JPWO2011024214A1 - Fast recovery diode - Google Patents

Fast recovery diode Download PDF

Info

Publication number
JPWO2011024214A1
JPWO2011024214A1 JP2010532768A JP2010532768A JPWO2011024214A1 JP WO2011024214 A1 JPWO2011024214 A1 JP WO2011024214A1 JP 2010532768 A JP2010532768 A JP 2010532768A JP 2010532768 A JP2010532768 A JP 2010532768A JP WO2011024214 A1 JPWO2011024214 A1 JP WO2011024214A1
Authority
JP
Japan
Prior art keywords
layer
concentration
semiconductor layer
recovery
conductivity type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010532768A
Other languages
Japanese (ja)
Inventor
イクバル カジ
イクバル カジ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Publication of JPWO2011024214A1 publication Critical patent/JPWO2011024214A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/872Schottky diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/0619Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

高濃度第1導電型半導体基板101上に低濃度第1導電型半導体層103を形成し、低濃度第1導電型半導体層103の表面に複数に分割された第2導電型半導体層が形成され、第2導電型半導体層が表面から深部の方向に不純物濃度が低くなるように複数層に積層される高速回復ダイオード100において、高濃度第1導電型半導体基板101と低濃度第1導電型半導体層103との間にさらに中濃度の第1導電型半導体層102を形成することにより、高速回復化と共に、さらなる低順方向電圧化とソフトリカバリー化を実現することができる。A low-concentration first conductive semiconductor layer 103 is formed on the high-concentration first conductive semiconductor substrate 101, and a plurality of divided second conductive semiconductor layers are formed on the surface of the low-concentration first conductive semiconductor layer 103. The high-concentration first conductive semiconductor substrate 101 and the low-concentration first conductive semiconductor in the fast recovery diode 100 in which the second conductive semiconductor layer is stacked in a plurality of layers so that the impurity concentration decreases from the surface toward the deep part. By forming the first-conductivity-type semiconductor layer 102 having a medium concentration between the layer 103 and the layer 103, it is possible to realize a further reduction in forward voltage and soft recovery as well as a high-speed recovery.

Description

本発明は高速回復ダイオードに関するものである。   The present invention relates to a fast recovery diode.

一般的にダイオードの特性として、高速スイッチングのための逆回復の高速化や、順方向電圧の低電圧化,ソフトリカバリー化が求められている。   In general, diode characteristics are required to increase reverse recovery for high-speed switching, lower forward voltage, and soft recovery.

ここで、図4を用いて高速回復ダイオードのソフトリカバリーについて説明する。   Here, the soft recovery of the fast recovery diode will be described with reference to FIG.

図4は逆回復時間(trr)を示す図であり、横軸に時間T、縦軸に電流量IFを示す。   FIG. 4 is a diagram showing the reverse recovery time (trr), where the horizontal axis represents time T and the vertical axis represents the current amount IF.

図4に示すように、高速回復を実現するために、単位時間当たりに回復する電流量(回復速度:dIF/dT)を大きくすると、電流が収束するまでの電流振幅が大きくなりスパイク1が発生する場合がある(グラフ2)。そのため、逆回復時間を抑制しながら逆電流を抑制して回復する電流速度を遅くするソフトリカバリーが求められている。例えば、グラフ3において、逆電流Iをグラフ2の逆電流Iより小さくし、逆回復時間trrを同じにすることにより回復速度を小さくすることができ、高速回復を実現しながらスパイクの発生を抑制することができる。As shown in FIG. 4, when the amount of current recovered per unit time (recovery speed: dIF / dT) is increased in order to realize high-speed recovery, the current amplitude until the current converges increases and spike 1 is generated. (Graph 2). Therefore, there is a demand for soft recovery that suppresses the reverse current while suppressing the reverse current and slows down the current speed for recovery. For example, in the graph 3, the reverse current I 2 smaller than the reverse current I 1 graph 2, the reverse recovery time trr can be reduced recovery rate by the same spikes generated while achieving fast recovery Can be suppressed.

従来からも、これらの特性を向上させるために様々な構成が提案されている。   Conventionally, various configurations have been proposed in order to improve these characteristics.

以下、図5を用いて従来の高速回復ダイオードの構成を説明する。   Hereinafter, the configuration of a conventional fast recovery diode will be described with reference to FIG.

図5は従来の高速回復ダイオードの構成を示す断面図である。   FIG. 5 is a cross-sectional view showing the configuration of a conventional fast recovery diode.

図5に示すように、高濃度N型基板であるN基板12上に低濃度N型層であるN層11がエピタキシャル法等で形成され、N層11の表面に一定の間隔を隔てて複数のP型層10が形成されてP−N接合が構成されている。さらに、P型層10は1または複数の層に分割され、N層11の表面近傍からN基板12方向に順にP型不純物濃度が低くなるように各層が形成されている。図5ではP層型10を2層構造とし、N層11の表面側に高濃度のP層13を形成し、N層11の深部側に低濃度のP層14を形成する構成を例示している。また、N層11の表面上にP層13と接する金属のアノード電極15が形成され、N基板12のN層11形成面の反対面である裏面にN基板12と接する金属のカソード電極16が形成されてP−N接合ダイオードが形成される。このような構成により、P−N接合面の濃度勾配が小さくなるため、少数キャリアの注入が抑制されて高速回復を実現すると共に、P型層10とアノード電極15とのオーミック接合面での抵抗を低抵抗化することで順方向電圧の低下を実現していた(例えば、特許文献1参照)。As shown in FIG. 5, an N layer 11, which is a low concentration N-type layer, is formed on an N + substrate 12, which is a high concentration N type substrate, by an epitaxial method or the like, and a certain interval is formed on the surface of the N layer 11. A plurality of P-type layers 10 are formed apart from each other to form a PN junction. Further, the P-type layer 10 is divided into one or a plurality of layers, and each layer is formed so that the P-type impurity concentration decreases in order from the vicinity of the surface of the N layer 11 toward the N + substrate 12. 5 the P-layer 10 has a two-layer structure, N - the high concentration P + layer 13 is formed on the surface side of the layer 11, N - forming a layer 14 - P deep side low concentration layer 11 The structure is illustrated. A metal anode electrode 15 in contact with the P + layer 13 is formed on the surface of the N layer 11, and a metal in contact with the N + substrate 12 on the back surface, which is the opposite surface of the N layer 11 formation surface, of the N + substrate 12. The cathode electrode 16 is formed to form a PN junction diode. With such a configuration, since the concentration gradient of the PN junction surface is reduced, minority carrier injection is suppressed to achieve high-speed recovery, and resistance at the ohmic junction surface between the P-type layer 10 and the anode electrode 15 is achieved. The forward voltage has been reduced by lowering the resistance (see, for example, Patent Document 1).

特開平7−226521号公報JP-A-7-226521 特表2004−503933号公報JP-T-2004-503933

しかしながら、上記従来の構成では、低抵抗化により高電流帯では順方向電圧を抑制することができ、動作範囲内での最大順方向電圧を抑制することができるが、実動作電流帯となる比較的低電流な帯域では、N−N領域で不純物濃度の影響が大きくなり十分な順方向電圧の低下が実現できないという問題点があった。However, in the above conventional configuration, the forward voltage can be suppressed in the high current band due to the low resistance, and the maximum forward voltage within the operating range can be suppressed. In a band with a relatively low current, the influence of the impurity concentration is large in the N + -N region, and there is a problem that a sufficient forward voltage drop cannot be realized.

さらに、近年、ダイオードに対する高速回復によるスイッチング速度の向上と共に、低消費電力化の要求が大きくなっている。そのため、さらなる低順方向電圧化とスパイクを抑制したソフトリカバリー化が求められている。   Furthermore, in recent years, the demand for lower power consumption has increased along with the improvement of switching speed due to high-speed recovery of diodes. Therefore, further lower forward voltage and soft recovery with suppressed spikes are required.

本発明の高速回復ダイオードは、上記課題を解決するために、高速回復化と共に、さらなる低順方向電圧化とソフトリカバリー化を実現することを目的とする。   In order to solve the above-described problems, the fast recovery diode of the present invention aims to realize further lower forward voltage and soft recovery as well as faster recovery.

前記目的を達成するために、本発明の高速回復ダイオードは、第1導電型半導体基板と、前記第1導電型半導体基板上に形成される第1の第1導電型半導体層と、前記第1の第1導電型半導体層上に形成される第2の第1導電型半導体層と、前記第2の第1導電型半導体層の前記第1の第1導電型半導体層との接続面に対する反対面である表面に互いに離間して形成される複数の第2導電型半導体層とを有し、前記第2導電型半導体層が前記表面側に近い層の不純物濃度がより高くなる複数の層からなり、前記1の第1導電型半導体層の不純物濃度が前記第1導電型半導体基板の不純物濃度より小さく、前記第2の第1導電型半導体層の不純物濃度が前記1の第1導電型半導体層の不純物濃度より小さいことを特徴とする。   To achieve the above object, a fast recovery diode according to the present invention includes a first conductive semiconductor substrate, a first first conductive semiconductor layer formed on the first conductive semiconductor substrate, and the first conductive semiconductor layer. The second first conductivity type semiconductor layer formed on the first conductivity type semiconductor layer is opposite to the connection surface between the second first conductivity type semiconductor layer and the first first conductivity type semiconductor layer. A plurality of second conductivity type semiconductor layers formed on the surface that is spaced apart from each other, and the second conductivity type semiconductor layer is formed of a plurality of layers having a higher impurity concentration in a layer close to the surface side. The impurity concentration of the first first conductivity type semiconductor layer is smaller than the impurity concentration of the first conductivity type semiconductor substrate, and the impurity concentration of the second first conductivity type semiconductor layer is the first conductivity type semiconductor of the first. It is characterized by being smaller than the impurity concentration of the layer.

以上により、高速回復化と共に、さらなる低順方向電圧化とソフトリカバリー化を実現することができる。   As described above, it is possible to realize further low forward voltage and soft recovery as well as high speed recovery.

以上のように、高濃度第1導電型半導体基板上に低濃度第1導電型半導体層を形成し、低濃度第1導電型半導体層の表面に複数に分割された第2導電型半導体層が形成され、第2導電型半導体層が表面から深部の方向に不純物濃度が低くなるように複数層に積層される高速回復ダイオードにおいて、高濃度第1導電型半導体基板と低濃度第1導電型半導体層との間にさらに中濃度の第1導電型半導体層を形成することにより、高速回復化と共に、さらなる低順方向電圧化とソフトリカバリー化を実現することができる。   As described above, the low-concentration first conductive semiconductor layer is formed on the high-concentration first conductive semiconductor substrate, and the second conductive semiconductor layer divided into a plurality of portions on the surface of the low-concentration first conductive semiconductor layer is formed. In the fast recovery diode formed and stacked in a plurality of layers so that the second conductivity type semiconductor layer has a lower impurity concentration in the direction from the surface to the deep part, the high concentration first conductivity type semiconductor substrate and the low concentration first conductivity type semiconductor By forming the first-conductivity-type semiconductor layer having a medium concentration between the layers, it is possible to realize a further reduction in forward voltage and soft recovery as well as high-speed recovery.

本発明の高速回復ダイオードの構成を示す断面図Sectional drawing which shows the structure of the fast recovery diode of this invention 濃度プロファイルを示す図Diagram showing concentration profile 電流量に対する順方向電圧の関係を示す図Diagram showing the relationship of forward voltage to current 逆回復時間を示す図Diagram showing reverse recovery time 従来の高速回復ダイオードの構成を示す断面図Sectional view showing the configuration of a conventional fast recovery diode

本発明は、高濃度第1導電型半導体基板上に低濃度第1導電型半導体層を形成し、低濃度第1導電型半導体層の表面に互いに離間して複数に分割された第2導電型半導体層を形成し、第2導電型半導体層が表面から深部の方向に不純物濃度が低くなるように1または複数層に積層される高速回復ダイオードにおいて、高濃度第1導電型半導体基板と低濃度第1導電型半導体層との間にさらに中濃度の第1導電型半導体層を形成することを特徴とする。ここで、中濃度の第1導電型半導体層の不純物濃度は、高濃度第1導電型半導体基板の不純物濃度と低濃度第1導電型半導体層の不純物濃度との間の不純物濃度とする。   According to the present invention, a low-concentration first conductive semiconductor layer is formed on a high-concentration first conductive semiconductor substrate, and the second conductive type is divided into a plurality of portions separated from each other on the surface of the low-concentration first conductive semiconductor layer. In a fast recovery diode in which a semiconductor layer is formed and the second conductivity type semiconductor layer is stacked in one or more layers so that the impurity concentration decreases from the surface toward the deep portion, the high concentration first conductivity type semiconductor substrate and the low concentration An intermediate-concentration first conductive semiconductor layer is further formed between the first conductive semiconductor layer and the first conductive semiconductor layer. Here, the impurity concentration of the medium-concentration first conductive semiconductor layer is an impurity concentration between the impurity concentration of the high-concentration first conductive semiconductor substrate and the impurity concentration of the low-concentration first conductive semiconductor layer.

このように、P−N接合部分の濃度勾配を小さくして少数キャリアの注入を抑制することにより高速回復を実現しながら、中濃度の第1導電型半導体層を設けることにより、空乏層が狭くなり、ソフトリカバリー化のために十分な電荷を供給することができる。同時に、中濃度の第1導電型半導体層を設けることにより、実動作電流帯となる比較的低電流な帯域でも、十分な電荷が供給できるため、P−N接合部分でのキャリアの再結合が進み順方向電圧を低下させることができる。   Thus, the depletion layer is narrowed by providing the medium-concentration first conductivity type semiconductor layer while realizing high-speed recovery by reducing the concentration gradient of the PN junction portion and suppressing minority carrier injection. Thus, a sufficient charge for soft recovery can be supplied. At the same time, by providing the first-conductivity-type semiconductor layer having a medium concentration, sufficient charges can be supplied even in a relatively low current band, which is an actual operating current band, so that recombination of carriers at the PN junction portion can be achieved. The forward voltage can be reduced.

以下、具体的な実施の形態について、図1〜図4を参照しながら説明する。   Hereinafter, specific embodiments will be described with reference to FIGS.

図1は本発明の高速回復ダイオードの構成を示す断面図である。   FIG. 1 is a cross-sectional view showing the configuration of the fast recovery diode of the present invention.

図1に示すように、本発明の高速回復ダイオード100は、N基板101上にN型層102を介してN層103が形成され、N層103の表面に複数のP層104が離間して形成されている。また、各P層104の表面にP層105が形成され、N層103の表面上のP型層に表面側が高濃度となる濃度勾配を持たせている。そして、N層103とP層104の間にPN接合構造を形成している。また、106はカソード電極であり、N型層102が形成されたN基板表面に対する裏面に形成されている。同様に、P層105に接して、N層103表面にアノード電極107が設けられている。例えば、N基板101は1〜3E19/cmの高濃度のN型不純物が添加され、N型層102は1〜3E18/cmの中濃度のN型不純物が添加され、N層103は1〜3E14/cmの低濃度のN型不純物が添加される。また、P層104のP型不純物添加量は1〜3E13/cmであり、P層105のP型不純物添加量は1〜3E19/cmである。As shown in FIG. 1, in the fast recovery diode 100 of the present invention, an N layer 103 is formed on an N + substrate 101 via an N-type layer 102, and a plurality of P layers 104 are formed on the surface of the N layer 103. Are formed apart from each other. Further, a P + layer 105 is formed on the surface of each P layer 104, and the P-type layer on the surface of the N layer 103 has a concentration gradient in which the surface side has a high concentration. A PN junction structure is formed between the N layer 103 and the P layer 104. Reference numeral 106 denotes a cathode electrode, which is formed on the back surface of the N + substrate surface on which the N-type layer 102 is formed. Similarly, an anode electrode 107 is provided on the surface of the N layer 103 in contact with the P + layer 105. For example, N + substrate 101 is doped with a high concentration N-type impurity 1~3E19 / cm 3, N-type layer 102 is added N-type impurity concentration in the 1~3E18 / cm 3, N - layer 103 Is added with a low concentration N-type impurity of 1 to 3E14 / cm 3 . Also, the P-type impurity addition amount of the P layer 104 is 1 to 3E13 / cm 3 , and the P type impurity addition amount of the P + layer 105 is 1 to 3E19 / cm 3 .

このような構成のダイオードにおいて、P型層を2以上の複数層で構成し、表面から順に不純物濃度を低下させることにより、P−N接合部分の濃度勾配を小さくして少数キャリアの注入を抑制することにより高速回復を実現している。さらに、本発明の高速回復ダイオードでは、高不純物濃度のN基板101と低不純物濃度のN層103との間に、その間の不純物濃度となるN型層102を設けることにより、空乏層の領域が狭くなりソフトリカバリー化を実現するために十分な電荷を供給することができる。また、N型層102を設けることにより、実動作電流帯となる比較的低電流な帯域でも、十分な電荷を供給することができ、P−N接合部分でのキャリアの再結合が進み電流密度が増加して順方向電圧を低下させることができる。In the diode having such a configuration, the P-type layer is composed of two or more layers, and the impurity concentration is decreased in order from the surface, thereby reducing the concentration gradient of the PN junction and suppressing the injection of minority carriers. To achieve high-speed recovery. Moreover, the fast recovery diode according to the present invention, the N + substrate 101 of high impurity concentration low impurity concentration the N - between the layers 103, by providing the N-type layer 102 serving as the impurity concentration in between the depletion layer Sufficient charge can be supplied to reduce the area and realize soft recovery. In addition, by providing the N-type layer 102, a sufficient charge can be supplied even in a relatively low current band that is an actual operating current band, and carrier recombination progresses at the PN junction and current density is increased. Can increase the forward voltage.

以下、図2〜図4を用いて、本発明の高速回復ダイオードの特性を説明する。   Hereinafter, the characteristics of the fast recovery diode of the present invention will be described with reference to FIGS.

図2は濃度プロファイルを示す図、図3は電流量に対する順方向電圧の関係を示す図である。   FIG. 2 is a diagram showing a concentration profile, and FIG. 3 is a diagram showing a relationship of a forward voltage with respect to a current amount.

図2は図1,図5のA−A’におけるPN接合部の濃度プロファイルを示しており、図2(a)は本発明の高速回復ダイオードの濃度プロファイルを、図2(b)は従来の高速回復ダイオードの濃度プロファイルを示す。図2において、横軸に示した断面上の位置に対するキャリア濃度Cを縦軸に示している。   FIG. 2 shows the concentration profile of the PN junction at AA ′ in FIGS. 1 and 5, FIG. 2 (a) shows the concentration profile of the fast recovery diode of the present invention, and FIG. 2 (b) shows the conventional concentration profile. The concentration profile of a fast recovery diode is shown. In FIG. 2, the vertical axis indicates the carrier concentration C with respect to the position on the cross section indicated on the horizontal axis.

高速回復ダイオードにおいては、PN接合のドリフト領域での不純物添加領域の形状と不純物の濃度分布によってダイオードの逆回復特性が決定される。図2(b)に示すような従来の高速回復ダイオードにおけるPN接合部からN層103にわたるキャリア濃度プロファイルに比べて、図2(a)に示すように本発明の高速回復ダイオードでは、N型層102からN層103にかけてキャリア濃度が徐々に低下している。このように、本発明の高速回復ダイオードでは、N基板101上にN型層102を接続し、キャリア濃度に勾配を持たせることで空乏層が広がる領域を減少することができ、ソフトリカバリー化実現のため十分な電荷を供給させることができる。ここで、N型層102の不純物添加量は空乏層がN型層102−N基板101接続領域まで広がらないような不純物添加量にする必要がある。In the fast recovery diode, the reverse recovery characteristic of the diode is determined by the shape of the impurity added region and the impurity concentration distribution in the drift region of the PN junction. Compared to the carrier concentration profile from the PN junction to the N layer 103 in the conventional fast recovery diode as shown in FIG. 2B, the fast recovery diode of the present invention has an N-type as shown in FIG. The carrier concentration gradually decreases from the layer 102 to the N layer 103. Thus, in the fast recovery diode of the present invention, the region where the depletion layer spreads can be reduced by connecting the N-type layer 102 on the N + substrate 101 and providing a gradient in the carrier concentration, thereby realizing soft recovery. A sufficient charge can be supplied for realization. Here, the impurity addition amount of the N-type layer 102 needs to be such an impurity addition amount that the depletion layer does not extend to the connection region of the N-type layer 102 -N + substrate 101.

また、p−n接合型ダイオードの順方向I−V特性は図3に示すように理想領域、実動作領域である高注入領域と、直列抵抗(RS)領域に分割でき、従来の高速回復ダイオードでは高注入領域の順方向電圧を低減することができなかった。本発明では、N基板101上にN型層102を接続することで、実動作電流帯となる比較的低電流な帯域でも、十分な電荷を蓄積することができるため、電流密度が増加して順方向電圧を低下させることができる。Further, the forward IV characteristics of the pn junction diode can be divided into an ideal region, a high injection region which is an actual operation region, and a series resistance (RS) region as shown in FIG. However, the forward voltage in the high implantation region could not be reduced. In the present invention, by connecting the N-type layer 102 on the N + substrate 101, sufficient electric charge can be accumulated even in a relatively low current band that is an actual operating current band, so that the current density increases. Thus, the forward voltage can be reduced.

以上のように、N基板101とN層103との間にN型層102を設けることで、高速回復を維持しながら、ソフトリーリカバーとあらゆる帯域での順方向電圧の低下を実現でき、高速回復ダイオードの低消費電力化を実現することができる。As described above, by providing the N-type layer 102 between the N + substrate 101 and the N layer 103, it is possible to realize soft recovery and reduction of the forward voltage in all bands while maintaining high-speed recovery. Thus, low power consumption of the fast recovery diode can be realized.

本発明は、高速回復化と共に、さらなる低順方向電圧化とソフトリカバリー化を実現することができる高速回復ダイオード等に有用である。   INDUSTRIAL APPLICABILITY The present invention is useful for a high-speed recovery diode or the like that can realize further lower forward voltage and soft recovery along with high-speed recovery.

本発明は高速回復ダイオードに関するものである。   The present invention relates to a fast recovery diode.

一般的にダイオードの特性として、高速スイッチングのための逆回復の高速化や、順方向電圧の低電圧化,ソフトリカバリー化が求められている。   In general, diode characteristics are required to increase reverse recovery for high-speed switching, lower forward voltage, and soft recovery.

ここで、図4を用いて高速回復ダイオードのソフトリカバリーについて説明する。   Here, the soft recovery of the fast recovery diode will be described with reference to FIG.

図4は逆回復時間(trr)を示す図であり、横軸に時間T、縦軸に電流量IFを示す。   FIG. 4 is a diagram showing the reverse recovery time (trr), where the horizontal axis represents time T and the vertical axis represents the current amount IF.

図4に示すように、高速回復を実現するために、単位時間当たりに回復する電流量(回復速度:dIF/dT)を大きくすると、電流が収束するまでの電流振幅が大きくなりスパイク1が発生する場合がある(グラフ2)。そのため、逆回復時間を抑制しながら逆電流を抑制して回復する電流速度を遅くするソフトリカバリーが求められている。例えば、グラフ3において、逆電流Iをグラフ2の逆電流Iより小さくし、逆回復時間trrを同じにすることにより回復速度を小さくすることができ、高速回復を実現しながらスパイクの発生を抑制することができる。 As shown in FIG. 4, when the amount of current recovered per unit time (recovery speed: dIF / dT) is increased in order to realize high-speed recovery, the current amplitude until the current converges increases and spike 1 is generated. (Graph 2). Therefore, there is a demand for soft recovery that suppresses the reverse current while suppressing the reverse current and slows down the current speed for recovery. For example, in the graph 3, the reverse current I 2 smaller than the reverse current I 1 graph 2, the reverse recovery time trr can be reduced recovery rate by the same spikes generated while achieving fast recovery Can be suppressed.

従来からも、これらの特性を向上させるために様々な構成が提案されている。   Conventionally, various configurations have been proposed in order to improve these characteristics.

以下、図5を用いて従来の高速回復ダイオードの構成を説明する。   Hereinafter, the configuration of a conventional fast recovery diode will be described with reference to FIG.

図5は従来の高速回復ダイオードの構成を示す断面図である。   FIG. 5 is a cross-sectional view showing the configuration of a conventional fast recovery diode.

図5に示すように、高濃度N型基板であるN基板12上に低濃度N型層であるN層11がエピタキシャル法等で形成され、N層11の表面に一定の間隔を隔てて複数のP型層10が形成されてP−N接合が構成されている。さらに、P型層10は1または複数の層に分割され、N層11の表面近傍からN基板12方向に順にP型不純物濃度が低くなるように各層が形成されている。図5ではP層型10を2層構造とし、N層11の表面側に高濃度のP層13を形成し、N層11の深部側に低濃度のP層14を形成する構成を例示している。また、N層11の表面上にP層13と接する金属のアノード電極15が形成され、N基板12のN層11形成面の反対面である裏面にN基板12と接する金属のカソード電極16が形成されてP−N接合ダイオードが形成される。このような構成により、P−N接合面の濃度勾配が小さくなるため、少数キャリアの注入が抑制されて高速回復を実現すると共に、P型層10とアノード電極15とのオーミック接合面での抵抗を低抵抗化することで順方向電圧の低下を実現していた(例えば、特許文献1参照)。 As shown in FIG. 5, an N layer 11, which is a low concentration N-type layer, is formed on an N + substrate 12, which is a high concentration N type substrate, by an epitaxial method or the like, and a certain interval is formed on the surface of the N layer 11. A plurality of P-type layers 10 are formed apart from each other to form a PN junction. Further, the P-type layer 10 is divided into one or a plurality of layers, and each layer is formed so that the P-type impurity concentration decreases in order from the vicinity of the surface of the N layer 11 toward the N + substrate 12. 5 the P-layer 10 has a two-layer structure, N - the high concentration P + layer 13 is formed on the surface side of the layer 11, N - forming a layer 14 - P deep side low concentration layer 11 The structure is illustrated. A metal anode electrode 15 in contact with the P + layer 13 is formed on the surface of the N layer 11, and a metal in contact with the N + substrate 12 on the back surface, which is the opposite surface of the N layer 11 formation surface, of the N + substrate 12. The cathode electrode 16 is formed to form a PN junction diode. With such a configuration, since the concentration gradient of the PN junction surface is reduced, minority carrier injection is suppressed to achieve high-speed recovery, and resistance at the ohmic junction surface between the P-type layer 10 and the anode electrode 15 is achieved. The forward voltage has been reduced by lowering the resistance (see, for example, Patent Document 1).

特開平7−226521号公報JP-A-7-226521 特表2004−503933号公報JP-T-2004-503933

しかしながら、上記従来の構成では、低抵抗化により高電流帯では順方向電圧を抑制することができ、動作範囲内での最大順方向電圧を抑制することができるが、実動作電流帯となる比較的低電流な帯域では、N−N領域で不純物濃度の影響が大きくなり十分な順方向電圧の低下が実現できないという問題点があった。 However, in the above conventional configuration, the forward voltage can be suppressed in the high current band due to the low resistance, and the maximum forward voltage within the operating range can be suppressed. In a band with a relatively low current, the influence of the impurity concentration is large in the N + -N region, and there is a problem that a sufficient forward voltage drop cannot be realized.

さらに、近年、ダイオードに対する高速回復によるスイッチング速度の向上と共に、低消費電力化の要求が大きくなっている。そのため、さらなる低順方向電圧化とスパイクを抑制したソフトリカバリー化が求められている。   Furthermore, in recent years, the demand for lower power consumption has increased along with the improvement of switching speed due to high-speed recovery of diodes. Therefore, further lower forward voltage and soft recovery with suppressed spikes are required.

本発明の高速回復ダイオードは、上記課題を解決するために、高速回復化と共に、さらなる低順方向電圧化とソフトリカバリー化を実現することを目的とする。   In order to solve the above-described problems, the fast recovery diode of the present invention aims to realize further lower forward voltage and soft recovery as well as faster recovery.

前記目的を達成するために、本発明の高速回復ダイオードは、第1導電型半導体基板と、前記第1導電型半導体基板上に形成される第1の第1導電型半導体層と、前記第1の第1導電型半導体層上に形成される第2の第1導電型半導体層と、前記第2の第1導電型半導体層の前記第1の第1導電型半導体層との接続面に対する反対面である表面に互いに離間して形成される複数の第2導電型半導体層とを有し、前記第2導電型半導体層が前記表面側に近い層の不純物濃度がより高くなる複数の層からなり、前記第1の第1導電型半導体層の不純物濃度が前記第1導電型半導体基板の不純物濃度より小さく、前記第2の第1導電型半導体層の不純物濃度が前記第1の第1導電型半導体層の不純物濃度より小さいことを特徴とする。   To achieve the above object, a fast recovery diode according to the present invention includes a first conductive semiconductor substrate, a first first conductive semiconductor layer formed on the first conductive semiconductor substrate, and the first conductive semiconductor layer. The second first conductivity type semiconductor layer formed on the first conductivity type semiconductor layer is opposite to the connection surface between the second first conductivity type semiconductor layer and the first first conductivity type semiconductor layer. A plurality of second conductivity type semiconductor layers formed on the surface that is spaced apart from each other, and the second conductivity type semiconductor layer is formed of a plurality of layers having a higher impurity concentration in a layer close to the surface side. Thus, the impurity concentration of the first first conductivity type semiconductor layer is lower than the impurity concentration of the first conductivity type semiconductor substrate, and the impurity concentration of the second first conductivity type semiconductor layer is the first first conductivity type. It is characterized by being smaller than the impurity concentration of the type semiconductor layer.

以上により、高速回復化と共に、さらなる低順方向電圧化とソフトリカバリー化を実現することができる。   As described above, it is possible to realize further low forward voltage and soft recovery as well as high speed recovery.

以上のように、高濃度第1導電型半導体基板上に低濃度第1導電型半導体層を形成し、低濃度第1導電型半導体層の表面に複数に分割された第2導電型半導体層が形成され、第2導電型半導体層が表面から深部の方向に不純物濃度が低くなるように複数層に積層される高速回復ダイオードにおいて、高濃度第1導電型半導体基板と低濃度第1導電型半導体層との間にさらに中濃度の第1導電型半導体層を形成することにより、高速回復化と共に、さらなる低順方向電圧化とソフトリカバリー化を実現することができる。   As described above, the low-concentration first conductive semiconductor layer is formed on the high-concentration first conductive semiconductor substrate, and the second conductive semiconductor layer divided into a plurality of portions on the surface of the low-concentration first conductive semiconductor layer is formed. In the fast recovery diode formed and stacked in a plurality of layers so that the second conductivity type semiconductor layer has a lower impurity concentration in the direction from the surface to the deep part, the high concentration first conductivity type semiconductor substrate and the low concentration first conductivity type semiconductor By forming the first-conductivity-type semiconductor layer having a medium concentration between the layers, it is possible to realize a further reduction in forward voltage and soft recovery as well as high-speed recovery.

本発明の高速回復ダイオードの構成を示す断面図Sectional drawing which shows the structure of the fast recovery diode of this invention 濃度プロファイルを示す図Diagram showing concentration profile 電流量に対する順方向電圧の関係を示す図Diagram showing the relationship of forward voltage to current 逆回復時間を示す図Diagram showing reverse recovery time 従来の高速回復ダイオードの構成を示す断面図Sectional view showing the configuration of a conventional fast recovery diode

本発明は、高濃度第1導電型半導体基板上に低濃度第1導電型半導体層を形成し、低濃度第1導電型半導体層の表面に互いに離間して複数に分割された第2導電型半導体層を形成し、第2導電型半導体層が表面から深部の方向に不純物濃度が低くなるように1または複数層に積層される高速回復ダイオードにおいて、高濃度第1導電型半導体基板と低濃度第1導電型半導体層との間にさらに中濃度の第1導電型半導体層を形成することを特徴とする。ここで、中濃度の第1導電型半導体層の不純物濃度は、高濃度第1導電型半導体基板の不純物濃度と低濃度第1導電型半導体層の不純物濃度との間の不純物濃度とする。   According to the present invention, a low-concentration first conductive semiconductor layer is formed on a high-concentration first conductive semiconductor substrate, and the second conductive type is divided into a plurality of portions separated from each other on the surface of the low-concentration first conductive semiconductor layer. In a fast recovery diode in which a semiconductor layer is formed and the second conductivity type semiconductor layer is stacked in one or more layers so that the impurity concentration decreases from the surface toward the deep portion, the high concentration first conductivity type semiconductor substrate and the low concentration An intermediate-concentration first conductive semiconductor layer is further formed between the first conductive semiconductor layer and the first conductive semiconductor layer. Here, the impurity concentration of the medium-concentration first conductive semiconductor layer is an impurity concentration between the impurity concentration of the high-concentration first conductive semiconductor substrate and the impurity concentration of the low-concentration first conductive semiconductor layer.

このように、P−N接合部分の濃度勾配を小さくして少数キャリアの注入を抑制することにより高速回復を実現しながら、中濃度の第1導電型半導体層を設けることにより、空乏層が狭くなり、ソフトリカバリー化のために十分な電荷を供給することができる。同時に、中濃度の第1導電型半導体層を設けることにより、実動作電流帯となる比較的低電流な帯域でも、十分な電荷が供給できるため、P−N接合部分でのキャリアの再結合が進み順方向電圧を低下させることができる。   Thus, the depletion layer is narrowed by providing the medium-concentration first conductivity type semiconductor layer while realizing high-speed recovery by reducing the concentration gradient of the PN junction portion and suppressing minority carrier injection. Thus, a sufficient charge for soft recovery can be supplied. At the same time, by providing the first-conductivity-type semiconductor layer having a medium concentration, sufficient charges can be supplied even in a relatively low current band, which is an actual operating current band, so that recombination of carriers at the PN junction portion can be achieved. The forward voltage can be reduced.

以下、具体的な実施の形態について、図1〜図3を参照しながら説明する。   Hereinafter, specific embodiments will be described with reference to FIGS.

図1は本発明の高速回復ダイオードの構成を示す断面図である。   FIG. 1 is a cross-sectional view showing the configuration of the fast recovery diode of the present invention.

図1に示すように、本発明の高速回復ダイオード100は、N基板101上にN型層102を介してN層103が形成され、N層103の表面に複数のP層104が離間して形成されている。また、各P層104の表面にP層105が形成され、N層103の表面上のP型層に表面側が高濃度となる濃度勾配を持たせている。そして、N層103とP層104の間にPN接合構造を形成している。また、106はカソード電極であり、N型層102が形成されたN基板表面に対する裏面に形成されている。同様に、P層105に接して、N層103表面にアノード電極107が設けられている。例えば、N基板101は1〜3E19/cmの高濃度のN型不純物が添加され、N型層102は1〜3E18/cmの中濃度のN型不純物が添加され、N層103は1〜3E14/cmの低濃度のN型不純物が添加される。また、P層104のP型不純物添加量は1〜3E13/cmであり、P層105のP型不純物添加量は1〜3E19/cmである。 As shown in FIG. 1, in the fast recovery diode 100 of the present invention, an N layer 103 is formed on an N + substrate 101 via an N-type layer 102, and a plurality of P layers 104 are formed on the surface of the N layer 103. Are formed apart from each other. Further, a P + layer 105 is formed on the surface of each P layer 104, and the P-type layer on the surface of the N layer 103 has a concentration gradient in which the surface side has a high concentration. A PN junction structure is formed between the N layer 103 and the P layer 104. Reference numeral 106 denotes a cathode electrode, which is formed on the back surface of the N + substrate surface on which the N-type layer 102 is formed. Similarly, an anode electrode 107 is provided on the surface of the N layer 103 in contact with the P + layer 105. For example, N + substrate 101 is doped with a high concentration N-type impurity 1~3E19 / cm 3, N-type layer 102 is added N-type impurity concentration in the 1~3E18 / cm 3, N - layer 103 Is added with a low concentration N-type impurity of 1 to 3E14 / cm 3 . Also, the P-type impurity addition amount of the P layer 104 is 1 to 3E13 / cm 3 , and the P type impurity addition amount of the P + layer 105 is 1 to 3E19 / cm 3 .

このような構成のダイオードにおいて、P型層を2以上の複数層で構成し、表面から順に不純物濃度を低下させることにより、P−N接合部分の濃度勾配を小さくして少数キャリアの注入を抑制することにより高速回復を実現している。さらに、本発明の高速回復ダイオードでは、高不純物濃度のN基板101と低不純物濃度のN層103との間に、その間の不純物濃度となるN型層102を設けることにより、空乏層の領域が狭くなりソフトリカバリー化を実現するために十分な電荷を供給することができる。また、N型層102を設けることにより、実動作電流帯となる比較的低電流な帯域でも、十分な電荷を供給することができ、P−N接合部分でのキャリアの再結合が進み電流密度が増加して順方向電圧を低下させることができる。 In the diode having such a configuration, the P-type layer is composed of two or more layers, and the impurity concentration is decreased in order from the surface, thereby reducing the concentration gradient of the PN junction and suppressing the injection of minority carriers. To achieve high-speed recovery. Moreover, the fast recovery diode according to the present invention, the N + substrate 101 of high impurity concentration low impurity concentration the N - between the layers 103, by providing the N-type layer 102 serving as the impurity concentration in between the depletion layer Sufficient charge can be supplied to reduce the area and realize soft recovery. In addition, by providing the N-type layer 102, a sufficient charge can be supplied even in a relatively low current band that is an actual operating current band, and carrier recombination progresses at the PN junction and current density is increased. Can increase the forward voltage.

以下、図2〜図3を用いて、本発明の高速回復ダイオードの特性を説明する。   Hereinafter, the characteristics of the fast recovery diode of the present invention will be described with reference to FIGS.

図2は濃度プロファイルを示す図、図3は電流量に対する順方向電圧の関係を示す図である。   FIG. 2 is a diagram showing a concentration profile, and FIG. 3 is a diagram showing a relationship of a forward voltage with respect to a current amount.

図2は図1,図5のA−A’におけるPN接合部の濃度プロファイルを示しており、図2(a)は本発明の高速回復ダイオードの濃度プロファイルを、図2(b)は従来の高速回復ダイオードの濃度プロファイルを示す。図2において、横軸に示した断面上の位置に対するキャリア濃度Cを縦軸に示している。   FIG. 2 shows the concentration profile of the PN junction at AA ′ in FIGS. 1 and 5, FIG. 2 (a) shows the concentration profile of the fast recovery diode of the present invention, and FIG. 2 (b) shows the conventional concentration profile. The concentration profile of a fast recovery diode is shown. In FIG. 2, the vertical axis indicates the carrier concentration C with respect to the position on the cross section indicated on the horizontal axis.

高速回復ダイオードにおいては、PN接合のドリフト領域での不純物添加領域の形状と不純物の濃度分布によってダイオードの逆回復特性が決定される。図2(b)に示すような従来の高速回復ダイオードにおけるPN接合部からN層103にわたるキャリア濃度プロファイルに比べて、図2(a)に示すように本発明の高速回復ダイオードでは、N型層102からN層103にかけてキャリア濃度が徐々に低下している。このように、本発明の高速回復ダイオードでは、N基板101上にN型層102を接続し、キャリア濃度に勾配を持たせることで空乏層が広がる領域を減少することができ、ソフトリカバリー化実現のため十分な電荷を供給させることができる。ここで、N型層102の不純物添加量は空乏層がN型層102−N基板101接続領域まで広がらないような不純物添加量にする必要がある。 In the fast recovery diode, the reverse recovery characteristic of the diode is determined by the shape of the impurity added region and the impurity concentration distribution in the drift region of the PN junction. Compared to the carrier concentration profile from the PN junction to the N layer 103 in the conventional fast recovery diode as shown in FIG. 2B, the fast recovery diode of the present invention has an N-type as shown in FIG. The carrier concentration gradually decreases from the layer 102 to the N layer 103. Thus, in the fast recovery diode of the present invention, the region where the depletion layer spreads can be reduced by connecting the N-type layer 102 on the N + substrate 101 and providing a gradient in the carrier concentration, thereby realizing soft recovery. A sufficient charge can be supplied for realization. Here, the impurity addition amount of the N-type layer 102 needs to be such an impurity addition amount that the depletion layer does not extend to the connection region of the N-type layer 102 -N + substrate 101.

また、p−n接合型ダイオードの順方向I−V特性は図3に示すように理想領域、実動作領域である高注入領域と、直列抵抗(RS)領域に分割でき、従来の高速回復ダイオードでは高注入領域の順方向電圧を低減することができなかった。本発明では、N基板101上にN型層102を接続することで、実動作電流帯となる比較的低電流な帯域でも、十分な電荷を蓄積することができるため、電流密度が増加して順方向電圧を低下させることができる。 Further, the forward IV characteristics of the pn junction diode can be divided into an ideal region, a high injection region which is an actual operation region, and a series resistance (RS) region as shown in FIG. However, the forward voltage in the high implantation region could not be reduced. In the present invention, by connecting the N-type layer 102 on the N + substrate 101, sufficient electric charge can be accumulated even in a relatively low current band that is an actual operating current band, so that the current density increases. Thus, the forward voltage can be reduced.

以上のように、N基板101とN層103との間にN型層102を設けることで、高速回復を維持しながら、ソフトリーリカバーとあらゆる帯域での順方向電圧の低下を実現でき、高速回復ダイオードの低消費電力化を実現することができる。 As described above, by providing the N-type layer 102 between the N + substrate 101 and the N layer 103, it is possible to realize soft recovery and reduction of the forward voltage in all bands while maintaining high-speed recovery. Thus, low power consumption of the fast recovery diode can be realized.

本発明は、高速回復化と共に、さらなる低順方向電圧化とソフトリカバリー化を実現することができる高速回復ダイオード等に有用である。   INDUSTRIAL APPLICABILITY The present invention is useful for a high-speed recovery diode or the like that can realize further lower forward voltage and soft recovery along with high-speed recovery.

1 スパイク
2 グラフ
3 グラフ
10 P型層
11 N
12 N基板
13 P
14 P
15 アノード電極
16 カソード電極
100 高速回復ダイオード
101 N基板
102 N型層
103 N
104 P
105 P
106 カソード電極
107 アノード電極
1 spike 2 graph 3 graph 10 P-type layer 11 N - layer 12 N + substrate 13 P + layer 14 P - layer 15 anode electrode 16 cathode electrode 100 fast recovery diode 101 N + substrate 102 N-type layer 103 N - layer 104 P - layer 105 P + layer 106 a cathode electrode 107 anode electrode

Claims (1)

第1導電型半導体基板と、
前記第1導電型半導体基板上に形成される第1の第1導電型半導体層と、
前記第1の第1導電型半導体層上に形成される第2の第1導電型半導体層と、
前記第2の第1導電型半導体層の前記第1の第1導電型半導体層との接続面に対する反対面である表面に互いに離間して形成される複数の第2導電型半導体層と
を有し、前記第2導電型半導体層が前記表面側に近い層の不純物濃度がより高くなる複数の層からなり、前記1の第1導電型半導体層の不純物濃度が前記第1導電型半導体基板の不純物濃度より小さく、前記第2の第1導電型半導体層の不純物濃度が前記1の第1導電型半導体層の不純物濃度より小さいことを特徴とする高速回復ダイオード。
A first conductivity type semiconductor substrate;
A first first conductivity type semiconductor layer formed on the first conductivity type semiconductor substrate;
A second first conductivity type semiconductor layer formed on the first first conductivity type semiconductor layer;
A plurality of second conductivity type semiconductor layers formed on the surface of the second first conductivity type semiconductor layer opposite to the connection surface with the first first conductivity type semiconductor layer and spaced apart from each other; The second conductivity type semiconductor layer is composed of a plurality of layers in which the impurity concentration of the layer close to the surface side is higher, and the impurity concentration of the first first conductivity type semiconductor layer is higher than that of the first conductivity type semiconductor substrate. A fast recovery diode, wherein the impurity concentration is lower than the impurity concentration, and the impurity concentration of the second first conductivity type semiconductor layer is lower than the impurity concentration of the first first conductivity type semiconductor layer.
JP2010532768A 2009-08-25 2009-08-25 Fast recovery diode Pending JPWO2011024214A1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/004076 WO2011024214A1 (en) 2009-08-25 2009-08-25 Fast recovery diode

Publications (1)

Publication Number Publication Date
JPWO2011024214A1 true JPWO2011024214A1 (en) 2013-01-24

Family

ID=43627345

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010532768A Pending JPWO2011024214A1 (en) 2009-08-25 2009-08-25 Fast recovery diode

Country Status (2)

Country Link
JP (1) JPWO2011024214A1 (en)
WO (1) WO2011024214A1 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102832121B (en) * 2011-06-17 2015-04-01 中国科学院微电子研究所 fast recovery diode manufacturing method
KR101238232B1 (en) 2011-09-14 2013-03-04 주식회사 시지트로닉스 Structure and fabrication method of mhj-frd
CN102637727B (en) * 2012-05-03 2016-01-20 杭州士兰集成电路有限公司 A kind of diode and manufacture method thereof improving recovery softness characteristic
CN102820323B (en) * 2012-09-07 2014-11-05 温州大学 Nanometer silicon carbide/crystal silicon carbide double graded junction fast recovery diode and preparation method thereof
CN103579367B (en) * 2013-11-08 2016-09-21 国家电网公司 The fast recovery diode chip of a kind of low concentration doping launch site and manufacture method thereof
JP2016174041A (en) 2015-03-16 2016-09-29 株式会社東芝 Semiconductor device
CN106298512B (en) * 2016-09-22 2024-05-14 全球能源互联网研究院 Fast recovery diode and preparation method thereof
CN108054197B (en) * 2017-12-12 2020-12-22 超仪科技股份有限公司 Fast recovery Pin diode and manufacturing method thereof
DE102021000609A1 (en) 2021-02-08 2022-08-11 3-5 Power Electronics GmbH Stacked III-V semiconductor diode
DE102021000610A1 (en) * 2021-02-08 2022-08-11 3-5 Power Electronics GmbH Stacked III-V semiconductor diode
DE102021000611A1 (en) 2021-02-08 2022-08-11 3-5 Power Electronics GmbH Stacked III-V semiconductor diode
CN116487445B (en) * 2023-06-19 2023-09-29 西安电子科技大学 Silicon carbide power device with P+ gradual change ring surrounded by N-region and preparation method thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3737524B2 (en) * 1994-02-10 2006-01-18 新電元工業株式会社 Rectification semiconductor device
JP3994443B2 (en) * 1995-05-18 2007-10-17 三菱電機株式会社 Diode and manufacturing method thereof
JPH09321320A (en) * 1996-05-24 1997-12-12 Sansha Electric Mfg Co Ltd Diode
JP2000228404A (en) * 1999-02-05 2000-08-15 Hitachi Ltd Diode
JP4123913B2 (en) * 2001-11-26 2008-07-23 富士電機デバイステクノロジー株式会社 Manufacturing method of semiconductor device
JP2005079233A (en) * 2003-08-29 2005-03-24 Shindengen Electric Mfg Co Ltd Schottky diode and its manufacturing method

Also Published As

Publication number Publication date
WO2011024214A1 (en) 2011-03-03

Similar Documents

Publication Publication Date Title
WO2011024214A1 (en) Fast recovery diode
US9064923B2 (en) Bipolar semiconductor component with a fully depletable channel zone
EP0902981B1 (en) Schottky barrier rectifier
JP4843253B2 (en) Power semiconductor device
US10103227B2 (en) Method for manufacturing a power semiconductor device
US8829640B2 (en) Configuration and method to generate saddle junction electric field in edge termination
JP5172916B2 (en) Semiconductor rectifier
US9859383B2 (en) Schottky diode with reduced forward voltage
JP2014056942A (en) Power semiconductor device
JP2016122842A (en) Junction barrier Schottky rectifier
JP5711646B2 (en) diode
JPWO2011033550A1 (en) Semiconductor device
US8421179B2 (en) Schottky diode with high antistatic capability
CN105826399A (en) Soft fast recovery diode of multi-mixture structure and preparation method thereof
JP6911453B2 (en) Semiconductor devices and their manufacturing methods
JP2013235890A (en) Semiconductor device
JP2014120685A (en) Semiconductor device
JP2015504610A (en) High voltage trench junction Schottky barrier diode
JP2019500746A (en) Area efficient floating field ring termination
JP5310291B2 (en) Semiconductor device and manufacturing method thereof
EP2154726A2 (en) A method for producing a JBS diode
US20230307556A1 (en) Silicon carbide semiconductor device
US8648447B2 (en) Semiconductor rectifier device
JP2016162776A (en) Semiconductor device
JP2013175607A (en) Schottky barrier diode