JPWO2010106724A1 - Porous ceramic sintered body and method for producing the same - Google Patents

Porous ceramic sintered body and method for producing the same Download PDF

Info

Publication number
JPWO2010106724A1
JPWO2010106724A1 JP2011504717A JP2011504717A JPWO2010106724A1 JP WO2010106724 A1 JPWO2010106724 A1 JP WO2010106724A1 JP 2011504717 A JP2011504717 A JP 2011504717A JP 2011504717 A JP2011504717 A JP 2011504717A JP WO2010106724 A1 JPWO2010106724 A1 JP WO2010106724A1
Authority
JP
Japan
Prior art keywords
ceramic sintered
diatomaceous earth
porous ceramic
sintered body
mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011504717A
Other languages
Japanese (ja)
Other versions
JP5658136B2 (en
Inventor
晃宏 奥谷
晃宏 奥谷
和弥 大西
和弥 大西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
EARTH ENGINEERING CORPORATION
Komatsu Seiren Co Ltd
Original Assignee
EARTH ENGINEERING CORPORATION
Komatsu Seiren Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by EARTH ENGINEERING CORPORATION, Komatsu Seiren Co Ltd filed Critical EARTH ENGINEERING CORPORATION
Priority to JP2011504717A priority Critical patent/JP5658136B2/en
Publication of JPWO2010106724A1 publication Critical patent/JPWO2010106724A1/en
Application granted granted Critical
Publication of JP5658136B2 publication Critical patent/JP5658136B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/06Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by burning-out added substances by burning natural expanding materials or by sublimating or melting out added substances
    • C04B38/063Preparing or treating the raw materials individually or as batches
    • C04B38/0635Compounding ingredients
    • C04B38/0645Burnable, meltable, sublimable materials
    • C04B38/0665Waste material; Refuse other than vegetable refuse
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B33/00Clay-wares
    • C04B33/02Preparing or treating the raw materials individually or as batches
    • C04B33/13Compounding ingredients
    • C04B33/132Waste materials; Refuse; Residues
    • C04B33/1321Waste slurries, e.g. harbour sludge, industrial muds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62625Wet mixtures
    • C04B35/6263Wet mixtures characterised by their solids loadings, i.e. the percentage of solids
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/61Mechanical properties, e.g. fracture toughness, hardness, Young's modulus or strength
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/60Production of ceramic materials or ceramic elements, e.g. substitution of clay or shale by alternative raw materials, e.g. ashes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)

Abstract

この多孔質セラミックス焼結体は、珪藻土、前記珪藻土を除く粘土類及び有機汚泥を含む混合物を成形し焼結して製造されている。この多孔質セラミックス焼結体の製造方法は、珪藻土、前記珪藻土を除く粘土類及び有機汚泥を混合して混合物を得る混合工程と、前記混合物を成形し成形体を得る成形工程と、前記成形体を焼成する焼成工程とを有する。This porous ceramic sintered body is manufactured by molding and sintering a mixture containing diatomaceous earth, clays excluding the diatomaceous earth, and organic sludge. The method for producing the porous ceramic sintered body includes a mixing step of mixing diatomaceous earth, clays excluding the diatomaceous earth and organic sludge to obtain a mixture, a forming step of forming the mixture to obtain a formed body, and the formed body And a baking step of baking.

Description

本発明は、多孔質セラミックス焼結体及びその製造方法に関する。
本願は、2009年3月16日に、日本に出願された特願2009−063320号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a porous ceramic sintered body and a method for producing the same.
This application claims priority on March 16, 2009 based on Japanese Patent Application No. 2009-063320 for which it applied to Japan, and uses the content here.

従来、多孔質セラミックス焼結体の製造方法は数多く知られており、求める気孔のサイズや構造に応じた製造方法が採用されている。
第1の技術としては、「格子構造」を持つ多孔質セラミックス焼結体の製造方法が知られている。前記多孔質セラミックス焼結体は、発泡ウレタン樹脂の気孔内へセラミックス組成物を注入充填した後、樹脂成分を分解させて成形し焼結することで製造できる。この技術により製造された多孔質セラミックス焼結体は、気孔サイズが大きく、アルミニウム溶解時の耐火濾過材として普及している。
第2の技術としては、「アグリゲート型」の多孔質セラミックス焼結体の製造方法が知られている。前記多孔質セラミックス焼結体は、組成物中の粗粒子の骨材の間隙を気孔として焼結されたものであり、透水舗道板や吸音板として利用されている。
第3の技術としては、焼成工程において、組成物中の高温分解揮発成分により気孔を生成させる「独立気泡型」のガラスの製造方法が古くから知られている。
Conventionally, many manufacturing methods of porous ceramic sintered bodies are known, and manufacturing methods according to the required pore size and structure are employed.
As a first technique, a method for producing a porous ceramic sintered body having a “lattice structure” is known. The porous ceramic sintered body can be manufactured by injecting and filling the ceramic composition into the pores of the foamed urethane resin, then decomposing the resin component, molding and sintering. The porous ceramic sintered body produced by this technique has a large pore size and is widely used as a fireproof filter material when aluminum is dissolved.
As a second technique, a method of manufacturing an “aggregate type” porous ceramic sintered body is known. The porous ceramic sintered body is sintered with pores in the gap between coarse aggregates in the composition, and is used as a water-permeable pavement plate or a sound absorbing plate.
As a third technique, a method for producing “closed cell type” glass, in which pores are generated by a high-temperature decomposition volatile component in a composition in a baking process, has been known for a long time.

第4の技術としては、ダクタイル鋳鉄スラグの加熱時の特徴的な発泡現象を利用してセラミックスを製造する技術(例えば、特許文献1、2)、及び加熱時に収縮する粘土質等の原料と加熱時に容積が膨張するスラグ類を混合した組成物を用い、焼結した際に微小なキレツ孔隙を発生させ、保水性を有するセラミックスを製造する技術(特許文献3)が知られている。
第5の技術としては、金属アルミニウムにアルカリ溶液を加えて発生する水素を含水組成物内に包含させて発泡体を成形し、焼成して、焼結した連続貫通気孔を有するセラミックスの製造技術が知られている(特許文献4、特許文献5)。
As a fourth technique, a technique for producing ceramics utilizing a characteristic foaming phenomenon during heating of ductile cast iron slag (for example, Patent Documents 1 and 2), and a raw material such as clay that shrinks during heating and heating A technique (Patent Document 3) is known that uses a composition in which slags that sometimes expand in volume are mixed, and produces a fine pore when sintered, thereby producing a ceramic having water retention.
As a fifth technique, there is a technique for producing ceramics having continuous through-holes that are formed by adding an alkali solution to metal aluminum to include hydrogen generated in a water-containing composition, forming a foam, firing, and sintering. Known (Patent Document 4, Patent Document 5).

また、原料として珪藻土を用い、珪藻土の成形体を焼結した多孔質セラミックス焼結体が知られている。珪藻土は、マイクロメートルスケールの微細な気孔を有するため、珪藻土を原料とした多孔質セラミックス焼結体は、緑化基盤材料、水質浄化材料、調湿材料として用いられている。
しかし、珪藻土を原料として用いた場合には、珪藻土単体で混練し成形した成形体の強度が、極めて低く、製造ラインにおけるコンベアでの移送中のみならず、キルン(ガス炉又は電気炉)を用いた焼成中においても崩壊しやすいという問題がある。このため、珪藻土に粘土類を配合し成形することで、所望サイズの粒状、柱状、板状等の成形体の形状を保持することが行われている。
Further, a porous ceramic sintered body is known in which diatomaceous earth is used as a raw material and a molded body of diatomaceous earth is sintered. Since diatomaceous earth has micrometer-scale fine pores, a porous ceramic sintered body made from diatomaceous earth is used as a greening base material, a water purification material, and a humidity control material.
However, when diatomaceous earth is used as a raw material, the strength of the molded body kneaded with diatomaceous earth alone is extremely low, and not only during transfer on a conveyor in a production line, but also with a kiln (gas furnace or electric furnace). There is a problem that it is easily disintegrated even during firing. For this reason, shape | molding of shapes, such as granule of a desired size, column shape, plate shape, is performed by mix | blending clay with diatomaceous earth and shape | molding.

しかしながら、成形体の強度を維持するために粘土類を配合すると、珪藻土由来の気孔に粘土類が充填された状態で焼結されるため、珪藻土の気孔が閉塞しやすいという問題があった。加えて、多孔質セラミックス焼結体には、断熱性、吸音性、保水性、透水性又は通気性等の機能のさらなる向上が求められている。   However, when clays are blended in order to maintain the strength of the compact, there is a problem that the pores of diatomaceous earth are likely to be clogged because the pores derived from diatomaceous earth are sintered in a state filled with clay. In addition, the porous ceramic sintered body is required to further improve functions such as heat insulation, sound absorption, water retention, water permeability, and air permeability.

日本国特許第2899954号公報Japanese Patent No. 2899954 特開2002―47075号公報JP 2002-47075 A 日本国特許第3216034号公報Japanese Patent No. 3216034 特開平10−182262号公報Japanese Patent Laid-Open No. 10-182262 特開平11−92211号公報JP-A-11-92211

本発明は、珪藻土の特徴である微細な気孔を維持し、高い機能を有する多孔質セラミックス焼結体及びその製造方法を目的とする。   The present invention is directed to a porous ceramic sintered body that maintains the fine pores characteristic of diatomaceous earth and has a high function, and a method for producing the same.

本発明者らは、鋭意検討した結果、次のような知見を得た。
有機汚泥は、これまで高い含水率と特有の臭いの問題により循環資源として認識されていなかった。ところが、珪藻土と粘土類とに有機汚泥を添加した混合物を成形し焼結すると、珪藻土の気孔の閉塞が防止できることを見い出した。これは、以下の理由によると推測される。有機汚泥が粘土類に比べて流動性が高いため、有機汚泥が優先的に珪藻土の気孔に進入し珪藻土の気孔に充填される。充填された有機汚泥の有機物が焼結時に揮発し減量することで、珪藻土の気孔を維持できると推測される。
As a result of intensive studies, the present inventors have obtained the following knowledge.
Until now, organic sludge has not been recognized as a recycling resource due to high moisture content and unique odor problems. However, it was found that pores of diatomaceous earth can be prevented by molding and sintering a mixture of diatomaceous earth and clay added with organic sludge. This is presumed to be due to the following reason. Since organic sludge has higher fluidity than clays, organic sludge preferentially enters the pores of diatomaceous earth and fills the pores of diatomaceous earth. It is presumed that the pores of diatomaceous earth can be maintained by the organic matter of the filled organic sludge volatilizing and reducing during sintering.

従来、珪藻土を主原料とした多孔質セラミックス焼結体の製造方法では、珪藻土に40質量%程度の粘土類を混合した粘土混合物を用い、例えば絞り形状のついたダイス孔に混合物を連続的に圧入する手法が一般的に用いられていた。この場合、ダイス孔の絞り点においては、粘土混合物の圧縮及びダイス孔側壁と粘土混合物との摩擦により発熱する。粘土類は、一定量の水分を有するため、適正な可塑性を有し、成形後も所望の形状を維持する。その反面、粘土類は、圧縮性に乏しくかつダイス孔側壁との摩擦も大きい。このため、成形装置を用いて連続的に成形する際には、粘土類とダイス孔側壁との摩擦により発熱が続き、ダイス孔が高温となる。そして、粘土類は、水分が蒸発して流動性を失い、固化が進む。粘土類の固化は、ダイス孔側壁より進行するため、水分の抜けた粘土類がダイス孔に固着し、円滑な成形が困難になると共に、所望する形状の多孔質セラミックス焼結体が安定して得られにくくなる。この結果、多孔質セラミックス焼結体の製品化率が低く、製造効率の低下を生じていた。さらに、ダイス孔への粘土類の固着は、ダイス孔の閉塞に進展する。閉塞が発生した場合、ダイス孔の修復が困難となり、ダイス自体が使用不能となるおそれがあった。こうした問題に対し、珪藻土と粘土類と有機汚泥とを特定の比率で混合することで、珪藻土を原料とした多孔質セラミックス焼結体を製造する際の成形体の形状の安定性(成形性)を向上でき、かつダイス孔の閉塞の懸念といった問題をも解決できることを見い出し、本発明に至った。   Conventionally, in a method for producing a porous ceramic sintered body using diatomaceous earth as a main material, a clay mixture in which about 40% by mass of clay is mixed with diatomaceous earth is used. For example, the mixture is continuously put into a die hole having a drawn shape. The method of press-fitting was generally used. In this case, heat is generated at the squeezing point of the die hole due to compression of the clay mixture and friction between the die hole side wall and the clay mixture. Since clays have a certain amount of moisture, they have appropriate plasticity and maintain a desired shape even after molding. On the other hand, clays are poor in compressibility and have high friction with the side walls of the die holes. For this reason, when it shape | molds continuously using a shaping | molding apparatus, heat_generation | fever continues by friction with clay and die hole side wall, and a die hole becomes high temperature. The clays lose their fluidity due to evaporation of moisture, and solidify. Since the solidification of the clay proceeds from the side wall of the die hole, the clay from which moisture has been removed adheres to the die hole, making it difficult to form smoothly, and stabilizing the porous ceramic sintered body of the desired shape. It becomes difficult to obtain. As a result, the production rate of the porous ceramic sintered body was low, and the production efficiency was reduced. Furthermore, the sticking of clays to the die hole progresses to the blockage of the die hole. When the blockage occurs, it is difficult to repair the die hole and the die itself may be unusable. In order to solve these problems, the stability of the shape of the molded body (formability) when producing a porous ceramic sintered body using diatomaceous earth as a raw material by mixing diatomaceous earth, clays and organic sludge in a specific ratio. It has been found that the problem can be solved and the problem of the blockage of the die hole can be solved, and the present invention has been achieved.

本発明の多孔質セラミックス焼結体は、珪藻土、前記珪藻土を除く粘土類及び有機汚泥を含む混合物を成形し焼結して製造されたものである。
本発明の多孔質セラミックス焼結体では、前記珪藻土が有する気孔(以下、珪藻土気孔ということがある)と、前記有機汚泥が焼結時に減量して形成された孔隙(以下、単に孔隙ということがある)と、これらが連通する連通孔を有してもよい。
The porous ceramic sintered body of the present invention is produced by molding and sintering a mixture containing diatomaceous earth, clays excluding the diatomaceous earth, and organic sludge.
In the porous ceramic sintered body of the present invention, the pores of the diatomaceous earth (hereinafter sometimes referred to as diatomaceous earth pores) and the pores formed by reducing the amount of the organic sludge during sintering (hereinafter simply referred to as pores). And a communication hole through which they communicate.

本発明の多孔質セラミックス焼結体の製造方法は、珪藻土、前記珪藻土を除く粘土類及び有機汚泥を混合して混合物を得る混合工程と、前記混合物を成形し成形体を得る成形工程と、前記成形体を焼成する焼成工程とを有する。
本発明の多孔質セラミックス焼結体の製造方法では、前記混合工程は、前記珪藻土と前記有機汚泥とを混合し一次混合物を得る第一の混合操作と、前記一次混合物と前記粘土類とを混合する第二の混合操作とを有してもよい。
前記有機汚泥は、活性汚泥であってもよい。
前記混合物は、前記珪藻土を20〜55質量%、前記粘土類を5〜20質量%、前記有機汚泥を40〜60質量%含有し、かつ、含水率が25〜45質量%であってもよい。
前記成形工程では、押出式成形機を用いて連続的に前記成形体を得てもよい。
前記焼成工程では、前記成形体を950〜1200℃で焼成してもよい。
The method for producing a porous ceramic sintered body of the present invention includes a mixing step of mixing diatomaceous earth, clays excluding the diatomaceous earth and organic sludge to obtain a mixture, a forming step of forming the mixture to obtain a formed body, And a firing step of firing the molded body.
In the method for producing a porous ceramic sintered body according to the present invention, the mixing step includes a first mixing operation of mixing the diatomaceous earth and the organic sludge to obtain a primary mixture, and mixing the primary mixture and the clays. A second mixing operation.
The organic sludge may be activated sludge.
The mixture may contain 20 to 55% by mass of the diatomaceous earth, 5 to 20% by mass of the clay, 40 to 60% by mass of the organic sludge, and a moisture content of 25 to 45% by mass. .
In the molding step, the molded body may be obtained continuously using an extrusion molding machine.
In the firing step, the molded body may be fired at 950 to 1200 ° C.

本発明の多孔質セラミックス焼結体及びその製造方法によれば、珪藻土の特徴である微細な気孔を維持し、機能の向上を図ることができる。   According to the porous ceramic sintered body and the method for producing the same of the present invention, it is possible to maintain the fine pores characteristic of diatomaceous earth and to improve the function.

(多孔質セラミックス焼結体)
本発明の多孔質セラミックス焼結体は、珪藻土、前記珪藻土を除く粘土類(以下、単に粘土類ということがある)及び有機汚泥を含む混合物を成形し焼結したものである。
本発明の多孔質セラミックス焼結体は、前記珪藻土が有する気孔(珪藻土気孔)と、有機汚泥が焼結時に減量して形成された孔隙(孔隙)と、これらが連通する連通孔を有することが好ましい。
前記珪藻土気孔は、珪藻土が有するマイクロメートルスケールの微細な気孔に由来する気孔である。
前記孔隙は、珪藻土及び粘土類が焼結して骨格が形成され、珪藻土の粒子及び粘土類の粒子の間に存在する有機汚泥が、焼結時にその有機物が揮発して減量することで形成された気孔及び亀裂等の空隙である。
また、セラミックス焼結体における珪藻土気孔、孔隙などを含めた全ての空隙の割合を全孔隙率と言う。
(Porous ceramic sintered body)
The porous ceramic sintered body of the present invention is obtained by molding and sintering a mixture containing diatomaceous earth, clays excluding the diatomaceous earth (hereinafter sometimes simply referred to as clays), and organic sludge.
The porous ceramic sintered body of the present invention has pores (diatomaceous earth pores) possessed by the diatomaceous earth, pores (pores) formed by reducing the amount of organic sludge during sintering, and communication holes that communicate with each other. preferable.
The diatomaceous earth pores are pores derived from micrometer-scale fine pores of diatomaceous earth.
The pores are formed by sintering diatomaceous earth and clay to form a skeleton, and organic sludge existing between diatomaceous earth particles and clay particles volatilizes and reduces the organic matter during sintering. Voids such as pores and cracks.
Moreover, the ratio of all the voids including diatomaceous earth pores and pores in the ceramic sintered body is called the total porosity.

多孔質セラミックス焼結体における珪藻土気孔の割合は、特に限定されないが、例えば、(珪藻土気孔の体積)/(珪藻土の体積)で表される珪藻土気孔率は、好ましくは60〜90体積%、より好ましくは80〜90体積%である。上記範囲内であれば、多孔質セラミックス焼結体の強度が維持されると共に気孔率が維持され、多孔質セラミックス焼結体に種々の機能を付与できる。
多孔質セラミックス焼結体における全孔隙の割合は、特に限定されないが、例えば、(全孔隙の体積)/(多孔質セラミックス焼結体の体積)で表される全孔隙率は、好ましくは40〜80体積%、より好ましくは60〜70体積%である。上記範囲内であれば、多孔質セラミックス焼結体の強度が維持されると共に、多孔質セラミックス焼結体に種々の機能を付与できる。
さらに、[多孔質セラミックス焼結体の質量(g)]/[多孔質セラミックス焼結体の体積(cm)]で表される比重は、好ましくは0.6〜0.9g/cm、より好ましくは0.65〜0.85g/cmである。上記範囲内であれば、多孔質セラミックス焼結体の強度が維持されると共に、多孔質セラミックス焼結体に種々の機能を付与できる。比重が低いほど、多孔質セラミックス焼結体には、珪藻土気孔、孔隙が多く形成されていると推測できる。
The ratio of diatomaceous earth pores in the porous ceramic sintered body is not particularly limited. For example, the diatomaceous earth porosity represented by (volume of diatomaceous earth pores) / (volume of diatomaceous earth) is preferably 60 to 90 vol%. Preferably it is 80-90 volume%. Within the above range, the strength of the porous ceramic sintered body is maintained and the porosity is maintained, and various functions can be imparted to the porous ceramic sintered body.
The ratio of the total porosity in the porous ceramic sintered body is not particularly limited. For example, the total porosity represented by (total pore volume) / (volume of porous ceramic sintered body) is preferably 40 to It is 80 volume%, More preferably, it is 60-70 volume%. Within the above range, the strength of the porous ceramic sintered body can be maintained, and various functions can be imparted to the porous ceramic sintered body.
Furthermore, the specific gravity represented by [mass of porous ceramic sintered body (g)] / [volume of porous ceramic sintered body (cm 3 )] is preferably 0.6 to 0.9 g / cm 3 , More preferably, it is 0.65-0.85 g / cm < 3 >. Within the above range, the strength of the porous ceramic sintered body can be maintained, and various functions can be imparted to the porous ceramic sintered body. It can be estimated that the lower the specific gravity, the more diatomaceous earth pores and pores are formed in the porous ceramic sintered body.

多孔質セラミックス焼結体における珪藻土気孔及び孔隙は、それぞれ独立したものであってもよいし、相互に連通した連通孔であってもよい。多孔質セラミックス焼結体は、断熱性、吸音性、保水性、透水性又は通気性の向上の観点から、連通孔を有することが好ましい。かかる連通孔は、多孔質セラミックス焼結体を貫通して形成されたものであることがより好ましい。
なお、連通孔は、孔隙同士が連通したものであってもよいし、珪藻土気孔と孔隙とが相互に連通したものであってもよい。中でも、連通孔は、珪藻土気孔と孔隙とが相互に連通するものが好ましい。
The diatomaceous earth pores and pores in the porous ceramic sintered body may be independent or may be communication holes communicating with each other. The porous ceramic sintered body preferably has communication holes from the viewpoint of improving heat insulation, sound absorption, water retention, water permeability, or air permeability. It is more preferable that the communication hole is formed through the porous ceramic sintered body.
The communication hole may be one in which pores communicate with each other, or one in which diatomaceous earth pores and pores communicate with each other. Among these, the communication holes are preferably those in which the diatomaceous earth pores and the pores communicate with each other.

多孔質セラミックス焼結体の形状は、用途等を勘案して決定することができ、例えば、円柱状又は角柱状等の柱状、板状、粒状、柱状の粒状物等が挙げられる。中でも、柱状、特に柱状の粒状物において、成形性の向上が顕著である。   The shape of the porous ceramic sintered body can be determined in consideration of applications and the like, and examples thereof include columnar or prismatic columnar shapes, plate shapes, granular shapes, columnar granular materials, and the like. Among them, the improvement in formability is remarkable in a columnar shape, particularly a columnar granular material.

<珪藻土>
本発明に用いられる珪藻土は、珪藻の遺骸からなる堆積物であり、マイクロメートルオーダーの気孔を有する多孔質である。
珪藻土は、特に限定されず、耐火断煉瓦、濾過材等に従来使用されていたものと同様のものを用いることができる。例えば、狭雑している粘土鉱物(モンモリロナイトなど)や石英、長石などを分別精製する必要はなく、これらの含有率を認識した上で、混合物への配合量を調整することができる。
珪藻土の含水率は特に限定されず、例えば、自然乾燥状態での含水率が20〜60質量%が好ましく、30〜50質量%がより好ましく、35〜45質量%が最も好ましい。上記範囲内であれば、含水率を認識しながら、混合の際に狭雑物中の粗粒子分を除去して使用することで、成形性が良好な混合物を得られる。
なお、含水率は、乾燥減量方式である下記仕様の赤外線水分計を用いて、試料を乾燥(200℃、12分)し、下記(1)式により求めた値である。
<Diatomaceous earth>
The diatomaceous earth used in the present invention is a deposit made of diatom remains and is porous having pores on the order of micrometers.
Diatomaceous earth is not particularly limited, and the same diatomaceous earth as conventionally used for fireproof bricks, filter media and the like can be used. For example, it is not necessary to separate and refine clay minerals (montmorillonite, etc.), quartz, feldspar, etc. that are confined, and the amount of the mixture can be adjusted after recognizing these contents.
The moisture content of diatomaceous earth is not particularly limited, and for example, the moisture content in a naturally dried state is preferably 20 to 60 mass%, more preferably 30 to 50 mass%, and most preferably 35 to 45 mass%. If it is in the said range, a mixture with favorable moldability can be obtained by removing and using the coarse particle content in a narrow thing in the case of mixing, recognizing a moisture content.
In addition, a moisture content is the value calculated | required by the following (1) formula, drying a sample (200 degreeC, 12 minutes) using the infrared moisture meter of the following specification which is a drying loss method.

<仕様>
測定方式:乾燥減量法(加熱乾燥・質量測定方式)
最小表示:含水量;0.1質量%
測定範囲:含水量;0.0〜100質量%
乾燥温度:0〜200℃
測定精度:試料質量5g以上で、含水量±0.1質量%
熱源:赤外線ランプ;185W
<Specifications>
Measurement method: Loss on drying method (heat drying / mass measurement method)
Minimum display: water content; 0.1% by mass
Measurement range: water content; 0.0 to 100% by mass
Drying temperature: 0-200 ° C
Measurement accuracy: Sample weight 5g or more, moisture content ± 0.1% by mass
Heat source: infrared lamp; 185W

含水率(質量%)=[(m−m)/(m−m)]×100 ・・・(1)
:乾燥前の容器の質量と乾燥前の試料の質量との合計質量(g)
:乾燥後の容器の質量と乾燥後の試料の質量との合計質量(g)
:乾燥後の容器の質量(g)
Water content (mass%) = [(m 1 -m 2 ) / (m 1 -m 0 )] × 100 (1)
m 1 : Total mass (g) of the weight of the container before drying and the weight of the sample before drying
m 2 : Total mass (g) of the weight of the container after drying and the weight of the sample after drying
m 0 : Mass of the container after drying (g)

<粘土類>
本発明における粘土類は、一般的に窯業原料として用いられる粘土状の性状を示す鉱物材料であり、珪藻土以外のものである。粘土類は、セラミックス焼結体に用いられる公知のものを用いることができる。石英、長石、粘土系等の鉱物組成で構成され、構成鉱物はカオリナイトを主とし、ハロイサイト、モンモリロナイト、イライトを含むものが好ましい。中でも、焼結時のクラックの進展を抑え、多孔質セラミックス焼結体の破壊を防ぐ観点から、粒子径が500μm以上の石英の粗粒を含むものがより好ましい。このような粘土類としては、例えば、蛙目粘土等が挙げられる。粘土類は、1種単独又は2種以上を適宜組み合わせて配合できる。
<Clays>
The clays in the present invention are mineral materials having clay-like properties that are generally used as ceramic raw materials, and are other than diatomaceous earth. As the clays, known materials used for ceramic sintered bodies can be used. It is composed of a mineral composition such as quartz, feldspar, clay, etc., and the constituent mineral is mainly kaolinite and preferably contains halloysite, montmorillonite and illite. Among these, from the viewpoint of suppressing the progress of cracks during sintering and preventing the destruction of the porous ceramic sintered body, those containing coarse quartz grains having a particle diameter of 500 μm or more are more preferable. Examples of such clays include cocoon clay. Clays can be blended alone or in combination of two or more.

<有機汚泥>
有機汚泥は、主成分として有機物を含有する汚泥である。有機汚泥は、任意のものを用いることができるが、下水や工場等の排水処理に由来する活性汚泥が特に好ましい。活性汚泥は、活性汚泥法を用いた排水処理設備から、凝集・脱水工程を経て排出される。このような有機汚泥を用いることで、所望する孔隙を形成できる。さらに、廃棄物の位置付けであった排水処理由来の活性汚泥を原料として再度利用することができる。
<Organic sludge>
Organic sludge is sludge containing an organic substance as a main component. Any organic sludge can be used, but activated sludge derived from wastewater treatment in sewage or a factory is particularly preferable. The activated sludge is discharged from a wastewater treatment facility using the activated sludge method through a coagulation / dehydration process. By using such organic sludge, a desired pore can be formed. Furthermore, the activated sludge derived from wastewater treatment, which has been positioned as waste, can be reused as a raw material.

有機汚泥の含水率は、好ましくは60〜90質量%、より好ましくは65〜85質量%である。上記範囲内であれば、後述の混合工程で均質な混合物が得られると共に、連続成形においても良好な成形性を維持できる。   The water content of the organic sludge is preferably 60 to 90% by mass, more preferably 65 to 85% by mass. If it is in the said range, while being able to obtain a homogeneous mixture by the below-mentioned mixing process, favorable moldability can be maintained also in continuous molding.

有機汚泥の有機物の含有量は、特に限定されないが、例えば、有機汚泥の固形分中の有機物の含有量(有機物含有量)として70質量%以上が好ましく、80質量%以上がより好ましい。前記有機物含有量が多いほど、孔隙の形成が容易となるためである。
なお、有機物含有量は、乾燥後の汚泥をJIS M8812−1993に準じ、炭化温度700℃で灰分(質量%)を測定し、下記(2)式により求まる値である。
The organic matter content of the organic sludge is not particularly limited, but for example, the organic matter content (organic matter content) in the solid content of the organic sludge is preferably 70% by mass or more, and more preferably 80% by mass or more. This is because pore formation is facilitated as the organic content increases.
The organic content is a value obtained from the following formula (2) by measuring the ash content (mass%) of the sludge after drying at a carbonization temperature of 700 ° C. according to JIS M8812-1993.

有機物含有量(質量%)=100(質量%)−灰分(質量%) ・・・(2)   Organic content (mass%) = 100 (mass%) − ash (mass%) (2)

<任意成分>
多孔質セラミックス焼結体には、本発明の目的を阻害しない範囲で、珪藻土、有機汚泥、粘土類以外の任意成分を配合してもよい。
任意成分としては、例えば、マイティ2000WH(商品名、花王株式会社製)等のナフタリン系の流動化剤、メルメントF−10(商品名、昭和電工株式会社製)等のメラミン系の流動化剤、ダーレックススーパー100pH(商品名、グレースケミカルズ株式会社製)等のポリカルボン酸系の流動化剤等;銀、銅、亜鉛等の抗菌剤;ゼオライト、アパタイト等の吸着剤;特許文献1〜5に記載のスラッグ類や金属アルミニウム等が挙げられる。
<Optional component>
You may mix | blend arbitrary components other than diatomaceous earth, organic sludge, and clay with the porous ceramic sintered compact in the range which does not inhibit the objective of this invention.
Examples of optional components include naphthalene-based fluidizing agents such as Mighty 2000WH (trade name, manufactured by Kao Corporation), melamine-based fluidizing agents such as Melment F-10 (trade name, manufactured by Showa Denko KK), and the like. Polycarboxylic acid-based fluidizing agents such as Darex Super 100pH (trade name, manufactured by Grace Chemicals Co., Ltd.); antibacterial agents such as silver, copper and zinc; adsorbents such as zeolite and apatite; The described slugs, metallic aluminum, and the like can be mentioned.

なお、上記任意成分のうち、スラッグ類を添加する場合、以下の効果が得られる。(i)ミリメートルサイズの気孔が確保できる。(ii)保水量(飽和含水量)を維持したまま、透水係数(水を通す速度)の低下を抑制できる。(iii)成形性や焼成時の安定性が増し、例えば幅が500mm超、長さが500m超などの大型サイズの平板の製造が容易となる。
しかしながら、スラッグ類を添加しない場合には、以下の効果が得られる。(i)強い強度が得られる。このため、より薄い平板状のセラミックス焼結体が製造できる。また強度が強いため、薄い平板状のセラミックス焼結体であっても、建材などとして使用できる。(ii)スラッグ類を添加する場合、混練の前工程として、乾燥、粉砕、及び分級の工程を必要とする。このため、スラッグ類を添加しない場合、製造コストを低減できる。(iii)表裏面及び断面(側面)において、均一な状態の面が露出するため、水平、垂直状態での保水性がほぼ同等となる。従って、壁面材として使用する場合、平板状のセラミックス焼結体を垂直方向に立てて使用しても、優れた保水性を維持できる。これに対して、スラッグ類を添加した場合、表裏面と断面(側面)では露出する気孔が異なるため、水平、垂直状態により保水性が異なる。これにより、例えば平板状のセラミックス焼結体を水平方向に倒して、屋上用の屋根材や緑化基板材、植物栽培器として使用した場合には、優れた保水性を有するが、平板状のセラミックス焼結体を垂直方向に立てて、壁面材として使用した場合には、保水性が大きく低下してしまう。
このため、スラッグ類の添加は、用途などに応じて適宜決定することが好ましい。
In addition, when adding slugs among the said arbitrary components, the following effects are acquired. (I) A millimeter-sized pore can be secured. (Ii) While maintaining the water retention amount (saturated water content), it is possible to suppress a decrease in the water permeability coefficient (speed of passing water). (Iii) Formability and stability during firing increase, and for example, it becomes easy to produce a large-sized flat plate having a width exceeding 500 mm and a length exceeding 500 m.
However, when no slugs are added, the following effects are obtained. (I) Strong strength can be obtained. For this reason, a thinner flat plate-like ceramic sintered body can be manufactured. Moreover, since it is strong, even a thin flat plate ceramic sintered body can be used as a building material. (Ii) When adding slugs, drying, pulverization, and classification are required as pre-kneading steps. For this reason, when not adding slugs, a manufacturing cost can be reduced. (Iii) Since the surface in a uniform state is exposed on the front and back surfaces and the cross section (side surface), the water retention in the horizontal and vertical states is substantially equal. Therefore, when used as a wall material, excellent water retention can be maintained even when a flat ceramic sintered body is used in a vertical direction. On the other hand, when slugs are added, since the exposed pores are different between the front and back surfaces and the cross section (side surface), the water retention is different depending on the horizontal and vertical states. Thus, for example, when a flat ceramic sintered body is tilted horizontally and used as a roofing roofing material, a greening substrate material, or a plant cultivator, it has excellent water retention, but the flat ceramics When the sintered body is set up in the vertical direction and used as a wall material, water retention is greatly reduced.
For this reason, it is preferable to appropriately determine the addition of slugs depending on the application.

(製造方法)
本発明の多孔質セラミックス焼結体の製造方法は、珪藻土、粘土類及び有機汚泥を混合して混合物を得る混合工程と、前記混合物を成形し成形体を得る成形工程と、前記成形体を焼成する焼成工程とを有する。
(Production method)
The method for producing a porous ceramic sintered body of the present invention includes a mixing step of mixing diatomaceous earth, clays and organic sludge to obtain a mixture, a forming step of forming the mixture to obtain a formed body, and firing the formed body And a firing step.

<混合工程>
混合工程は、珪藻土、粘土類及び有機汚泥を混合し、混合物を得る工程である。
混合工程における各成分の混合順序は特に限定されず、例えば、珪藻土、粘土類及び有機汚泥を一度に混合装置へ投入し、混合する方法が挙げられる(一段混合方式)。また、例えば、珪藻土と有機汚泥とを混合し一次混合物を得て(第一の混合操作)、前記一次混合物と粘土類とを混合し混合物を得てもよい(第二の混合操作)(以上、二段混合方式)。
有機汚泥は、粘土類に比べて流動性が高いため、混合時に珪藻土気孔へ優先して進入すると推測される。このような混合物を成形し焼成することで、珪藻土気孔に充填された有機汚泥の有機物が揮発し、有機汚泥が充填された分に応じて珪藻土気孔が維持される。
なお、第二の混合操作では、珪藻土をさらに添加してもよい。
<Mixing process>
A mixing process is a process of mixing diatomaceous earth, clays, and organic sludge, and obtaining a mixture.
The mixing order of each component in a mixing process is not specifically limited, For example, the method of throwing diatomaceous earth, clays, and organic sludge into a mixing apparatus at once and mixing (single-stage mixing system) is mentioned. Moreover, for example, diatomaceous earth and organic sludge may be mixed to obtain a primary mixture (first mixing operation), and the primary mixture and clays may be mixed to obtain a mixture (second mixing operation) (above. , Two-stage mixing method).
Since organic sludge has higher fluidity than clays, it is presumed that organic sludge preferentially enters diatomaceous earth pores during mixing. By forming and baking such a mixture, the organic matter of the organic sludge filled in the diatomaceous earth pores is volatilized, and the diatomaceous earth pores are maintained according to the amount filled with the organic sludge.
In the second mixing operation, diatomaceous earth may be further added.

混合工程は、第一の混合操作と第二の混合操作を有することが好ましい。まず、第一の混合操作では、珪藻土と有機汚泥とを混合することで、適度な流動性の一次混合物が得られると共に、珪藻土気孔に有機汚泥が充填される。続く第二の混合操作では、適度な流動性を有する一次混合物と粘土類とを混合することで、均質な混合物を安定的に得られる。第二の混合操作では、珪藻土気孔に有機汚泥が既に充填されているため、粘土類は珪藻土気孔に容易に進入できない。このため、二段混合方式で得られた混合物は、一段混合方式で得られた混合物に比べて、有機汚泥が充填された珪藻土気孔の割合がさらに高くなる。この結果、混合工程を二段混合方式とすることで、より多くの珪藻土気孔が閉塞せずに維持される。   The mixing step preferably includes a first mixing operation and a second mixing operation. First, in the first mixing operation, diatomaceous earth and organic sludge are mixed to obtain a moderately fluid primary mixture and the diatomaceous earth pores are filled with organic sludge. In the subsequent second mixing operation, a homogeneous mixture can be stably obtained by mixing the primary mixture having moderate fluidity and clays. In the second mixing operation, clays cannot easily enter the diatomaceous earth pores because the diatomaceous earth pores are already filled with organic sludge. For this reason, the mixture obtained by the two-stage mixing method has a higher ratio of diatomaceous earth pores filled with organic sludge than the mixture obtained by the one-stage mixing method. As a result, more diatomaceous earth pores are maintained without being blocked by adopting a two-stage mixing method for the mixing step.

混合物中の珪藻土の含有量は、多孔質セラミックス焼結体に求める機能等を勘案して決定することができ、例えば、20〜55質量%が好ましく、30〜45質量%がより好ましい。上記範囲内であれば、混合物の成形性を損なわず、得られる多孔質セラミックス焼結体は好適な珪藻土気孔率を有することができる。   The content of diatomaceous earth in the mixture can be determined in consideration of the function required for the porous ceramic sintered body, and is preferably 20 to 55 mass%, and more preferably 30 to 45 mass%, for example. If it is in the said range, the moldability of a mixture will not be impaired and the obtained porous ceramic sintered compact can have suitable diatomaceous earth porosity.

混合物中の粘土類の含有量は、多孔質セラミックス焼結体に求める機能や、成形性を勘案して決定することができ、例えば、5〜20質量%が好ましく、10〜15質量%がより好ましい。上記範囲内であれば、混合物の成形性を損なわず、かつ円滑に成形できると共に、得られる多孔質セラミックス焼結体は好適な強度を備えることができる。   The content of clays in the mixture can be determined in consideration of the function required for the porous ceramic sintered body and the formability. For example, the content is preferably 5 to 20% by mass, more preferably 10 to 15% by mass. preferable. If it is in the said range, while the moldability of a mixture is not impaired and it can shape | mold smoothly, the obtained porous ceramic sintered compact can be equipped with suitable intensity | strength.

混合物中の有機汚泥の含有量は、多孔質セラミックス焼結体に求める機能や、成形性を勘案して決定することができ、例えば、40〜60質量%が好ましく、45〜55質量%がより好ましい。上記範囲内であれば、混合物は適度な流動性と可塑性とを備え、成形性が向上し、成形装置を閉塞することなく円滑に成形できる。加えて、混合物中の有機汚泥量が粘土類に対して十分に多いため、多くの珪藻土気孔に有機汚泥が充填され、焼成後の珪藻土気孔の閉塞を抑制できる。加えて、所望する全孔隙率の多孔質セラミックス焼結体が得られる。さらに、連通孔の形成が容易となる。
なお、上述した混合物中の珪藻土、粘土類、及び有機汚泥の含有量は、それぞれ水分を含んだ状態での含有量である。
The content of the organic sludge in the mixture can be determined in consideration of the function required for the porous ceramic sintered body and the formability. For example, the content is preferably 40 to 60% by mass, and more preferably 45 to 55% by mass. preferable. If it is in the said range, a mixture will be provided with moderate fluidity | liquidity and plasticity, a moldability will improve, and it can shape | mold smoothly, without obstruct | occluding a shaping | molding apparatus. In addition, since the amount of organic sludge in the mixture is sufficiently large relative to clays, many diatomaceous earth pores are filled with organic sludge, and blockage of diatomaceous earth pores after firing can be suppressed. In addition, a porous ceramic sintered body having a desired total porosity can be obtained. Further, the communication hole can be easily formed.
In addition, content of the diatomaceous earth in the mixture mentioned above, clays, and organic sludge is content in the state containing each water | moisture content.

混合物の含水率は、特に限定されないが、例えば、25〜45質量%が好ましく、25〜30質量%がより好ましい。上記範囲内であれば、混合物は適度な可塑性と流動性を有し、良好な成形性が維持できる。   Although the moisture content of a mixture is not specifically limited, For example, 25-45 mass% is preferable and 25-30 mass% is more preferable. If it is in the said range, a mixture has moderate plasticity and fluidity | liquidity, and can maintain favorable moldability.

混合物に任意成分を配合する場合、任意成分の配合量は、本発明の目的を阻害しない範囲とされ、例えば、5〜10質量%の範囲で決定することが好ましい。
混合工程において、有機汚泥が好適な配合比で配合されている場合には、有機汚泥に含まれる水で十分であり、混合工程にて水を添加しなくてもよい。しかし、混合物の流動性の調整等を目的として、適宜、水を配合してもよい。
When mix | blending an arbitrary component with a mixture, the compounding quantity of an arbitrary component shall be the range which does not inhibit the objective of this invention, for example, it is preferable to determine in the range of 5-10 mass%.
In the mixing step, when the organic sludge is blended at a suitable blending ratio, the water contained in the organic sludge is sufficient, and it is not necessary to add water in the mixing step. However, water may be appropriately blended for the purpose of adjusting the fluidity of the mixture.

混合工程に用いる混合装置は、特に限定されず、公知の混合装置を用いることができる。例えば、混合装置としては、ミックスマラー(東新工業株式会社製)等の混練機や、ニーダー(株式会社モリヤマ製)、混合機(日陶科学株式会社製)等が挙げられる。   The mixing apparatus used for a mixing process is not specifically limited, A well-known mixing apparatus can be used. For example, examples of the mixing device include a kneader such as a mix muller (manufactured by Toshin Kogyo Co., Ltd.), a kneader (manufactured by Moriyama Co., Ltd.), a mixer (manufactured by Nippon Ceramic Science Co., Ltd.) and the like.

混合工程における混合時間は、珪藻土と粘土類と有機汚泥との配合比や、混合物の流動性等を勘案して決定することができ、混合物が可塑状態となるような混合時間を決定することが好ましい。混合時間は、例えば、15〜45分の範囲とすることが好ましく、25〜35分の範囲とすることがより好ましい。   The mixing time in the mixing process can be determined in consideration of the blending ratio of diatomaceous earth, clays and organic sludge, the fluidity of the mixture, etc., and the mixing time can be determined so that the mixture becomes a plastic state. preferable. For example, the mixing time is preferably in the range of 15 to 45 minutes, and more preferably in the range of 25 to 35 minutes.

混合工程における温度は、特に限定されず、珪藻土と粘土類と有機汚泥の配合比や含水量等を勘案して決定することができ、例えば、40〜80℃の範囲とすることが好ましく、50〜60℃の範囲とすることがより好ましい。   The temperature in the mixing step is not particularly limited and can be determined in consideration of the blending ratio of diatomaceous earth, clays, and organic sludge, the water content, and the like. For example, the temperature is preferably in the range of 40 to 80 ° C. It is more preferable to set the temperature in a range of ˜60 ° C.

<成形工程>
成形工程は、混合工程で得られた混合物を任意の形状に成形する工程である。
成形方法は、公知の成形方法を用いることができ、混合物の性状や多孔質セラミックス焼結体の形状を勘案して決定することができる。成形方法は、例えば、成形装置を用いて任意の形状の成形体を連続的に得る方法、混合物を任意の形状の型に充填し成形体を得る方法、あるいは、混合物を延伸した後、任意の形状に切断する方法等が挙げられる。中でも、生産効率向上の観点から、成形装置を用いて成形体を連続的に得る方法が好ましい。
<Molding process>
The forming step is a step of forming the mixture obtained in the mixing step into an arbitrary shape.
As the forming method, a known forming method can be used, and it can be determined in consideration of the properties of the mixture and the shape of the porous ceramic sintered body. The molding method may be, for example, a method of continuously obtaining a molded body having an arbitrary shape using a molding apparatus, a method of obtaining a molded body by filling a mixture with an arbitrary shape, or an arbitrary shape after stretching the mixture. The method etc. which cut | disconnect to a shape are mentioned. Among these, from the viewpoint of improving production efficiency, a method of continuously obtaining a molded body using a molding apparatus is preferable.

成形装置は、所望する多孔質セラミックス焼結体の形状に応じて決定することができる。例えば、柱状又は粒状の多孔質セラミックス焼結体を製造するために、柱状又は粒状の成形体を得る場合、成形装置としては、一次スクリュー押出式成形機、円盤型ダイス水平押出式成形機等が挙げられ、中でも、生産性、成形性の観点より円盤型ダイス水平押出式成形機を用いることが好ましい。   A shaping | molding apparatus can be determined according to the shape of the desired porous ceramic sintered compact. For example, in order to produce a columnar or granular porous ceramic sintered body in order to produce a columnar or granular porous ceramic sintered body, as a molding apparatus, a primary screw extrusion molding machine, a disk-type die horizontal extrusion molding machine, etc. Among them, it is preferable to use a disk type die horizontal extrusion molding machine from the viewpoint of productivity and moldability.

成形装置で得る成形体の大きさは、用途に応じて決定することができるが、成形体を円柱状とする場合には、例えば、直径を5〜50mmの範囲とすることが好ましく、5〜20mmの範囲とすることが更に好ましい。直径が5mm未満であると、成形が困難となるおそれがある。直径が50mmを超えると、焼結が不十分となるおそれがある。   Although the magnitude | size of the molded object obtained with a shaping | molding apparatus can be determined according to a use, when making a molded object column shape, it is preferable to make a diameter into the range of 5-50 mm, for example, More preferably, the range is 20 mm. If the diameter is less than 5 mm, molding may be difficult. If the diameter exceeds 50 mm, sintering may be insufficient.

直径5mm〜20mmの円柱状の成形体を得る場合、円盤型ダイス水平押出式成形機のダイス孔の絞り率を0.88〜0.94とすることが好ましく、0.90〜0.92とすることがより好ましい。絞り率が0.88未満であると、混合物がダイス孔を通過しにくくなり、過圧縮のためにダイス孔の目詰まりが生じやすい傾向にある。絞り率が0.94を超えると、混合物の圧縮が不足し成形不良が発生するおそれがある。
なお、絞り率とは、(ダイス孔の出口側の直径)/(ダイス孔の入口側の直径)で表される比率である。
When obtaining a cylindrical molded body having a diameter of 5 mm to 20 mm, the drawing rate of the die hole of the disk die horizontal extrusion molding machine is preferably 0.88 to 0.94, and 0.90 to 0.92. More preferably. When the drawing ratio is less than 0.88, the mixture does not easily pass through the die holes, and clogging of the die holes tends to occur due to overcompression. If the squeezing ratio exceeds 0.94, the mixture may be insufficiently compressed and defective molding may occur.
The drawing ratio is a ratio represented by (diameter on the outlet side of the die hole) / (diameter on the inlet side of the die hole).

さらに、円盤型ダイス水平押出式成形機において、混合物のダイス孔の通過流速を5〜20mm/sec.とすることが好ましく、7〜18mm/sec.とすることがより好ましい。通過流速が5mm/sec.未満であると、成形不良が発生しやすい傾向にある。20mm/sec.を超えると、過圧縮によるダイス孔の目詰まりが発生しやすい傾向にある。   Further, in a disk type die horizontal extrusion molding machine, the flow velocity of the mixture through the die hole is set to 5 to 20 mm / sec. Preferably, 7 to 18 mm / sec. More preferably. Passing flow rate is 5 mm / sec. If it is less than 1, molding defects tend to occur. 20 mm / sec. Exceeding the value tends to cause clogging of the die hole due to overcompression.

平板状の成形体を得る場合、成形装置としては、スクリュー押出式成形機などが挙げられる。スクリュー押出式成形機は、特に限定されず、公知の装置を用いることができるが、真空室と土練機構を有する真空土練成形機を用いることが好ましい。   In the case of obtaining a flat molded body, examples of the molding apparatus include a screw extrusion molding machine. The screw extrusion molding machine is not particularly limited, and a known apparatus can be used, but it is preferable to use a vacuum clay molding machine having a vacuum chamber and a clay mechanism.

成形体を平板状とする場合には、例えば、厚さを5〜50mmの範囲とすることが好ましく、10〜20mmの範囲とすることが更に好ましい。厚さが5mm未満であると、成形が困難となるおそれがある。厚さが50mmを超えると、焼結が不十分となるおそれがある。   When making a molded object flat form, it is preferable to make thickness into the range of 5-50 mm, for example, and it is still more preferable to set it as the range of 10-20 mm. If the thickness is less than 5 mm, molding may be difficult. If the thickness exceeds 50 mm, sintering may be insufficient.

厚さが5〜50mmの平板状の成形体を得る場合、スクリュー押出式真空土練成形機のダイス開口の絞り率を0.05〜0.15とすることが好ましく、0.07〜0.12とすることが更に好ましい。絞り率が0.05未満であると、混合物がダイス開口を通りにくくなり、過圧縮によりダイス開口が詰まりやすくなる傾向がある。絞り率が0.15を超えると、混合物の圧縮が不足し、成形不良が発生するおそれがある。
なお、絞り率とは、(ダイス開口の面積)/(スクリュー押し出し部の断面積)で表される比率である。
In the case of obtaining a flat molded body having a thickness of 5 to 50 mm, it is preferable that the drawing ratio of the die opening of the screw extrusion type vacuum clay molding machine is 0.05 to 0.15, preferably 0.07 to 0.00. More preferably, it is 12. When the squeezing ratio is less than 0.05, the mixture does not easily pass through the die opening, and the die opening tends to be clogged due to over compression. When the squeezing ratio exceeds 0.15, compression of the mixture is insufficient, and molding failure may occur.
The drawing ratio is a ratio represented by (area of die opening) / (cross-sectional area of screw extrusion portion).

さらに、スクリュー押出式真空土練成形機において、混合物のダイス開口の通過流速を10〜20mm/sec.とすることが好ましく、12〜18mm/sec.とすることがより好ましい。通過流速が10mm/sec.未満又は20mm/sec.を超えると、成形不良が発生しやすい傾向にある。   Further, in the screw extrusion type vacuum kneading machine, the flow rate of the mixture through the die opening is set to 10 to 20 mm / sec. And is preferably 12 to 18 mm / sec. More preferably. Passing flow rate is 10 mm / sec. Or 20 mm / sec. If it exceeds 1, molding defects tend to occur.

<焼成工程>
焼成工程は、成形工程で得られた成形体を焼成し、珪藻土及び粘土類を焼結して多孔質セラミックス焼結体を得る工程である。
焼成の方法は特に限定されず、公知の方法を用いることができる。例えば、ローラーハースキルン等の連続式焼結炉、シャトルキルン等の回分式焼結炉を用い、任意の温度で焼成する方法が挙げられる。中でも、焼成には、生産性の観点から連続式焼結炉を用いることが好ましい。
なお、焼結時に大きなひび割れの発生を予防するために、焼成工程の前に、必要に応じて、成形体の含水率を2%未満、より好ましくは1%未満としてもよい。特に平板状の成形体の場合には、焼成工程の前に、成形体の含水率を1%未満とすることが好ましい。成形体の含水率を上記範囲とする方法としては、遠赤外線乾燥機、熱風乾燥機を用いて成形体を乾燥する方法や、太陽光を成形体に照射して乾燥する方法(天日干し)などが挙げられる。
<Baking process>
The firing step is a step of firing the formed body obtained in the forming step and sintering diatomaceous earth and clays to obtain a porous ceramic sintered body.
The firing method is not particularly limited, and a known method can be used. Examples thereof include a method of firing at an arbitrary temperature using a continuous sintering furnace such as a roller hearth kiln or a batch sintering furnace such as a shuttle kiln. Among them, it is preferable to use a continuous sintering furnace for firing from the viewpoint of productivity.
In addition, in order to prevent generation | occurrence | production of a big crack at the time of sintering, you may make the moisture content of a molded object less than 2% as needed before a baking process, More preferably, it may be less than 1%. In particular, in the case of a flat molded body, it is preferable that the water content of the molded body is less than 1% before the firing step. Methods for setting the moisture content of the molded body in the above range include a method of drying the molded body using a far-infrared dryer or hot air dryer, a method of irradiating the molded body with sunlight and drying (sun drying), etc. Is mentioned.

焼成温度(到達温度)は、珪藻土と粘土類と有機汚泥との配合比や有機汚泥の成分等を勘案し、珪藻土及び粘土類を焼結し、かつ、有機汚泥に含まれる有機物が熱分解により揮発し減量する条件を考慮して設定できる。例えば、焼成温度は、950〜1200℃が好ましく、1000〜1100℃がより好ましい。有機物の多くは、700℃前後より分解が始まる。950℃において、有機物の臭気成分が熱分解され、有機汚泥特有の臭いが解消されると共に、有機汚泥中の有機物の大部分が揮発して減量する。
焼成温度が1200℃を超えると、多孔質セラミックス焼結体の組織全体のガラス化が進み、成形体が破損したり、孔隙が閉塞するおそれがある。
The firing temperature (attainment temperature) is determined by sintering the diatomaceous earth and clay, taking into account the mixing ratio of diatomaceous earth, clay and organic sludge, the components of the organic sludge, etc., and the organic matter contained in the organic sludge is thermally decomposed. It can be set considering the conditions for volatilization and weight loss. For example, the firing temperature is preferably 950 to 1200 ° C, more preferably 1000 to 1100 ° C. Most organic substances start to decompose at around 700 ° C. At 950 ° C., the odor component of the organic matter is thermally decomposed to eliminate the odor peculiar to the organic sludge, and most of the organic matter in the organic sludge is volatilized and reduced.
When the firing temperature exceeds 1200 ° C., vitrification of the entire structure of the porous ceramic sintered body proceeds, and the molded body may be damaged or the pores may be blocked.

焼成工程では、焼成温度に達するまでに、まず水分が成形体から蒸発し、その後、活性汚泥の有機物が熱分解を経て揮発する。この過程で、温度上昇(ヒートカーブ、温度勾配)を適性に調整することにより、急激な水分の蒸発又は急激な有機物の揮発を抑え、形成物の粉砕(***)を防止できる。また、焼成温度に達した後の急激な冷却により、多孔質セラミックス焼結体に割れや粉砕等の破損が生じることがある。このような現象は、特に連続式焼結炉において顕著に現れる。
このため、焼成工程には、温度勾配を設けることが好ましい。
In the firing step, before the firing temperature is reached, water is first evaporated from the molded body, and then the organic matter of the activated sludge is volatilized through thermal decomposition. In this process, by appropriately adjusting the temperature rise (heat curve, temperature gradient), rapid evaporation of water or rapid volatilization of organic substances can be suppressed, and the formation can be prevented from being crushed (exploded). Further, the rapid cooling after reaching the firing temperature may cause breakage such as cracking or crushing in the porous ceramic sintered body. Such a phenomenon is particularly noticeable in a continuous sintering furnace.
For this reason, it is preferable to provide a temperature gradient in the firing step.

温度勾配は、焼成装置の規模等を勘案して決定することができる。例えば、焼成部の有効長が15mの連続式焼結炉を用いて焼成する場合、連続式焼結炉の入口及び出口を常温(20℃±15℃、すなわち5〜35℃)とし、連続式焼結炉の中央部における焼成温度を950℃〜1200℃とし、成形体の連続式焼結炉内の通過速度を3〜4mm/sec.とし、以下の温度勾配条件とすることが好ましい。
温度勾配は、連続式焼結炉を均等な距離の10のゾーンに区分し、連続式焼結炉の温度勾配を入口側より0.4〜0.6℃/sec.、0.1〜0.2℃/sec.、0.3〜0.4℃/sec.、0.4〜0.6℃/sec.、0.7〜1.0℃/sec.、0.004〜0.005℃/sec.、−0.4〜−0.2℃/sec.、−0.8〜−0.5℃/sec.、−0.4〜−0.3℃/sec.、−0.3〜−0.1℃/sec.とすることが好ましい。
The temperature gradient can be determined in consideration of the scale of the baking apparatus. For example, when firing using a continuous sintering furnace having an effective length of 15 m, the inlet and outlet of the continuous sintering furnace are at room temperature (20 ° C. ± 15 ° C., ie, 5 to 35 ° C.) The firing temperature in the central part of the sintering furnace is 950 ° C. to 1200 ° C., and the passing speed of the compact in the continuous sintering furnace is 3 to 4 mm / sec. And the following temperature gradient conditions are preferable.
The temperature gradient was determined by dividing the continuous sintering furnace into 10 zones of equal distance, and the temperature gradient of the continuous sintering furnace was 0.4 to 0.6 ° C./sec. 0.1-0.2 ° C./sec. 0.3-0.4 ° C./sec. 0.4-0.6 ° C./sec. 0.7-1.0 ° C./sec. 0.004 to 0.005 ° C./sec. , −0.4 to −0.2 ° C./sec. , −0.8 to −0.5 ° C./sec. , −0.4 to −0.3 ° C./sec. , −0.3 to −0.1 ° C./sec. It is preferable that

連続式焼結炉において、投入時における成形体の含水率が3質量%を超える場合、焼成工程での含有水分の急激な気化により、成形体に破裂もしくは爆砕が発生することがあり、また、活性汚泥の急激な揮発に伴う破損も発生するおそれがある。従って、例えば、連続式焼結炉内を上述のような温度勾配に制御することで、成形体の焼成工程における破損を抑えることができる。加えて、適切な温度勾配を設けることで、全孔隙率を高くし、あるいは連通孔を形成し、多孔質セラミックス焼結体の断熱性、吸音性、保水性、透水性又は通気性を向上させることができる。   In a continuous sintering furnace, when the moisture content of the molded body at the time of charging exceeds 3% by mass, the molded body may burst or explode due to a rapid vaporization of the water content in the firing step. There is also a risk of damage due to rapid volatilization of activated sludge. Therefore, for example, by controlling the inside of the continuous sintering furnace to the temperature gradient as described above, it is possible to suppress damage in the firing process of the molded body. In addition, by providing an appropriate temperature gradient, the total porosity is increased or communication holes are formed to improve the heat insulation, sound absorption, water retention, water permeability, or air permeability of the porous ceramic sintered body. be able to.

焼成時間は、焼成温度や混合物の含水率等を勘案して決定することができ、例えば、焼成温度における滞留時間は、好ましくは4〜10分間、より好ましくは6.5〜7.5分間である。上記範囲内であれば、多孔質セラミックス焼結体の破損を防止しつつ、良好に焼結できる。   The firing time can be determined in consideration of the firing temperature, the water content of the mixture, and the like. For example, the residence time at the firing temperature is preferably 4 to 10 minutes, more preferably 6.5 to 7.5 minutes. is there. If it is in the said range, it can sinter favorably, preventing the failure | damage of a porous ceramic sintered compact.

上述のとおり、本発明によれば、多孔質セラミックス焼結体は、有機汚泥が珪藻土気孔に充填された状態の混合物を成形し焼結して製造される。このため、焼結時に前記有機汚泥の有機物が揮発し、珪藻土気孔を維持できる。加えて、多孔質セラミックス焼結体において、焼成工程で珪藻土及び粘土類の間に存在する有機汚泥の有機物が、焼結時に揮発して形成された孔隙が形成されている。この結果、多孔質セラミックス焼結体は、珪藻土気孔と孔隙を有するため、断熱性の機能の向上が図れる。
さらに、珪藻土気孔と、孔隙と、これらが連通する連通孔を有する多孔質セラミックス焼結体は、吸音性、保水性、透水性又は通気性の機能が向上する。
As described above, according to the present invention, the porous ceramic sintered body is manufactured by forming and sintering a mixture in which organic sludge is filled in diatomaceous earth pores. For this reason, the organic matter of the organic sludge volatilizes during sintering, and diatomaceous earth pores can be maintained. In addition, in the porous ceramic sintered body, pores formed by volatilization of organic matter of organic sludge existing between diatomaceous earth and clay in the firing step are formed. As a result, since the porous ceramic sintered body has diatomaceous earth pores and pores, the heat insulating function can be improved.
Furthermore, a porous ceramic sintered body having diatomaceous earth pores, pores, and communication holes in which these communicate with each other has improved sound absorbing properties, water retention properties, water permeability properties, and air permeability properties.

本発明において、原料として含まれる有機汚泥は、粘土類に比べて流動性が高いため、混合工程では、優先的に珪藻土気孔に進入すると考えられる。この結果、有機汚泥が充填された珪藻土気孔では、焼結時に有機汚泥の有機物が揮発し、珪藻土気孔が維持される。加えて、有機汚泥を含有する成形体を焼成することで、有機汚泥の有機物の揮発により多孔質セラミックス焼結体に多くの孔隙を形成でき、さらに多孔質セラミックス焼結体に連通孔を形成できる。
さらに、混合工程は、第一の混合操作と第二の混合操作とを有することにより、珪藻土気孔への粘土類の進入を効果的に防止し、珪藻土気孔率を向上することができる。
In this invention, since the organic sludge contained as a raw material has high fluidity compared with clays, it is thought that it enters a diatomaceous earth pore preferentially in a mixing process. As a result, in the diatomaceous earth pores filled with organic sludge, organic matter in the organic sludge is volatilized during sintering, and the diatomaceous earth pores are maintained. In addition, by firing the compact containing organic sludge, many pores can be formed in the porous ceramic sintered body due to volatilization of the organic matter of the organic sludge, and further, communication holes can be formed in the porous ceramic sintered body. .
Furthermore, a mixing process has the 1st mixing operation and the 2nd mixing operation, can prevent the approach of clays to a diatomaceous earth pore effectively, and can improve a diatomaceous earth porosity.

有機汚泥は、混合工程及び成形工程では、流動化剤又は潤滑剤としての役割を奏し、成形体ではバインダーの役割を奏する。このため、混合物は、珪藻土を20〜55質量%、粘土類を5〜20質量%、有機汚泥を40〜60質量%含み、かつ、含水率を25〜45質量%とすることで、適度な可塑性が得られ、成形性の向上が図れ、効率的に多孔質セラミックス焼結体を製造できる。加えて、このような混合物は、適度な流動性を有するため、成形装置を用いた成形において、ダイス孔での発熱が抑制され、ダイス孔の目詰まりを防ぎ、効率的に多孔質セラミックス焼結体を製造できる。
加えて、本発明の混合物は、有機汚泥を含むことで成形性を確保できるため、粘土類の配合量を低減できる。この結果、混合物が成形装置のダイス孔をより円滑に通過できるようになり、さらなる製造効率の向上が図れる。
焼成工程は、950〜1200℃の温度条件とすることで、孔隙を有する多孔質セラミックス焼結体を効率的に製造できる。
The organic sludge plays a role as a fluidizing agent or a lubricant in the mixing step and the forming step, and plays a role of a binder in the formed body. For this reason, the mixture contains 20 to 55% by mass of diatomaceous earth, 5 to 20% by mass of clay, 40 to 60% by mass of organic sludge, and has a moisture content of 25 to 45% by mass. Plasticity is obtained, moldability can be improved, and a porous ceramic sintered body can be efficiently produced. In addition, since such a mixture has an appropriate fluidity, heat generation in the die hole is suppressed in molding using a molding apparatus, clogging of the die hole is prevented, and porous ceramic sintering is efficiently performed. The body can be manufactured.
In addition, since the mixture of the present invention can ensure moldability by including organic sludge, the blending amount of clays can be reduced. As a result, the mixture can pass through the die hole of the molding apparatus more smoothly, and the production efficiency can be further improved.
By setting the firing process to a temperature condition of 950 to 1200 ° C., a porous ceramic sintered body having pores can be efficiently produced.

本発明は、従来、廃棄物としてみなされていた有機汚泥を原料として活用できるため、環境面への配慮にも好適に対応できる。加えて、有機汚泥は、容易且つ大量に入手可能な原料であり、原料調達面で優位である。さらに、有機汚泥は、含水率が高いため、混合工程において水を添加する作業を省略できる。   The present invention can utilize organic sludge, which has been conventionally regarded as waste, as a raw material, and therefore can suitably cope with environmental considerations. In addition, organic sludge is a raw material that can be obtained easily and in large quantities, and is superior in terms of raw material procurement. Furthermore, since the organic sludge has a high water content, the work of adding water in the mixing step can be omitted.

本発明のセラミックス焼結体は、その珪藻土気孔、孔隙又は連通孔が形成されているため、緑化基盤材料、水質浄化材料、調湿材料、断熱材、壁面材などの建材、植物栽培器等へ好適に利用できる。   Since the ceramic sintered body of the present invention is formed with diatomaceous earth pores, pores or communication holes, it is used for building materials such as tree planting base materials, water purification materials, humidity conditioning materials, heat insulating materials, wall materials, plant cultivators, etc. It can be suitably used.

以下、本発明を実施例により具体的に説明するが、本発明はこれらに限定されるものではない。
(使用原料)
実施例に用いた原料は、次のとおりである。
<有機汚泥>
以下の実施例における有機汚泥としては、染色工場(小松精練株式会社)の活性汚泥法による排水処理設備から凝集・脱水工程を経て排出された活性汚泥を用いた。この活性汚泥の有機物含有量(対固形分)は83質量%であった。
Hereinafter, the present invention will be specifically described by way of examples, but the present invention is not limited thereto.
(Raw materials used)
The raw materials used in the examples are as follows.
<Organic sludge>
As the organic sludge in the following examples, activated sludge discharged through a coagulation / dehydration process from a wastewater treatment facility using an activated sludge method at a dyeing factory (Komatsu Seiren Co., Ltd.) was used. The activated sludge had an organic content (based on solid content) of 83% by mass.

<粘土類>
粘土類には、蛙目粘土(岐阜県産又は愛知県産)を用いた。
<Clays>
As the clay, Sasame clay (from Gifu Prefecture or Aichi Prefecture) was used.

<珪藻土>
珪藻土には、能登地区産の耐火煉瓦の原料で、含水率が5質量%の粉末状の珪藻土を用いた。
<Diatomaceous earth>
As the diatomaceous earth, a powdery diatomaceous earth having a water content of 5% by mass was used as a raw material for refractory bricks from the Noto district.

(測定方法)
なお、本発明における物性値は以下の方法により測定した。
<比重>
サンプルの外形寸法をノギスにより測定し体積を求めた。同サンプルを絶対乾燥状態(絶乾状態)にし、電子天秤にて質量を測定(絶乾状態質量)した。そして下記(3)式により比重を算出した。なお、実施例1〜9のサンプル(N)数はN=10とした。比較例1は、変形の著しくないものを選択し、N=3とした。
(Measuring method)
In addition, the physical property value in this invention was measured with the following method.
<Specific gravity>
The external dimensions of the sample were measured with calipers to determine the volume. The sample was put into an absolute dry state (absolute dry state), and the mass was measured with an electronic balance (absolute dry mass). And specific gravity was computed by the following (3) formula. The number of samples (N) in Examples 1 to 9 was N = 10. In Comparative Example 1, a material that was not significantly deformed was selected, and N = 3.

比重(g/cm)=[絶乾状態質量(g)]/[体積(cm)] ・・・(3) Specific gravity (g / cm 3 ) = [absolutely dry mass (g)] / [volume (cm 3 )] (3)

<全孔隙率>
全孔隙率とは、セラミックス焼結体における珪藻土気孔、孔隙などを含めた全ての空隙の割合を言い、以下の方法により求めた。
粘土類100質量%の成形体を焼成した粘土焼成物(気孔なし)の比重を2.09g/cmとし、前記のサンプルの比重と粘土焼成物の比重(2.09g/cm)から、下記(4)式により全孔隙率を算出した。
<Total porosity>
The total porosity is the ratio of all voids including diatomaceous earth pores and pores in the ceramic sintered body, and was determined by the following method.
The specific gravity of the clay calcined product (no pores) obtained by calcining the molded body of 100% by mass of clay was 2.09 g / cm 3. From the specific gravity of the sample and the specific gravity of the clay calcined product (2.09 g / cm 3 ), The total porosity was calculated by the following equation (4).

全孔隙率(%)={(2.09−サンプルの比重)/2.09}×100 ・・・(4)   Total porosity (%) = {(2.09−specific gravity of sample) /2.09} × 100 (4)

<飽和含水率>
比重を測定したサンプル(N=10)を水に60分間浸漬した後、質量を測定(飽和状態質量)した。そして、下記(5)式により飽和含水率を求めた。
<Saturated water content>
The sample (N = 10) whose specific gravity was measured was immersed in water for 60 minutes, and then the mass was measured (saturated mass). And saturation water content was calculated | required by following (5) Formula.

飽和含水率(質量%)=[(飽和状態質量−絶乾状態質量)/絶乾状態質量]×100・・・(5)   Saturated water content (mass%) = [(saturated mass−absolute dry mass) / absolute dry mass] × 100 (5)

<曲げ強度>
JIS R5201に準拠して測定した。
<Bending strength>
It measured based on JISR5201.

<連通孔の有無の確認>
得られた多孔質セラミックス焼結体を水に浸漬し、十分に吸水させた後に切断した。そして、その断面を観察して、多孔質セラミックス焼結体中の連通孔の有無を確認した。多孔質セラミックス焼結体の内部に、満遍なく水分が分布・保水されている場合、連通孔が形成されていると判断した(表中、「有り」と記載)。多孔質セラミックス焼結体の内部に水分が行き渡っていない場合は、個々の気孔又は孔隙が独立しており、連通孔が形成されていないか又は連通孔の形成が不十分であると判断した(表中、「無し」と記載)。
<Confirmation of presence or absence of communication holes>
The obtained porous ceramic sintered body was immersed in water and sufficiently absorbed, and then cut. And the cross section was observed and the presence or absence of the communicating hole in a porous ceramic sintered compact was confirmed. When moisture was evenly distributed and retained in the porous ceramic sintered body, it was judged that communication holes were formed (described as “present” in the table). When moisture did not spread through the porous ceramic sintered body, it was determined that each pore or pore was independent, and no communication hole was formed or the formation of the communication hole was insufficient ( In the table, it is described as “None”).

(実施例1)
表1の混合物の組成に従い、有機汚泥と珪藻土とをミックスマラー(東新工業株式会社製)で混合して一次混合物を得た(第一の混合操作)。次いで、一次混合物に粘土類を添加し、さらに混合して、可塑状態の混合物を得た(第二の混合操作)。
得られた混合物を円盤型ダイス水平押出(石臼)式成形機(株式会社アースエンジニアリング製)を用い、表1の成形条件により連続的に圧縮成形し、直径15mm、長さ25mmの中実円柱状の成形体を得た(成形工程)。
得られた成形体を、連続式焼結炉を用いて、表1に示す焼成条件にて焼成し、多孔質セラミックス焼結体を得た(焼成工程)。なお、連続式焼結炉としては、ローラーハースキルン(焼結炉の有効長:全長15m、焼結炉を各1.5mのゾーン1〜10に分割)を用いた。
得られた多孔質セラミックス焼結体について、比重、全孔隙率、飽和含水率、曲げ強度の測定、連通孔の有無の確認を行い、その結果を表1に示す。
Example 1
According to the composition of the mixture in Table 1, organic sludge and diatomaceous earth were mixed with a mix muller (manufactured by Toshin Kogyo Co., Ltd.) to obtain a primary mixture (first mixing operation). Next, clays were added to the primary mixture and further mixed to obtain a mixture in a plastic state (second mixing operation).
The obtained mixture was continuously compression-molded using a disk type die horizontal extrusion (stone mill) type molding machine (manufactured by Earth Engineering Co., Ltd.) according to the molding conditions shown in Table 1, and was a solid cylindrical shape having a diameter of 15 mm and a length of 25 mm. A molded body was obtained (molding step).
The obtained compact was fired under the firing conditions shown in Table 1 using a continuous sintering furnace to obtain a porous ceramic sintered body (firing step). As a continuous sintering furnace, a roller hearth kiln (effective length of sintering furnace: total length 15 m, the sintering furnace is divided into zones 1 to 10 each having a length of 1.5 m) was used.
The obtained porous ceramic sintered body was measured for specific gravity, total porosity, saturated moisture content, bending strength, and presence / absence of communication holes, and Table 1 shows the results.

(実施例2)
混合物を直径10mm、長さ15〜25mmの中実円柱状に成形した以外は、実施例1と同様の方法により、表1の混合物組成、成形条件、焼成条件に従い、多孔質セラミックス焼結体を得た。得られた多孔質セラミックス焼結体について、比重、全孔隙率、飽和含水率、曲げ強度の測定、連通孔の有無の確認を行い、その結果を表1に示す。
(Example 2)
Except that the mixture was formed into a solid cylindrical shape with a diameter of 10 mm and a length of 15 to 25 mm, a porous ceramic sintered body was formed in the same manner as in Example 1 according to the mixture composition, molding conditions, and firing conditions shown in Table 1. Obtained. The obtained porous ceramic sintered body was measured for specific gravity, total porosity, saturated moisture content, bending strength, and presence / absence of communication holes, and Table 1 shows the results.

(実施例3)
混合物を直径6mm、長さ10〜25mmの中実円柱状に成形した以外は、実施例1と同様の方法により、表1の混合物組成、成形条件、焼成条件に従い、多孔質セラミックス焼結体を得た。得られた多孔質セラミックス焼結体について、比重、全孔隙率、飽和含水率、曲げ強度の測定、連通孔の有無の確認を行い、その結果を表1に示す。
(Example 3)
Except that the mixture was formed into a solid cylindrical shape having a diameter of 6 mm and a length of 10 to 25 mm, a porous ceramic sintered body was formed in the same manner as in Example 1 according to the mixture composition, forming conditions, and firing conditions shown in Table 1. Obtained. The obtained porous ceramic sintered body was measured for specific gravity, total porosity, saturated moisture content, bending strength, and presence / absence of communication holes, and Table 1 shows the results.

(実施例4)
表1の混合物の組成に従い、有機汚泥と珪藻土とをミックスマラーで混合して一次混合物を得た(第一の混合操作)。次いで、一次混合物に粘土類を添加し、混合して予備混合物(含水率27質量%)とした。前記予備混合物は、可塑状態に至らなかった。さらに予備混合物に水を添加し、混合して表1に記載の含水率(37質量%)の混合物を得た(第二の混合操作)。
得られた混合物を円盤型ダイス水平押出成形機を用い、表1の成形条件により圧縮成形し、直径15mm、長さ25mmの中実円柱状の成形体を得た(成形工程)。成形工程は、連続成形を試みたが、成形体がダイス孔から円滑に押し出されなかったため、手動で断続的に成形装置を操作し、成形体をダイス孔から取り出した。
連続式焼結炉を用い、得られた成形体を表1に示す焼成条件にて焼成し、多孔質セラミックス焼結体を得た(焼成工程)。
得られた多孔質セラミックス焼結体について、比重、全孔隙率、飽和含水率、曲げ強度の測定、連通孔の有無の確認を行い、その結果を表1に示す。
Example 4
According to the composition of the mixture in Table 1, organic sludge and diatomaceous earth were mixed with a mix muller to obtain a primary mixture (first mixing operation). Next, clays were added to the primary mixture and mixed to prepare a premix (water content 27% by mass). The premix did not reach a plastic state. Further, water was added to the preliminary mixture and mixed to obtain a mixture having a water content (37% by mass) shown in Table 1 (second mixing operation).
The obtained mixture was compression molded using a disk-type die horizontal extrusion molding machine under the molding conditions shown in Table 1 to obtain a solid cylindrical molded body having a diameter of 15 mm and a length of 25 mm (molding step). In the molding process, continuous molding was attempted. However, since the molded body was not smoothly extruded from the die hole, the molding apparatus was manually operated intermittently to remove the molded body from the die hole.
Using a continuous sintering furnace, the obtained compact was fired under the firing conditions shown in Table 1 to obtain a porous ceramic sintered body (firing step).
The obtained porous ceramic sintered body was measured for specific gravity, total porosity, saturated moisture content, bending strength, and presence / absence of communication holes, and Table 1 shows the results.

(実施例5)
表1の混合物の組成に従い、有機汚泥と珪藻土とをミックスマラーで混合して一次混合物を得た(第一の混合操作)。次いで、一次混合物に粘土類を添加し、混合して予備混合物(含水率25質量%)とした。前記予備混合物は、可塑状態に至らなかった。さらに予備混合物に水を添加し、混合して表1記載の含水率(35質量%)の混合物を得た(第二の混合操作)。
得られた混合物を円盤型ダイス水平押出成形機を用い、表1の成形条件により圧縮成形し、直径15mm、長さ25mmの中実円柱状の成形体への成形を試みたが、適正な成形に至らず、手動で断続的に成形体をダイス孔から取り出した(成形工程)。
連続式焼結炉を用いて、得られた成形体を表1に示す焼成条件にて焼成し、多孔質セラミックス焼結体を得た(焼成工程)。
得られた多孔質セラミックス焼結体について、比重、全孔隙率を測定し、その結果を表1に示す。なお、得られた多孔質セラミックス焼結体は、水に浸漬すると容易に崩壊するような脆いものであったため、飽和含水率、曲げ強度、連通孔の有無については、測定を行わなかった。
(Example 5)
According to the composition of the mixture in Table 1, organic sludge and diatomaceous earth were mixed with a mix muller to obtain a primary mixture (first mixing operation). Next, clays were added to the primary mixture and mixed to prepare a premix (water content 25% by mass). The premix did not reach a plastic state. Further, water was added to the preliminary mixture and mixed to obtain a mixture having a water content (35% by mass) shown in Table 1 (second mixing operation).
The obtained mixture was compression-molded using a disk-type die horizontal extrusion molding machine under the molding conditions shown in Table 1 and attempted to be molded into a solid cylindrical molded body having a diameter of 15 mm and a length of 25 mm. However, the molded body was manually and intermittently removed from the die hole (molding process).
Using the continuous sintering furnace, the obtained compact was fired under the firing conditions shown in Table 1 to obtain a porous ceramic sintered body (firing step).
The resulting porous ceramic sintered body was measured for specific gravity and total porosity, and the results are shown in Table 1. In addition, since the obtained porous ceramic sintered body was brittle so as to be easily disintegrated when immersed in water, the saturation moisture content, bending strength, and presence / absence of communication holes were not measured.

(比較例1)
表1の混合物の組成に従い、珪藻土と粘土類とをミックスマラーで混合し予備混合物(含水率20質量%)を得た。さらに、予備混合物に水を添加し、混合して表1に記載の含水率(37質量%)の混合物を得た。
得られた混合物について、円盤型ダイス水平押出成形機での成形(直径15mm、長さ25mmの中実円柱状)を試みたが、ダイス孔が閉塞して成形できなかった。そこで、直径15mmの中空鋼管に混合物を充填し、充填した混合物を手作業で押出し、直径15mm、長さ25mmの中実円柱状の成形体を得た(成形工程)。
得られた成形体を表1に示す焼成条件にて焼成し、セラミックス焼結体を得た(焼成工程)。
得られたセラミックス焼結体について、比重、全孔隙率、飽和含水率を測定し、その結果を表1に示す。なお、比較例1は、気孔の維持状態の確認を目的としたため、曲げ強度の測定及び連通孔の有無の確認は行わなかった。
(Comparative Example 1)
According to the composition of the mixture in Table 1, diatomaceous earth and clay were mixed with a mix muller to obtain a premix (water content 20% by mass). Furthermore, water was added to the preliminary mixture and mixed to obtain a mixture having a water content (37% by mass) shown in Table 1.
The obtained mixture was tried to be molded (a solid cylindrical shape having a diameter of 15 mm and a length of 25 mm) with a disk-type die horizontal extrusion molding machine, but the die hole was blocked and could not be molded. Therefore, a hollow steel pipe having a diameter of 15 mm was filled with the mixture, and the filled mixture was manually extruded to obtain a solid cylindrical shaped body having a diameter of 15 mm and a length of 25 mm (molding step).
The obtained molded body was fired under the firing conditions shown in Table 1 to obtain a ceramic sintered body (firing step).
The obtained ceramic sintered body was measured for specific gravity, total porosity, and saturated water content, and the results are shown in Table 1. In addition, since the comparative example 1 aimed at confirmation of the maintenance state of a pore, the measurement of bending strength and the presence or absence of the communicating hole were not performed.

Figure 2010106724
Figure 2010106724

表1の結果のとおり、実施例1〜3の多孔質セラミックス焼結体は、比重が0.82g/cm以下であること、全孔隙率が60%を超えること、飽和含水率が67質量%以上であることから、珪藻土気孔及び孔隙が数多く存在していると推測できる。加えて、連通孔の有無が「有り」であったことから、連通孔が形成されていると推測できる。さらに、曲げ強度は4.5N/mm以上であり、実使用に十分な強度を有していた。
中でも、実施例1の多孔質セラミックス焼結体は、直径が15mmであり、一定の空間に充填した場合、多孔質セラミックス焼結体同士の間に適度な空間が得られるため、植栽の根が繁殖しやすく、緑地基盤材料として高い性能が期待できる。
実施例2の多孔質セラミックス焼結体は、実施例1、3に比べ飽和含水率に優れており、適度の透水性を有する。このため、水質浄化材料(接触濾過担体)としての高い性能が期待できる。
実施例3の多孔質セラミックス焼結体は、直径が6mmであり、一定の空間に充填した場合、前記空間の容積当たりの多孔質セラミックス焼結体の質量が高くなり、単位容積当たりの多孔質セラミックス焼結体の表面積が大きくなる。このため、調湿材料としての高い性能が期待できる。さらに、前記空間における多孔質セラミックス焼結体の密度が高く、かつ均一に充填されるため、気体のフィルター材としての濾過性能も期待できる。
As shown in Table 1, the porous ceramic sintered bodies of Examples 1 to 3 have a specific gravity of 0.82 g / cm 3 or less, a total porosity exceeding 60%, and a saturated moisture content of 67 mass. Since it is% or more, it can be estimated that many diatomaceous earth pores and pores exist. In addition, since the presence / absence of the communication hole is “present”, it can be estimated that the communication hole is formed. Furthermore, the bending strength was 4.5 N / mm 2 or more, and the strength was sufficient for actual use.
Among them, the porous ceramic sintered body of Example 1 has a diameter of 15 mm, and when filled in a certain space, an appropriate space is obtained between the porous ceramic sintered bodies. Is easy to breed and can be expected to have high performance as a green base material.
The porous ceramic sintered body of Example 2 is excellent in saturated moisture content as compared with Examples 1 and 3, and has appropriate water permeability. For this reason, high performance as a water purification material (contact filtration carrier) can be expected.
The porous ceramic sintered body of Example 3 has a diameter of 6 mm, and when filled in a certain space, the mass of the porous ceramic sintered body per volume of the space is increased, and the porous per unit volume is porous. The surface area of the ceramic sintered body is increased. For this reason, high performance as a humidity control material can be expected. Furthermore, since the density of the porous ceramic sintered body in the space is high and uniformly filled, a filtration performance as a gas filter material can be expected.

実施例4の多孔質セラミックス焼結体の比重は、1.21g/cmであり、実施例1〜3に比べて高いものであった。しかし、全孔隙率は42%であることから、珪藻土気孔の閉塞が抑制されていると推測できる。
実施例5の多孔質セラミックス焼結体は、比重が0.63g/cmであり、全孔隙率が69%であることから、強度は低いが、珪藻土気孔の閉塞が防止できていることが推測できる。
一方、有機汚泥を含有しない混合物を用いて製造された比較例1の多孔質セラミックス焼結体は、比重が1.69g/cmであり、全孔隙率が19%であった。比較例1は、実施例1〜5のいずれと比較しても、比重が著しく高く、かつ全孔隙率が極めて低かった。このことから、比較例1は、珪藻土気孔の多くが閉塞し、かつ孔隙が少ないと推測できる。
以上の結果から、実施例1〜5のように有機汚泥を含有する混合物を用いることで、珪藻土気孔の閉塞を防止し、孔隙が形成できることが判った。加えて、実施例1〜3のように、有機汚泥と珪藻土と粘土類とを適切な配合比とすることで、成形性と製造効率の向上が図れることが判った。
The specific gravity of the porous ceramic sintered body of Example 4 was 1.21 g / cm 3 , which was higher than those of Examples 1 to 3. However, since the total porosity is 42%, it can be estimated that blockage of diatomaceous earth pores is suppressed.
Since the porous ceramic sintered body of Example 5 has a specific gravity of 0.63 g / cm 3 and a total porosity of 69%, the strength is low, but blockage of diatomaceous earth pores can be prevented. I can guess.
On the other hand, the porous ceramic sintered body of Comparative Example 1 produced using a mixture containing no organic sludge had a specific gravity of 1.69 g / cm 3 and a total porosity of 19%. In Comparative Example 1, the specific gravity was remarkably high and the total porosity was extremely low as compared with any of Examples 1-5. From this, it can be presumed that in Comparative Example 1, many of the diatomaceous earth pores are closed and the pores are small.
From the above results, it was found that by using a mixture containing organic sludge as in Examples 1 to 5, blockage of diatomaceous earth pores was prevented and pores could be formed. In addition, as in Examples 1 to 3, it was found that the moldability and production efficiency can be improved by setting the organic sludge, diatomaceous earth, and clays to an appropriate blending ratio.

(実施例6)
表2の混合物の組成に従い、有機汚泥と珪藻土とをミックスマラーで混合して一次混合物を得た(第一の混合操作)。次いで、一次混合物に粘土類を添加し、さらに混合して、可塑状態の混合物を得た(第二の混合操作)。
得られた混合物を、スクリュー押し出し式真空土練成形機(高浜工業株式会社製)を用い、表2の成形条件により押出し成形し、厚さ14mm、幅340mm、長さ400mmの平板状の成形体を得た(成形工程)。
得られた平板状の成形体を乾燥させ、成形体の含水率を1%とした。
含水率を1%とした成形体を、連続式焼結炉を用いて、表2に示す焼成条件にて焼成し、多孔質セラミックス焼結体を得た(焼成工程)。なお、連続式焼結炉としては、ローラーハースキルン(焼結炉の有効長:全長15m、焼結炉を各1.5mのゾーン1〜10に分割)を用いた。
得られた多孔質セラミックス焼結体について、比重、全孔隙率、飽和含水率、曲げ強度の測定を行い、その結果を表2に示す。
(Example 6)
According to the composition of the mixture in Table 2, organic sludge and diatomaceous earth were mixed with a mix muller to obtain a primary mixture (first mixing operation). Next, clays were added to the primary mixture and further mixed to obtain a mixture in a plastic state (second mixing operation).
The obtained mixture was extruded using a screw extrusion type vacuum kneading machine (manufactured by Takahama Kogyo Co., Ltd.) according to the molding conditions shown in Table 2, and a flat molded body having a thickness of 14 mm, a width of 340 mm, and a length of 400 mm. (Molding process).
The obtained flat molded body was dried, and the moisture content of the molded body was set to 1%.
The compact with a moisture content of 1% was fired under the firing conditions shown in Table 2 using a continuous sintering furnace to obtain a porous ceramic sintered body (firing step). As a continuous sintering furnace, a roller hearth kiln (effective length of sintering furnace: total length 15 m, the sintering furnace is divided into zones 1 to 10 each having a length of 1.5 m) was used.
The obtained porous ceramic sintered body was measured for specific gravity, total porosity, saturated water content, and bending strength, and the results are shown in Table 2.

(実施例7)
スクリュー押し出し式真空土練成形機の絞り率を0.10%とし、ダイス開口通過流速を15mm/sec.とし、混合物を厚さ18mm、幅340mm、長さ400mmの平板状に成形した以外は、実施例6と同様の方法により、多孔質セラミックス焼結体を得た。得られた多孔質セラミックス焼結体について、比重、全孔隙率、飽和含水率、曲げ強度の測定、連通孔の有無の確認を行い、その結果を表1に示す。
(Example 7)
The squeezing rate of the screw extrusion type vacuum kneading machine was 0.10%, and the flow velocity through the die opening was 15 mm / sec. A porous ceramic sintered body was obtained in the same manner as in Example 6 except that the mixture was formed into a flat plate having a thickness of 18 mm, a width of 340 mm, and a length of 400 mm. The obtained porous ceramic sintered body was measured for specific gravity, total porosity, saturated moisture content, bending strength, and presence / absence of communication holes, and Table 1 shows the results.

(実施例8)
スクリュー押し出し式真空土練成形機のダイス開口通過流速を9mm/sec.とした以外は、実施例6と同様の方法により、表2の混合物組成、成形条件、焼成条件に従い、多孔質セラミックス焼結体を得た。
(Example 8)
The flow rate through the die opening of the screw extrusion type vacuum clay molding machine was 9 mm / sec. Except for the above, a porous ceramic sintered body was obtained in the same manner as in Example 6 according to the mixture composition, molding conditions, and firing conditions shown in Table 2.

(実施例9) 実施例6と同様にして、可塑状態の混合物を作製した。次いで、得られた混合物を円形平板状の型に注入してプレスし、厚さ15mm、直径50mmの平板状の成形体を得た。実施例6と同様の方法により、表2の焼成条件に従い、多孔質セラミックス焼結体を得た。   (Example 9) In the same manner as in Example 6, a mixture in a plastic state was produced. Next, the obtained mixture was poured into a circular flat plate mold and pressed to obtain a flat plate-shaped body having a thickness of 15 mm and a diameter of 50 mm. A porous ceramic sintered body was obtained in the same manner as in Example 6 according to the firing conditions shown in Table 2.

(参考例1)
スクリュー押し出し式真空土練成形機の絞り率を0.049%とした以外は、実施例6と同様の方法により、表2の混合物組成で混合物を作製し、表2の成形条件で厚さ9mm、幅340mmの平板状の成形体を成形しようと試みた。
しかし、押し出し成形の途中で、過圧縮が発生し、ダイス開口に詰まりが生じた。このため、成形体を作製できなかった。
(Reference Example 1)
A mixture was prepared with the mixture composition shown in Table 2 by the same method as in Example 6 except that the drawing rate of the screw extrusion type vacuum kneading machine was 0.049%, and the thickness was 9 mm under the molding conditions shown in Table 2. An attempt was made to form a flat molded body having a width of 340 mm.
However, over-compression occurred during extrusion molding, and the die opening was clogged. For this reason, a molded object could not be produced.

(参考例2)
スクリュー押し出し式真空土練成形機のダイス開口通過流速を21mm/sec.とした以外は、実施例6と同様の方法により、表2の混合物組成で混合物を作製し、表2の成形条件で厚さ14mm、幅340mmの平板状の成形体を成形しようと試みた。
しかし、押し出し成形の途中で、過圧縮が発生し、ダイス開口に詰まりが生じた。このため、成形体を作製できなかった。
(Reference Example 2)
The flow rate through the die opening of the screw extrusion type vacuum clay molding machine was 21 mm / sec. A mixture was prepared with the mixture composition shown in Table 2 by the same method as in Example 6, and an attempt was made to mold a flat molded body having a thickness of 14 mm and a width of 340 mm under the molding conditions shown in Table 2.
However, over-compression occurred during extrusion molding, and the die opening was clogged. For this reason, a molded object could not be produced.

Figure 2010106724
Figure 2010106724

表2に示されたように、実施例6,7の平板状の多孔質セラミックス焼結体は、飽和含水率が高く、吸水保水機能に優れる。更に曲げ強度が高く、優れた強度を有することが分かった。実施例6,7では、多孔質セラミックス焼結体の飽和含水状態における断面には、まんべんなく水分が分布、保水されていた。これは、連通孔を有するためであると考えられる。
実施例8では、混合物のダイス開口の通過流速が10mm/sec.未満であったため、平板状の成形体及び多孔質セラミックス焼結体には、全体に割れや歪みが発生した。このように、平板状の成形体及び多孔質セラミックス焼結体が安定して製造できなかった。しかしながら、平板状の成形体のうち、割れや歪みの少ない箇所を切断し、焼成して、多孔質セラミックス焼結体を作製した。この多孔質セラミックス焼結体は、飽和含水率が高く、吸水保水機能に優れる。また、飽和含水状態における断面には、まんべんなく水分が分布、保水されていた。これは、連通孔を有するためであると考えられる。
実施例9では、飽和含水率が高く、吸水保水機能に優れた平板状の多孔質セラミックス焼結体が得られた。飽和含水状態における断面には、まんべんなく水分が分布、保水されていた。これは、連通孔を有するためであると考えられる。
参考例1では、絞り率が0.05未満であったため、平板状の成形体が安定して製造できなかった。
参考例2では、混合物のダイス開口の通過流速が20mm/sec.を超えたため、実施例8と同様に、平板状の成形体及び多孔質セラミックス焼結体には、全体に割れや歪みが発生した。このように、平板状の成形体及び多孔質セラミックス焼結体が安定して製造できなかった。
As shown in Table 2, the flat porous ceramic sintered bodies of Examples 6 and 7 have a high saturated moisture content and an excellent water absorption and water retention function. Further, it was found that the bending strength is high and the strength is excellent. In Examples 6 and 7, moisture was evenly distributed and retained in the cross section of the porous ceramic sintered body in the saturated water-containing state. This is considered to be because of having a communication hole.
In Example 8, the flow velocity through the die opening of the mixture was 10 mm / sec. Therefore, cracks and strains were generated in the flat plate-like formed body and the porous ceramic sintered body. As described above, the plate-like formed body and the porous ceramic sintered body could not be stably produced. However, a portion of the flat molded body having less cracks and distortion was cut and fired to produce a porous ceramic sintered body. This porous ceramic sintered body has a high saturated moisture content and an excellent water absorption and water retention function. Further, moisture was evenly distributed and retained in the cross section in the saturated water-containing state. This is considered to be because of having a communication hole.
In Example 9, a flat porous ceramic sintered body having a high saturated moisture content and excellent water absorption and water retention function was obtained. Water was evenly distributed and retained on the cross section in the saturated water-containing state. This is considered to be because of having a communication hole.
In Reference Example 1, since the drawing ratio was less than 0.05, a flat molded body could not be stably produced.
In Reference Example 2, the flow velocity through the die opening of the mixture was 20 mm / sec. Therefore, as in Example 8, cracks and distortion occurred in the flat plate-like molded body and porous ceramic sintered body as a whole. As described above, the plate-like formed body and the porous ceramic sintered body could not be stably produced.

本発明によると、断熱性、吸音性、保水性、透水性又は通気性において優れた特性を有する多孔質セラミックス焼結体を提供できる。このため、植栽の根が繁殖しやすい緑地基盤材料、植物栽培器、適度の透水性を有する水質浄化材料(接触濾過担体)、調湿材料、気体のフィルター材、断熱材、及び壁面材などの建材として好適に利用できる。   According to the present invention, it is possible to provide a porous ceramic sintered body having excellent properties in heat insulation, sound absorption, water retention, water permeability or air permeability. For this reason, green space base materials that plant roots are easy to propagate, plant cultivators, water purification materials (contact filtration carriers) with moderate water permeability, humidity conditioning materials, gas filter materials, heat insulating materials, wall materials, etc. It can be suitably used as a building material.

Claims (8)

珪藻土、前記珪藻土を除く粘土類及び有機汚泥を含む混合物を成形し焼結して製造されたことを特徴とする多孔質セラミックス焼結体。   A porous ceramic sintered body produced by molding and sintering a mixture containing diatomaceous earth, clays excluding the diatomaceous earth and organic sludge. 前記珪藻土が有する気孔と、焼結時に前記有機汚泥が減量して形成された孔隙と、これらが連通する連通孔を有することを特徴とする請求項1に記載の多孔質セラミックス焼結体。   2. The porous ceramic sintered body according to claim 1, comprising pores of the diatomaceous earth, pores formed by reducing the amount of the organic sludge during sintering, and communication holes through which the pores communicate. 珪藻土、前記珪藻土を除く粘土類及び有機汚泥を混合して混合物を得る混合工程と、前記混合物を成形し成形体を得る成形工程と、前記成形体を焼成する焼成工程とを有することを特徴とする請求項1に記載の多孔質セラミックス焼結体の製造方法。   A mixing step of mixing diatomaceous earth, clays excluding the diatomaceous earth and organic sludge to obtain a mixture, a forming step of forming the mixture to obtain a formed body, and a firing step of firing the formed body, The method for producing a porous ceramic sintered body according to claim 1. 前記混合工程は、前記珪藻土と前記有機汚泥とを混合し一次混合物を得る第一の混合操作と、前記一次混合物と前記粘土類とを混合する第二の混合操作とを有することを特徴とする請求項3に記載の多孔質セラミックス焼結体の製造方法。   The mixing step includes a first mixing operation of mixing the diatomaceous earth and the organic sludge to obtain a primary mixture, and a second mixing operation of mixing the primary mixture and the clays. The manufacturing method of the porous ceramics sintered compact of Claim 3. 前記有機汚泥は、活性汚泥であることを特徴とする請求項3に記載の多孔質セラミックス焼結体の製造方法。   The said organic sludge is activated sludge, The manufacturing method of the porous ceramics sintered compact of Claim 3 characterized by the above-mentioned. 前記混合物は、前記珪藻土を20〜55質量%、前記粘土類を5〜20質量%、前記有機汚泥を40〜60質量%含有し、かつ、含水率が25〜45質量%であることを特徴とする請求項3に記載の多孔質セラミックス焼結体の製造方法。   The mixture contains 20 to 55% by mass of the diatomaceous earth, 5 to 20% by mass of the clay, 40 to 60% by mass of the organic sludge, and a moisture content of 25 to 45% by mass. The method for producing a porous ceramic sintered body according to claim 3. 前記成形工程では、押出式成形機を用いて連続的に前記成形体を得ることを特徴とする請求項3に記載の多孔質セラミックス焼結体の製造方法。   4. The method for producing a porous ceramic sintered body according to claim 3, wherein in the molding step, the molded body is continuously obtained using an extrusion molding machine. 前記焼成工程では、前記成形体を950〜1200℃で焼成することを特徴とする請求項3に記載の多孔質セラミックス焼結体の製造方法。   The method for producing a porous ceramic sintered body according to claim 3, wherein in the firing step, the formed body is fired at 950 to 1200 ° C.
JP2011504717A 2009-03-16 2010-01-29 Porous ceramic sintered body and method for producing the same Active JP5658136B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011504717A JP5658136B2 (en) 2009-03-16 2010-01-29 Porous ceramic sintered body and method for producing the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009063320 2009-03-16
JP2009063320 2009-03-16
JP2011504717A JP5658136B2 (en) 2009-03-16 2010-01-29 Porous ceramic sintered body and method for producing the same
PCT/JP2010/000540 WO2010106724A1 (en) 2009-03-16 2010-01-29 Porous ceramic sintered body and method for producing same

Publications (2)

Publication Number Publication Date
JPWO2010106724A1 true JPWO2010106724A1 (en) 2012-09-20
JP5658136B2 JP5658136B2 (en) 2015-01-21

Family

ID=42739390

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011504717A Active JP5658136B2 (en) 2009-03-16 2010-01-29 Porous ceramic sintered body and method for producing the same

Country Status (2)

Country Link
JP (1) JP5658136B2 (en)
WO (1) WO2010106724A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106747641A (en) * 2017-02-28 2017-05-31 沈阳理工大学 A kind of method that utilization cow dung prepares foam concrete foam solution and porous ceramics

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5820382B2 (en) * 2010-09-16 2015-11-24 小松精練株式会社 Porous ceramic sintered body
CN102093033B (en) * 2010-12-02 2013-01-23 吉林大学 Preparation method of diatomite ceramic particles or ceramic plates
JP2012125741A (en) * 2010-12-17 2012-07-05 Komatsu Seiren Co Ltd Water purification material
EP2738148B1 (en) * 2011-07-01 2019-05-08 KOMATSU MATERE Co., Ltd. Interlocking block
JP5993600B2 (en) * 2011-08-24 2016-09-14 小松精練株式会社 Method for producing porous ceramic sintered body
US9403720B2 (en) 2011-11-30 2016-08-02 Komatsu Seiren Co., Ltd. Porous ceramic and method for producing same
JP6046356B2 (en) * 2011-12-01 2016-12-14 小松精練株式会社 Roof base laying structure
WO2014024822A1 (en) * 2012-08-08 2014-02-13 小松精練株式会社 Cooling member for outdoor heat exchanger, and cooling device for outdoor heat exchanger, using same
CN102838376B (en) * 2012-09-18 2014-04-09 武汉理工大学 Preparation method of light-weight closed-pore ceramic heat insulating board
JP2014221703A (en) * 2013-05-14 2014-11-27 小松精練株式会社 Porous ceramic fired body
JP6417597B2 (en) * 2014-08-22 2018-11-07 小松マテーレ株式会社 Deodorizing apparatus and deodorizing method
CN107032759B (en) * 2017-02-28 2021-03-16 沈阳理工大学 Method for preparing carbon-loaded porous ceramic and slow-release compound fertilizer by using livestock and poultry manure
CN111995362A (en) * 2020-08-13 2020-11-27 福建省德化县零度创意有限公司 Water-permeable and air-permeable microporous ceramic flowerpot and preparation process thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000102798A (en) * 1998-09-29 2000-04-11 Yamakawa Sangyo Kk Treatment of wastewater
JP2005082410A (en) * 2003-09-04 2005-03-31 Aichi Prefecture Composition for porous ceramic, porous ceramic, and method for producing the porous ceramic
JP2005229960A (en) * 2004-02-23 2005-09-02 Inoue Jimusho:Kk Greening system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106747641A (en) * 2017-02-28 2017-05-31 沈阳理工大学 A kind of method that utilization cow dung prepares foam concrete foam solution and porous ceramics
CN106747641B (en) * 2017-02-28 2021-03-16 沈阳理工大学 Method for preparing foam liquid and porous ceramic for foam concrete by using cow dung

Also Published As

Publication number Publication date
JP5658136B2 (en) 2015-01-21
WO2010106724A1 (en) 2010-09-23

Similar Documents

Publication Publication Date Title
JP5658136B2 (en) Porous ceramic sintered body and method for producing the same
JP6043853B2 (en) Porous ceramic sintered body and method for producing the same
CN101885620B (en) Ceramic material with multi-stage duct structure and manufacture method thereof
JP6055419B2 (en) Porous ceramics and method for producing the same
KR100729677B1 (en) Porous ceramic and method for manuracturing the same
JP5993600B2 (en) Method for producing porous ceramic sintered body
KR101792622B1 (en) Production method of ceramic honeycomb structure
JP4540656B2 (en) Composition for porous ceramics, porous ceramics using the same, and method for producing the same
JP5435255B2 (en) Geopolymer solidified product using sewage sludge molten slag as active filler and method for producing the same
JP5927121B2 (en) Porous ceramic sintered body and method for producing the same
JP2007145704A (en) Porous ceramic and method for manufacturing the same
JPWO2014132877A1 (en) Porous ceramic fired body and method for producing the same
JP2004339042A (en) Method of manufacturing porous ceramic using charcoal powder or bamboo charcoal powder as main raw material
RU2326841C2 (en) Method of obtaining granulate for making foam glass and foam glass crystal materials
JP4437198B2 (en) Method for producing foam using crushed sludge and the like, and foam
JP2014215108A (en) Material for removing radioactive materials and method for manufacturing the same
JP6393950B2 (en) Artificial turf filler and artificial turf using the same
KR100530105B1 (en) Method and Apparatus for Forming an Artificial Fine Stone
JP2013220960A (en) Porous ceramic sintered compact
JP2004066182A (en) Discharged sludge recycling method
SI22379A (en) Procedure for preparation of aggregate, especially from waste raw materials, and aggregate obtained in this way

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140520

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140701

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141111

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141127

R150 Certificate of patent or registration of utility model

Ref document number: 5658136

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250