯留するものである。
逆止弁13dは、熱媒体変換機3と第1冷媒流路切替装置11との間における冷媒配管4に設けられ、所定の方向(熱媒体変換機3から室外機1への方向)のみに熱源側冷媒の流れを許容するものである。逆止弁13aは、熱源側熱交換器12と熱媒体変換機3との間における冷媒配管4に設けられ、所定の方向(室外機1から熱媒体変換機3への方向)のみに熱源側冷媒の流れを許容するものである。逆止弁13bは、第1接続配管4aに設けられ、暖房運転時において圧縮機10から吐出された熱源側冷媒を熱媒体変換機3に流通させるものである。逆止弁13cは、第2接続配管4bに設けられ、暖房運転時において熱媒体変換機3から戻ってきた熱源側冷媒を圧縮機10の吸入側に流通させるものである。なお、この逆止弁13a〜13dにより冷媒整流装置を構成する。
第1接続配管4aは、室外機1内において、第1冷媒流路切替装置11と逆止弁13dとの間における冷媒配管4と、逆止弁13aと熱媒体変換機3との間における冷媒配管4と、を接続するものである。第2接続配管4bは、室外機1内において、逆止弁13dと熱媒体変換機3との間における冷媒配管4と、熱源側熱交換器12と逆止弁13aとの間における冷媒配管4と、を接続するものである。なお、図3では、第1接続配管4a、第2接続配管4b、逆止弁13a、逆止弁13b、逆止弁13c、及び、逆止弁13dを設けた場合を例に示しているが、これに限定するものではなく、循環方向が同じになる別の装置であってもよい。
[室内機2]
室内機2には、それぞれ利用側熱交換器26が搭載されている。この利用側熱交換器26は、配管5によって熱媒体変換機3の熱媒体流量調整装置25と第2熱媒体流路切替装置23に接続するようになっている。この利用側熱交換器26は、図示省略のファン等の送風機から供給される空気と熱媒体との間で熱交換を行ない、室内空間7に供給するための暖房用空気あるいは冷房用空気を生成するものである。
この図3では、4台の室内機2が熱媒体変換機3に接続されている場合を例に示しており、紙面下から室内機2a、室内機2b、室内機2c、室内機2dとして図示している。また、室内機2a〜室内機2dに応じて、利用側熱交換器26も、紙面下側から利用側熱交換器26a、利用側熱交換器26b、利用側熱交換器26c、利用側熱交換器26dとして図示している。なお、図1及び図2と同様に、室内機2の接続台数を図3に示す4台に限定するものではない。
[熱媒体変換機3]
熱媒体変換機3には、2つの熱媒体間熱交換器15と、2つの絞り装置16と、2つの開閉装置17と、2つの第2冷媒流路切替装置18と、2つのポンプ21と、4つの第1熱媒体流路切替装置22と、4つの第2熱媒体流路切替装置23と、4つの熱媒体流量調整装置25と、が搭載されている。なお、熱媒体変換機3を親熱媒体変換機3aと子熱媒体変換機3bとに分けたものについては図3Aで説明する。
2つの熱媒体間熱交換器15(熱媒体間熱交換器15a、熱媒体間熱交換器15b)は、凝縮器(放熱器)又は蒸発器として機能し、熱源側冷媒と熱媒体とで熱交換を行ない、室外機1で生成され熱源側冷媒に貯えられた冷熱又は温熱を熱媒体に伝達するものである。熱媒体間熱交換器15aは、冷媒循環回路Aにおける絞り装置16aと第2冷媒流路切替装置18aとの間に設けられており、全暖房運転モード時において熱媒体の加熱に供し、全冷房運転モード時、冷房主体運転モード時及び暖房主体運転モード時において熱媒体の冷却に供するものである。また、熱媒体間熱交換器15bは、冷媒循環回路Aにおける絞り装置16bと第2冷媒流路切替装置18bとの間に設けられており、全暖房運転モード時、冷房主体運転モード時及び暖房主体運転モード時において熱媒体の加熱に供し、全冷房運転モード時において熱媒体の冷却に供するものである。
2つの絞り装置16(絞り装置16a、絞り装置16b)は、減圧弁や膨張弁としての機能を有し、熱源側冷媒を減圧して膨張させるものである。絞り装置16aは、冷房運転時の熱源側冷媒の流れにおいて熱媒体間熱交換器15aの上流側に設けられている。絞り装置16bは、冷房運転時の熱源側冷媒の流れにおいて熱媒体間熱交換器15bの上流側に設けられている。2つの絞り装置16は、開度が可変に制御可能なもの、たとえば電子式膨張弁等で構成するとよい。
2つの開閉装置17(開閉装置17a(第3冷媒流路切替装置)、開閉装置17b)は、二方弁等で構成されており、冷媒配管4を開閉するものである。開閉装置17aは、熱源側冷媒の入口側における冷媒配管4(1)に設けられている。開閉装置17bは、熱源側冷媒の入口側の冷媒配管4(2)と出口側の冷媒配管4(1)とを接続した配管に設けられている。2つの第2冷媒流路切替装置18(第2冷媒流路切替装置18a、第2冷媒流路切替装置18b)は、四方弁等で構成され、運転モードに応じて熱源側冷媒の流れを切り替えるものである。第2冷媒流路切替装置18aは、冷房運転時の熱源側冷媒の流れにおいて熱媒体間熱交換器15aの下流側に設けられている。第2冷媒流路切替装置18bは、全冷房運転時の熱源側冷媒の流れにおいて熱媒体間熱交換器15bの下流側に設けられている。
熱媒体間熱交換器バイパス配管4dは、熱源側冷媒の入口側の冷媒配管4(2)を開閉装置17aの上流側で分岐し、冷媒配管4(2)と2つの第2冷媒流路切替装置18を接続する。開閉装置17aが開のとき、室外機1からの熱源側冷媒が絞り装置16に至る流路が形成される。また、開閉装置17aが閉のとき、室外機1からの熱源側冷媒が第2冷媒流路切替装置18に至る流路が形成される。2つの第2冷媒流路切替装置18をそれぞれ切り替えることにより、室外機1からの熱源側冷媒が熱媒体間熱交換器15に流入する流路と、熱媒体間熱交換器15からの熱源側冷媒が室外機1に流出する流路とが切り替えられる。
2つのポンプ21(ポンプ21a、ポンプ21b)は、配管5を導通する熱媒体を循環させるものである。ポンプ21aは、熱媒体間熱交換器15aと第2熱媒体流路切替装置23との間における配管5に設けられている。ポンプ21bは、熱媒体間熱交換器15bと第2熱媒体流路切替装置23との間における配管5に設けられている。2つのポンプ21は、たとえば容量制御可能なポンプ等で構成するとよい。なお、ポンプ21aを、熱媒体間熱交換器15aと第1熱媒体流路切替装置22との間における配管5に設けてもよい。また、ポンプ21bを、熱媒体間熱交換器15bと第1熱媒体流路切替装置22との間における配管5に設けてもよい。
4つの第1熱媒体流路切替装置22(第1熱媒体流路切替装置22a〜第1熱媒体流路切替装置22d)は、三方弁等で構成されており、熱媒体の流路を切り替えるものである。第1熱媒体流路切替装置22は、室内機2の設置台数に応じた個数(ここでは4つ)が設けられるようになっている。第1熱媒体流路切替装置22は、三方のうちの一つが熱媒体間熱交換器15aに、三方のうちの一つが熱媒体間熱交換器15bに、三方のうちの一つが熱媒体流量調整装置25に、それぞれ接続され、利用側熱交換器26の熱媒体流路の出口側に設けられている。なお、室内機2に対応させて、紙面下側から第1熱媒体流路切替装置22a、第1熱媒体流路切替装置22b、第1熱媒体流路切替装置22c、第1熱媒体流路切替装置22dとして図示している。
4つの第2熱媒体流路切替装置23(第2熱媒体流路切替装置23a〜第2熱媒体流路切替装置23d)は、三方弁等で構成されており、熱媒体の流路を切り替えるものである。第2熱媒体流路切替装置23は、室内機2の設置台数に応じた個数(ここでは4つ)が設けられるようになっている。第2熱媒体流路切替装置23は、三方のうちの一つが熱媒体間熱交換器15aに、三方のうちの一つが熱媒体間熱交換器15bに、三方のうちの一つが利用側熱交換器26に、それぞれ接続され、利用側熱交換器26の熱媒体流路の入口側に設けられている。なお、室内機2に対応させて、紙面下側から第2熱媒体流路切替装置23a、第2熱媒体流路切替装置23b、第2熱媒体流路切替装置23c、第2熱媒体流路切替装置23dとして図示している。
4つの熱媒体流量調整装置25(熱媒体流量調整装置25a〜熱媒体流量調整装置25d)は、たとえばステッピングモーターを用いた二方弁等で構成されており、熱媒体流路となる配管5の開度を変更可能にし、熱媒体の流量を調整するものである。熱媒体流量調整装置25は、室内機2の設置台数に応じた個数(ここでは4つ)が設けられるようになっている。熱媒体流量調整装置25は、一方が利用側熱交換器26に、他方が第1熱媒体流路切替装置22に、それぞれ接続され、利用側熱交換器26の熱媒体流路の出口側に設けられている。なお、室内機2に対応させて、紙面下側から熱媒体流量調整装置25a、熱媒体流量調整装置25b、熱媒体流量調整装置25c、熱媒体流量調整装置25dとして図示している。
なお、本実施の形態では、熱媒体流量調整装置25は利用側熱交換器26の出口側(下流側)に設ける場合を説明するが、これに限らず、一方を利用側熱交換器26に、他方が第2熱媒体流路切替装置23に接続し、利用側熱交換器26の入口側(上流側)に設けるようにしてもよい。
また、熱媒体変換機3には、各種検出手段(2つの第1温度センサー31、4つの第2温度センサー34、4つの第3温度センサー35、及び、圧力センサー36)が設けられている。これらの検出手段で検出された情報(温度情報、圧力情報)は、空気調和装置100の動作を統括制御する制御装置(図示省略)に送られ、圧縮機10の駆動周波数、図示省略の送風機の回転数、第1冷媒流路切替装置11の切り替え、ポンプ21の駆動周波数、第2冷媒流路切替装置18の切り替え、熱媒体の流路の切替等の制御に利用されることになる。
2つの第1温度センサー31(第1温度センサー31a、第1温度センサー31b)は、熱媒体間熱交換器15から流出した熱媒体、つまり熱媒体間熱交換器15の出口における熱媒体の温度を検出するものであり、たとえばサーミスター等で構成するとよい。第1温度センサー31aは、ポンプ21aの入口側における配管5に設けられている。第1温度センサー31bは、ポンプ21bの入口側における配管5に設けられている。
4つの第2温度センサー34(第2温度センサー34a〜第2温度センサー34d)は、第1熱媒体流路切替装置22と熱媒体流量調整装置25との間に設けられ、利用側熱交換器26から流出した熱媒体の温度を検出するものであり、サーミスター等で構成するとよい。第2温度センサー34は、室内機2の設置台数に応じた個数(ここでは4つ)が設けられるようになっている。なお、室内機2に対応させて、紙面下側から第2温度センサー34a、第2温度センサー34b、第2温度センサー34c、第2温度センサー34dとして図示している。
4つの第3温度センサー35(第3温度センサー35a〜第3温度センサー35d)は、熱媒体間熱交換器15の熱源側冷媒の入口側または出口側に設けられ、熱媒体間熱交換器15に流入する熱源側冷媒の温度または熱媒体間熱交換器15から流出した熱源側冷媒の温度を検出するものであり、サーミスター等で構成するとよい。第3温度センサー35aは、熱媒体間熱交換器15aと第2冷媒流路切替装置18aとの間に設けられている。第3温度センサー35bは、熱媒体間熱交換器15aと絞り装置16aとの間に設けられている。第3温度センサー35cは、熱媒体間熱交換器15bと第2冷媒流路切替装置18bとの間に設けられている。第3温度センサー35dは、熱媒体間熱交換器15bと絞り装置16bとの間に設けられている。
圧力センサー36は、第3温度センサー35dの設置位置と同様に、熱媒体間熱交換器15bと絞り装置16bとの間に設けられ、熱媒体間熱交換器15bと絞り装置16bとの間を流れる熱源側冷媒の圧力を検出するものである。
また、図示省略の制御装置は、マイコン等で構成されており、各種検出手段での検出情報及びリモコンからの指示に基づいて、圧縮機10の駆動周波数、送風機の回転数(ON/OFF含む)、第1冷媒流路切替装置11の切り替え、ポンプ21の駆動、絞り装置16の開度、開閉装置17の開閉、第2冷媒流路切替装置18の切り替え、第1熱媒体流路切替装置22の切り替え、第2熱媒体流路切替装置23の切り替え、及び、熱媒体流量調整装置25の駆動等を制御し、後述する各運転モードを実行するようになっている。なお、制御装置は、ユニット毎に設けてもよく、室外機1または熱媒体変換機3に設けてもよい。
熱媒体を導通する配管5は、熱媒体間熱交換器15aに接続されるものと、熱媒体間熱交換器15bに接続されるものと、で構成されている。配管5は、熱媒体変換機3に接続される室内機2の台数に応じて分岐(ここでは、各4分岐)されている。そして、配管5は、第1熱媒体流路切替装置22、及び、第2熱媒体流路切替装置23で接続されている。第1熱媒体流路切替装置22及び第2熱媒体流路切替装置23を制御することで、熱媒体間熱交換器15aからの熱媒体を利用側熱交換器26に流入させるか、熱媒体間熱交換器15bからの熱媒体を利用側熱交換器26に流入させるかが決定されるようになっている。
そして、空気調和装置100では、圧縮機10、第1冷媒流路切替装置11、熱源側熱交換器12、開閉装置17、第2冷媒流路切替装置18、熱媒体間熱交換器15aの冷媒流路、絞り装置16、及び、アキュムレーター19を、冷媒配管4で接続して冷媒循環回路Aを構成している。また、熱媒体間熱交換器15aの熱媒体流路、ポンプ21、第1熱媒体流路切替装置22、熱媒体流量調整装置25、利用側熱交換器26、及び、第2熱媒体流路切替装置23を、配管5で接続して熱媒体循環回路Bを構成している。つまり、熱媒体間熱交換器15のそれぞれに複数台の利用側熱交換器26が並列に接続され、熱媒体循環回路Bを複数系統としているのである。
よって、空気調和装置100では、室外機1と熱媒体変換機3とが、熱媒体変換機3に設けられている熱媒体間熱交換器15a及び熱媒体間熱交換器15bを介して接続され、熱媒体変換機3と室内機2とも、熱媒体間熱交換器15a及び熱媒体間熱交換器15bを介して接続されている。すなわち、空気調和装置100では、熱媒体間熱交換器15a及び熱媒体間熱交換器15bで冷媒循環回路Aを循環する熱源側冷媒と熱媒体循環回路Bを循環する熱媒体とが熱交換するようになっている。
熱媒体としては、熱媒体循環回路Bの循環により気体と液体との二相変化をしない単相の液を用いる。たとえば水や不凍液等を用いる。
図3Aは、実施の形態に係る空気調和装置(以下、空気調和装置100Aと称する)の回路構成の別の一例を示す概略回路構成図である。図3Aに基づいて、熱媒体変換機3を親熱媒体変換機3aと子熱媒体変換機3bとに分けた場合の空気調和装置100Aの回路構成について説明する。図3Aに示すように、熱媒体変換機3は、親熱媒体変換機3aと、子熱媒体変換機3bとで、筐体を分けて構成されている。このように構成することにより、図2に示したように1つの親熱媒体変換機3aに対し、複数の子熱媒体変換機3bを接続することができる。
親熱媒体変換機3aには、気液分離器14と、絞り装置16cと、が設けられている。その他の構成要素については、子熱媒体変換機3bに搭載されている。気液分離器14は、室外機1に接続する1本の冷媒配管4(2)と、子熱媒体変換機3bの第2冷媒流路切替装置18に接続する熱媒体間熱交換器バイパス配管4dと、子熱媒体変換機3bの開閉装置17aを介して熱媒体間熱交換器15a及び熱媒体間熱交換器15bに接続する冷媒配管4とに接続され、室外機1から供給される熱源側冷媒を蒸気状冷媒と液状冷媒とに分離するものである。絞り装置16cは、気液分離器14の液状冷媒の流れにおける下流側に設けられ、減圧弁や膨張弁としての機能を有し、熱源側冷媒を減圧して膨張させるものであり、冷房暖房混在運転時に、絞り装置16cの出口を中圧に制御する。絞り装置16cは、開度が可変に制御可能なもの、たとえば電子式膨張弁等で構成するとよい。このように構成することにより、親熱媒体変換機3aに子熱媒体変換機3bを複数接続できるようになる。
空気調和装置100が実行する各運転モードについて説明する。この空気調和装置100は、各室内機2からの指示に基づいて、その室内機2で冷房運転あるいは暖房運転が可能になっている。つまり、空気調和装置100は、室内機2の全部で同一運転をすることができるとともに、室内機2のそれぞれで異なる運転をすることができるようになっている。なお、空気調和装置100Aが実行する各運転モードについても同様であるので、空気調和装置100Aが実行する各運転モードについては説明を省略する。以下、空気調和装置100には、空気調和装置100Aも含まれているものとする。
空気調和装置100が実行する運転モードには、駆動している室内機2の全てが冷房運転を実行する全冷房運転モード、駆動している室内機2の全てが暖房運転を実行する全暖房運転モード、冷房負荷の方が大きい冷房暖房混在運転モードとしての冷房主体運転モード、及び、暖房負荷の方が大きい冷房暖房混在運転モードとしての暖房主体運転モードがある。以下に、各運転モードについて、熱源側冷媒及び熱媒体の流れとともに説明する。
[全冷房運転モード]
図4は、空気調和装置100の全冷房運転モード時における冷媒の流れを示す冷媒回路図である。この図4では、利用側熱交換器26a及び利用側熱交換器26bでのみ冷熱負荷が発生している場合を例に全冷房運転モードについて説明する。なお、図4では、太線で表された配管が冷媒(熱源側冷媒及び熱媒体)の流れる配管を示している。また、図4では、熱源側冷媒の流れ方向を実線矢印で、熱媒体の流れ方向を破線矢印で示している。
図4に示す全冷房運転モードの場合、室外機1では、第1冷媒流路切替装置11を、圧縮機10から吐出された熱源側冷媒を熱源側熱交換器12へ流入させるように切り替える。熱媒体変換機3では、ポンプ21a及びポンプ21bを駆動させ、熱媒体流量調整装置25a及び熱媒体流量調整装置25bを開放し、熱媒体流量調整装置25c及び熱媒体流量調整装置25dを全閉とし、熱媒体間熱交換器15a及び熱媒体間熱交換器15bのそれぞれと利用側熱交換器26a及び利用側熱交換器26bとの間を熱媒体が循環するようにしている。
まず始めに、冷媒循環回路Aにおける熱源側冷媒の流れについて説明する。
低温・低圧の冷媒が圧縮機10によって圧縮され、高温・高圧のガス冷媒となって吐出される。圧縮機10から吐出された高温・高圧のガス冷媒は、第1冷媒流路切替装置11を介して熱源側熱交換器12に流入する。そして、熱源側熱交換器12で室外空気に放熱しながら凝縮液化し、高圧液冷媒となる。熱源側熱交換器12から流出した高圧液冷媒は、逆止弁13aを通って室外機1から流出し、冷媒配管4を通って熱媒体変換機3に流入する。熱媒体変換機3に流入した高圧液冷媒は、開閉装置17aを経由した後に分岐されて絞り装置16a及び絞り装置16bで膨張させられて、低温・低圧の二相冷媒となる。
この二相冷媒は、蒸発器として作用する熱媒体間熱交換器15a及び熱媒体間熱交換器15bのそれぞれに流入し、熱媒体循環回路Bを循環する熱媒体から吸熱することで、熱媒体を冷却しながら、低温・低圧のガス冷媒となる。熱媒体間熱交換器15a及び熱媒体間熱交換器15bから流出したガス冷媒は、第2冷媒流路切替装置18a及び第2冷媒流路切替装置18bを介して熱媒体変換機3から流出し、冷媒配管4を通って再び室外機1へ流入する。この時、熱媒体間熱交換器バイパス配管4dを通した冷媒の流れは無いが、熱媒体間熱交換器バイパス配管4dの一端が高圧液管になっており、熱媒体間熱交換器バイパス配管4dは高圧の冷媒で満たされている。室外機1に流入した冷媒は、逆止弁13dを通って、第1冷媒流路切替装置11及びアキュムレーター19を介して、圧縮機10へ再度吸入される。
このとき、絞り装置16aは、第3温度センサー35aで検出された温度と第3温度センサー35bで検出された温度との差として得られるスーパーヒート(過熱度)が一定になるように開度が制御される。同様に、絞り装置16bは、第3温度センサー35cで検出された温度と第3温度センサー35dで検出された温度との差として得られるスーパーヒートが一定になるように開度が制御される。また、開閉装置17aは開、開閉装置17bは閉となっている。
次に、熱媒体循環回路Bにおける熱媒体の流れについて説明する。
全冷房運転モードでは、熱媒体間熱交換器15a及び熱媒体間熱交換器15bの双方で熱源側冷媒の冷熱が熱媒体に伝えられ、冷やされた熱媒体がポンプ21a及びポンプ21bによって配管5内を流動させられることになる。ポンプ21a及びポンプ21bで加圧されて流出した熱媒体は、第2熱媒体流路切替装置23a及び第2熱媒体流路切替装置23bを介して、利用側熱交換器26a及び利用側熱交換器26bに流入する。そして、熱媒体が利用側熱交換器26a及び利用側熱交換器26bで室内空気から吸熱することで、室内空間7の冷房を行なう。
それから、熱媒体は、利用側熱交換器26a及び利用側熱交換器26bから流出して熱媒体流量調整装置25a及び熱媒体流量調整装置25bに流入する。このとき、熱媒体流量調整装置25a及び熱媒体流量調整装置25bの作用によって熱媒体の流量が室内にて必要とされる空調負荷を賄うのに必要な流量に制御されて利用側熱交換器26a及び利用側熱交換器26bに流入するようになっている。熱媒体流量調整装置25a及び熱媒体流量調整装置25bから流出した熱媒体は、第1熱媒体流路切替装置22a及び第1熱媒体流路切替装置22bを通って、熱媒体間熱交換器15a及び熱媒体間熱交換器15bへ流入し、再びポンプ21a及びポンプ21bへ吸い込まれる。
なお、利用側熱交換器26の配管5内では、第2熱媒体流路切替装置23から熱媒体流量調整装置25を経由して第1熱媒体流路切替装置22へ至る向きに熱媒体が流れている。また、室内空間7にて必要とされる空調負荷は、第1温度センサー31aで検出された温度、あるいは、第1温度センサー31bで検出された温度と第2温度センサー34で検出された温度との差を目標値に保つように熱媒体流量調整装置25を制御することにより、賄うことができる。熱媒体間熱交換器15の出口温度は、第1温度センサー31aまたは第1温度センサー31bのどちらの温度を使用してもよいし、これらの平均温度を使用してもよい。このとき、第1熱媒体流路切替装置22及び第2熱媒体流路切替装置23は、熱媒体間熱交換器15a及び熱媒体間熱交換器15bの双方へ流れる流路が確保されるように、中間的な開度にしている。
全冷房運転モードを実行する際、熱負荷のない利用側熱交換器26(サーモオフを含む)へは熱媒体を流す必要がないため、熱媒体流量調整装置25により流路を閉じて、利用側熱交換器26へ熱媒体が流れないようにする。図4においては、利用側熱交換器26a及び利用側熱交換器26bにおいては熱負荷があるため熱媒体を流しているが、利用側熱交換器26c及び利用側熱交換器26dにおいては熱負荷がなく、対応する熱媒体流量調整装置25c及び熱媒体流量調整装置25dを全閉としている。そして、利用側熱交換器26cや利用側熱交換器26dから熱負荷の発生があった場合には、熱媒体流量調整装置25cや熱媒体流量調整装置25dを開放し、熱媒体を循環させればよい。
[全暖房運転モード]
図5は、空気調和装置100の全暖房運転モード時における冷媒の流れを示す冷媒回路図である。この図5では、利用側熱交換器26a及び利用側熱交換器26bでのみ温熱負荷が発生している場合を例に全暖房運転モードについて説明する。なお、図5では、太線で表された配管が冷媒(熱源側冷媒及び熱媒体)の流れる配管を示している。また、図5では、熱源側冷媒の流れ方向を実線矢印で、熱媒体の流れ方向を破線矢印で示している。
図5に示す全暖房運転モードの場合、室外機1では、第1冷媒流路切替装置11を、圧縮機10から吐出された熱源側冷媒を熱源側熱交換器12を経由させずに熱媒体変換機3へ流入させるように切り替える。熱媒体変換機3では、ポンプ21a及びポンプ21bを駆動させ、熱媒体流量調整装置25a及び熱媒体流量調整装置25bを開放し、熱媒体流量調整装置25c及び熱媒体流量調整装置25dを全閉とし、熱媒体間熱交換器15a及び熱媒体間熱交換器15bのそれぞれと利用側熱交換器26a及び利用側熱交換器26bとの間を熱媒体が循環するようにしている。
まず始めに、冷媒循環回路Aにおける熱源側冷媒の流れについて説明する。
低温・低圧の冷媒が圧縮機10によって圧縮され、高温・高圧のガス冷媒となって吐出される。圧縮機10から吐出された高温・高圧のガス冷媒は、第1冷媒流路切替装置11を通り、第1接続配管4aを導通し、逆止弁13bを通過し、室外機1から流出する。室外機1から流出した高温・高圧のガス冷媒は、冷媒配管4を通って熱媒体変換機3に流入する。熱媒体変換機3に流入した高温・高圧のガス冷媒は、熱媒体間熱交換器バイパス配管4dを通った後、分岐されて第2冷媒流路切替装置18a及び第2冷媒流路切替装置18bを通って、熱媒体間熱交換器15a及び熱媒体間熱交換器15bのそれぞれに流入する。
熱媒体間熱交換器15a及び熱媒体間熱交換器15bに流入した高温・高圧のガス冷媒は、熱媒体循環回路Bを循環する熱媒体に放熱しながら凝縮液化し、高圧の液冷媒となる。熱媒体間熱交換器15a及び熱媒体間熱交換器15bから流出した液冷媒は、絞り装置16a及び絞り装置16bで膨張させられて、低温・低圧の二相冷媒となる。この二相冷媒は、開閉装置17bを通って、熱媒体変換機3から流出し、冷媒配管4を通って再び室外機1へ流入する。室外機1に流入した冷媒は、第2接続配管4bを導通し、逆止弁13cを通過して、蒸発器として作用する熱源側熱交換器12に流入する。この時、熱媒体間熱交換器バイパス配管4dは、内部に高圧ガス冷媒が流れており、高圧の冷媒で満たされている。
そして、熱源側熱交換器12に流入した冷媒は、熱源側熱交換器12で室外空気から吸熱して、低温・低圧のガス冷媒となる。熱源側熱交換器12から流出した低温・低圧のガス冷媒は、第1冷媒流路切替装置11及びアキュムレーター19を介して圧縮機10へ再度吸入される。
このとき、絞り装置16aは、圧力センサー36で検出された圧力を飽和温度に換算した値と第3温度センサー35bで検出された温度との差として得られるサブクール(過冷却度)が一定になるように開度が制御される。同様に、絞り装置16bは、圧力センサー36で検出された圧力を飽和温度に換算した値と第3温度センサー35dで検出された温度との差として得られるサブクールが一定になるように開度が制御される。また、開閉装置17aは閉、開閉装置17bは開となっている。なお、熱媒体間熱交換器15の中間位置の温度が測定できる場合は、その中間位置での温度を圧力センサー36の代わりに用いてもよく、安価にシステムを構成できる。
次に、熱媒体循環回路Bにおける熱媒体の流れについて説明する。
全暖房運転モードでは、熱媒体間熱交換器15a及び熱媒体間熱交換器15bの双方で熱源側冷媒の温熱が熱媒体に伝えられ、暖められた熱媒体がポンプ21a及びポンプ21bによって配管5内を流動させられることになる。ポンプ21a及びポンプ21bで加圧されて流出した熱媒体は、第2熱媒体流路切替装置23a及び第2熱媒体流路切替装置23bを介して、利用側熱交換器26a及び利用側熱交換器26bに流入する。そして、熱媒体が利用側熱交換器26a及び利用側熱交換器26bで室内空気に放熱することで、室内空間7の暖房を行なう。
それから、熱媒体は、利用側熱交換器26a及び利用側熱交換器26bから流出して熱媒体流量調整装置25a及び熱媒体流量調整装置25bに流入する。このとき、熱媒体流量調整装置25a及び熱媒体流量調整装置25bの作用によって熱媒体の流量が室内にて必要とされる空調負荷を賄うのに必要な流量に制御されて利用側熱交換器26a及び利用側熱交換器26bに流入するようになっている。熱媒体流量調整装置25a及び熱媒体流量調整装置25bから流出した熱媒体は、第1熱媒体流路切替装置22a及び第1熱媒体流路切替装置22bを通って、熱媒体間熱交換器15a及び熱媒体間熱交換器15bへ流入し、再びポンプ21a及びポンプ21bへ吸い込まれる。
なお、利用側熱交換器26の配管5内では、第2熱媒体流路切替装置23から熱媒体流量調整装置25を経由して第1熱媒体流路切替装置22へ至る向きに熱媒体が流れている。また、室内空間7にて必要とされる空調負荷は、第1温度センサー31aで検出された温度、あるいは、第1温度センサー31bで検出された温度と第2温度センサー34で検出された温度との差を目標値に保つように制御することにより、賄うことができる。熱媒体間熱交換器15の出口温度は、第1温度センサー31aまたは第1温度センサー31bのどちらの温度を使用してもよいし、これらの平均温度を使用してもよい。
このとき、第1熱媒体流路切替装置22及び第2熱媒体流路切替装置23は、熱媒体間熱交換器15a及び熱媒体間熱交換器15bの双方へ流れる流路が確保されるように、中間的な開度にしている。また、本来、利用側熱交換器26aは、その入口と出口の温度差で制御すべきであるが、利用側熱交換器26の入口側の熱媒体温度は、第1温度センサー31bで検出された温度とほとんど同じ温度であり、第1温度センサー31bを使用することにより温度センサーの数を減らすことができ、安価にシステムを構成できる。
全暖房運転モードを実行する際、熱負荷のない利用側熱交換器26(サーモオフを含む)へは熱媒体を流す必要がないため、熱媒体流量調整装置25により流路を閉じて、利用側熱交換器26へ熱媒体が流れないようにする。図5においては、利用側熱交換器26a及び利用側熱交換器26bにおいては熱負荷があるため熱媒体を流しているが、利用側熱交換器26c及び利用側熱交換器26dにおいては熱負荷がなく、対応する熱媒体流量調整装置25c及び熱媒体流量調整装置25dを全閉としている。そして、利用側熱交換器26cや利用側熱交換器26dから熱負荷の発生があった場合には、熱媒体流量調整装置25cや熱媒体流量調整装置25dを開放し、熱媒体を循環させればよい。
[冷房主体運転モード]
図6は、空気調和装置100の冷房主体運転モード時における冷媒の流れを示す冷媒回路図である。この図6では、利用側熱交換器26aで冷熱負荷が発生し、利用側熱交換器26bで温熱負荷が発生している場合を例に冷房主体運転モードについて説明する。なお、図6では、太線で表された配管が冷媒(熱源側冷媒及び熱媒体)の循環する配管を示している。また、図6では、熱源側冷媒の流れ方向を実線矢印で、熱媒体の流れ方向を破線矢印で示している。
図6に示す冷房主体運転モードの場合、室外機1では、第1冷媒流路切替装置11を、圧縮機10から吐出された熱源側冷媒を熱源側熱交換器12へ流入させるように切り替える。熱媒体変換機3では、ポンプ21a及びポンプ21bを駆動させ、熱媒体流量調整装置25a及び熱媒体流量調整装置25bを開放し、熱媒体流量調整装置25c及び熱媒体流量調整装置25dを全閉とし、熱媒体間熱交換器15aと利用側熱交換器26aとの間を、熱媒体間熱交換器15bと利用側熱交換器26bとの間を、それぞれ熱媒体が循環するようにしている。
まず始めに、冷媒循環回路Aにおける熱源側冷媒の流れについて説明する。
低温・低圧の冷媒が圧縮機10によって圧縮され、高温・高圧のガス冷媒となって吐出される。圧縮機10から吐出された高温・高圧のガス冷媒は、第1冷媒流路切替装置11を介して熱源側熱交換器12に流入する。そして、熱源側熱交換器12で室外空気に放熱しながら凝縮し、二相冷媒となる。熱源側熱交換器12から流出した二相冷媒は、逆止弁13aを通って室外機1から流出し、冷媒配管4を通って熱媒体変換機3に流入する。熱媒体変換機3に流入した二相冷媒は、熱媒体間熱交換器バイパス配管4dを介し、第2冷媒流路切替装置18bを通って凝縮器として作用する熱媒体間熱交換器15bに流入する。
熱媒体間熱交換器15bに流入した二相冷媒は、熱媒体循環回路Bを循環する熱媒体に放熱しながら凝縮液化し、液冷媒となる。熱媒体間熱交換器15bから流出した液冷媒は、絞り装置16bで膨張させられて低圧二相冷媒となる。この低圧二相冷媒は、絞り装置16aを介して蒸発器として作用する熱媒体間熱交換器15aに流入する。熱媒体間熱交換器15aに流入した低圧二相冷媒は、熱媒体循環回路Bを循環する熱媒体から吸熱することで、熱媒体を冷却しながら、低圧のガス冷媒となる。このガス冷媒は、熱媒体間熱交換器15aから流出し、第2冷媒流路切替装置18aを介して熱媒体変換機3から流出し、冷媒配管4を通って再び室外機1へ流入する。室外機1に流入した冷媒は、逆止弁13dを通って、第1冷媒流路切替装置11及びアキュムレーター19を介して、圧縮機10へ再度吸入される。この時、熱媒体間熱交換器バイパス配管4dは、内部に高圧二相冷媒が流れており、高圧の冷媒で満たされている。
このとき、絞り装置16bは、第3温度センサー35aで検出された温度と第3温度センサー35bで検出された温度との差として得られるスーパーヒートが一定になるように開度が制御される。また、絞り装置16aは全開、開閉装置17aは閉、開閉装置17bは閉となっている。なお、絞り装置16bは、圧力センサー36で検出された圧力を飽和温度に換算した値と第3温度センサー35dで検出された温度との差として得られるサブクールが一定になるように開度を制御してもよい。また、絞り装置16bを全開とし、絞り装置16aでスーパーヒートまたはサブクールを制御するようにしてもよい。
次に、熱媒体循環回路Bにおける熱媒体の流れについて説明する。
冷房主体運転モードでは、熱媒体間熱交換器15bで熱源側冷媒の温熱が熱媒体に伝えられ、暖められた熱媒体がポンプ21bによって配管5内を流動させられることになる。また、冷房主体運転モードでは、熱媒体間熱交換器15aで熱源側冷媒の冷熱が熱媒体に伝えられ、冷やされた熱媒体がポンプ21aによって配管5内を流動させられることになる。ポンプ21a及びポンプ21bで加圧されて流出した熱媒体は、第2熱媒体流路切替装置23a及び第2熱媒体流路切替装置23bを介して、利用側熱交換器26a及び利用側熱交換器26bに流入する。
利用側熱交換器26bでは熱媒体が室内空気に放熱することで、室内空間7の暖房を行なう。また、利用側熱交換器26aでは熱媒体が室内空気から吸熱することで、室内空間7の冷房を行なう。このとき、熱媒体流量調整装置25a及び熱媒体流量調整装置25bの作用によって熱媒体の流量が室内にて必要とされる空調負荷を賄うのに必要な流量に制御されて利用側熱交換器26a及び利用側熱交換器26bに流入するようになっている。利用側熱交換器26bを通過し若干温度が低下した熱媒体は、熱媒体流量調整装置25b及び第1熱媒体流路切替装置22bを通って、熱媒体間熱交換器15bへ流入し、再びポンプ21bへ吸い込まれる。利用側熱交換器26aを通過し若干温度が上昇した熱媒体は、熱媒体流量調整装置25a及び第1熱媒体流路切替装置22aを通って、熱媒体間熱交換器15aへ流入し、再びポンプ21aへ吸い込まれる。
この間、暖かい熱媒体と冷たい熱媒体とは、第1熱媒体流路切替装置22及び第2熱媒体流路切替装置23の作用により、混合することなく、それぞれ温熱負荷、冷熱負荷がある利用側熱交換器26へ導入される。なお、利用側熱交換器26の配管5内では、暖房側、冷房側ともに、第2熱媒体流路切替装置23から熱媒体流量調整装置25を経由して第1熱媒体流路切替装置22へ至る向きに熱媒体が流れている。また、室内空間7にて必要とされる空調負荷は、暖房側においては第1温度センサー31bで検出された温度と第2温度センサー34で検出された温度との差を、冷房側においては第2温度センサー34で検出された温度と第1温度センサー31aで検出された温度との差を目標値に保つように制御することにより、賄うことができる。
冷房主体運転モードを実行する際、熱負荷のない利用側熱交換器26(サーモオフを含む)へは熱媒体を流す必要がないため、熱媒体流量調整装置25により流路を閉じて、利用側熱交換器26へ熱媒体が流れないようにする。図6においては、利用側熱交換器26a及び利用側熱交換器26bにおいては熱負荷があるため熱媒体を流しているが、利用側熱交換器26c及び利用側熱交換器26dにおいては熱負荷がなく、対応する熱媒体流量調整装置25c及び熱媒体流量調整装置25dを全閉としている。そして、利用側熱交換器26cや利用側熱交換器26dから熱負荷の発生があった場合には、熱媒体流量調整装置25cや熱媒体流量調整装置25dを開放し、熱媒体を循環させればよい。
[暖房主体運転モード]
図7は、空気調和装置100の暖房主体運転モード時における冷媒の流れを示す冷媒回路図である。この図7では、利用側熱交換器26aで温熱負荷が発生し、利用側熱交換器26bで冷熱負荷が発生している場合を例に暖房主体運転モードについて説明する。なお、図7では、太線で表された配管が冷媒(熱源側冷媒及び熱媒体)の循環する配管を示している。また、図7では、熱源側冷媒の流れ方向を実線矢印で、熱媒体の流れ方向を破線矢印で示している。
図7に示す暖房主体運転モードの場合、室外機1では、第1冷媒流路切替装置11を、圧縮機10から吐出された熱源側冷媒を熱源側熱交換器12を経由させずに熱媒体変換機3へ流入させるように切り替える。熱媒体変換機3では、ポンプ21a及びポンプ21bを駆動させ、熱媒体流量調整装置25a及び熱媒体流量調整装置25bを開放し、熱媒体流量調整装置25c及び熱媒体流量調整装置25dを全閉とし、熱媒体間熱交換器15a及び熱媒体間熱交換器15bのそれぞれと利用側熱交換器26a及び利用側熱交換器26bとの間を熱媒体が循環するようにしている。
まず始めに、冷媒循環回路Aにおける熱源側冷媒の流れについて説明する。
低温・低圧の冷媒が圧縮機10によって圧縮され、高温・高圧のガス冷媒となって吐出される。圧縮機10から吐出された高温・高圧のガス冷媒は、第1冷媒流路切替装置11を通り、第1接続配管4aを導通し、逆止弁13bを通過し、室外機1から流出する。室外機1から流出した高温・高圧のガス冷媒は、冷媒配管4を通って熱媒体変換機3に流入する。熱媒体変換機3に流入した高温・高圧のガス冷媒は、熱媒体間熱交換器バイパス配管4dを介し、第2冷媒流路切替装置18bを通って凝縮器として作用する熱媒体間熱交換器15bに流入する。
熱媒体間熱交換器15bに流入したガス冷媒は、熱媒体循環回路Bを循環する熱媒体に放熱しながら凝縮液化し、液冷媒となる。熱媒体間熱交換器15bから流出した液冷媒は、絞り装置16bで膨張させられて低圧二相冷媒となる。この低圧二相冷媒は、絞り装置16aを介して蒸発器として作用する熱媒体間熱交換器15aに流入する。熱媒体間熱交換器15aに流入した低圧二相冷媒は、熱媒体循環回路Bを循環する熱媒体から吸熱することで蒸発し、熱媒体を冷却する。この低圧二相冷媒は、熱媒体間熱交換器15aから流出し、第2冷媒流路切替装置18aを介して熱媒体変換機3から流出し、冷媒配管4を通って再び室外機1へ流入する。この時、熱媒体間熱交換器バイパス配管4dは、内部に高圧ガス冷媒が流れており、高圧の冷媒で満たされている。
室外機1に流入した冷媒は、逆止弁13cを通って、蒸発器として作用する熱源側熱交換器12に流入する。そして、熱源側熱交換器12に流入した冷媒は、熱源側熱交換器12で室外空気から吸熱して、低温・低圧のガス冷媒となる。熱源側熱交換器12から流出した低温・低圧のガス冷媒は、第1冷媒流路切替装置11及びアキュムレーター19を介して圧縮機10へ再度吸入される。
このとき、絞り装置16bは、圧力センサー36で検出された圧力を飽和温度に換算した値と第3温度センサー35bで検出された温度との差として得られるサブクールが一定になるように開度が制御される。また、絞り装置16aは全開、開閉装置17aは閉、開閉装置17bは閉となっている。なお、絞り装置16bを全開とし、絞り装置16aでサブクールを制御するようにしてもよい。
次に、熱媒体循環回路Bにおける熱媒体の流れについて説明する。
暖房主体運転モードでは、熱媒体間熱交換器15bで熱源側冷媒の温熱が熱媒体に伝えられ、暖められた熱媒体がポンプ21bによって配管5内を流動させられることになる。また、暖房主体運転モードでは、熱媒体間熱交換器15aで熱源側冷媒の冷熱が熱媒体に伝えられ、冷やされた熱媒体がポンプ21aによって配管5内を流動させられることになる。ポンプ21a及びポンプ21bで加圧されて流出した熱媒体は、第2熱媒体流路切替装置23a及び第2熱媒体流路切替装置23bを介して、利用側熱交換器26a及び利用側熱交換器26bに流入する。
利用側熱交換器26bでは熱媒体が室内空気から吸熱することで、室内空間7の冷房を行なう。また、利用側熱交換器26aでは熱媒体が室内空気に放熱することで、室内空間7の暖房を行なう。このとき、熱媒体流量調整装置25a及び熱媒体流量調整装置25bの作用によって熱媒体の流量が室内にて必要とされる空調負荷を賄うのに必要な流量に制御されて利用側熱交換器26a及び利用側熱交換器26bに流入するようになっている。利用側熱交換器26bを通過し若干温度が上昇した熱媒体は、熱媒体流量調整装置25b及び第1熱媒体流路切替装置22bを通って、熱媒体間熱交換器15aに流入し、再びポンプ21aへ吸い込まれる。利用側熱交換器26aを通過し若干温度が低下した熱媒体は、熱媒体流量調整装置25a及び第1熱媒体流路切替装置22aを通って、熱媒体間熱交換器15bへ流入し、再びポンプ21bへ吸い込まれる。
この間、暖かい熱媒体と冷たい熱媒体とは、第1熱媒体流路切替装置22及び第2熱媒体流路切替装置23の作用により、混合することなく、それぞれ温熱負荷、冷熱負荷がある利用側熱交換器26へ導入される。なお、利用側熱交換器26の配管5内では、暖房側、冷房側ともに、第2熱媒体流路切替装置23から熱媒体流量調整装置25を経由して第1熱媒体流路切替装置22へ至る向きに熱媒体が流れている。また、室内空間7にて必要とされる空調負荷は、暖房側においては第1温度センサー31bで検出された温度と第2温度センサー34で検出された温度との差を、冷房側においては第2温度センサー34で検出された温度と第1温度センサー31aで検出された温度との差を目標値に保つように制御することにより、賄うことができる。
暖房主体運転モードを実行する際、熱負荷のない利用側熱交換器26(サーモオフを含む)へは熱媒体を流す必要がないため、熱媒体流量調整装置25により流路を閉じて、利用側熱交換器26へ熱媒体が流れないようにする。図7においては、利用側熱交換器26a及び利用側熱交換器26bにおいては熱負荷があるため熱媒体を流しているが、利用側熱交換器26c及び利用側熱交換器26dにおいては熱負荷がなく、対応する熱媒体流量調整装置25c及び熱媒体流量調整装置25dを全閉としている。そして、利用側熱交換器26cや利用側熱交換器26dから熱負荷の発生があった場合には、熱媒体流量調整装置25cや熱媒体流量調整装置25dを開放し、熱媒体を循環させればよい。
[冷媒配管4]
以上説明したように、本実施の形態に係る空気調和装置100は、幾つかの運転モードを具備している。これらの運転モードにおいては、室外機1と熱媒体変換機3とを接続する冷媒配管4には熱源側冷媒が流れている。
[配管5]
本実施の形態に係る空気調和装置100が実行する幾つかの運転モードにおいては、熱媒体変換機3と室内機2を接続する配管5には水や不凍液等の熱媒体が流れている。
[熱媒体間熱交換器15内の冷媒と熱媒体の流動方向]
以上説明したように、全冷房運転モード、全暖房運転モード、冷房主体運転モード、及び暖房主体運転モードの何れの運転モードであっても、熱媒体間熱交換器15を凝縮器として使用する場合は、冷媒と熱媒体とが対向流となるよう流動し、熱媒体間熱交換器15を蒸発器として使用する場合は、冷媒と熱媒体とが並向流となるように流動する。すなわち、熱媒体間熱交換器15を凝縮器として使用する場合には、冷媒は第2冷媒流路切替装置18を通って熱媒体間熱交換器15へ至る向きに流れ、熱媒体間熱交換器15を蒸発器として使用する場合には、冷媒は絞り装置16から熱媒体間熱交換器15へ至る向きに流れている。一方、熱媒体循環回路Bにおいては、運転モードによらず、熱媒体間熱交換器15からポンプ21へ至る向きに熱媒体が流れている。これにより、冷房及び暖房トータルでのエネルギー効率を向上させることができ、省エネルギー化を図ることができる。以下に、熱媒体間熱交換器15内の冷媒と熱媒体の流動方向による加熱又は冷却効率の相違について説明する。
図8は本発明の実施の形態に係る空気調和装置の運転状態を表すP−h線図である。図8(a)のP−h線図(圧力−エンタルピー線図)において、圧縮機10を出た高温高圧の冷媒は、凝縮器(熱源側熱交換器12または熱媒体間熱交換器15)に入り冷却されて、飽和ガス線を越えて二相領域に入り、徐々に液冷媒の割合が増加し、飽和液線を越えて、液冷媒となり、更に冷却された後、凝縮器を出て、絞り装置16により膨張されて、低温低圧の二相冷媒となり、蒸発器(熱源側熱交換器12または熱媒体間熱交換器15)に流入し、加熱されて、徐々にガス冷媒の割合が増加し、飽和液ガスを越えて、ガス冷媒となり、更に加熱された後、蒸発器を出て、再び圧縮機10に吸入される。この際、圧縮機10の出口冷媒の温度は例えば80℃、凝縮器内の冷媒の二相状態の冷媒の温度(凝縮温度)は例えば48℃、凝縮器の出口温度は例えば42℃、蒸発器内の冷媒の二相状態の冷媒の温度(蒸発温度)は例えば4℃、圧縮機10の吸入温度は例えば6℃である。
熱媒体間熱交換器15が凝縮器として動作している場合を考え、熱媒体間熱交換器15へ流入する熱媒体の温度を40℃とし、熱媒体を熱媒体間熱交換器15で50℃まで加熱するものとする。この場合、熱媒体の流れが冷媒の流れと対向するように流す(対向流)と、40℃で熱媒体間熱交換器15に流入した熱媒体は、まず42℃の過冷却冷媒で加熱されて少し温度が上昇し、その後48℃の凝縮冷媒で更に加熱され、最終的に80℃の過熱ガス冷媒により加熱されて凝縮温度よりも高い50℃にまで温度が上昇し、熱媒体間熱交換器15から流出する。この時の冷媒の過冷却度は6℃である。
一方、熱媒体の流れが冷媒の流れと並向するように流す(並向流)と、40℃で熱媒体間熱交換器15に流入した熱媒体は、まず80℃の過熱ガス冷媒で加熱されて温度が上昇し、その後48℃の凝縮冷媒で更に加熱されるため、熱媒体間熱交換器15から流出する熱媒体は、凝縮温度を超える温度にはなり得ない。このため、目標の50℃には到達せず、利用側熱交換器26での加熱能力が不足することになる。
また、冷凍サイクルは過冷却がある程度(例えば5℃〜10℃)ついた方が効率(COP)がよいが、冷媒の温度が熱媒体の温度を下回ることはないため、熱媒体間熱交換器15内で48℃の凝縮冷媒と熱交換を行なった熱媒体が、例えば47℃まで上昇した場合、熱媒体間熱交換器15の出口冷媒は47℃以下にはなり得ず、過冷却は1℃以下となり、冷凍サイクルとしての効率も低下する。
このため、熱媒体間熱交換器15を凝縮器として使用する場合は、冷媒と熱媒体は対向流とすると、加熱能力も向上し、効率も向上する。なお、冷媒が高圧側で二相変化せず、超臨界状態で変化する冷媒(例えばCO2)においても、冷媒と熱媒体の温度関係は同じであり、二相変化する冷媒における凝縮器に相当するガスクーラーにおいても、冷媒と熱媒体は対向流とすると、加熱能力も向上し、効率も向上する。
次に、熱媒体間熱交換器15が蒸発器として動作している場合を考える。熱媒体間熱交換器15へ流入する熱媒体の温度を12℃とし、熱媒体を熱媒体間熱交換器15で7℃まで冷却するものとする。この場合、熱媒体の流れが冷媒の流れと対向するように流すと、12℃で熱媒体間熱交換器15に流入した熱媒体は、まず6℃の過熱ガス冷媒によって冷却され、その後4℃の蒸発冷媒で冷却されて、7℃になって熱媒体間熱交換器15から流出する。一方、熱媒体の流れが冷媒の流れと並向するように流すと、12℃で熱媒体間熱交換器15に流入した熱媒体は、4℃の蒸発冷媒で冷却されて温度が低下し、その後6℃の過熱ガスによって冷却されて、7℃になって熱媒体間熱交換器15から流出する。
対向流においては、熱媒体出口温度の7℃と冷媒出口温度の4℃は3℃の差があるため、確実に熱媒体を冷却することができる。一方、並向流においては、熱媒体出口温度の7℃と冷媒出口温度の6℃が1℃の温度差しかないため、熱媒体の流速によっては、熱媒体出口温度が7℃まで冷却されず、多少冷却能力が低下することも考えられる。しかし、蒸発器においては、過熱度はほとんどつけない方が効率がよく、0〜2℃程度に制御されるため、対向流と並向流の場合の冷却能力の差はあまり大きくない。
また、蒸発器内の冷媒は、凝縮器内の冷媒よりも、圧力が低いため密度が小さく、圧力損失が起き易い。蒸発器にて圧力損失があった場合のP−h線図を図8(b)に示す。蒸発器の中間の冷媒の温度が圧力損失が無かった場合と同じ4℃であるものとすると、蒸発器の入口冷媒温度は例えば6℃、蒸発器内で飽和ガスとなる冷媒温度が例えば2℃、圧縮機吸入温度が例えば4℃となる。この状態で、熱媒体の流れが冷媒の流れと対向するように流すと、12℃で熱媒体間熱交換器15に流入した熱媒体は、まず4℃の過熱ガス冷媒によって冷却され、その後圧力損失により2℃から6℃まで変化する蒸発冷媒で冷却されて、最終的に6℃の冷媒で冷却されて7℃になって熱媒体間熱交換器15から流出する。一方、熱媒体の流れが冷媒の流れと並向するように流すと、12℃で熱媒体間熱交換器15に流入した熱媒体は、6℃の蒸発冷媒で冷却されて温度が低下し、その後圧力損失により冷媒温度が6℃から2℃に低下するに伴い、熱媒体の温度も低下し、最終的に冷媒は6℃、熱媒体は7℃となり熱媒体間熱交換器15から流出する。
この状態においては、対向流も並向流も、冷却効率はほとんど同じである。また、蒸発器での冷媒の圧力損失が更に増加した場合は、並向流で流した方が冷却効率が向上する場合もある。このため、熱媒体間熱交換器15を蒸発器として使用する場合は、冷媒と熱媒体は対向流として使用しても並向流としてもよい。
このようなことから、熱媒体循環回路Bを循環する熱媒体を一定方向に循環させ、熱媒体間熱交換器15を凝縮器として使用する場合には対向流とすることを考えると、蒸発器として使用する場合には並向流で流動するようにすると、冷房及び暖房トータルでの効率を向上することができる。
[停止時]
次に、空気調和装置100の運転を停止する際における第2冷媒流路切替装置18の切り替え動作について説明する。
空気調和装置100の運転が停止され、圧縮機10が停止している場合、次の運転において、全冷房運転モード、全暖房運転モード、冷房主体運転モード、暖房主体運転モードのいずれのモードで起動されるか分からない。図3の冷媒回路においては、全冷房運転モードでの第2冷媒流路切替装置18a及び18bの切替状態と、全暖房運転モードでの第2冷媒流路切替装置18a及び18bの切替状態とでは、逆の切替状態となっている。
したがって、空気調和装置100(圧縮機10)の運転の停止時に、第2冷媒流路切替装置18a及び18bの切替状態を、図4に示した全冷房運転モード、又は、図5に示した全暖房運転モードのいずれかと同じ状態にしておくと、他方の運転モードで起動された場合に、流路の一部が閉止されているため、熱源側冷媒が冷媒回路内を循環することができなくなる。第2冷媒流路切替装置18a及び18bとして、例えば四方弁を使用している場合、四方弁は前後(切替対象の流路間)に差圧ができないと切り替えを行なうことができないため、四方弁が切り替わらない事態に陥る可能性がある。
そこで、空気調和装置100の運転が停止され、圧縮機10が停止状態においては、第2冷媒流路切替装置18a及び18bの切替状態を、図6に示した冷房主体運転モード及び図7に示した暖房主体運転モードと同じ切替状態とする。
このようにしておくと、起動時の運転モードによらず、冷房主体運転モード又は暖房主体運転モードにて起動されて運転が始まり、冷媒が循環されるため、第2冷媒流路切替装置18a及び18bの前後に差圧が発生し、第2冷媒流路切替装置18a及び18bが四方弁の場合でも、これを切り替えることができるようになる。
また、起動後の運転モードが、冷房主体運転モード又は暖房主体運転モードの場合は、第2冷媒流路切替装置18a及び18bを切り替える必要が無い。また、起動後の運転モードが、全冷房運転モード又は全暖房運転モードの場合は、第2冷媒流路切替装置18a又は18bのうちの片方のみを切り替えるだけで良い。このため、いずれの運転モードの場合も、第2冷媒流路切替装置18a、18bの切り替え音があまり発生せず、静かに運転モードを切り替えることができる。
以上説明したように、本実施の形態に係る空気調和装置100においては、熱媒体間熱交換器バイパス配管4dは、運転モードによらず高圧の冷媒で満たされている。四方弁は、構造上、必ず高圧及び低圧の両方があり、同じ向きに圧力差がかかっていなければ動作しないが、熱媒体間熱交換器バイパス配管4dが必ず高圧となっており、常に同じ向きに圧力差がかかっているため、第2冷媒流路切替装置18a及び第2冷媒流路切替装置18bとして、四方弁を使用することができる。四方弁を使用すると安価にシステムを構成することができる。
また、四方弁は、電圧の印加の有無に応じて駆動して流路が切り替わる構造となっており、電圧を印加している状態では電力を消費する。従って、停止時、すなわち、冷房主体運転モードおよび暖房主体運転モードにおける四方弁の切り替え状態において、電圧の印加が無い状態となる向きに、四方弁を設置することにより、運転停止時に四方弁の駆動のための電力を消費せず、省エネルギー化を図ることができる。
また、冷房主体運転モードにおける第2冷媒流路切替装置18a及び18bの切替状態と、暖房主体運転モードにおける第2冷媒流路切替装置18a及び18bの切替状態とが同じ切替状態としている。これにより、冷房主体運転モード及び暖房主体運転モードのいずれにおいても、常に、熱媒体間熱交換器15bを凝縮器として作用させて熱冷媒を加熱し、熱媒体間熱交換器15aを蒸発器として作用させて熱冷媒を冷却するように構成している。このため、冷房主体運転モードと暖房主体運転モードにおいて、熱媒体間熱交換器15bと15aの状態(加熱または冷却)が変化することが無く、今まで暖められていた熱冷媒が冷却されて冷たい熱冷媒となったり、冷たい熱冷媒だったものが温められて暖かい熱冷媒になることが無く、冷房主体運転モード及び暖房主体運転モード間の切り替えによりエネルギーの無駄が発生することがない。これにより、エネルギー効率を向上させることができ、省エネルギー化を図ることができる。
また、本実施の形態の空気調和装置100では、利用側熱交換器26にて暖房負荷または冷房負荷のみが発生している場合は、対応する第1熱媒体流路切替装置22及び第2熱媒体流路切替装置23を中間的な開度にし、熱媒体間熱交換器15a及び熱媒体間熱交換器15bの双方に熱媒体が流れるようにしている。これにより、熱媒体間熱交換器15a及び熱媒体間熱交換器15bの双方を暖房運転または冷房運転に使用することができるため、伝熱面積が大きくなり、効率のよい暖房運転または冷房運転を行なうことができる。
また、利用側熱交換器26にて暖房負荷と冷房負荷とが混在して発生している場合は、暖房運転を行っている利用側熱交換器26に対応する第1熱媒体流路切替装置22及び第2熱媒体流路切替装置23を加熱用の熱媒体間熱交換器15bに接続される流路へ切り替え、冷房運転を行っている利用側熱交換器26に対応する第1熱媒体流路切替装置22及び第2熱媒体流路切替装置23を冷却用の熱媒体間熱交換器15aに接続される流路へ切り替えることにより、各室内機2にて、暖房運転、冷房運転を自由に行なうことができる。
また、空気調和装置100においては、室外機1と熱媒体変換機3とは、熱源側冷媒を導通する冷媒配管4で接続されている。熱媒体変換機3と室内機2とは、熱媒体を導通する配管5で接続されている。そして、室外機1で生成された冷熱あるいは温熱は、熱媒体変換機3により熱媒体と熱交換を行ない、室内機2に配送される。このため、室内機2又は室内機2の近傍まで冷媒を循環せず、冷媒が室内等に漏れる可能性を排除できる。したがって、安全性の向上を図ることができる。
また、室外機1と別体の熱媒体変換機3により、熱源側冷媒と熱媒体との熱交換を行なう。このため、熱媒体が循環する配管5を短くでき、搬送動力が少なくて済むため、安全性を向上させるとともに省エネルギー化を図ることができる。
また、熱媒体変換機3と各室内機2とが2本の配管5を用いて、それぞれ接続されている。そして、各室内機2内の利用側熱交換器26と、熱媒体変換機3に収容された熱媒体間熱交換器15との間の流路を各運転モードに応じて切り替える。このため、2本の配管5の接続で室内機2毎に冷房または暖房を選択でき、熱媒体が循環する配管の工事を容易かつ安全に行なうことができる。
また、室外機1と熱媒体変換機3とが2本の冷媒配管4を用いて接続されている。このため、冷媒配管4の工事を容易かつ安全に行なうことができる。
また、ポンプ21は、熱媒体間熱交換器15ごとに設けられている。このため、ポンプ21を室内機2ごとに個別に備える必要がなく、空気調和装置100を安価な構成とすることができる。また、ポンプによる騒音を低減することができる。
また、複数の利用側熱交換器26は、それぞれ、第1熱媒体流路切替装置22及び第2熱媒体流路切替装置23を介して、熱媒体間熱交換器15と並列に接続される。このため、複数の室内機2を備える場合でも、熱交換後の熱媒体が、熱交換前の熱媒体と同じ流路に流入することがなく、各室内機2にて最大能力を発揮することができる。よって、エネルギーの無駄を削減し、省エネルギー化を図ることができる。
さらに、本実施の形態に係る空気調和装置は、図10に示すような室外機(以下、室外機1Bと称する)と熱媒体変換機(以下、熱媒体変換機3Bと称する)とを3本の冷媒配管4(冷媒配管4(1)、冷媒配管4(2)、冷媒配管4(3))で接続するような構成のもの(以下、空気調和装置100Bと称する)でもよい。なお、図9には、空気調和装置100Bの設置例を図示している。つまり、空気調和装置100Bも、室内機2の全部で同一運転をすることができるとともに、室内機2のそれぞれで異なる運転をすることができるようになっている。また、熱媒体変換機3B内における冷媒配管4(2)には、冷房主体運転モード時の高圧液合流のための絞り装置16d(たとえば電子式膨張弁等)が設けられている。
空気調和装置100Bの基本的な構成については、空気調和装置100と同様であるが、室外機1B及び熱媒体変換機3Bの構成が若干異なっている。室外機1Bには、圧縮機10、熱源側熱交換器12、アキュムレーター19、2つの流路切替部(流路切替部41及び流路切替部42)が搭載されている。流路切替部41及び流路切替部42が第1冷媒流路切替装置を構成している。空気調和装置100では、第1冷媒流路切替装置が四方弁である場合を例に説明したが、図10に示すように第1冷媒流路切替装置が複数の二方弁の組み合わせであってもよい。
熱媒体変換機3Bでは、開閉装置17及び冷媒配管4(2)を分岐させて第2冷媒流路切替装置18bと接続させた冷媒配管を設けておらず、代わりに開閉装置18a(1)および18b(1)が冷媒配管4(1)に接続され、開閉装置18a(2)および18b(2)が冷媒配管4(3)に接続されている。また、絞り装置16dが設けられ、冷媒配管4(2)に接続されている。
冷媒配管4(3)は、圧縮機10の吐出配管と熱媒体変換機3Bとを接続している。2つの流路切替部は、二方弁等で構成されており、冷媒配管4を開閉するものである。流路切替部41は、圧縮機10の吸入配管と熱源側熱交換器12との間に設けられており、開閉が制御されることで、熱源機冷媒の流れを切り替えるものである。流路切替部42は、圧縮機10の吐出配管と熱源側熱交換器12との間に設けられており、開閉が制御されることで、熱源機冷媒の流れを切り替えるものである。
以下、図10に基づいて空気調和装置100Bが実行する各運転モードについて簡単に説明する。なお、熱媒体循環回路Bにおける熱媒体の流れについては空気調和装置100と同様であるため説明を省略する。
[全冷房運転モード]
この全冷房運転モードでは、流路切替部41が閉、流路切替部42が開に制御される。
低温・低圧の冷媒が圧縮機10によって圧縮され、高温・高圧のガス冷媒となって吐出される。圧縮機10から吐出された高温・高圧のガス冷媒の全部が、流路切替部42を介して熱源側熱交換器12に流入する。そして、熱源側熱交換器12で室外空気に放熱しながら凝縮液化し、高圧液冷媒となる。熱源側熱交換器12から流出した高圧液冷媒は、冷媒配管4(2)を通って熱媒体変換機3Bに流入する。熱媒体変換機3Bに流入した高圧液冷媒は、全開状態の絞り装置16dを通った後、分岐されて絞り装置16a及び絞り装置16bで膨張させられて、低温・低圧の二相冷媒となる。
この二相冷媒は、蒸発器として作用する熱媒体間熱交換器15a及び熱媒体間熱交換器15bのそれぞれに流入し、熱媒体循環回路Bを循環する熱媒体から吸熱することで、熱媒体を冷却しながら、低温・低圧のガス冷媒となる。熱媒体間熱交換器15a及び熱媒体間熱交換器15bから流出したガス冷媒は、第2冷媒流路切替装置18a及び第2冷媒流路切替装置18bを介してから合流し、熱媒体変換機3Bから流出し、冷媒配管4(1)を通って再び室外機1Bへ流入する。室外機1Bに流入した冷媒は、アキュムレーター19を介して、圧縮機10へ再度吸入される。
[全暖房運転モード]
この全暖房運転モードでは、流路切替部41が開、流路切替部42が閉に制御される。
低温・低圧の冷媒が圧縮機10によって圧縮され、高温・高圧のガス冷媒となって吐出される。圧縮機10から吐出された高温・高圧のガス冷媒の全部が、冷媒配管4(3)を通過し、室外機1Bから流出する。室外機1Bから流出した高温・高圧のガス冷媒は、冷媒配管4(3)を通って熱媒体変換機3Bに流入する。熱媒体変換機3Bに流入した高温・高圧のガス冷媒は、分岐されて第2冷媒流路切替装置18a及び第2冷媒流路切替装置18bを通って、熱媒体間熱交換器15a及び熱媒体間熱交換器15bのそれぞれに流入する。
熱媒体間熱交換器15a及び熱媒体間熱交換器15bに流入した高温・高圧のガス冷媒は、熱媒体循環回路Bを循環する熱媒体に放熱しながら凝縮液化し、高圧の液冷媒となる。熱媒体間熱交換器15a及び熱媒体間熱交換器15bから流出した液冷媒は、絞り装置16a及び絞り装置16bで膨張させられて、低温・低圧の二相冷媒となる。この二相冷媒は、全開状態の絞り装置16dを通って、熱媒体変換機3Bから流出し、冷媒配管4(2)を通って再び室外機1Bへ流入する。
室外機1Bに流入した冷媒は、蒸発器として作用する熱源側熱交換器12に流入する。そして、熱源側熱交換器12に流入した冷媒は、熱源側熱交換器12で室外空気から吸熱して、低温・低圧のガス冷媒となる。熱源側熱交換器12から流出した低温・低圧のガス冷媒は、流路切替部41及びアキュムレーター19を介して圧縮機10へ再度吸入される。
[冷房主体運転モード]
ここでは、利用側熱交換器26aで冷熱負荷が発生し、利用側熱交換器26bで温熱負荷が発生している場合を例に冷房主体運転モードについて説明する。なお、冷房主体運転モードでは、流路切替部41が閉、流路切替部42が開に制御される。
低温・低圧の冷媒が圧縮機10によって圧縮され、高温・高圧のガス冷媒となって吐出される。圧縮機10から吐出された高温・高圧のガス冷媒の一部が、流路切替部42を介して熱源側熱交換器12に流入する。そして、熱源側熱交換器12で室外空気に放熱しながら凝縮し、高圧の液冷媒となる。熱源側熱交換器12から流出した液冷媒は、冷媒配管4(2)を通って熱媒体変換機3Bに流入し絞り装置16dで若干減圧され中圧になる。一方、残りの高温・高圧のガス冷媒は、冷媒配管4(3)を通り、熱媒体変換機3Bに流入する。熱媒体変換機3Bに流入した高温・高圧の冷媒は、第2冷媒流路切替装置18b(2)を通って凝縮器として作用する熱媒体間熱交換器15bに流入する。
熱媒体間熱交換器15bに流入した高温・高圧のガス冷媒は、熱媒体循環回路Bを循環する熱媒体に放熱しながら凝縮液化し、液冷媒となる。熱媒体間熱交換器15bから流出した液冷媒は、絞り装置16bで若干減圧されて中圧になり、絞り装置16dで減圧され中圧になった液冷媒と合流する。合流した冷媒は絞り装置16aで膨張させられて低圧二相冷媒となり、蒸発器として作用する熱媒体間熱交換器15aに流入する。熱媒体間熱交換器15aに流入した低圧二相冷媒は、熱媒体循環回路Bを循環する熱媒体から吸熱することで、熱媒体を冷却しながら、低圧のガス冷媒となる。このガス冷媒は、熱媒体間熱交換器15aから流出し、第2冷媒流路切替装置18aを介して熱媒体変換機3Bから流出し、冷媒配管4(1)を通って再び室外機1Bへ流入する。室外機1Bに流入した冷媒は、アキュムレーター19を介して、圧縮機10へ再度吸入される。
[暖房主体運転モード]
ここでは、利用側熱交換器26aで温熱負荷が発生し、利用側熱交換器26bで冷熱負荷が発生している場合を例に暖房主体運転モードについて説明する。なお、暖房主体運転モードでは、流路切替部41が開、流路切替部42が閉に制御される。
低温・低圧の冷媒が圧縮機10によって圧縮され、高温・高圧のガス冷媒となって吐出される。圧縮機10から吐出された高温・高圧のガス冷媒の全部が、冷媒配管4(3)を通過し、室外機1Bから流出する。室外機1Bから流出した高温・高圧のガス冷媒は、冷媒配管4(3)を通って熱媒体変換機3Bに流入する。熱媒体変換機3Bに流入した高温・高圧のガス冷媒は、第2冷媒流路切替装置18bを通って凝縮器として作用する熱媒体間熱交換器15bに流入する。
熱媒体間熱交換器15bに流入したガス冷媒は、熱媒体循環回路Bを循環する熱媒体に放熱しながら凝縮液化し、液冷媒となる。熱媒体間熱交換器15bから流出した液冷媒は、絞り装置16bで膨張させられて低圧二相冷媒となる。この低圧二相冷媒は、2つに分流され、一方は、絞り装置16aを介して蒸発器として作用する熱媒体間熱交換器15aに流入する。熱媒体間熱交換器15aに流入した低圧二相冷媒は、熱媒体循環回路Bを循環する熱媒体から吸熱することで蒸発し、熱媒体を冷却する。この低圧二相冷媒は、熱媒体間熱交換器15aから流出し、低温・低圧ガス冷媒となって、第2冷媒流路切替装置18a(1)を介して熱媒体変換機3Bから流出し、冷媒配管4(1)を通って再び室外機1Bへ流入する。また、絞り装置16bを通った後分流させられた低圧二相冷媒は、全開状態の絞り装置16dを介して熱媒体変換機3Bから流出し、冷媒配管4(2)を通って室外機1Bへ流入する。
冷媒配管4(2)を通って室外機1Bに流入した冷媒は、蒸発器として作用する熱源側熱交換器12に流入する。そして、熱源側熱交換器12に流入した冷媒は、熱源側熱交換器12で室外空気から吸熱して、低温・低圧のガス冷媒となる。熱源側熱交換器12から流出した低温・低圧のガス冷媒は、流路切替部41を通り、冷媒配管4(1)を通って室外機1Bに流入した低温・低圧ガス冷媒と合流し、アキュムレーター19を介して圧縮機10へ再度吸入される。
なお、実施の形態で説明した第1熱媒体流路切替装置22及び第2熱媒体流路切替装置23は、三方弁等の三方流路を切り替えられるもの、開閉弁等の二方流路の開閉を行なうものを2つ組み合わせる等、流路を切り替えられるものであればよい。また、ステッピングモーター駆動式の混合弁等の三方流路の流量を変化させられるもの、電子式膨張弁等の二方流路の流量を変化させられるものを2つ組み合わせる等して第1熱媒体流路切替装置22及び第2熱媒体流路切替装置23として用いてもよい。この場合は、流路の突然の開閉によるウォーターハンマーを防ぐこともできる。さらに、実施の形態では、熱媒体流量調整装置25がステッピングモーター駆動式の二方弁である場合を例に説明を行なったが、三方流路を持つ制御弁とし利用側熱交換器26をバイパスするバイパス管と共に設置するようにしてもよい。
また、熱媒体流量調整装置25は、ステッピングモーター駆動式で流路を流れる流量を制御できるものを使用してもよいし、二方弁でも、三方弁の一端を閉止したものでもよい。また、熱媒体流量調整装置25として、開閉弁等の二方流路の開閉を行なうものを用い、ON/OFFを繰り返して平均的な流量を制御するようにしてもよい。
また、第2冷媒流路切替装置18が四方弁である場合を説明したが、これに限るものではなく、二方流路切替弁や三方流路切替弁を複数個用い、同じように冷媒が流れるように構成してもよい。
本実施の形態に係る空気調和装置100は、冷房暖房混在運転ができるものとして説明をしてきたが、これに限定するものではない。熱媒体間熱交換器15及び絞り装置16がそれぞれ1つで、それらに複数の利用側熱交換器26と熱媒体流量調整装25が並列に接続され、冷房運転か暖房運転のいずれかしか行なえない構成であっても同様の効果を奏する。
また、利用側熱交換器26と熱媒体流量調整装置25とが1つしか接続されていない場合でも同様のことが成り立つのは言うまでもなく、更に熱媒体間熱交換器15及び絞り装置16として、同じ動きをするものが複数個設置されていても、当然問題ない。さらに、熱媒体流量調整装置25は、熱媒体変換機3に内蔵されている場合を例に説明したが、これに限るものではなく、室内機2に内蔵されていてもよく、熱媒体変換機3と室内機2とは別体に構成されていてもよい。
熱源側冷媒としては、たとえばR−22、R−134a等の単一冷媒、R−410A、R−404A等の擬似共沸混合冷媒、R−407C等の非共沸混合冷媒、化学式内に二重結合を含む、CF3 CF=CH2 等の地球温暖化係数が比較的小さい値とされている冷媒やその混合物、あるいはCO2 やプロパン等の自然冷媒を用いることができる。加熱用として動作している熱媒体間熱交換器15aまたは熱媒体間熱交換器15bにおいて、通常の二相変化を行なう冷媒は、凝縮液化し、CO2 等の超臨界状態となる冷媒は、超臨界の状態で冷却されるが、どちらでも、その他は同じ動きをし、同様の効果を奏する。
熱媒体としては、たとえばブライン(不凍液)や水、ブラインと水の混合液、水と防食効果が高い添加剤の混合液等を用いることができる。したがって、空気調和装置100においては、熱媒体が室内機2を介して室内空間7に漏洩したとしても、熱媒体に安全性の高いものを使用しているため安全性の向上に寄与することになる。
また、実施の形態では、空気調和装置100にアキュムレーター19を含めている場合を例に説明したが、アキュムレーター19を設けなくてもよい。アキュムレーター19を設けなくても、同様の動作をし、同様の効果を奏することは言うまでもない。
また、一般的に、熱源側熱交換器12及び利用側熱交換器26には、送風機が取り付けられており、送風により凝縮あるいは蒸発を促進させる場合が多いが、これに限るものではない。たとえば、利用側熱交換器26としては放射を利用したパネルヒーターのようなものを用いることもできるし、熱源側熱交換器12としては、水や不凍液により熱を移動させる水冷式のタイプのものを用いることもできる。つまり、熱源側熱交換器12及び利用側熱交換器26としては、放熱あるいは吸熱をできる構造のものであれば種類を問わず、用いることができる。また、利用側熱交換器26の個数を特に限定するものではない。
実施の形態では、第1熱媒体流路切替装置22、第2熱媒体流路切替装置23、及び、熱媒体流量調整装置25が、各利用側熱交換器26にそれぞれ1つずつ接続されている場合を例に説明したが、これに限るものではなく、1つの利用側熱交換器26に対し、それぞれが複数接続されていてもよい。この場合には、同じ利用側熱交換器26に接続されている、第1熱媒体流路切替装置、第2熱媒体流路開閉装置、熱媒体流量調整装置を同じように動作させればよい。
また、実施の形態では、熱媒体間熱交換器15が2つある場合を例に説明したが、当然、これに限るものではない。熱媒体を冷却または/及び加熱できるように構成すれば、熱媒体間熱交換器15をいくつ設置してもよい。
また、ポンプ21a及びポンプ21bは、それぞれ一つとは限らず、複数の小容量のポンプを並列に並べて使用してもよい。
以上のように、本実施の形態に係る空気調和装置100は、熱媒体側の熱媒体流路切替装置(第1熱媒体流路切替装置22及び第2熱媒体流路切替装置23)、熱媒体流量調整装置25、ポンプ21を制御することにより、安全かつ省エネルギー性の高い運転を実行することができる。
1 室外機、1B 室外機、2 室内機、2a 室内機、2b 室内機、2c 室内機、2d 室内機、3 熱媒体変換機、3B 熱媒体変換機、3a 親熱媒体変換機、3b 子熱媒体変換機、4 冷媒配管、4a 第1接続配管、4b 第2接続配管、4d 熱媒体間熱交換器バイパス配管、4e 分岐配管、4f 分岐配管、5 配管、6 室外空間、7 室内空間、8 空間、9 建物、10 圧縮機、11 第1冷媒流路切替装置、12 熱源側熱交換器、13a 逆止弁、13b 逆止弁、13c 逆止弁、13d 逆止弁、14 気液分離器、15 熱媒体間熱交換器、15a 熱媒体間熱交換器、15b 熱媒体間熱交換器、16 絞り装置、16a 絞り装置、16b 絞り装置、16c 絞り装置、17 開閉装置、17a 開閉装置、17b 開閉装置、18 第2冷媒流路切替装置、18a 第2冷媒流路切替装置、18b 第2冷媒流路切替装置、19 アキュムレーター、21 ポンプ、21a ポンプ、21b ポンプ、22 第1熱媒体流路切替装置、22a 第1熱媒体流路切替装置、22b 第1熱媒体流路切替装置、22c 第1熱媒体流路切替装置、22d 第1熱媒体流路切替装置、23 第2熱媒体流路切替装置、23a 第2熱媒体流路切替装置、23b 第2熱媒体流路切替装置、23c 第2熱媒体流路切替装置、23d 第2熱媒体流路切替装置、25 熱媒体流量調整装置、25a 熱媒体流量調整装置、25b 熱媒体流量調整装置、25c 熱媒体流量調整装置、25d 熱媒体流量調整装置、26 利用側熱交換器、26a 利用側熱交換器、26b 利用側熱交換器、26c 利用側熱交換器、26d 利用側熱交換器、31 第1温度センサー、31a 第1温度センサー、31b 第1温度センサー、34 第2温度センサー、34a 第2温度センサー、34b 第2温度センサー、34c 第2温度センサー、34d 第2温度センサー、35 第3温度センサー、35a 第3温度センサー、35b 第3温度センサー、35c 第3温度センサー、35d 第3温度センサー、36 圧力センサー、41 流路切替部、42 流路切替部、100 空気調和装置、100A 空気調和装置、100B 空気調和装置、A 冷媒循環回路、B 熱媒体循環回路。
本発明に係る空気調和装置は、圧縮機、熱源側熱交換器、複数の絞り装置、及び、複数の熱媒体間熱交換器が冷媒配管で接続されて冷媒を循環させる冷媒循環回路が形成され、複数のポンプ、複数の利用側熱交換器、及び、前記複数の熱媒体間熱交換器が接続されて熱媒体を循環させる熱媒体循環回路が形成され、前記複数の熱媒体間熱交換器の全てに前記圧縮機から吐出された高温・高圧の前記冷媒を流して前記熱媒体を加熱する全暖房運転モードと、前記複数の熱媒体間熱交換器の全てに低温・低圧の前記冷媒を流して前記熱媒体を冷却する全冷房運転モードと、前記複数の熱媒体間熱交換器の一部に前記圧縮機から吐出された高温・高圧の前記冷媒を流して前記熱媒体を加熱し、前記複数の熱媒体間熱交換器の他の一部に低温・低圧の前記冷媒を流して前記熱媒体を冷却する冷房暖房混在運転モードとを実行可能な空気調和装置であって、前記室外機における前記冷媒の循環経路を切り替える第1冷媒流路切替装置と、前記第1冷媒流路切替装置の切替状態によらず、前記室外機と前記熱媒体変換機との間の前記冷媒配管を流れる冷媒の向きを一定にする冷媒整流装置と、前記複数の熱媒体間熱交換器ごとに設けられ、前記室外機からの冷媒が前記熱媒体間熱交換器に流入する流路と、前記熱媒体間熱交換器からの冷媒が前記室外機に流出する流路とを切り替える複数の第2冷媒流路切替装置と、前記室外機からの冷媒が前記絞り装置に流入する流路と、前記室外機からの冷媒が前記第2冷媒流路切替装置に流入する流路とを切り替える第3冷媒流路切替装置とを備え、前記第1冷媒流路切替装置、前記第2冷媒流路切替装置、及び第3冷媒流路切替装置の切替状態によらず、前記第2冷媒流路切替装置の前記室外機からの冷媒が流入する流路の圧力が、前記室外機に冷媒を流出する流路の圧力より高く、前記圧縮機が停止状態において、前記第2冷媒流路切替装置の切替状態を、前記冷房暖房混在運転モードでの切替状態にする。

Claims (10)

  1. 圧縮機、熱源側熱交換器、複数の絞り装置、複数の熱媒体間熱交換器、複数のポンプ、及び、複数の利用側熱交換器を少なくとも備え、
    前記圧縮機、前記熱源側熱交換器、前記複数の絞り装置、及び、前記複数の熱媒体間熱交換器が冷媒配管で接続されて冷媒を循環させる冷媒循環回路が形成され、
    前記複数のポンプ、前記複数の利用側熱交換器、及び、前記複数の熱媒体間熱交換器が接続されて熱媒体を循環させる熱媒体循環回路が形成された空気調和装置であって、
    前記圧縮機及び前記熱源側熱交換器は室外機に収容され、
    前記複数の絞り装置、前記複数の熱媒体間熱交換器及び前記複数のポンプは熱媒体変換機に収容され、
    前記室外機における前記冷媒の循環経路を切り替える第1冷媒流路切替装置と、
    前記第1冷媒流路切替装置の切替状態によらず、前記室外機と前記熱媒体変換機との間の前記冷媒配管を流れる冷媒の向きを一定にする冷媒整流装置と、
    前記複数の熱媒体間熱交換器ごとに設けられ、前記室外機からの冷媒が前記熱媒体間熱交換器に流入する流路と、前記熱媒体間熱交換器からの冷媒が前記室外機に流出する流路とを切り替える複数の第2冷媒流路切替装置と、
    前記室外機からの冷媒が前記絞り装置に流入する流路と、前記室外機からの冷媒が前記第2冷媒流路切替装置に流入する流路とを切り替える第3冷媒流路切替装置と
    を備え、
    前記第1冷媒流路切替装置、前記第2冷媒流路切替装置、及び第3冷媒流路切替装置の切替状態によらず、前記第2冷媒流路切替装置の前記室外機からの冷媒が流入する流路の圧力が、前記室外機に冷媒を流出する流路の圧力より高い
    ことを特徴とする空気調和装置。
  2. 前記複数の熱媒体間熱交換器の全てに前記圧縮機から吐出された高温・高圧の前記冷媒を流して前記熱媒体を加熱する全暖房運転モードと、
    前記複数の熱媒体間熱交換器の全てに低温・低圧の前記冷媒を流して前記熱媒体を冷却する全冷房運転モードと、
    前記複数の熱媒体間熱交換器の一部に前記圧縮機から吐出された高温・高圧の前記冷媒を流して前記熱媒体を加熱し、前記複数の熱媒体間熱交換器の他の一部に低温・低圧の前記冷媒を流して前記熱媒体を冷却する冷房暖房混在運転モードと
    を実行可能であり、
    前記全冷房運転モードにおいて、前記第3冷媒流路切替装置を開として、前記室外機からの冷媒が前記絞り装置に至る流路を形成し、
    前記全暖房運転モード及び前記冷房暖房混在運転モードにおいて、前記第3冷媒流路切替装置を閉として、前記室外機からの冷媒が前記第2冷媒流路切替装置に至る流路を形成する
    ことを特徴とする請求項1に記載の空気調和装置。
  3. 前記複数の熱媒体間熱交換器の全てに前記圧縮機から吐出された高温・高圧の前記冷媒を流して前記熱媒体を加熱する全暖房運転モードと、
    前記複数の熱媒体間熱交換器の全てに低温・低圧の前記冷媒を流して前記熱媒体を冷却する全冷房運転モードと
    を少なくとも実行可能であり、
    前記全冷房運転モードでの前記複数の第2冷媒流路切替装置の切替状態と、
    前記全暖房運転モードでの前記複数の第2冷媒流路切替装置の切替状態とが逆の切替状態である
    ことを特徴とする請求項1又は2記載の空気調和装置。
  4. 前記熱源側熱交換器に高温・高圧の前記冷媒を流した状態で、前記複数の熱媒体間熱交換器の一部に高温・高圧の前記冷媒を流して前記熱媒体を加熱し、前記複数の熱媒体間熱交換器の他の一部に低温・低圧の前記冷媒を流して前記熱媒体を冷却する冷房主体運転モードと、
    前記熱源側熱交換器に低温・低圧の前記冷媒を流した状態で、前記複数の熱媒体間熱交換器の一部に高温・高圧の前記冷媒を流して前記熱媒体を加熱し、前記複数の熱媒体間熱交換器の他の一部に低温・低圧の前記冷媒を流して前記熱媒体を冷却する暖房主体運転モードと
    を冷房暖房混在運転モードとして実行可能であり、
    前記冷房主体運転モードでの前記複数の第2冷媒流路切替装置の切替状態と、
    前記暖房主体運転モードでの前記複数の第2冷媒流路切替装置の切替状態とが同じ切替状態である
    ことを特徴とする請求項1〜3の何れかに記載の空気調和装置。
  5. 前記第2冷媒流路切替装置として四方弁を使用した
    ことを特徴とする請求項1〜4の何れかに記載の空気調和装置。
  6. 前記複数の熱媒体間熱交換器の全てに前記圧縮機から吐出された高温・高圧の前記冷媒を流して前記熱媒体を加熱する全暖房運転モードと、
    前記複数の熱媒体間熱交換器の全てに低温・低圧の前記冷媒を流して前記熱媒体を冷却する全冷房運転モードと、
    前記複数の熱媒体間熱交換器の一部に前記圧縮機から吐出された高温・高圧の前記冷媒を流して前記熱媒体を加熱し、前記複数の熱媒体間熱交換器の他の一部に低温・低圧の前記冷媒を流して前記熱媒体を冷却する冷房暖房混在運転モードと
    を実行可能であり、
    前記圧縮機が停止状態において、前記第2冷媒流路切替装置の切替状態を、前記冷房暖房混在運転モードでの切替状態にする
    ことを特徴とする請求項1〜5の何れかに記載の空気調和装置。
  7. 前記複数の第2冷媒流路切替装置は、電圧の印加の有無に応じて駆動し、
    前記圧縮機が停止状態において、前記複数の第2冷媒流路切替装置の全てが、電圧の印加が無い状態である
    ことを特徴とする請求項6記載の空気調和装置。
  8. 前記熱媒体を加熱する前記熱媒体間熱交換器に流れる高温・高圧の前記冷媒と、当該熱媒体間熱交換器に流れる前記熱媒体とが対向流になるように前記冷媒を循環させ、
    前記熱媒体を冷却する前記熱媒体間熱交換器に流れる低温・低圧の前記冷媒と、当該熱媒体間熱交換器に流れる前記熱媒体とが並向流になるように前記冷媒を循環させる
    ことを特徴とする請求項1〜7の何れかに記載の空気調和装置。
  9. 前記利用側熱交換器は室内機に収容された
    ことを特徴とする請求項1〜8の何れかに記載の空気調和装置。
  10. 前記室外機と前記熱媒体変換機とを2本の冷媒配管で接続した
    ことを特徴とする請求項1〜9の何れかに記載の空気調和装置。
JP2011538143A 2009-10-27 2009-10-27 空気調和装置 Active JP5279919B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/068427 WO2011052042A1 (ja) 2009-10-27 2009-10-27 空気調和装置

Publications (2)

Publication Number Publication Date
JPWO2011052042A1 true JPWO2011052042A1 (ja) 2013-03-14
JP5279919B2 JP5279919B2 (ja) 2013-09-04

Family

ID=43921486

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011538143A Active JP5279919B2 (ja) 2009-10-27 2009-10-27 空気調和装置

Country Status (6)

Country Link
US (1) US9032747B2 (ja)
EP (1) EP2472200B1 (ja)
JP (1) JP5279919B2 (ja)
CN (1) CN102597657B (ja)
ES (1) ES2712931T3 (ja)
WO (1) WO2011052042A1 (ja)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105466065B (zh) * 2011-06-16 2018-02-23 三菱电机株式会社 空气调节装置
US9513036B2 (en) 2011-06-16 2016-12-06 Mitsubishi Electric Corporation Air-conditioning apparatus
WO2012172605A1 (ja) * 2011-06-16 2012-12-20 三菱電機株式会社 空気調和装置
JP5677571B2 (ja) * 2011-06-16 2015-02-25 三菱電機株式会社 空気調和装置
WO2014057550A1 (ja) * 2012-10-10 2014-04-17 三菱電機株式会社 空気調和装置
EP2927612B1 (en) * 2012-11-30 2021-06-09 Mitsubishi Electric Corporation Air conditioning device
CN105042697A (zh) * 2015-08-17 2015-11-11 胡述松 一种恒温差恒湿度空调机组
JP7187292B2 (ja) * 2018-03-05 2022-12-12 パナソニックホールディングス株式会社 速度型圧縮機及び冷凍サイクル装置
KR20200114068A (ko) * 2019-03-27 2020-10-07 엘지전자 주식회사 공기 조화 장치
KR20200118968A (ko) 2019-04-09 2020-10-19 엘지전자 주식회사 공기 조화 장치
JP7150194B2 (ja) * 2019-11-12 2022-10-07 三菱電機株式会社 室外機および空気調和装置
KR20210083047A (ko) * 2019-12-26 2021-07-06 엘지전자 주식회사 공기조화장치
KR20210085443A (ko) 2019-12-30 2021-07-08 엘지전자 주식회사 공기조화장치
KR20210096522A (ko) * 2020-01-28 2021-08-05 엘지전자 주식회사 공기 조화 장치
KR20210096521A (ko) 2020-01-28 2021-08-05 엘지전자 주식회사 공기 조화 장치
KR20210098783A (ko) * 2020-02-03 2021-08-11 엘지전자 주식회사 공기조화장치
KR20210100461A (ko) * 2020-02-06 2021-08-17 엘지전자 주식회사 공기 조화 장치

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0754217B2 (ja) * 1989-10-06 1995-06-07 三菱電機株式会社 空気調和装置
JPH04217759A (ja) * 1990-12-18 1992-08-07 Matsushita Refrig Co Ltd 多室型空気調和機
JP2616523B2 (ja) * 1991-12-09 1997-06-04 三菱電機株式会社 空気調和装置
JPH05280818A (ja) 1992-04-01 1993-10-29 Matsushita Refrig Co Ltd 多室冷暖房装置
JP3655523B2 (ja) * 2000-03-01 2005-06-02 シャープ株式会社 マルチ型空気調和機
JP2001289465A (ja) 2000-04-11 2001-10-19 Daikin Ind Ltd 空気調和装置
JP2002106995A (ja) 2000-09-29 2002-04-10 Hitachi Ltd 空気調和機
US6981385B2 (en) * 2001-08-22 2006-01-03 Delaware Capital Formation, Inc. Refrigeration system
JP4123829B2 (ja) 2002-05-28 2008-07-23 三菱電機株式会社 冷凍サイクル装置
JP2005140444A (ja) 2003-11-07 2005-06-02 Matsushita Electric Ind Co Ltd 空気調和機およびその制御方法
JP2005241074A (ja) * 2004-02-25 2005-09-08 Mitsubishi Heavy Ind Ltd 空気調和機
KR100733295B1 (ko) * 2004-12-28 2007-06-28 엘지전자 주식회사 냉난방 동시형 멀티 에어컨의 과냉 장치
KR101176482B1 (ko) * 2006-10-19 2012-08-22 엘지전자 주식회사 냉난방 동시형 멀티 공기조화기
CN101226019A (zh) * 2007-01-18 2008-07-23 上海塔格工贸有限公司 多用途热泵机组
CN101498498A (zh) * 2009-01-05 2009-08-05 东莞市康源节能科技有限公司 一种三用热泵热水机及其控制方法

Also Published As

Publication number Publication date
US9032747B2 (en) 2015-05-19
JP5279919B2 (ja) 2013-09-04
EP2472200A4 (en) 2015-10-21
CN102597657A (zh) 2012-07-18
EP2472200A1 (en) 2012-07-04
ES2712931T3 (es) 2019-05-16
WO2011052042A1 (ja) 2011-05-05
US20120198873A1 (en) 2012-08-09
CN102597657B (zh) 2014-10-22
EP2472200B1 (en) 2019-01-30

Similar Documents

Publication Publication Date Title
JP5279919B2 (ja) 空気調和装置
JP5188629B2 (ja) 空気調和装置
JP5377653B2 (ja) 空気調和装置
JP5236080B2 (ja) 空気調和装置
JP5340406B2 (ja) 空気調和装置
WO2012070083A1 (ja) 空気調和装置
JP5595521B2 (ja) ヒートポンプ装置
JP5490245B2 (ja) 空気調和装置
WO2011030429A1 (ja) 空気調和装置
WO2012172613A1 (ja) 空気調和装置
JP5420057B2 (ja) 空気調和装置
JP5523470B2 (ja) 空気調和装置
WO2011099074A1 (ja) 冷凍サイクル装置
JP5312606B2 (ja) 空気調和装置
JP5312681B2 (ja) 空気調和装置
JP5752135B2 (ja) 空気調和装置
WO2014141381A1 (ja) 空気調和装置
WO2011052050A1 (ja) 空気調和装置
WO2014128971A1 (ja) 空気調和装置
WO2011030420A1 (ja) 空気調和装置

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130423

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130521

R150 Certificate of patent or registration of utility model

Ref document number: 5279919

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250