JPWO2010021408A1 - Method for producing thermally conductive resin molding - Google Patents

Method for producing thermally conductive resin molding Download PDF

Info

Publication number
JPWO2010021408A1
JPWO2010021408A1 JP2010525730A JP2010525730A JPWO2010021408A1 JP WO2010021408 A1 JPWO2010021408 A1 JP WO2010021408A1 JP 2010525730 A JP2010525730 A JP 2010525730A JP 2010525730 A JP2010525730 A JP 2010525730A JP WO2010021408 A1 JPWO2010021408 A1 JP WO2010021408A1
Authority
JP
Japan
Prior art keywords
mixture
conductive resin
mold
resin
molding cavity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010525730A
Other languages
Japanese (ja)
Inventor
智之 河合
智之 河合
功 今岡
功 今岡
木下 恭一
恭一 木下
谷澤 元治
元治 谷澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyota Industries Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp filed Critical Toyota Industries Corp
Publication of JPWO2010021408A1 publication Critical patent/JPWO2010021408A1/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C39/00Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor
    • B29C39/22Component parts, details or accessories; Auxiliary operations
    • B29C39/42Casting under special conditions, e.g. vacuum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C39/00Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor
    • B29C39/22Component parts, details or accessories; Auxiliary operations
    • B29C39/24Feeding the material into the mould
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0003Properties of moulding materials, reinforcements, fillers, preformed parts or moulds having particular electrical or magnetic properties, e.g. piezoelectric
    • B29K2995/0005Conductive

Abstract

バインダー樹脂18と、扁平形状で熱伝導率に異方性を有する粒子を含みバインダー樹脂18中に分散された熱伝導性の無機充填材粉末19と、を含む熱伝導性樹脂成形体の製造方法であって、成形体の厚さ方向などの任意の方向の熱伝導率を大幅に改善でき、且つコストの上昇を抑制することを目的とする。本製造方法は、未硬化のバインダー樹脂18と無機充填材粉末19を混合して混合物Pを調製する調製工程、成形型12の成形キャビティ17を排気する排気工程、成形キャビティ17に連通する注入口16より成形キャビティ17に混合物Pを注入する注入工程、成形キャビティ17に注入された混合物Pを硬化させる硬化工程、を経て成形体を得る。A method for producing a thermally conductive resin molded article comprising a binder resin 18 and a thermally conductive inorganic filler powder 19 containing particles having a flat shape and anisotropy in thermal conductivity and dispersed in the binder resin 18 Then, it is an object to greatly improve the thermal conductivity in an arbitrary direction such as the thickness direction of the molded body and to suppress an increase in cost. This manufacturing method includes a preparation step of preparing a mixture P by mixing an uncured binder resin 18 and an inorganic filler powder 19, an exhaust step of exhausting the molding cavity 17 of the molding die 12, and an inlet communicating with the molding cavity 17. A molded body is obtained through an injection process for injecting the mixture P into the molding cavity 17 from 16 and a curing process for curing the mixture P injected into the molding cavity 17.

Description

この発明は、熱伝導性樹脂成形体の製造方法に関する。   The present invention relates to a method for producing a thermally conductive resin molded body.

特開2008−101227号公報(以下「特許文献」と略記。特に、第4〜6頁および図1参照。)で開示された従来技術においては、バインダー樹脂としての熱硬化性樹脂に無機充填材を添加した絶縁性を有する熱伝導性樹脂シートが開示されている。この樹脂シートは、熱硬化性樹脂と無機充填材を含む混合物を基板表面にドクターブレード法により塗付することによって、基板上に形成される。無機充填材として平板状の粉末からなる無機充填材と略球形の粉末からなる無機充填材の2種類の充填材を用いている。
無機充填材が平板状の粉末のみからなる場合、無機充填材は樹脂シートの表面に対して平行に配向する。このとき、平板状の粒子の間にバインダー樹脂が多く存在するため、樹脂シートの厚さ方向の熱伝導率はそれほど大きくない。一方、無機充填材が略球形の粉末のみからなる場合、無機充填材は樹脂中に均一に分散する。このとき、略球形の粒子の間にバインダー樹脂が多く介在するため、樹脂シートの厚さ方向の熱伝導率はそれほど大きくない。
特許文献のように無機充填材として平板状の粉末と略球形の粉末との2種類の形状の粉末を混合して用いた場合には、略球形の粒子によって、平板状の粒子が樹脂シートの表面に対して平行に配向することが阻害される。さらに、平板状の粒子は、略球形の粒子を繋ぎあわせる働きを担うため、樹脂シートの厚さ方向に無機充填材が連なった熱伝導経路を形成する。このため、樹脂シートの厚さ方向の熱伝導率が向上するとしている。
In the prior art disclosed in Japanese Patent Application Laid-Open No. 2008-101227 (hereinafter abbreviated as “Patent Document”, particularly see pages 4 to 6 and FIG. 1), an inorganic filler is added to the thermosetting resin as the binder resin. A thermally conductive resin sheet having an insulating property to which is added is disclosed. This resin sheet is formed on a substrate by applying a mixture containing a thermosetting resin and an inorganic filler to the substrate surface by a doctor blade method. Two types of fillers are used as the inorganic filler: an inorganic filler made of a flat plate powder and an inorganic filler made of a substantially spherical powder.
When the inorganic filler is composed only of a flat powder, the inorganic filler is oriented parallel to the surface of the resin sheet. At this time, since a large amount of binder resin exists between the flat particles, the thermal conductivity in the thickness direction of the resin sheet is not so large. On the other hand, when the inorganic filler consists only of a substantially spherical powder, the inorganic filler is uniformly dispersed in the resin. At this time, since a large amount of binder resin is interposed between the substantially spherical particles, the thermal conductivity in the thickness direction of the resin sheet is not so large.
When two types of powders, a flat powder and a substantially spherical powder, are mixed and used as an inorganic filler as in the patent document, the flat particles are made of the resin sheet by the substantially spherical particles. Orientation parallel to the surface is impeded. Furthermore, since the tabular particles play a role of joining the substantially spherical particles, they form a heat conduction path in which inorganic fillers are connected in the thickness direction of the resin sheet. For this reason, it is supposed that the thermal conductivity in the thickness direction of the resin sheet is improved.

しかし、特許文献で開示された従来技術においては、無機充填材として平板状と略球形の2種類の粉末を用いる必要があり、原料コストが高くなってしまう問題がある。また、形状と粒径の異なる2種類の粉末を樹脂中に均一に分散させるためには、混合を充分に行う必要がありその分製造時間が長くなり、製造コストが高くなってしまう恐れがある。
また、特許文献で開示された従来技術では、シート状に形成するために、ドクターブレード法による塗付方式が用いられている。このような塗付方式の場合は、簡単な操作でシート状に形成することができる利点はある。しかしながら、平板状の粒子は、硬化前の樹脂中で浮力の影響を受けたり塗布方向に影響されたりして、シート表面と平行に配向してしまい、シートの厚さ方向の熱伝導性向上が困難となる問題がある。
本発明は上記の問題点に鑑みてなされたもので、本発明の目的は、樹脂成形体の厚さ方向などの任意の方向の熱伝導率を大幅に改善でき、且つコストの上昇を抑制することが可能な熱伝導性樹脂成形体の製造方法の提供にある。
上記課題を達成するための本発明の熱伝導性樹脂成形体の製造方法は、
バインダー樹脂と、扁平形状で熱伝導率に異方性を有する粒子を含み該バインダー樹脂中に分散された熱伝導性の無機充填材粉末と、を含む熱伝導性樹脂成形体の製造方法であって、
少なくとも未硬化の前記バインダー樹脂と前記無機充填材粉末を混合して混合物を調製する調製工程、
隙間をおいて対向して配置された一対の型部材と、該型部材の周縁部をシールし該型部材とともに成形キャビティを区画するシール部と、該成形キャビティに連通する注入口と、を備える成形型の該成形キャビティを排気する排気工程、
前記注入口より前記成形キャビティに前記混合物を注入する注入工程、
前記成形キャビティに注入された前記混合物を硬化させる硬化工程、
を経て成形体を得ることを特徴とする。
ここで、「扁平形状」とは、厚さが薄いことを意味し、たとえば、球状や塊状といった粒子を一方向に押し潰した形状と言える。「扁平形状」には、板状、薄片状、鱗片状と称するものも含まれる。
一般に、バインダー樹脂中に分散された無機充填材粉末が、扁平形状で熱伝導率に異方性を有する粒子(扁平状粒子)を含む場合、バインダー樹脂中における無機充填材粉末の配向によって熱伝導率が大きく変化する。たとえば、シート状の樹脂成形体において、厚さ方向に対して扁平状粒子が垂直に配向された場合には、成形体の厚さ方向の熱伝導率はそれほど向上しない。一方、厚さ方向に対して扁平状粒子が平行に配向された場合には、成形体の厚さ方向の熱伝導率は大幅に向上する。また、厚さ方向に対して扁平状粒子が平行と直角の中間的なランダムに配向された場合には、成形体の厚さ方向に熱伝導経路が形成されやすくなり、成形体の厚さ方向の熱伝導率は向上する。
本発明の熱伝導性樹脂成形体の製造方法によれば、成形キャビティの排気を行ったのち、注入口より成形キャビティに混合物を注入して成形する。そのため、成形キャビティに注入される際の液流れにより無機充填材粉末に含まれる扁平状粒子はランダムに配向される。このランダム配向状態のままバインダー樹脂が硬化するので、得られた樹脂成形体では、扁平状粒子が樹脂成形体中でランダムに配向されている。従って、樹脂成形体の厚さ方向などの任意の方向に熱伝導経路が形成されやすくなり、樹脂成形体の任意の方向の熱伝導率が向上する。また、従来技術のように2種類の無機充填材粉末を用いる必要がなく1種類でよいので、原料コストおよび製造コストを低減可能である。さらに、真空下で注入を行うため、特性バラツキの一因となる樹脂成形体中の気泡の発生を低減させることができる。
なお、本発明の製造方法により扁平状粒子を含む無機充填材粉末がランダムに配向する理由は明確ではないが、注入工程において成形キャビティに混合物を注入する際に無機充填材粉末が擾乱されるためであると考えられる。
本発明の熱伝導性樹脂成形体の製造方法は、さらに、前記排気工程の前に、前記成形型と前記混合物を入れた樹脂溜め皿とを注入室内に収納する工程を含み、
前記排気工程は、前記注入室内を排気して前記成形キャビティを排気する工程であり、
前記注入工程は、前記注入口を前記樹脂溜め皿の前記混合物に浸漬してから前記注入室内の圧力を上昇させることで前記混合物を前記成形キャビティに注入する工程であるのが望ましい。
成形キャビティの圧力を真空にしてから、成形型の注入口を混合物に浸漬し、注入室内の圧力を上昇させるので、混合物を成形キャビティへ確実に注入することができる。
本発明の熱伝導性樹脂成形体の製造方法は、さらに、前記硬化工程の後、前記成形型より前記成形体を脱型する工程を含むとよい。成形型より樹脂成形体を脱型するので、成形型を再利用することができる。
また、前記無機充填材粉末は、六方晶窒化硼素を含むとよい。六方晶窒化硼素(以下、h−BNと記する)は層状の結晶構造をしており、粒子形状が扁平形状であり、結晶構造に起因して熱伝導率に異方性を有している。このh−BN粒子の扁平面に平行な方向(a軸方向)の熱伝導率は、h−BN粒子の扁平面に垂直な方向(c軸方向)の熱伝導率の数10倍以上である。この特性を利用して、樹脂成形体中においてh−BN粒子の扁平面をランダムに配向させることにより樹脂成形体の熱伝導率を向上させることができる。
前記成形体は、シート状の熱伝導性樹脂シートであるとよい。熱伝導性樹脂成形体が熱伝導性樹脂シートであれば、回路基板などに幅広く活用可能である。なお、シート状とは、たとえば10〜1000μmの厚さを想定している。
また、本発明の熱伝導性樹脂成形体の製造方法において、前記混合物は希釈溶媒を含み、前記硬化工程は前記型部材を前記成形型の外部から加圧しつつ前記混合物を硬化させる工程であるのが望ましい。
混合物の粘度は扁平状無機充填材粉末の含有量の増加に伴い増大するが、希釈溶媒を加えることにより混合物の低粘度化を図れ、注入を容易にすることができる。また、硬化の際、型部材を外部から加圧するので、成形キャビティに注入された混合物中の希釈溶媒が蒸発し体積収縮しても、樹脂シートの体積の減少で補填可能である。
すなわち、本発明の熱伝導性樹脂成形体の製造方法によれば、成形キャビティを排気したのち混合物を注入させ樹脂成形体を作製するので、樹脂成形体の厚さ方向などの任意の方向の熱伝導率を大幅に改善でき、且つコストの上昇を抑制することが可能である。
However, in the prior art disclosed in the patent document, it is necessary to use two kinds of powders of a flat shape and a substantially spherical shape as the inorganic filler, and there is a problem that the raw material cost becomes high. In addition, in order to uniformly disperse two types of powders having different shapes and particle sizes in the resin, it is necessary to sufficiently mix them, and accordingly, the manufacturing time becomes longer and the manufacturing cost may be increased. .
Moreover, in the prior art disclosed by patent document, in order to form in a sheet form, the application system by a doctor blade method is used. In the case of such a coating method, there is an advantage that it can be formed into a sheet shape by a simple operation. However, the plate-like particles are affected by buoyancy in the resin before curing or affected by the coating direction, and are oriented parallel to the sheet surface, improving the thermal conductivity in the thickness direction of the sheet. There is a problem that becomes difficult.
The present invention has been made in view of the above-described problems, and an object of the present invention is to greatly improve the thermal conductivity in an arbitrary direction such as the thickness direction of the resin molded body and to suppress an increase in cost. The present invention provides a method for producing a thermally conductive resin molded body that can be used.
The method for producing the thermally conductive resin molded body of the present invention for achieving the above-described object is
A method for producing a thermally conductive resin molded article comprising: a binder resin; and a thermally conductive inorganic filler powder containing particles having a flat shape and anisotropy in thermal conductivity and dispersed in the binder resin. And
A preparation step of preparing a mixture by mixing at least the uncured binder resin and the inorganic filler powder;
A pair of mold members arranged to face each other with a gap, a seal portion that seals a peripheral portion of the mold member and defines a molding cavity together with the mold member, and an injection port that communicates with the molding cavity An exhaust process for exhausting the molding cavity of the mold;
An injection step of injecting the mixture into the molding cavity from the injection port;
A curing step of curing the mixture injected into the molding cavity;
A molded product is obtained through
Here, the “flat shape” means that the thickness is thin, and for example, it can be said to be a shape in which particles such as a sphere or a lump are crushed in one direction. “Flat shape” includes those referred to as plate, flake, and scale.
In general, when the inorganic filler powder dispersed in the binder resin contains particles having a flat shape and anisotropy in thermal conductivity (flat particles), heat conduction is caused by the orientation of the inorganic filler powder in the binder resin. The rate changes greatly. For example, in a sheet-like resin molded body, when flat particles are oriented perpendicularly to the thickness direction, the thermal conductivity in the thickness direction of the molded body is not so improved. On the other hand, when the flat particles are oriented in parallel with respect to the thickness direction, the thermal conductivity in the thickness direction of the compact is greatly improved. In addition, when the flat particles are oriented at random in the middle of parallel and perpendicular to the thickness direction, a heat conduction path is easily formed in the thickness direction of the molded body, and the thickness direction of the molded body The thermal conductivity of is improved.
According to the method for producing a thermally conductive resin molded body of the present invention, after the molding cavity is exhausted, the mixture is injected into the molding cavity from the injection port and molded. Therefore, the flat particles contained in the inorganic filler powder are randomly oriented by the liquid flow when injected into the molding cavity. Since the binder resin is cured in this random orientation state, in the obtained resin molded body, the flat particles are randomly oriented in the resin molded body. Therefore, a heat conduction path is easily formed in an arbitrary direction such as the thickness direction of the resin molded body, and the thermal conductivity in an arbitrary direction of the resin molded body is improved. Moreover, since it is not necessary to use two types of inorganic filler powders as in the prior art and only one type is required, raw material costs and manufacturing costs can be reduced. Furthermore, since the injection is performed under vacuum, it is possible to reduce the generation of bubbles in the resin molded body that contributes to characteristic variation.
Although the reason why the inorganic filler powder containing flat particles is randomly oriented by the production method of the present invention is not clear, the inorganic filler powder is disturbed when the mixture is injected into the molding cavity in the injection step. It is thought that.
The method for producing a thermally conductive resin molded body of the present invention further includes a step of storing the molding die and a resin reservoir containing the mixture in an injection chamber before the exhausting step,
The exhausting step is a step of exhausting the molding cavity by exhausting the injection chamber,
The injection step is preferably a step of injecting the mixture into the molding cavity by increasing the pressure in the injection chamber after the injection port is immersed in the mixture in the resin reservoir.
After the pressure of the molding cavity is evacuated, the injection port of the mold is immersed in the mixture and the pressure in the injection chamber is increased, so that the mixture can be reliably injected into the molding cavity.
The method for producing a thermally conductive resin molded body of the present invention may further include a step of removing the molded body from the mold after the curing step. Since the resin molded body is removed from the mold, the mold can be reused.
The inorganic filler powder may contain hexagonal boron nitride. Hexagonal boron nitride (hereinafter referred to as “h-BN”) has a layered crystal structure, has a flat particle shape, and has anisotropy in thermal conductivity due to the crystal structure. . The thermal conductivity in the direction (a-axis direction) parallel to the flat surface of the h-BN particles is several tens of times the thermal conductivity in the direction (c-axis direction) perpendicular to the flat surface of the h-BN particles. . Utilizing this characteristic, the thermal conductivity of the resin molding can be improved by randomly orienting the flat surfaces of the h-BN particles in the resin molding.
The molded body may be a sheet-like thermally conductive resin sheet. If the thermally conductive resin molding is a thermally conductive resin sheet, it can be widely used for circuit boards and the like. The sheet shape is assumed to have a thickness of 10 to 1000 μm, for example.
Moreover, in the method for producing a thermally conductive resin molded body of the present invention, the mixture contains a diluting solvent, and the curing step is a step of curing the mixture while pressing the mold member from the outside of the mold. Is desirable.
The viscosity of the mixture increases with an increase in the content of the flat inorganic filler powder, but the addition of a diluting solvent can lower the viscosity of the mixture and facilitate injection. In addition, since the mold member is pressurized from the outside during curing, even if the diluted solvent in the mixture injected into the molding cavity evaporates and shrinks in volume, it can be compensated by reducing the volume of the resin sheet.
That is, according to the method for manufacturing a thermally conductive resin molded body of the present invention, the mixture is injected after the molding cavity is evacuated to produce the resin molded body. Therefore, heat in any direction such as the thickness direction of the resin molded body is produced. The conductivity can be greatly improved, and an increase in cost can be suppressed.

図1は、本発明の熱伝導性樹脂成形体の製造方法に使用される真空注入装置の要部構成を模式的に示す模式図である。
図2は、本発明の熱伝導性樹脂成形体の製造方法の一実施形態である熱伝導性樹脂シートの製造工程を示すフローチャートである。
図3A、図3B、図3Cおよび図3Dは、図2に示す熱伝導性樹脂シートの製造工程における注入工程を説明するための模式図であって、(1−1)注入室内に成形型と樹脂溜め皿を設置、(1−2)成形型を樹脂溜め皿の混合物中に浸漬、(1−3)成形キャビティに混合物を注入、(1−4)注入が完了、した状態を示す。
図4Aは、図2に示す熱伝導性樹脂シートの製造工程により得られた樹脂シートの断面構成を模式的に示す模式図である。図4Bは、比較例として塗付方式により得られた樹脂シートの断面構成を模式的に示す模式図である。
図5は、図2に示す熱伝導性樹脂シートの製造工程により得られた熱伝導性樹脂シートの電子顕微鏡写真を示す。
図6Aおよび図6Bは、図2に示す熱伝導性樹脂シートの製造工程により得られた熱伝導性樹脂シートおよび比較例として塗布方式により得られた樹脂シートのX線回折法(θ−2θ法)による測定結果を示す。
図7は、本発明の熱伝導性樹脂成形体の製造方法の他の実施形態に使用される加熱炉の要部構成を模式的に示す模式図である。
図8は、本発明の熱伝導性樹脂成形体の製造方法の他の実施形態である熱伝導性樹脂シートの製造工程を示すフローチャートである。
図9Aおよび図9Bは、図8に示す熱伝導性樹脂シートの製造工程における加熱工程を説明するための模式図であって、(2−1)混合物が注入された成形型を加熱炉内に設置し加圧された状態、(2−2)加熱による硬化後の状態、を示す。
図10A、図10Bおよび図10Cは、本発明の熱伝導性樹脂成形体の製造方法の他の実施形態である熱伝導性樹脂成形体の製造方法を説明するための模式図であって、(a)成形型の斜視図、(b)成形キャビティへの注入工程を示す断面図、(c)得られた樹脂成形体の斜視図、である。
図11Aおよび図11Bは、その他の実施形態に係る熱伝導性樹脂成形体の製造方法を説明するための模式図であって、(a)成形キャビティへの注入工程を示す断面図、(b)得られた樹脂成形体の斜視図、である。
図12は、その他の実施形態に係る熱伝導性樹脂成形体の製造方法を説明するための模式図である。
FIG. 1 is a schematic view schematically showing the main configuration of a vacuum injection apparatus used in the method for producing a thermally conductive resin molded body of the present invention.
FIG. 2 is a flowchart showing a manufacturing process of a heat conductive resin sheet which is an embodiment of the method for manufacturing a heat conductive resin molded body of the present invention.
3A, 3B, 3C, and 3D are schematic views for explaining an injection process in the manufacturing process of the heat conductive resin sheet shown in FIG. 2, and (1-1) a mold and an injection chamber The resin reservoir is installed, (1-2) the mold is immersed in the mixture of the resin reservoir, (1-3) the mixture is injected into the molding cavity, and (1-4) the injection is completed.
FIG. 4A is a schematic diagram schematically showing a cross-sectional configuration of a resin sheet obtained by the manufacturing process of the heat conductive resin sheet shown in FIG. 2. FIG. 4B is a schematic diagram schematically showing a cross-sectional configuration of a resin sheet obtained by a coating method as a comparative example.
FIG. 5 shows an electron micrograph of the heat conductive resin sheet obtained by the manufacturing process of the heat conductive resin sheet shown in FIG.
6A and 6B show an X-ray diffraction method (θ-2θ method) of a heat conductive resin sheet obtained by the manufacturing process of the heat conductive resin sheet shown in FIG. 2 and a resin sheet obtained by a coating method as a comparative example. ) Shows the measurement results.
FIG. 7 is a schematic view schematically showing the main configuration of a heating furnace used in another embodiment of the method for producing a thermally conductive resin molded body of the present invention.
FIG. 8 is a flowchart showing a manufacturing process of a heat conductive resin sheet, which is another embodiment of the method for manufacturing a heat conductive resin molded body of the present invention.
9A and 9B are schematic views for explaining a heating step in the manufacturing process of the heat conductive resin sheet shown in FIG. 8, and (2-1) the mold into which the mixture is injected is placed in the heating furnace. It shows the state of installation and pressurization, (2-2) the state after curing by heating.
FIG. 10A, FIG. 10B, and FIG. 10C are schematic diagrams for explaining a method for producing a thermally conductive resin molded body, which is another embodiment of the method for producing a thermally conductive resin molded body of the present invention. FIG. 4 is a perspective view of a molding die, (b) a cross-sectional view showing an injection process into a molding cavity, and (c) a perspective view of an obtained resin molding.
FIG. 11A and FIG. 11B are schematic diagrams for explaining a method of manufacturing a thermally conductive resin molded body according to another embodiment, and FIG. 11A is a cross-sectional view illustrating an injection process into a molding cavity, and FIG. It is a perspective view of the obtained resin molding.
Drawing 12 is a mimetic diagram for explaining the manufacturing method of the heat conductive resin fabrication object concerning other embodiments.

以下に、本発明の熱伝導性樹脂成形体の製造方法を実施するための最良の形態を説明する。
<第1の実施形態>
以下、第1の実施形態に係る熱伝導性樹脂シートの製造方法について、図を用いて説明する。
図1に示すように、本実施形態に用いられる真空注入装置10は、所定間隔の隙間をおいて対向して配置された一対の型部材11を有する成形型12と、バインダー樹脂18と無機充填材粉末19との混合物Pを入れるための樹脂溜め皿13と、成形型12および混合物Pを入れた樹脂溜め皿13を収納し成形型12内への混合物Pの注入を行う注入室14と、を備えている。
成形型12は、一対の型部材11と、型部材11の周縁部をシールするシール部15と、注入口16と、を備える。型部材11は矩形の板状体で形成され、一定の隙間間隔t0を置いて対向して配置されている。シール部15は、型部材11の周縁部をシールし、型部材11とともに成形キャビティ17を区画する。そして、シール部15には、混合物Pの注入を行うための注入口16が設けられている。即ち、成形型12は、注入口16を除いて成形型12内の隙間内部が外部よりシールされて成形キャビティ17が形成されると共に、成形キャビティ17と外部とを連通する注入口16が形成されている。
注入室14には、注入室14内の排気を行うための排気口21が設けられ、排気口21は排気口21の開閉を行うためのバルブ22を介して図示しない真空ポンプと連結されている。
上記のような構成を有する真空注入装置10を用いた熱伝導性樹脂シートの製造方法について、図2、図3Aおよび図3Bに基づき説明を行う。
先ずS101では、バインダー樹脂主剤および硬化剤と、扁平状粒子を含む無機充填材粉末とが混合手段により充分混合される。その結果、S102では、液状の混合物Pが得られる。
次にS103では、対向する1対の型部材11を有し、型部材11の下部に設けられた注入口16以外の周囲がシール部15によってシールされることにより成形キャビティ17が形成された成形型12が準備される。
次にS104では、図3A(1−1)に示すように、混合物Pを入れた樹脂溜め皿13と成形型12とが注入室14内に入れられて、樹脂溜め皿13の上方に成形型12の注入口16を鉛直方向下方に向けて配置される。すなわち、樹脂シートの厚さ方向が水平となるように、成形型が配置される。
次にS105では、排気口21のバルブ22が開口されて、真空ポンプが駆動することにより、注入室14内は真空排気される。このとき、成形型12内の成形キャビティ17は注入口16を介して同様に真空排気される。
次にS106では、図3B(1−2)に示すように、注入室14内および成形キャビティ17が所定の真空状態になると、真空ポンプの駆動が停止され、排気口21のバルブ22が閉じられる。そして、図示しないがアクチュエータ等を用いて成形型12を下方に移動させ、注入口16を樹脂溜め皿13の混合物P中に浸漬させる。
次にS107、S108では、図3C(1−3)に示すように、排気口21のバルブ22が開かれて注入室14内に空気が導入され、注入室14の圧力が上昇する。このことにより、成形型12内の成形キャビティ17の圧力と注入室14内の圧力に圧力差が生じ、注入口16を通って成形キャビティ17へ混合物Pが注入される。
次にS109では、図3D(1−4)に示すように、注入室14内を大気圧まで戻すことにより、隙間空間17への混合物Pの注入が完了する。
ところで、図3D(1−4)に示すように、成形キャビティ17に注入される際の混合物Pの液流れにより扁平状粒子が擾乱されるため、その扁平面の向きがランダムに配向された状態にある。
混合物Pの注入が完了すると、成形型12は上方に移動されるが、成形型12内に注入された混合物Pは大気圧と未硬化樹脂の粘度により成形型12内部に保持される。
次にS110では、成形型12は注入室14より外部に取り出されて、図示しない硬化手段により、成形型12内に注入された混合物Pが硬化される。この際、成形型12の方向は、注入工16を鉛直方向下方に向けたままである。
次にS111では、少なくともシール部15を取り外すことで脱型され、S112では、所定の厚さを有する樹脂成形体としての樹脂シート23が完成する。
図4A(a)は、このときの、樹脂シート23の断面構成を示したものであり、型部材11は一方の型部材11のみが脱型されている。樹脂シート23中においては、扁平状粒子を含む無機充填材粉末19がバインダー樹脂18中においてランダムに配向され、樹脂シート23の厚さ方向に熱伝導経路が形成されやすくなり、樹脂シート23の厚さ方向の熱伝導率が向上する。
なお、図4B(b)は、比較例として示す、型部材の表面に塗付方式により混合物Pを塗付し硬化させた場合の樹脂シートの断面構成である。この場合には、扁平状粒子を含む無機充填材粉末19はシート表面に対して平行に配向される。そのため、比較例の樹脂シートの厚さ方向の熱伝導率は、樹脂シート23の厚さ方向の熱伝導率よりも低い。
<熱伝導性樹脂シートS1の作製>
上記の手順に従い、熱伝導性樹脂シートを作製した。バインダー樹脂18として熱硬化性樹脂であるエポキシ樹脂(ペルノックス株式会社製NM−108A(主剤)およびNM−111B(硬化剤))、無機充填材粉末19として六方晶窒化硼素(昭和電工株式会社製UHP−2;以下「h−BN」と略記)の粉末を用いた。なお、使用したh−BN粒子の扁平面に平行な方向の最大長さは10μm程度とされている。エポキシ樹脂およびh−BN粉末を質量比で70:30となるように配合し、硬化剤とともに図示しない混合手段により充分混合して液状の混合物Pを得た。この混合物Pを、一定深さを有する樹脂溜め皿13に入れた。
なお、成形型12の型部材11は表面全体にテフロンシール(中興化成工業株式会社)を被覆したガラス(松浪硝子工業株式会社)で、シール部15は両面テープ(住友スリーエム株式会社)で、成形キャビティ17は76mm×26mm×厚さ1mmであり、注入口16は成形キャビティ17の26mm×1mmの面に形成された10mm×1mmの矩形状であった。
排気工程では、次の注入工程において成形キャビティ17に混合物Pを満たしうるまで注入室を排気し、注入工程では注入室を大気圧まで戻した。硬化工程では、混合物Pが充填された成形型12を、25℃で24時間放置してエポキシ樹脂を硬化させた。その後、型部材11およびシール部15を取り外すことで成形型12が脱型され、厚さ1mmの熱伝導性樹脂シートS1(「シートS1」と略記)を得た。
図5は、上記製造方法により得られたシートS1の電子顕微鏡写真である。図5において、横軸方向が型部材の成形面に平行なシート面方向であり、縦軸方向がシート厚さ方向である。図5で示す電子顕微鏡写真より明らかなように、シートS1では、エポキシ樹脂18中において扁平状のh−BN粒子が、その扁平面をランダムな方向に配向された状態にある。
図6Aおよび図6Bは、シートS1と、シートS1と同一材料および同一配合比の混合物Pを用いて従来の塗付方式により作製した比較例の樹脂シートS2(「シートS2」と略記)のX線回折結果を示したものである。
図6A(a)は、樹脂シートサンプル表面にX線を角度θで照射し、照射角度(θ)および検出角(2θ)を連続的に変化させながら、その回折光を角度2θの位置にある検出器で検出させたときの角度2θと回折光の強度との関係し示したグラフである。実線はシートS1の特性を示し、破線はシートS2の特性を示している。
この特性より、たとえば、回折ピーク(004)における回折強度をI(004)とし、回折ピーク(100)における回折強度をI(100)とすれば、I(004)とI(100)の回折強度比から、樹脂中における窒化硼素の配向性が判断可能である。即ち、回折強度比I(004)/I(100)>0.4の場合、測定面(シート面方向)に対し、窒化硼素が平行に配向され、回折強度比I(004)/I(100)<0.4の場合、測定面(シート面方向)に対し、窒化硼素が垂直に配向され、回折強度比I(004)/I(100)≒0.4の場合、窒化硼素はランダムに配向されていることがわかる。なお、ランダムな配向状である場合の回折強度比が0.4程度であることは、ICDDカードに基づいている。
図6B(b)は、図6A(a)のシートS1およびシートS2の特性グラフより回折強度I(004)、I(100)をそれぞれ読み取り、回折強度比I(004)/I(100)を求めたものである。
塗付により作製したシートS2においては、回折強度比が1.0で、回折強度比I(004)/I(100)>0.4の場合に相当し、シート面方向に対して扁平状のh−BN粒子が平行に配向されていることがわかった。一方、真空注入により作製したシートS1においては、回折強度比が0.4で、回折強度比I(004)/I(100)≒0.4の場合に相当し、扁平状のh−BN粒子がランダムに配向されていることがわかった。
このように、本実施形態における製造方法を用いて作製したシートS1では、扁平状のh−BN粒子がエポキシ樹脂中においてランダムに配向されていることにより、樹脂シート23の厚さ方向に熱伝導経路が形成されやすくなっている。その結果、樹脂シート23の厚さ方向の熱伝導率が向上している。
本実施形態に係る熱伝導性樹脂シートの製造方法によれば以下の効果を奏する。
(1)注入室14内を排気し成形型12内の成形キャビティ17を真空にしてから、成形型12の注入口16を樹脂溜め皿13の混合物P中に浸漬し、注入室14内の圧力を上昇させて、注入口16より成形キャビティ17に混合物Pを注入させ樹脂シート23を作製する。そのため、成形キャビティ17に注入される際の混合物Pの液流れにより扁平状のh−BN粒子は、その扁平面の向きがランダムに配向された状態にある。このランダム配向状態のまま、加熱により硬化され樹脂シート23が作製されるので、得られた樹脂シート23では、扁平状のh−BN粒子がエポキシ樹脂中でランダムに配向され、樹脂シート23の厚さ方向に熱伝導経路が形成されやすくなり、樹脂シート23の厚さ方向の熱伝導率が向上する。
(2)成形型12内の成形キャビティ17を真空とし、注入室14内の圧力を上昇させて成形型12内の圧力と注入室14内の圧力に圧力差を生じさせ、この圧力差に基づき注入口16を介して成形キャビティ17へ混合物Pの注入が行われる。そのため、混合物Pの成形型12内への注入を確実に行うことができる。また、真空下で注入を行うので、特性バラツキの一因となる樹脂シート23中における気泡の発生を低減させることができる。
(3)従来技術のように2種類の無機充填材粉末を用いる必要がなく1種類のh−BN粒子でよいので、原料コストおよび製造コストを低減可能である。
(4)無機充填材粉末としてh−BN粒子が用いられているので、h−BN粒子の熱伝導率における異方性を生かして使用可能である。即ち、h−BN粒子の扁平面を熱伝導性樹脂シート23のシート面に対してランダムに配向させることにより、シートの厚さ方向の熱伝導率を向上させることが可能である。また、h−BN粒子が絶縁性の粒子であることにより、熱伝導性樹脂シート23は電子機器の絶縁部材として使用可能である。
(5)硬化後、成形型12より樹脂シート23を脱型するので、成形型12を再利用することができる。
<第2の実施形態>
次に、第2の実施形態に係る熱伝導性樹脂シートの製造方法について、図7、図8、図9Aおよび図9Bに基づいて説明する。
この実施形態は、上記の実施形態における混合物の原料組成と、加熱硬化時の処理条件を変更したものであり、その他の構成および製造工程は共通である。
従って、ここでは説明の便宜上、先の説明で用いた符号を一部共通して用い、共通する構成および工程についてはその説明を省略し、変更した個所のみ説明を行う。
本実施形態における混合物Qの原料としては、上記の実施形態における混合物Pの原料に希釈溶媒を加えたものである。希釈溶媒を加えることにより混合物Qの低粘度化を図ることができる。
真空注入装置については、上記の実施形態における真空注入装置10をそのまま用いることができる。図7は、成形型12内への混合物Qの注入が完了し、上方に移動された成形型12を、硬化手段としての加熱炉31内に設置された状態を示している。加熱炉31内にはヒーター32が設置され、図示しない制御手段により炉内の設定温度および設定時間が制御可能となっている。
また、一対の型部材11は両サイドより内側の方向に図示しない加圧手段により加圧可能に配置されている。
上記のような構成を有する真空注入装置10および加熱炉31を用いた熱伝導性樹脂シートの製造方法について、図8、図9Aおよび図9Bに基づき説明を行う。
先ずS201では、バインダー樹脂18としての熱硬化性樹脂主剤および硬化剤と、扁平状粒子を含む無機充填材粉末19と、希釈溶媒が混合手段により充分混合される。その結果、S202では、液状の混合物Qが得られる。
次にS203〜S209に至る各ステップは、混合物Pに代わって混合物Qが用いられること以外は、第1の実施形態におけるS103〜S109(図2参照)の各ステップと同様であり、説明を省略する。なお、メチルエチルケトンを加えることにより混合物Qは低粘度化が図られているので、成形型12内への混合物Qの注入が容易に行われる。
次にS210では、成形型12は注入室14より外部に取り出されて、硬化手段としての加熱炉31内に設置される。このとき、図9A(2−1)に示すように、型部材11は加圧手段により両サイドより内側の方向に一定の圧力で加圧される。なお、このときの型部材11間の隙間間隔はt1となっている。そして、加圧状態のまま、所定温度で所定時間だけ加熱されることにより、混合物Q中のメチルエチルケトンが蒸発して成形型12内に注入された混合物Qが硬化する。
ところで、混合物Q中のメチルエチルケトンが蒸発することにより混合物Qの体積が収縮する。しかし、型部材11は両サイドより内側の方向に加圧されているので、体積収縮に対応して型部材11は内側の方向に互いに接近移動する。図9B(2−2)は、硬化後の状態を示しており、型部材11間の隙間間隔がt2(t2<t1)となっている。即ち、型部材11間の隙間間隔t1がt2に減少することにより体積収縮が補填され、体積収縮に伴う不具合の発生を防止できる。
次にS211では、型部材11が脱型され、S212では、所定の厚さt2を有する樹脂成形体としての樹脂シート33が完成する。
本実施形態においては、バインダー樹脂18としては熱硬化性樹脂であるエポキシ樹脂、無機充填材粉末19としてはh−BN粒子、さらに希釈溶媒としてはメチルエチルケトン、が好適に用いられる。図8に示す手順に従い樹脂成形体を作製することで、図5に示すシートS1と同様の、h−BN粉末がランダムに配向した熱伝導性樹脂シートが得られる。
本実施形態に係る熱伝導性樹脂シートの製造方法によれば以下の効果を奏する。なお、上記の実施形態における(1)〜(5)の効果は同様であり、それ以外の効果を記す。
(6)混合物Qは希釈溶媒を加えることにより低粘度化を図ることができるので、成形型12内への混合物Qの注入を容易に行うことができる。
(7)硬化の際、型部材11を加圧するので、型部材11間に注入された混合物Q中のメチルエチルケトンが蒸発して体積収縮しても、型部材11間の隙間間隔t1がt2に減少することにより補填され、体積収縮に伴う不具合の発生を防止できる。
<第3の実施形態>
次に、第3の実施形態に係る熱伝導性樹脂成形体の製造方法について、図10A、図10Bおよび図10Cに基づいて説明する。
この実施形態は、第1の実施形態における成形型12の形状を変更したものであり、その他の構成および製造工程は共通である。
従って、ここでは説明の便宜上、先の説明で用いた符号を一部共通して用い、共通する構成および工程についてはその説明を省略し、変更した個所のみ説明を行う。
図10A(a)、図10B(b)に示すように、この実施形態の成形型40は、筒形状をした内型部材41と外型部材42とで構成され、内型部材41の周囲を取り囲むように外型部材42が一定の隙間間隔を置いて対向して配置されている。
内型部材41と外型部材42の両開口端部にはシール43が設けられ、一方の開口端部には混合物Pの注入を行うための複数の注入口44が設けられている。成形型40は、注入口44を除いて成形型40内の隙間内部がシールされて断面矩形で筒状の隙間空間45が形成された状態にある。
図10B(b)に示すように、この成形型40を注入室内で混合物Pが入れられた樹脂溜め皿46内に浸漬させ、注入口44を介して成形型40内の隙間空間45に混合物Pの注入を行う。混合物Pの注入後、成形型40を加熱炉で加熱硬化させる。そして、内型部材41と外型部材42の脱型を行う。
図10C(c)は、その結果得られた筒状の樹脂成形体47を示している。
この実施形態における作用効果は、得られる樹脂成形体がシート状ではなくて筒状であること以外は、第1の実施形態における作用効果と同等であり、説明を省略する。
<その他の実施形態>
なお、本発明は、上記した実施形態に限定されるものではなく発明の趣旨の範囲内で種々の変更が可能であり、たとえば、次のように変更しても良い。
上記の各実施形態では、バインダー樹脂として熱硬化性のエポキシ樹脂を用い、無機充填材粉末としてh−BN粒子(六方晶窒化硼素)を用いるとして説明したが、バインダー樹脂としては、そのほか不飽和ポリエステル樹脂、フェノール樹脂、メラミン樹脂、シリコーン樹脂、ポリイミド樹脂などの熱硬化性樹脂或いは、合成ゴム系樹脂、アクリル樹脂、オレフィン系樹脂などの熱可塑性樹脂を用いても良い。また、無機充填材粉末としては、そのほか酸化アルミニウム(アルミナ)、炭化珪素、グラファイト粉末などを用いても良い。なお、熱伝導性樹脂シートを絶縁部材として用いる場合は絶縁性の無機充填材粉末を用いることが望ましい。
上記の各実施形態では、無機充填材粉末として、h−BN粒子のみを使用したが、扁平状粒子とは形状の異なる粒子をさらに含む粉末を使用してもよい。形状の異なる粒子は、略球形のものが好ましいが、粉砕された形状で多角体形状であってもよい。材質としては、アルミナ、シリカ、窒化珪素、窒化アルミニウム、炭化珪素、窒化硼素などが挙げられる。形状の異なる粉末を併用することで、成形体の厚さ方向の熱伝導率がさらに向上する。
熱伝導性樹脂シートS1の作製では、エポキシ樹脂およびh−BN粉末を質量比で70:30となるように配合した。バインダー樹脂に対する無機充填材粉末の配合比率を高くするほど樹脂成形体としての樹脂シートの熱伝導率を高めることができるが、配合比率を高めすぎると逆に樹脂シートが脆くなりクラックが発生し易くなる。好ましい配合比率は、質量比で、バインダー樹脂:無機充填材粉末=20:80〜80:20さらには65:35〜75:25である。
第2の実施形態では、希釈溶媒としてメチルエチルケトンを用いるとして説明したが、その他にアセトン、トルエンなど一般的な有機溶剤を用いてよく、バインダー樹脂との相性を考慮し選定するのが望ましい。また、充填された混合物が成形型に保持されやすいという観点から、混合物の粘度は、1〜500Pa・sさらには50〜200Pa・sとするのが望ましい。
第2の実施形態において、加圧手段により型部材をどの程度加圧するかは、溶媒量にもよるが、混合物にかかる圧力が1×10Pa〜1000×10Paさらには1.5〜10Paであるのが望ましい。1000×10Paを超えると、マトリックス樹脂が破損することがあるため、望ましくない。
上記の各実施形態では、バインダー樹脂として熱硬化性のエポキシ樹脂を用い、硬化手段として加熱炉を用い加熱により硬化させるとして説明したが、加熱によらずに自然乾燥により硬化させても良い。また、バインダー樹脂が熱可塑性樹脂の場合には、高温状態にある混合物の硬化手段として冷却による硬化を行っても良い。さらに、バインダー樹脂として光硬化性樹脂を使用し、型部材が透明材料で形成されている場合には、硬化手段として光照射による光硬化法を用いても良い。
熱伝導性樹脂シートS1の作製では、片方の型部材を脱型しなかった。しかし、全ての型部材を脱型してもよいし、また、シール部のみ脱型しても良い。たとえば、型部材として放熱基板を用いて樹脂成形体を形成し、その後、放熱基板の表面に密着させたまま放熱材として使用することも可能である。
上記の各実施形態では、成形型12または40内に注入された混合物PまたはQにおいて扁平状のh−BN粒子19がランダムに配向されているとして説明した。しかし、注入口形状、注入速度および原料粘度などの注入条件の制御や、硬化時間、バインダー樹脂の選択などにより、h−BN粒子19を樹脂シートおよび樹脂成形体のシートおよび成形体の厚さ方向に対しより平行に近づくように配向させることが可能である。その結果、シートおよび成形体の厚さ方向の熱伝導率を更に向上可能である。
上記の各実施形態では、排気後の注入室を昇圧して成形キャビティへ混合物を注入したが、混合物の注入方法に限定はない。たとえば、排気後の注入室において、注入口が鉛直方向上向きとなるように成形型を配置し、混合物を注入口から重力により成形キャビティへと流し込んでも、扁平状粒子はランダム配向しやすい。また、成形キャビティを排気しつつ混合物の注入を行ってもよい。すなわち、本発明の製造方法において、排気工程と注入工程とを同時に行っても、本発明の目的は達成される。具体的には、注入口を混合物に浸漬させた状態で、成形キャビティに連通する注入口とは別の開口(排気口)から成形キャビティを排気する。
原料粘度は、1〜500Pa・sさらには1〜200Pa・sが好ましく、この範囲であれば、扁平状粒子はランダム配向しやすい。
熱伝導性樹脂シートS1の作製では、排気工程にて注入室(すなわち成形キャビティ)を排気後、大気圧まで昇圧したが、9000〜0.1Paさらには100〜0.1Paであるのが望ましい。真空度が低すぎると、混合物を樹脂溜め皿に溜め置くことが困難となる。一方、排気が不十分であると、成形キャビティの寸法によっては、成形キャビティに混合物が十分に注入されない。また、注入室内(すなわち成形キャビティ)を大気圧に戻す際には、成形キャビティに充填される混合物の液面が0.01〜1m/秒で上昇するように注入室内の圧力を調整するとよい。真空度および液面の上昇速度が上記範囲であれば、扁平状粒子はランダム配向しやすい。
第3の実施形態では、内型部材41と外型部材42とで構成される成形型40を用いて筒状の樹脂成形体47を形成するとして説明した。それぞれの型部材の形状を工夫することにより、L字型、コの字型、波板状およびその他任意の形状の樹脂成形体を形成可能である。
型部材の材質に特に限定はないが、ガラス、プラスチック、金属などからバインダー樹脂の硬化手段に応じて選択するとよい。また、硬化工程後、型部材を樹脂成形体から離型するのであれば、型部材の表面に予め離型剤を付与するとよい。
シール部の材質に特に限定はなく、一般的なシール材を使用すればよい。具体的には、エポキシ系、アクリル系、ポリエステル系の接着剤、シリコ−ン、ウレタンなどのゴム系接着剤などが挙げられる。特に、第2の実施形態のように加圧手段により型部材を加圧する場合には、シール部は、シリコ−ン系接着剤などのゴム系接着剤からなるのが好ましい。
注入口の形成位置、寸法、形状および個数に特に限定はないが、注入口が小さすぎると扁平状粒子が一方向に配向しやすくなるため好ましくない。また、大きすぎると、注入口が成形型の下方に位置する場合に、混合物をその粘度で成形キャビティに保持すること困難となる。そのため、ひとつの注入口が、直径0.1〜10mmさらには0.2〜0.5mmの範囲の円内に収まる程度の大きさであるのが好ましい。
図11Aおよび図11Bに示すように、フラットな形状の型部材51bと、一部が外側に突出した形状の型部材51aとで構成された成形型50を用いることにより、厚さが一定でない樹脂成形体52を形成することも可能である。
上記の各実施形態では、一対の型部材11を用いて樹脂シート23を作製するとして説明したが、型部材は少なくとも一対あればよい。すなわち、図12に示すように、複数枚の型部材61を所定間隔で積層した成形型60を用いて、複数枚の樹脂シートを同時に形成しても良い。この場合には、型部材61を保持するスペーサ兼シール材62としては、シリコーン樹脂等の軟質材料にポリテトラフルオロエチレン(PTFE)コーティングしたものを用いるとよい。また、図12では、第1の実施形態で用いた3つの成形型が所定の間隔で配置されているが、隣接する成形型の間にある隙間空間67を成形キャビティとして使用してもよい。
すなわち、平板状の型部材の両面を成形面として使用することも可能である。
Below, the best form for implementing the manufacturing method of the heat conductive resin molding of this invention is demonstrated.
<First Embodiment>
Hereinafter, the manufacturing method of the heat conductive resin sheet which concerns on 1st Embodiment is demonstrated using figures.
As shown in FIG. 1, a vacuum injection apparatus 10 used in the present embodiment includes a mold 12 having a pair of mold members 11 arranged facing each other with a predetermined gap, a binder resin 18 and inorganic filling. A resin reservoir 13 for containing the mixture P with the material powder 19; an injection chamber 14 for storing the mold 12 and the resin reservoir 13 containing the mixture P and injecting the mixture P into the mold 12; It has.
The mold 12 includes a pair of mold members 11, a seal portion 15 that seals a peripheral portion of the mold member 11, and an injection port 16. The mold member 11 is formed of a rectangular plate-like body, and is disposed to face each other with a constant gap interval t0. The seal part 15 seals the peripheral part of the mold member 11 and partitions the molding cavity 17 together with the mold member 11. The sealing portion 15 is provided with an inlet 16 for injecting the mixture P. That is, in the molding die 12, the inside of the gap in the molding die 12 is sealed from the outside except for the injection port 16, and the molding cavity 17 is formed, and the injection port 16 that connects the molding cavity 17 and the outside is formed. ing.
The injection chamber 14 is provided with an exhaust port 21 for evacuating the injection chamber 14, and the exhaust port 21 is connected to a vacuum pump (not shown) via a valve 22 for opening and closing the exhaust port 21. .
The manufacturing method of the heat conductive resin sheet using the vacuum injection apparatus 10 which has the above structures is demonstrated based on FIG. 2, FIG. 3A and FIG. 3B.
First, in S101, the binder resin main component and the curing agent and the inorganic filler powder containing flat particles are sufficiently mixed by the mixing means. As a result, in S102, a liquid mixture P is obtained.
Next, in S103, the molding cavity 17 is formed by having a pair of mold members 11 opposed to each other and sealing the periphery of the mold member 11 other than the injection port 16 by the seal portion 15. A mold 12 is prepared.
Next, in S104, as shown in FIG. 3A (1-1), the resin reservoir 13 and the mold 12 containing the mixture P are placed in the injection chamber 14, and the mold is placed above the resin reservoir 13. Twelve inlets 16 are arranged vertically downward. That is, the mold is arranged so that the thickness direction of the resin sheet is horizontal.
Next, in S105, the valve 22 of the exhaust port 21 is opened and the vacuum pump is driven, whereby the injection chamber 14 is evacuated. At this time, the molding cavity 17 in the mold 12 is similarly evacuated through the inlet 16.
Next, in S106, as shown in FIG. 3B (1-2), when the inside of the injection chamber 14 and the molding cavity 17 are in a predetermined vacuum state, the driving of the vacuum pump is stopped and the valve 22 of the exhaust port 21 is closed. . And although not shown in figure, the shaping | molding die 12 is moved below using an actuator etc., and the injection port 16 is immersed in the mixture P of the resin reservoir 13.
Next, in S107 and S108, as shown in FIG. 3C (1-3), the valve 22 of the exhaust port 21 is opened to introduce air into the injection chamber 14, and the pressure in the injection chamber 14 increases. As a result, a pressure difference occurs between the pressure in the molding cavity 17 in the mold 12 and the pressure in the injection chamber 14, and the mixture P is injected into the molding cavity 17 through the inlet 16.
Next, in S109, as shown in FIG. 3D (1-4), the injection of the mixture P into the gap space 17 is completed by returning the inside of the injection chamber 14 to atmospheric pressure.
By the way, as shown to FIG. 3D (1-4), since flat particle | grains are disturbed by the liquid flow of the mixture P at the time of inject | pouring into the shaping | molding cavity 17, the state in which the direction of the flat surface was orientated at random It is in.
When the injection of the mixture P is completed, the mold 12 is moved upward, but the mixture P injected into the mold 12 is held inside the mold 12 by the atmospheric pressure and the viscosity of the uncured resin.
Next, in S110, the mold 12 is taken out from the injection chamber 14, and the mixture P injected into the mold 12 is cured by a curing means (not shown). At this time, the direction of the molding die 12 is such that the injection work 16 is directed downward in the vertical direction.
Next, in S111, the mold is removed by removing at least the seal portion 15. In S112, the resin sheet 23 as a resin molded body having a predetermined thickness is completed.
FIG. 4A (a) shows a cross-sectional configuration of the resin sheet 23 at this time, and only one mold member 11 of the mold member 11 is removed. In the resin sheet 23, the inorganic filler powder 19 containing flat particles is randomly oriented in the binder resin 18, and a heat conduction path is easily formed in the thickness direction of the resin sheet 23. The thermal conductivity in the vertical direction is improved.
FIG. 4B (b) shows a cross-sectional structure of the resin sheet when the mixture P is applied to the surface of the mold member by the application method and cured as a comparative example. In this case, the inorganic filler powder 19 containing flat particles is oriented parallel to the sheet surface. Therefore, the thermal conductivity in the thickness direction of the resin sheet of the comparative example is lower than the thermal conductivity in the thickness direction of the resin sheet 23.
<Preparation of thermal conductive resin sheet S1>
A heat conductive resin sheet was produced according to the above procedure. Epoxy resin (NM-108A (main agent) and NM-111B (curing agent) manufactured by Pernox Co., Ltd.) as a thermosetting resin as the binder resin 18 and hexagonal boron nitride (UHP manufactured by Showa Denko KK) as the inorganic filler powder 19 -2; hereinafter abbreviated as “h-BN”). The maximum length of the used h-BN particles in the direction parallel to the flat surface is about 10 μm. An epoxy resin and h-BN powder were blended so as to have a mass ratio of 70:30, and were sufficiently mixed together with a curing agent by a mixing means (not shown) to obtain a liquid mixture P. This mixture P was placed in a resin reservoir 13 having a certain depth.
The mold member 11 of the mold 12 is made of glass (Matsunami Glass Industry Co., Ltd.) whose surface is covered with a Teflon seal (Chuko Kasei Kogyo Co., Ltd.), and the seal part 15 is molded with double-sided tape (Sumitomo 3M Co., Ltd.). The cavity 17 was 76 mm × 26 mm × thickness 1 mm, and the injection port 16 was a 10 mm × 1 mm rectangular shape formed on the 26 mm × 1 mm surface of the molding cavity 17.
In the exhaust process, the injection chamber was evacuated until the molding cavity 17 could be filled with the mixture P in the next injection process, and in the injection process, the injection chamber was returned to atmospheric pressure. In the curing step, the mold 12 filled with the mixture P was left at 25 ° C. for 24 hours to cure the epoxy resin. Thereafter, the mold 12 was removed by removing the mold member 11 and the seal portion 15 to obtain a heat conductive resin sheet S1 (abbreviated as “sheet S1”) having a thickness of 1 mm.
FIG. 5 is an electron micrograph of the sheet S1 obtained by the above manufacturing method. In FIG. 5, the horizontal axis direction is the sheet surface direction parallel to the molding surface of the mold member, and the vertical axis direction is the sheet thickness direction. As apparent from the electron micrograph shown in FIG. 5, in the sheet S <b> 1, the flat h-BN particles in the epoxy resin 18 are in a state where the flat surfaces are oriented in random directions.
6A and 6B show X of a sheet S1 and a comparative resin sheet S2 (abbreviated as “sheet S2”) prepared by a conventional application method using a mixture P having the same material and the same blending ratio as the sheet S1. The line diffraction results are shown.
FIG. 6A (a) shows that the surface of the resin sheet is irradiated with X-rays at an angle θ, and the diffracted light is at the position of angle 2θ while continuously changing the irradiation angle (θ) and the detection angle (2θ). 6 is a graph showing the relationship between an angle 2θ when detected by a detector and the intensity of diffracted light. The solid line indicates the characteristic of the sheet S1, and the broken line indicates the characteristic of the sheet S2.
From this characteristic, for example, if the diffraction intensity at the diffraction peak (004) is I (004) and the diffraction intensity at the diffraction peak (100) is I (100), the diffraction intensities of I (004) and I (100) From the ratio, the orientation of boron nitride in the resin can be determined. That is, when the diffraction intensity ratio I (004) / I (100)> 0.4, boron nitride is oriented parallel to the measurement surface (sheet surface direction), and the diffraction intensity ratio I (004) / I (100 ) If <0.4, boron nitride is oriented perpendicular to the measurement surface (sheet surface direction), and if the diffraction intensity ratio I (004) / I (100) ≈0.4, boron nitride is randomly It can be seen that it is oriented. The fact that the diffraction intensity ratio in the case of random orientation is about 0.4 is based on the ICDD card.
FIG. 6B (b) reads the diffraction intensities I (004) and I (100) from the characteristic graph of the sheet S1 and the sheet S2 in FIG. 6A (a), respectively, and calculates the diffraction intensity ratio I (004) / I (100). It is what I have sought.
In the sheet S2 produced by coating, the diffraction intensity ratio is 1.0, which corresponds to the case where the diffraction intensity ratio I (004) / I (100)> 0.4, and is flat with respect to the sheet surface direction. It was found that the h-BN particles were oriented in parallel. On the other hand, in the sheet S1 produced by vacuum injection, the diffraction intensity ratio is 0.4, which corresponds to the case where the diffraction intensity ratio I (004) / I (100) ≈0.4, and flat h-BN particles Was randomly oriented.
As described above, in the sheet S1 produced by using the manufacturing method according to the present embodiment, the flat h-BN particles are randomly oriented in the epoxy resin, so that heat conduction is performed in the thickness direction of the resin sheet 23. A path is easily formed. As a result, the thermal conductivity in the thickness direction of the resin sheet 23 is improved.
According to the manufacturing method of the heat conductive resin sheet which concerns on this embodiment, there exist the following effects.
(1) After the injection chamber 14 is evacuated and the molding cavity 17 in the mold 12 is evacuated, the injection port 16 of the mold 12 is immersed in the mixture P of the resin reservoir 13 and the pressure in the injection chamber 14 is increased. And the mixture P is injected into the molding cavity 17 from the injection port 16 to produce the resin sheet 23. Therefore, the flat h-BN particles are in a state in which the flat surfaces are randomly oriented due to the liquid flow of the mixture P when injected into the molding cavity 17. Since the resin sheet 23 is produced by being cured by heating in this random orientation state, in the obtained resin sheet 23, the flat h-BN particles are randomly oriented in the epoxy resin, and the thickness of the resin sheet 23 is increased. A heat conduction path is easily formed in the vertical direction, and the thermal conductivity in the thickness direction of the resin sheet 23 is improved.
(2) The molding cavity 17 in the molding die 12 is evacuated, and the pressure in the injection chamber 14 is increased to create a pressure difference between the pressure in the molding die 12 and the pressure in the injection chamber 14, and based on this pressure difference. The mixture P is injected into the molding cavity 17 through the injection port 16. Therefore, the mixture P can be reliably injected into the mold 12. Moreover, since the injection is performed under vacuum, the generation of bubbles in the resin sheet 23 that contributes to the characteristic variation can be reduced.
(3) Since it is not necessary to use two types of inorganic filler powders as in the prior art and only one type of h-BN particles is required, raw material costs and manufacturing costs can be reduced.
(4) Since h-BN particles are used as the inorganic filler powder, it can be used by taking advantage of the anisotropy in the thermal conductivity of the h-BN particles. That is, it is possible to improve the thermal conductivity in the thickness direction of the sheet by randomly orienting the flat surface of the h-BN particles with respect to the sheet surface of the thermally conductive resin sheet 23. Further, since the h-BN particles are insulating particles, the heat conductive resin sheet 23 can be used as an insulating member of an electronic device.
(5) Since the resin sheet 23 is removed from the mold 12 after curing, the mold 12 can be reused.
<Second Embodiment>
Next, the manufacturing method of the heat conductive resin sheet which concerns on 2nd Embodiment is demonstrated based on FIG. 7, FIG. 8, FIG. 9A and FIG. 9B.
In this embodiment, the raw material composition of the mixture in the above embodiment and the treatment conditions at the time of heat curing are changed, and other configurations and manufacturing steps are common.
Therefore, here, for convenience of explanation, some of the reference numerals used in the previous explanation are used in common, explanations of common configurations and steps are omitted, and only the changed parts are explained.
The raw material of the mixture Q in this embodiment is obtained by adding a dilution solvent to the raw material of the mixture P in the above embodiment. The viscosity of the mixture Q can be reduced by adding a diluting solvent.
As for the vacuum injection apparatus, the vacuum injection apparatus 10 in the above embodiment can be used as it is. FIG. 7 shows a state where the injection of the mixture Q into the mold 12 is completed and the mold 12 moved upward is installed in a heating furnace 31 as a curing means. A heater 32 is installed in the heating furnace 31, and the set temperature and set time in the furnace can be controlled by control means (not shown).
Further, the pair of mold members 11 are arranged so as to be pressurized by a pressing means (not shown) in a direction inside both sides.
The manufacturing method of the heat conductive resin sheet using the vacuum injection apparatus 10 and the heating furnace 31 which have the above structures is demonstrated based on FIG. 8, FIG. 9A and FIG. 9B.
First, in S201, the thermosetting resin main component and the curing agent as the binder resin 18, the inorganic filler powder 19 containing flat particles, and the diluting solvent are sufficiently mixed by the mixing means. As a result, in S202, a liquid mixture Q is obtained.
The steps from S203 to S209 are the same as the steps of S103 to S109 (see FIG. 2) in the first embodiment, except that the mixture Q is used instead of the mixture P, and the description thereof is omitted. To do. In addition, since the viscosity of the mixture Q is reduced by adding methyl ethyl ketone, the mixture Q is easily injected into the mold 12.
Next, in S210, the mold 12 is taken out from the injection chamber 14 and installed in the heating furnace 31 as a curing means. At this time, as shown to FIG. 9A (2-1), the type | mold member 11 is pressurized with a fixed pressure in the direction inside the both sides with a pressurizing means. In addition, the clearance gap between the mold members 11 at this time is t1. Then, by heating for a predetermined time at a predetermined temperature in a pressurized state, the methyl ethyl ketone in the mixture Q evaporates and the mixture Q injected into the mold 12 is cured.
By the way, when the methyl ethyl ketone in the mixture Q evaporates, the volume of the mixture Q contracts. However, since the mold member 11 is pressurized in the inner direction from both sides, the mold members 11 move closer to each other in the inner direction in response to volume shrinkage. FIG. 9B (2-2) shows a state after curing, and the gap interval between the mold members 11 is t2 (t2 <t1). That is, when the gap interval t1 between the mold members 11 is reduced to t2, the volume shrinkage is compensated, and it is possible to prevent the occurrence of a problem associated with the volume shrinkage.
Next, in S211, the mold member 11 is removed, and in S212, the resin sheet 33 as a resin molded body having a predetermined thickness t2 is completed.
In the present embodiment, an epoxy resin which is a thermosetting resin is suitably used as the binder resin 18, h-BN particles as the inorganic filler powder 19, and methyl ethyl ketone as the diluent solvent. By producing a resin molded body according to the procedure shown in FIG. 8, a heat conductive resin sheet in which h-BN powders are randomly oriented, similar to the sheet S1 shown in FIG. 5, is obtained.
According to the manufacturing method of the heat conductive resin sheet which concerns on this embodiment, there exist the following effects. In addition, the effect of (1)-(5) in said embodiment is the same, and other effects are described.
(6) Since the viscosity of the mixture Q can be reduced by adding a diluent solvent, the mixture Q can be easily injected into the mold 12.
(7) Since the mold member 11 is pressurized at the time of curing, the gap interval t1 between the mold members 11 is reduced to t2 even if methyl ethyl ketone in the mixture Q injected between the mold members 11 evaporates and shrinks in volume. By doing so, it is possible to prevent the occurrence of problems associated with volume shrinkage.
<Third Embodiment>
Next, the manufacturing method of the heat conductive resin molding which concerns on 3rd Embodiment is demonstrated based on FIG. 10A, FIG. 10B, and FIG. 10C.
In this embodiment, the shape of the mold 12 in the first embodiment is changed, and other configurations and manufacturing processes are common.
Therefore, here, for convenience of explanation, some of the reference numerals used in the previous explanation are used in common, explanations of common configurations and steps are omitted, and only the changed parts are explained.
As shown in FIGS. 10A (a) and 10B (b), the molding die 40 of this embodiment is composed of a cylindrical inner mold member 41 and an outer mold member 42, and around the inner mold member 41. The outer mold members 42 are arranged so as to face each other with a predetermined gap interval so as to surround them.
Seals 43 are provided at both opening end portions of the inner mold member 41 and the outer mold member 42, and a plurality of injection ports 44 for injecting the mixture P are provided at one opening end portion. The molding die 40 is in a state where the inside of the gap in the molding die 40 is sealed except for the injection port 44 and a cylindrical gap space 45 having a rectangular cross section is formed.
As shown in FIG. 10B (b), the mold 40 is immersed in a resin reservoir 46 in which the mixture P is placed in the injection chamber, and the mixture P enters the gap space 45 in the mold 40 through the injection port 44. Do the injection. After injection of the mixture P, the mold 40 is heated and cured in a heating furnace. Then, the inner mold member 41 and the outer mold member 42 are removed.
FIG. 10C (c) shows the cylindrical resin molded body 47 obtained as a result.
The operational effects in this embodiment are the same as the operational effects in the first embodiment except that the obtained resin molded body is not a sheet but a cylinder, and the description thereof is omitted.
<Other embodiments>
The present invention is not limited to the above-described embodiment, and various modifications are possible within the scope of the gist of the invention. For example, the following modifications may be made.
In each of the above-described embodiments, the thermosetting epoxy resin is used as the binder resin and h-BN particles (hexagonal boron nitride) are used as the inorganic filler powder. Thermosetting resins such as resins, phenol resins, melamine resins, silicone resins, and polyimide resins, or thermoplastic resins such as synthetic rubber resins, acrylic resins, and olefin resins may be used. In addition, as the inorganic filler powder, aluminum oxide (alumina), silicon carbide, graphite powder or the like may be used. In addition, when using a heat conductive resin sheet as an insulating member, it is desirable to use insulating inorganic filler powder.
In each of the above embodiments, only the h-BN particles are used as the inorganic filler powder, but a powder further including particles having a shape different from the flat particles may be used. The particles having different shapes are preferably substantially spherical, but may be pulverized and polygonal. Examples of the material include alumina, silica, silicon nitride, aluminum nitride, silicon carbide, boron nitride and the like. By using together powders having different shapes, the thermal conductivity in the thickness direction of the molded body is further improved.
In the production of the heat conductive resin sheet S1, the epoxy resin and the h-BN powder were blended so as to have a mass ratio of 70:30. Increasing the blending ratio of the inorganic filler powder to the binder resin can increase the thermal conductivity of the resin sheet as a resin molded body. However, if the blending ratio is too high, the resin sheet becomes brittle and cracks are likely to occur. Become. A preferable blending ratio is a mass ratio of binder resin: inorganic filler powder = 20: 80 to 80:20, or 65:35 to 75:25.
In the second embodiment, it has been described that methyl ethyl ketone is used as a diluent solvent. However, other common organic solvents such as acetone and toluene may be used, and it is desirable to select in consideration of compatibility with the binder resin. Further, from the viewpoint that the filled mixture is easily held in the mold, the viscosity of the mixture is preferably 1 to 500 Pa · s, more preferably 50 to 200 Pa · s.
In the second embodiment, how much pressure is applied to the mold member by the pressurizing means depends on the amount of the solvent, but the pressure applied to the mixture is 1 × 10. 5 Pa ~ 1000 × 10 5 It is desirable that it is Pa, further 1.5 to 10 Pa. 1000x10 5 If it exceeds Pa, the matrix resin may be damaged, which is not desirable.
In each of the embodiments described above, a thermosetting epoxy resin is used as the binder resin and a heating furnace is used as the curing means to cure by heating. However, the binder resin may be cured by natural drying without being heated. Further, when the binder resin is a thermoplastic resin, curing by cooling may be performed as a curing means for the mixture in a high temperature state. Further, when a photocurable resin is used as the binder resin and the mold member is formed of a transparent material, a photocuring method by light irradiation may be used as the curing means.
In the production of the heat conductive resin sheet S1, one mold member was not removed. However, all mold members may be removed or only the seal part may be removed. For example, it is possible to form a resin molded body using a heat dissipation substrate as a mold member and then use it as a heat dissipation material while being in close contact with the surface of the heat dissipation substrate.
In each of the embodiments described above, the flat h-BN particles 19 have been described as being randomly oriented in the mixture P or Q injected into the mold 12 or 40. However, by controlling injection conditions such as the injection port shape, injection speed and raw material viscosity, curing time, selection of binder resin, etc., the h-BN particles 19 are changed in the thickness direction of the resin sheet and the resin molded body sheet and the molded body. It is possible to orient it so that it may approach parallel more. As a result, the thermal conductivity in the thickness direction of the sheet and the molded body can be further improved.
In each of the embodiments described above, the injection chamber after exhausting is pressurized and the mixture is injected into the molding cavity, but the method of injecting the mixture is not limited. For example, in the injection chamber after evacuation, even if the mold is arranged so that the injection port is vertically upward and the mixture is poured from the injection port into the molding cavity by gravity, the flat particles are likely to be randomly oriented. Further, the mixture may be injected while the molding cavity is exhausted. That is, even if the exhaust process and the injection process are performed simultaneously in the manufacturing method of the present invention, the object of the present invention is achieved. Specifically, the molding cavity is exhausted from an opening (exhaust port) different from the injection port communicating with the molding cavity with the injection port immersed in the mixture.
The raw material viscosity is preferably 1 to 500 Pa · s, more preferably 1 to 200 Pa · s, and within this range, the flat particles are likely to be randomly oriented.
In the production of the heat conductive resin sheet S1, the injection chamber (that is, the molding cavity) is evacuated in the evacuation step, and then the pressure is increased to atmospheric pressure, but it is preferably 9000 to 0.1 Pa, more preferably 100 to 0.1 Pa. If the degree of vacuum is too low, it will be difficult to store the mixture in a resin reservoir. On the other hand, if the exhaust is insufficient, the mixture is not sufficiently injected into the molding cavity depending on the dimensions of the molding cavity. Further, when returning the injection chamber (that is, the molding cavity) to atmospheric pressure, the pressure in the injection chamber may be adjusted so that the liquid level of the mixture filled in the molding cavity increases at 0.01 to 1 m / second. If the degree of vacuum and the rising speed of the liquid level are in the above ranges, the flat particles are likely to be randomly oriented.
In the third embodiment, it has been described that the cylindrical resin molded body 47 is formed using the molding die 40 including the inner mold member 41 and the outer mold member 42. By devising the shape of each mold member, it is possible to form a resin molded body having an L shape, a U shape, a corrugated plate shape, or any other shape.
The material of the mold member is not particularly limited, but may be selected from glass, plastic, metal and the like according to the curing means of the binder resin. Further, if the mold member is released from the resin molded body after the curing step, a release agent may be applied to the surface of the mold member in advance.
There is no particular limitation on the material of the seal portion, and a general seal material may be used. Specific examples include epoxy adhesives, acrylic adhesives, polyester adhesives, and rubber adhesives such as silicone and urethane. In particular, when the mold member is pressurized by the pressing means as in the second embodiment, the seal portion is preferably made of a rubber-based adhesive such as a silicone-based adhesive.
There are no particular limitations on the formation position, size, shape, and number of the inlets, but if the inlet is too small, it is not preferable because the flat particles tend to be oriented in one direction. On the other hand, when the inlet is too large, it is difficult to hold the mixture in the molding cavity with the viscosity when the inlet is located below the mold. For this reason, it is preferable that one injection port has such a size that it fits within a circle having a diameter in the range of 0.1 to 10 mm, more preferably 0.2 to 0.5 mm.
As shown in FIG. 11A and FIG. 11B, a resin having a non-uniform thickness is obtained by using a molding die 50 including a flat mold member 51b and a mold member 51a partially protruding outward. It is also possible to form the molded body 52.
In each of the above-described embodiments, the resin sheet 23 is manufactured using the pair of mold members 11. However, at least a pair of mold members may be used. That is, as shown in FIG. 12, a plurality of resin sheets may be formed simultaneously using a mold 60 in which a plurality of mold members 61 are laminated at a predetermined interval. In this case, as the spacer and seal material 62 for holding the mold member 61, a soft material such as silicone resin coated with polytetrafluoroethylene (PTFE) may be used. In FIG. 12, the three molds used in the first embodiment are arranged at a predetermined interval. However, a gap space 67 between adjacent molds may be used as a molding cavity.
That is, it is also possible to use both surfaces of a flat plate-shaped mold member as molding surfaces.

Claims (8)

バインダー樹脂と、扁平形状で熱伝導率に異方性を有する粒子を含み該バインダー樹脂中に分散された熱伝導性の無機充填材粉末と、を含む熱伝導性樹脂成形体の製造方法であって、
少なくとも未硬化の前記バインダー樹脂と前記無機充填材粉末を混合して混合物を調製する調製工程、
隙間をおいて対向して配置された一対の型部材と、該型部材の周縁部をシールし該型部材とともに成形キャビティを区画するシール部と、該成形キャビティに連通する注入口と、を備える成形型の該成形キャビティを排気する排気工程、
前記注入口より前記成形キャビティに前記混合物を注入する注入工程、
前記成形キャビティに注入された前記混合物を硬化させる硬化工程、
を経て成形体を得ることを特徴とする熱伝導性樹脂成形体の製造方法。
A method for producing a thermally conductive resin molded article comprising: a binder resin; and a thermally conductive inorganic filler powder containing particles having a flat shape and anisotropy in thermal conductivity and dispersed in the binder resin. And
A preparation step of preparing a mixture by mixing at least the uncured binder resin and the inorganic filler powder;
A pair of mold members arranged to face each other with a gap, a seal portion that seals a peripheral portion of the mold member and defines a molding cavity together with the mold member, and an injection port that communicates with the molding cavity An exhaust process for exhausting the molding cavity of the mold;
An injection step of injecting the mixture into the molding cavity from the injection port;
A curing step of curing the mixture injected into the molding cavity;
A method for producing a thermally conductive resin molded product, characterized in that a molded product is obtained through the process.
さらに、前記排気工程の前に、前記成形型と前記混合物を入れた樹脂溜め皿とを注入室内に収納する工程を含み、
前記排気工程は、前記注入室内を排気して前記成形キャビティを排気する工程であり、
前記注入工程は、前記注入口を前記樹脂溜め皿の前記混合物に浸漬してから前記注入室内の圧力を上昇させることで前記混合物を前記成形キャビティに注入する工程である請求項1に記載の熱伝導性樹脂成形体の製造方法。
Furthermore, before the exhausting step, including the step of storing the mold and the resin reservoir pan containing the mixture in an injection chamber,
The exhausting step is a step of exhausting the molding cavity by exhausting the injection chamber,
2. The heat according to claim 1, wherein the injection step is a step of injecting the mixture into the molding cavity by increasing the pressure in the injection chamber after the injection port is immersed in the mixture in the resin reservoir. A method for producing a conductive resin molding.
さらに、前記硬化工程の後、前記成形型より前記成形体を脱型する工程を含む請求項1に記載の熱伝導性樹脂成形体の製造方法。   Furthermore, the manufacturing method of the heat conductive resin molding of Claim 1 including the process of demolding the said molded object from the said shaping | molding die after the said hardening process. 少なくとも前記シール部を取り去り、一対の前記型部材の少なくとも一方と密着させたまま、前記成形型より前記成形体を脱型する請求項3に記載の熱伝導性樹脂成形体の製造方法。   The manufacturing method of the heat conductive resin molding of Claim 3 which removes the said molded object from the said shaping | molding die, removing at least the said seal part and making it closely_contact | adhere with at least one of a pair of said mold member. 前記無機充填材粉末は、六方晶窒化硼素を含む請求項1に記載の熱伝導性樹脂成形体の製造方法。   The method for producing a thermally conductive resin molded body according to claim 1, wherein the inorganic filler powder contains hexagonal boron nitride. 前記成形体は、シート状の熱伝導性樹脂シートである請求項1に記載の熱伝導性樹脂成形体の製造方法。   The method for producing a thermally conductive resin molded article according to claim 1, wherein the molded article is a sheet-like thermally conductive resin sheet. 前記混合物は希釈溶媒を含み、前記硬化工程は前記型部材を前記成形型の外部から加圧しつつ前記混合物を硬化させる工程である請求項1〜6のいずれか一項に記載の熱伝導性樹脂成形体の製造方法。   The thermally conductive resin according to claim 1, wherein the mixture includes a diluting solvent, and the curing step is a step of curing the mixture while pressing the mold member from the outside of the mold. Manufacturing method of a molded object. 請求項1に記載の熱伝導性樹脂成形体の製造方法における前記排気工程と前記注入工程とを同時に行うことを特徴とする熱伝導性樹脂成形体の製造方法。   The manufacturing method of the heat conductive resin molding which performs the said exhaust_gas | exhaustion process and the said injection | pouring process simultaneously in the manufacturing method of the heat conductive resin molding of Claim 1.
JP2010525730A 2008-08-21 2009-08-20 Method for producing thermally conductive resin molding Pending JPWO2010021408A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008212361 2008-08-21
JP2008212361 2008-08-21
PCT/JP2009/064903 WO2010021408A1 (en) 2008-08-21 2009-08-20 Method for producing thermally conductive resin molding

Publications (1)

Publication Number Publication Date
JPWO2010021408A1 true JPWO2010021408A1 (en) 2012-01-26

Family

ID=41707279

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010525730A Pending JPWO2010021408A1 (en) 2008-08-21 2009-08-20 Method for producing thermally conductive resin molding

Country Status (2)

Country Link
JP (1) JPWO2010021408A1 (en)
WO (1) WO2010021408A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6500339B2 (en) * 2014-03-31 2019-04-17 三菱ケミカル株式会社 Heat dissipation sheet, coating liquid for heat dissipation sheet, and power device

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62164512A (en) * 1986-01-16 1987-07-21 Nec Corp Cast molding
JPH03150115A (en) * 1989-11-06 1991-06-26 Aaku:Kk Vacuum casting method and device thereof
JPH0677943B2 (en) * 1990-07-17 1994-10-05 株式会社ケミックス・マシナリー・ジャパン Vacuum casting method of synthetic resin liquid and its equipment
JP3585385B2 (en) * 1998-12-24 2004-11-04 電気化学工業株式会社 Method for producing thermally conductive silicone molded article
JP2001062850A (en) * 1999-08-26 2001-03-13 Tokai Rubber Ind Ltd Manufacture of heat-conductive sheet and heat- conductive sheet obtained by the manufacturing method
JP5015366B2 (en) * 2000-09-12 2012-08-29 ポリマテック株式会社 Thermally conductive molded body and method for producing the same
JP2003062839A (en) * 2001-08-28 2003-03-05 Matsushita Electric Works Ltd Method for producing artificial marble
JP2003266453A (en) * 2002-03-19 2003-09-24 Toshiba Corp Manufacturing method for epoxy cast article
JP2004256687A (en) * 2003-02-26 2004-09-16 Polymatech Co Ltd Thermally conductive reaction-curing resin molding and its manufacturing method
JP4444248B2 (en) * 2006-08-08 2010-03-31 三菱重工業株式会社 RTM molding apparatus and RTM molded body manufacturing method

Also Published As

Publication number Publication date
WO2010021408A1 (en) 2010-02-25

Similar Documents

Publication Publication Date Title
TW201825438A (en) Ceramic composite devices and methods
KR20120099677A (en) Method for producing a component from a fiber-reinforced material
CN108504016A (en) A kind of heat-conducting pad and preparation method thereof
JP6119950B2 (en) Hollow structure electronic components
KR20120024507A (en) Method for manufacturing electronic parts device and resin composition sheet for electronic parts encapsulation
JP6421546B2 (en) Method for producing green molded body and method for producing inorganic sintered body
EP2091728A2 (en) Dimensionally stable, leak-free graphite substrate
WO2017169536A1 (en) Organic el panel and method for producing same
JP6467689B2 (en) Hollow structure electronic components
US20210340391A1 (en) 3D Printed Component Part Comprising a Matrix Material-Boron Nitride Composite, Method for Making a 3D Printed Component Part and Use of a 3D Printed Component Part
Huang et al. Preparation and thermal properties of epoxy composites filled with negative thermal expansion nanoparticles modified by a plasma treatment
Lee et al. 3D‐printed surface‐modified aluminum nitride reinforced thermally conductive composites with enhanced thermal conductivity and mechanical strength
KR102578320B1 (en) Method for manufacturing an electrical device comprising a covering material
WO2010021408A1 (en) Method for producing thermally conductive resin molding
KR100360161B1 (en) Method for manufacturing liquid crystal cell
WO2014181930A1 (en) Anisotropic liquid crystal composition for thermo-electric conduction and method for preparing heat-dissipating and electromagnetic wave-shielding matrix by using same
KR20160102214A (en) Method for manufacturing semiconductor device
KR101457181B1 (en) Improved heat conductivity and emissivity ceramic substrate for heat dissipation and method for manufacturing the same
Fei et al. Preliminary study on hybrid manufacturing of the electronic-mechanical integrated systems (EMIS) via the LCD stereolithography technology
WO2016063591A1 (en) Green molded body manufacturing method and inorganic sintered body manufacturing method
EP4099380A1 (en) Shell structures for thermal interface materials
US20180087215A1 (en) Multilayer prespreg structure and method of manufacturing the same
KR101310072B1 (en) Electrically insulative and thermally conductive ceramic/polymer composit powder and method for preparatin the same
JP2020070421A (en) Epoxy resin composition for encapsulation, electronic component and manufacturing method of electronic component
JP7161084B1 (en) Electronic component mounting board sealing method and thermosetting sheet