JPWO2009125702A1 - Heat sterilization water purifier - Google Patents

Heat sterilization water purifier

Info

Publication number
JPWO2009125702A1
JPWO2009125702A1 JP2010507219A JP2010507219A JPWO2009125702A1 JP WO2009125702 A1 JPWO2009125702 A1 JP WO2009125702A1 JP 2010507219 A JP2010507219 A JP 2010507219A JP 2010507219 A JP2010507219 A JP 2010507219A JP WO2009125702 A1 JPWO2009125702 A1 JP WO2009125702A1
Authority
JP
Japan
Prior art keywords
water
heat
heat collecting
untreated
sterilized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010507219A
Other languages
Japanese (ja)
Inventor
多佳志 下町
多佳志 下町
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagasaki University
Original Assignee
Nagasaki University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagasaki University filed Critical Nagasaki University
Publication of JPWO2009125702A1 publication Critical patent/JPWO2009125702A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D1/00Evaporating
    • B01D1/0011Heating features
    • B01D1/0029Use of radiation
    • B01D1/0035Solar energy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D5/00Condensation of vapours; Recovering volatile solvents by condensation
    • B01D5/0057Condensation of vapours; Recovering volatile solvents by condensation in combination with other processes
    • B01D5/0075Condensation of vapours; Recovering volatile solvents by condensation in combination with other processes with heat exchanging
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating
    • C02F1/04Treatment of water, waste water, or sewage by heating by distillation or evaporation
    • C02F1/14Treatment of water, waste water, or sewage by heating by distillation or evaporation using solar energy
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/04Disinfection
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/20Controlling water pollution; Waste water treatment
    • Y02A20/208Off-grid powered water treatment
    • Y02A20/212Solar-powered wastewater sewage treatment, e.g. spray evaporation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)

Abstract

本発明は、太陽光以外の外部動力を必要とせずに、メンテナンスフリーの加熱滅菌浄水器を提供する。本発明の加熱滅菌浄水器は、未処理水を滅菌するための集熱部2と、集熱部2で発生した滅菌された水蒸気を凝縮させる凝縮部3と、集熱部2への未処理水を供給する配管12に設置された第1の逆止弁4と、凝縮部3からの滅菌済みの処理水を貯蔵する貯蔵部5とを備える。さらに、凝縮部3と貯蔵部5との間に、滅菌された処理水を一方向へ流す第2の逆止弁6を備える。本発明では、水蒸気の凝縮の際に生じる減圧により間歇的に第1の逆止弁4が開き、未処理水が集熱部2へ吸引される。The present invention provides a maintenance-free heat-sterilized water purifier without requiring external power other than sunlight. The heat-sterilized water purifier of the present invention includes a heat collecting unit 2 for sterilizing untreated water, a condensing unit 3 for condensing sterilized water vapor generated in the heat collecting unit 2, and an untreated to the heat collecting unit 2. A first check valve 4 installed in a pipe 12 for supplying water and a storage unit 5 for storing sterilized treated water from the condensing unit 3 are provided. Further, a second check valve 6 is provided between the condensing unit 3 and the storage unit 5 to flow sterilized treated water in one direction. In the present invention, the first check valve 4 is intermittently opened by the reduced pressure generated during the condensation of water vapor, and the untreated water is sucked into the heat collecting unit 2.

Description

本発明は、飲み水として不適合な水を飲料水として利用可能にするための加熱滅菌浄水器に関する。   The present invention relates to a heat sterilized water purifier for making water that is incompatible as drinking water available as drinking water.

地球上では上水設備の不備により約11億人の人々が飲料に適した安全な飲み水を確保できないでいる。また、その中の約220万人の人々が毎年下痢の発症、コレラ、赤痢に感染し亡くなっている。被害例としてインドネシアを挙げると、赤痢による発症事例数が5歳未満1455事例、5歳以上5330事例にのぼり、コレラについては不定期に大量発症しており2002年の雨季にインドネシアのセレベス島では305事例、下痢の発症事例数はスマトラ島では214930事例報告されている。さらに、近年連続して東南アジアで発生した大地震による津波の被害で地表水が病原性細菌に汚染されたことは記憶に新しい。そのような状況下で細菌類に汚染されていない水を得るためには比較的汚染されている可能性が低い地下水を利用するか、滅菌する技術がなければ汚染した水を飲まざるを得ない。   About 1.1 billion people are unable to secure safe drinking water suitable for beverages on earth due to the lack of water supply facilities. In addition, about 2.2 million people among them die every year from the onset of diarrhea, cholera, and dysentery. As examples of damage, there are 1455 cases of dysentery under 5 years of age, 5455 and over 5330 cases, and cholera has occurred in large numbers on an irregular basis. In the 2002 rainy season, 305 in Celebes Island, Indonesia. The number of cases and cases of diarrhea have been reported in Sumatra Island. In addition, it is a new memory that surface water was contaminated with pathogenic bacteria due to the tsunami damage caused by major earthquakes in Southeast Asia in recent years. Under such circumstances, in order to obtain water that is not contaminated with bacteria, it is necessary to use groundwater that is relatively unlikely to be contaminated, or to drink contaminated water without sterilization techniques. .

上水設備が完備している先進国においても、自然災害によって上水設備が破壊されれば深刻な水問題が生じる。また、自然災害時においては上水道以外のライフラインも切断されている可能性が高く、特別な外部動力を要する浄水方法では対応できない。   Even in developed countries with water supply facilities, serious water problems will occur if water supply facilities are destroyed by natural disasters. In addition, in the event of a natural disaster, there is a high possibility that the lifeline other than the water supply is cut off, and it cannot be handled by a water purification method that requires special external power.

本発明者は、上水設備が未だ完備していない地域や災害等により上水設備が破壊された地域で水問題に苦しむ人を救うため、誰でも使用可能な太陽光の他には特別な動力が不要な太陽光浄水器の開発を行ってきた。これは凹面鏡により太陽光を集光して飲料に適さない水を加熱することで滅菌を行うものであるが、処理温度が低い場合には耐熱性がある細菌が完全に滅菌できなかった。この問題は処理温度を高温化することで解決できるように思われるが、利用可能な太陽エネルギーが一定である以上、処理温度を高くすれば処理時間の増大につながり、必然的に単位時間当たりに供給できる飲料水が減少するという結果となる。   In order to save people suffering from water problems in areas where water supply facilities are not yet complete or in areas where water supply facilities have been destroyed due to disasters, etc. We have been developing solar water purifiers that do not require power. In this method, sterilization is performed by concentrating sunlight with a concave mirror and heating water that is not suitable for beverages, but heat-resistant bacteria could not be completely sterilized when the treatment temperature was low. It seems that this problem can be solved by increasing the processing temperature. However, as long as the available solar energy is constant, increasing the processing temperature leads to an increase in processing time, and inevitably per unit time. The result is a reduction in the amount of drinking water that can be supplied.

太陽熱を利用して海水を淡水化する技術において、熱効率を高める目的で熱交換器にて未処理水を予熱する方式を開示している文献は多くあり、例えば特許文献1を挙げることができる。   In the technology for desalinating seawater using solar heat, there are many documents that disclose a method of preheating untreated water with a heat exchanger for the purpose of increasing thermal efficiency. For example, Patent Document 1 can be cited.

特開2004−160301号公報JP 2004-160301 A

上記特許文献1に開示している構成においては外部動力を必要とするポンプが含まれている。しかしながら、本発明者の目的が上水設備の整備されていない地域、あるいは災害によって上水設備が破壊された地域において飲料水を提供しようというものであるから、外部動力を必要とするポンプは使用できない可能性が高い。また、仮に太陽光以外の動力が利用可能でポンプによって未処理水を吸引することが可能であったとしても、太陽の照射条件によって浄水に要する処理時間が異なる。このため、完全に滅菌した飲料水を提供するためには、日照条件に応じて吸引量を調整する機構が別途必要となる。これは装置構成を複雑とし、装置のメンテナンスが必要となるばかりか、装置コストの増大につながる。   The configuration disclosed in Patent Document 1 includes a pump that requires external power. However, the inventor's purpose is to provide drinking water in areas where the water supply facilities are not maintained, or where the water supply facilities are destroyed by a disaster, so pumps that require external power are used. There is a high possibility of not being able to. Moreover, even if power other than sunlight can be used and untreated water can be sucked by a pump, the treatment time required for water purification differs depending on the irradiation conditions of the sun. For this reason, in order to provide completely sterilized drinking water, a separate mechanism for adjusting the amount of suction according to the sunshine conditions is required. This complicates the apparatus configuration, necessitates maintenance of the apparatus, and increases the apparatus cost.

そこで、本発明の目的は、太陽光以外には外部動力を必要とせず、メンテナンスの容易な加熱滅菌浄水器を提供することにある。 Accordingly, an object of the present invention is to provide a heat-sterilized water purifier that requires no external power other than sunlight and is easy to maintain.

本発明者は、太陽光処理水の一部が高温の水蒸気になっていることに着目し、これを利用して未処理水の吸引ができないかを検討した。その結果、例えば集光された太陽光にて未処理水を加熱する集熱部と熱交換器の形状を工夫することにより、水蒸気圧で処理水を集熱部より排出することが可能であり、熱交換器にて水蒸気が凝縮される際に生じる減圧(いわゆる負圧)を利用して新たな未処理水を吸引することが可能であることを見出した。   The present inventor paid attention to the fact that a part of the sunlight-treated water is high-temperature steam, and examined whether or not the untreated water can be sucked using this. As a result, for example, by devising the shape of the heat collector and heat exchanger that heats the untreated water with concentrated sunlight, it is possible to discharge the treated water from the heat collector with water vapor pressure. The present inventors have found that new untreated water can be sucked using a reduced pressure (so-called negative pressure) generated when water vapor is condensed in a heat exchanger.

本発明に係る加熱滅菌浄水器は、未処理水を滅菌するための集熱部と、集熱部で発生した滅菌された水蒸気を凝縮させる凝縮部と、集熱部への未処理水を供給する配管に設置された第1の逆止弁と、凝縮部からの滅菌済みの処理水を貯蔵する貯蔵部とを備える。そして、本加熱滅菌浄水器は、前記水蒸気の凝縮の際に生じる減圧により間歇的に第1の逆止弁が開き、未処理水が集熱部へ吸引されるように構成される。   The heat sterilization water purifier according to the present invention supplies a heat collecting part for sterilizing untreated water, a condensing part for condensing sterilized water vapor generated in the heat collecting part, and supplying untreated water to the heat collecting part The 1st non-return valve installed in the piping to perform and the storage part which stores the sterilized treated water from a condensation part are provided. And this heat sterilization water purifier is comprised so that a 1st non-return valve may open intermittently by the pressure_reduction | reduced_pressure which arises in the case of the said water vapor | steam condensation, and untreated water is attracted | sucked to a heat collecting part.

すなわち、本発明の加熱滅菌浄水器は、例えば太陽光、あるいは簡易に得られる熱源からの熱エネルギーが連続して得られている間は、自動的にかつ間歇的に処理水の排水と未処理水の吸引を行うポンプ機能を備えた浄水器である。   That is, the heat-sterilized water purifier of the present invention automatically and intermittently drains treated water and untreated while, for example, sunlight or heat energy from a heat source that is easily obtained is continuously obtained. It is a water purifier equipped with a pump function for sucking water.

本発明に係る加熱滅菌浄水器によれば、飲料水に適さない水を太陽光以外の外部動力を使用しないで飲料水に転換することができる。また、構成が単純であり、ほぼメンテナンスフリーで動作させることが可能である。
According to the heat-sterilized water purifier according to the present invention, water that is not suitable for drinking water can be converted into drinking water without using external power other than sunlight. In addition, the configuration is simple and it can be operated almost maintenance-free.

図1は本発明に係る加熱滅菌浄水器の実施の形態の基本的な構成図である。FIG. 1 is a basic configuration diagram of an embodiment of a heat sterilization water purifier according to the present invention. 図2は本発明に係る加熱滅菌浄水器の実験に用いた実施の形態の一例の構成図である。FIG. 2 is a configuration diagram of an example of an embodiment used in an experiment of a heat sterilization water purifier according to the present invention. 図3Aは本発明に係る集熱部とリザーバタンクをU字管で構成した一例を示す側面図、図3Bは正面図である。FIG. 3A is a side view showing an example in which the heat collecting part and the reservoir tank according to the present invention are configured by U-shaped tubes, and FIG. 3B is a front view. 図4は本発明に係る集熱部とリザーバタンクをU字管で構成した他の例を示す側面図である。FIG. 4 is a side view showing another example in which the heat collecting section and the reservoir tank according to the present invention are configured by U-shaped tubes. 図5は本発明に係る集熱部とリザーバタンクをU字管で構成した更に他の例を示す側面図である。FIG. 5 is a side view showing still another example in which the heat collecting section and the reservoir tank according to the present invention are configured by U-shaped tubes. 図6Aは本発明に係る多管型の集熱部の例を示す上面図、図6Bは正面図、図6Cは側面図である。6A is a top view showing an example of a multi-tube type heat collecting part according to the present invention, FIG. 6B is a front view, and FIG. 6C is a side view. 図7は本発明に係る凝縮器の他の例を示す断面図である。FIG. 7 is a sectional view showing another example of the condenser according to the present invention. 図8は本発明に係る加熱滅菌浄水器による滅菌実験、すなわち実験室内で培養した大腸菌、サルモネラ菌、ウェルシュ菌の滅菌実験の結果を示すグラフである。FIG. 8 is a graph showing the results of the sterilization experiment using the heat sterilization water purifier according to the present invention, that is, the sterilization experiment of Escherichia coli, Salmonella and Welsh bacteria cultured in the laboratory. 図9は本発明に係る加熱滅菌浄水器による滅菌実験、すなわち河川水における大腸菌群、従属栄養細菌の滅菌実験の結果を示すグラフである。FIG. 9 is a graph showing the results of a sterilization experiment using the heat sterilization water purifier according to the present invention, that is, a sterilization experiment of coliform bacteria and heterotrophic bacteria in river water. 図10は本発明に係る加熱滅菌浄水器における処理水温度及び未処理水温度の経時変化を示すグラフである。FIG. 10 is a graph showing temporal changes in the treated water temperature and the untreated water temperature in the heat sterilized water purifier according to the present invention. 図11は本発明に係る加熱滅菌浄水器における処理水量の経時変化を示すグラフである。FIG. 11 is a graph showing the change over time in the amount of treated water in the heat-sterilized water purifier according to the present invention. 代替凹面鏡を使用した場合の試験結果を示すグラフである。It is a graph which shows the test result at the time of using an alternative concave mirror.

1、21・・加熱滅菌浄水器
2、22・・集熱部
3、23・・凝縮器
3A、23A・・内筒管
3B、23B・・外筒管
4、24・・第1の逆止弁
5、25・・処理水の貯蔵部
6、26・・第2の逆止弁
7、27・・リザーバタンク
8、28・・未処理水の供給部
28b・・排出口
11、12、13、14、15・・配管
23Aa・・吸入口
23Ab・・排出口
23Ba・・吸入口
23Bb・・排出口
31・・未処理水
32・・処理水
33・・U字管
33A、33B・・垂直部
33Ab・・排出口
33Ba・・吸入口
34・・集熱板
35・・輻射熱、
41、42、44、45・・配管
46・・逆U字管
53・・低熱伝導率のチューブ
54、55・・金属直管
54b・・排出口
55a・・吸入口
57・・多管型集熱部
58・・金属パイプ
61、62・・連結部
61b・・排出口
62a・・吸入口
63・・有効集熱部
64・・プラスチック部材
66・・リザーバタンク
67・・チューブ
71・・凝縮器
72、73・・筒状体
1, 21 ... Heat sterilization water purifier 2, 22 ... Heat collecting part 3, 23 ... Condenser 3A, 23A ... Inner tube 3B, 23B ... Outer tube 4, 24 ... First check Valves 5, 25, treated water storage units 6, 26, second check valves 7, 27, reservoir tanks 8, 28, untreated water supply unit 28 b, discharge ports 11, 12, 13 , 14, 15 .. Piping 23Aa .. Suction port 23Ab. Portion 33Ab, Exhaust port 33Ba, Inlet port 34, Heat collecting plate 35, Radiant heat,
41, 42, 44, 45 ..Piping 46 ..Inverted U-shaped tube 53 ..Low thermal conductivity tube 54, 55 ..Metal straight tube 54 b ..Exhaust port 55 a ..Suction port 57. · Heat pipe 58 ·· Metal pipes 61 and 62 · · Connection portion 61b · · Outlet port 62a · · Inlet port 63 · · Effective heat collector 64 · · Plastic member 66 · · Reservoir tank 67 · · Tube 71 · · Condenser 72, 73 .. Tubular body

以下、図面を参照して本発明の実施の形態を説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1に、本発明に係る加熱滅菌浄水器の実施の形態の基本的な構成を示す。本実施の形態に係る加熱滅菌浄水器1は、未処理水を滅菌するための集熱部2と、加熱によって集熱部2で発生した滅菌された水蒸気を凝縮させ、未処理水の予熱を行う熱交換器を兼ねる凝縮部(以下、凝縮器という)3と、集熱部2へ未処理水を供給する配管12に設置された第1の逆止弁4と、凝縮器3から滅菌済みの処理水を貯蔵する貯蔵部5を備える。逆止弁4は、図1では集熱部2とリザーバタンク7との間の配管12に設置しているが、配管13に設置しても良い。図1の配置であれば、集熱部とリザーバタンク7を熱的に分離することが可能であり、集熱部の投入された熱を処理水の加熱に有効に利用できる。ただし、逆止弁4の抵抗により浄水器の処理能力が減少する可能性がある。逆止弁4が100℃程度の耐熱性が無い材料で構成されている場合には、配管13に設置する必要がある。   In FIG. 1, the basic composition of embodiment of the heat sterilization water purifier concerning this invention is shown. The heat sterilization water purifier 1 according to the present embodiment condenses the heat collecting unit 2 for sterilizing untreated water and the sterilized water vapor generated in the heat collecting unit 2 by heating, and preheats the untreated water. Sterilized from condenser 3 (hereinafter referred to as “condenser”) 3 serving as a heat exchanger to be performed, first check valve 4 installed in pipe 12 for supplying untreated water to heat collector 2, and condenser 3 The storage part 5 which stores this treated water is provided. In FIG. 1, the check valve 4 is installed in the pipe 12 between the heat collecting unit 2 and the reservoir tank 7, but may be installed in the pipe 13. With the arrangement shown in FIG. 1, the heat collecting part and the reservoir tank 7 can be thermally separated, and the heat input to the heat collecting part can be effectively used for heating the treated water. However, the treatment capacity of the water purifier may decrease due to the resistance of the check valve 4. When the check valve 4 is made of a material having no heat resistance of about 100 ° C., it needs to be installed in the pipe 13.

さらに、凝縮器3と処理水の貯蔵部5との間、本例では凝縮器3の処理水排出口には、処理水が逆流するのを防止するための第2の逆止弁6を設置する。この第2の逆止弁6がない場合には、滅菌された処理水が浄水器内に逆流することがあり、処理量が低下する。本例では第2の逆止弁6は凝縮器3の構成に含まれる。   Further, a second check valve 6 is installed between the condenser 3 and the treated water storage 5, in this example, at the treated water discharge port of the condenser 3 to prevent the treated water from flowing back. To do. If the second check valve 6 is not provided, the sterilized treated water may flow back into the water purifier, resulting in a reduction in the processing amount. In this example, the second check valve 6 is included in the configuration of the condenser 3.

効率的に蒸気を生成するためには、集熱部2は熱容量が小さく、かつ内部容積が小さいことが望ましい。しかしながら、未処理水が過加熱されて高温の蒸気となり集熱部2より排出された後に、未処理水が速やかに集熱部2に導入されないと浄水器の処理水量が低下する。集熱部2に速やかに未処理水を導入させる目的で、集熱部2の直前にリザーバタンク7を設置することができる。リザーバタンク7を集熱部2に近接対向して設置することで、集熱部2からの輻射熱で未処理水を余熱することも可能である。   In order to generate steam efficiently, it is desirable that the heat collecting unit 2 has a small heat capacity and a small internal volume. However, the amount of treated water in the water purifier is reduced unless the untreated water is quickly introduced into the heat collecting unit 2 after the untreated water is overheated to become high-temperature steam and discharged from the heat collecting unit 2. For the purpose of promptly introducing untreated water into the heat collecting unit 2, the reservoir tank 7 can be installed immediately before the heat collecting unit 2. By installing the reservoir tank 7 in close proximity to the heat collecting unit 2, it is possible to preheat untreated water with radiant heat from the heat collecting unit 2.

凝縮器3は、集熱部2で発生した水蒸気が導かれる第1の筒状体と、第1の筒状体に送られた水蒸気を冷却し凝縮させるための未処理水が導かれる第2の筒状体を有して構成される。本例の凝縮器3は、水蒸気が導かれる内筒管3Aと、未処理水が導かれる外筒管3Bを有する2重構造で構成されている。   The condenser 3 has a first cylindrical body to which water vapor generated in the heat collecting section 2 is guided, and a second pipe to which untreated water for cooling and condensing the water vapor sent to the first cylindrical body is guided. It has a cylindrical body. The condenser 3 of this example is configured by a double structure having an inner cylindrical tube 3A through which water vapor is guided and an outer cylindrical tube 3B through which untreated water is guided.

内筒管3Aの吸入口3Aaと集熱部2の排出口2bとは配管11により接続され、内筒管3Aの排出口3Abは第2の逆止弁6を介して配管15に接続される。この配管15は処理水の貯蔵部5に通じている。外筒管3Bの吸入口3Baは未処理水の供給部8からの配管14に接続され、外筒管3Bの排出口3Bbとリザーバタンク7の吸入口7aとは配管13により接続される。リザーバタンク7の排出口7bと集熱部2の吸入口2aとは第1の逆止弁4を介して配管12により接続される。この配管12は、集熱部2の熱容量を小さく保つために、断熱性の高い材質で形成することが望ましい。   The suction port 3Aa of the inner tube 3A and the discharge port 2b of the heat collecting section 2 are connected by a pipe 11, and the discharge port 3Ab of the inner tube 3A is connected to a pipe 15 via a second check valve 6. . The pipe 15 communicates with the treated water storage unit 5. The suction port 3Ba of the outer tube 3B is connected to a pipe 14 from the untreated water supply unit 8, and the discharge port 3Bb of the outer tube 3B and the suction port 7a of the reservoir tank 7 are connected by a pipe 13. The discharge port 7 b of the reservoir tank 7 and the suction port 2 a of the heat collecting unit 2 are connected by a pipe 12 via the first check valve 4. In order to keep the heat capacity of the heat collecting section 2 small, it is desirable that the pipe 12 be formed of a material having high heat insulation.

リザーバタンク7を設けないときは、凝縮器3の外筒管3Bの排出口3Bbは配管12を介して第1の逆止弁4に接続される。   When the reservoir tank 7 is not provided, the discharge port 3Bb of the outer tube 3B of the condenser 3 is connected to the first check valve 4 via the pipe 12.

集熱部2を加熱する熱源としては、通常は太陽光を用いる。太陽光を熱源とするときは、図示しないが、凹面鏡を配置してこの凹面鏡で太陽光を集光して集熱部2へ照射するようになす。太陽光が得られないときは、例えばバーナー、焚き火などの簡易に得られる熱源を用いて集熱部2を加熱することも可能である。   As a heat source for heating the heat collecting unit 2, sunlight is usually used. When sunlight is used as a heat source, although not shown, a concave mirror is arranged so that sunlight is condensed by this concave mirror and irradiated to the heat collecting unit 2. When sunlight cannot be obtained, it is also possible to heat the heat collection part 2 using the heat source obtained easily, such as a burner and a bonfire, for example.

次に、本実施形態の加熱滅菌浄水器1の動作を説明する。動作開始時には、供給部8から未処理水が配管経路を通じて集熱部2に供給される。熱源を太陽光としたときには、太陽エネルギーは凹面鏡(図示せず)にて集光され、集熱部2を加熱する。この加熱で集熱部2内の未処理水が過加熱・突沸して水蒸気化する過程で未処理水中に含まれる細菌類等が滅菌される。滅菌された水蒸気は、この水蒸気圧にて集熱部2より排出されて凝縮器3へ送られる。集熱条件によっては集熱部2内の未処理水の全てが水蒸気になるが、通常は水蒸気と熱水の混合状態となる。熱水の状態でも滅菌される。凝縮器3の内筒管3Aに送られた水蒸気(あるいは水蒸気及び熱水)は、外筒管3B内の冷たい未処理水により冷却され、凝縮され水に戻される。この処理水は、上記水蒸気圧により第2の逆止弁6を通じて貯蔵部5に貯蔵される。   Next, operation | movement of the heat sterilization water purifier 1 of this embodiment is demonstrated. At the start of operation, untreated water is supplied from the supply unit 8 to the heat collection unit 2 through the piping path. When the heat source is sunlight, solar energy is collected by a concave mirror (not shown) and heats the heat collecting unit 2. Bacteria and the like contained in the untreated water are sterilized in the process in which the untreated water in the heat collecting section 2 is overheated, bumped and steamed by this heating. The sterilized water vapor is discharged from the heat collecting unit 2 at this water vapor pressure and sent to the condenser 3. Depending on the heat collecting conditions, all of the untreated water in the heat collecting section 2 becomes water vapor, but usually it is in a mixed state of water vapor and hot water. Sterilized even in hot water. The water vapor (or water vapor and hot water) sent to the inner tube 3A of the condenser 3 is cooled by the cold untreated water in the outer tube 3B, condensed and returned to the water. This treated water is stored in the storage unit 5 through the second check valve 6 by the water vapor pressure.

水蒸気が冷却、凝縮されて水に戻されると同時に、未処理水が集熱部2へ吸引される。すなわち、凝縮器3内で水蒸気水が冷却され凝縮することにより、集熱部2から配管11、さらに凝縮器3の内筒管3A内の一部が減圧され負圧となり、第1の逆止弁4が開き、未処理水が集熱部2内に吸引される。集熱部2内に未処理水が吸引されると、再び第1の逆止弁4が閉じ、未処理水の吸引は停止する。第2の逆止弁6は、処理水を一方向へ流すための弁であり、上記負圧のときは閉じられるので処理水の逆流が阻止され、処理水と未処理水が混ざり合うことはない。   The steam is cooled and condensed and returned to the water, and at the same time, the untreated water is sucked into the heat collecting unit 2. That is, when the steam water is cooled and condensed in the condenser 3, a part of the pipe 11 and the inner tube 3 </ b> A of the condenser 3 are reduced in pressure from the heat collecting section 2 to a negative pressure, and the first check The valve 4 is opened, and untreated water is sucked into the heat collecting unit 2. When untreated water is sucked into the heat collecting unit 2, the first check valve 4 is closed again, and suction of untreated water is stopped. The second check valve 6 is a valve for flowing the treated water in one direction, and is closed when the pressure is negative, so that the treated water is prevented from flowing backward, and the treated water and the untreated water are mixed. Absent.

第1の逆止弁4が閉じるのは、後述で明らかとなるが、未処理水の界面より貯蔵部5に配置された配管15の処理水排出口が高い位置にあることで、その高さの差に応じた予圧(正圧)が第1の逆止弁4にかかり、弁が閉じられる。そして、再び上記の動作が繰り替えされて、未処理水が滅菌された処理水となり、貯蔵部5へ処理水が貯蔵される。   As will be described later, the first check valve 4 is closed, but the height of the treated water discharge port of the pipe 15 arranged in the storage unit 5 is higher than the interface of the untreated water. A preload (positive pressure) corresponding to the difference is applied to the first check valve 4 and the valve is closed. Then, the above operation is repeated again so that the untreated water becomes sterilized treated water, and the treated water is stored in the storage unit 5.

凝縮器3では、水蒸気と熱水の混合物が未処理水で冷却されるが、同時に未処理水は水蒸気と熱水の混合物からの熱を奪って予熱される。一方、集熱部2が太陽エネルギーで加熱されるが、その熱の一部は輻射熱の形でリザーバタンク7を加熱することになり、リザーバタンク7内の未処理水が予熱される。この予熱された未処理水が集熱部2へ吸引されることになる。   In the condenser 3, the mixture of steam and hot water is cooled with untreated water, but at the same time, the untreated water is preheated by taking heat from the mixture of steam and hot water. On the other hand, although the heat collection part 2 is heated with solar energy, a part of the heat will heat the reservoir tank 7 in the form of radiant heat, and the untreated water in the reservoir tank 7 is preheated. This preheated untreated water is sucked into the heat collecting section 2.

上述の加熱滅菌浄水器1によれば、発生する水蒸気と、第1の逆止弁4と、凝縮器3とによってポンプ機構が構成される。このポンプ機能により、処理水の排出、未処理水の吸引が同時に行われ、しかも太陽光が照射している間は、この滅菌浄化処理が間歇的にかつ自動的に行われる。逆に、太陽光による十分な熱エネルギーが得られないときは、水蒸気化せず、ポンプ機能が働かないので、本浄水器1は動作しない。これによって、滅菌されない処理水が得られる恐れはなく、動作の安全性が確保される。太陽光を利用できないときには、例えばバーナーや焚き火等の簡易に得られる熱源により、同様の滅菌浄化処理を行うことができる。   According to the heat sterilization water purifier 1 described above, the generated steam, the first check valve 4 and the condenser 3 constitute a pump mechanism. By this pump function, discharge of treated water and suction of untreated water are performed simultaneously, and this sterilization purification process is performed intermittently and automatically while sunlight is radiated. Conversely, when sufficient heat energy from sunlight cannot be obtained, the water purifier 1 does not operate because it is not steamed and the pump function does not work. Thereby, there is no fear that treated water that is not sterilized can be obtained, and the safety of the operation is ensured. When sunlight cannot be used, the same sterilization purification process can be performed with a heat source that can be easily obtained, such as a burner or a bonfire.

従って、本浄水器1は、太陽光、あるいはバーナーや焚き火等の簡易に得られる熱源以外の外部動力を必要とせずに、飲料に適さない水を飲料水に転換することができる。また、構成が単純であり、ほぼメンテナンスフリーで動作させることができる。   Therefore, this water purifier 1 can convert the water which is not suitable for a drink into drinking water, without requiring external power other than sunlight or the heat source obtained easily, such as a burner and a bonfire. In addition, the configuration is simple and it can be operated almost maintenance-free.

凝縮器3では、未処理水が水蒸気と熱水の混合物からの熱を奪って予熱される。この予熱された未処理水が集熱部2へ吸引されるので、集熱部2において未処理水を効率よく加熱することができる。また、リザーバタンク7を備えるときは、集熱部2に未処理水を速やかに導入されると同時に、このリザーバタンク7内の未処理水が集熱部2からの輻射熱で予熱され、凝縮器3での予熱と相俟って、集熱部2での未処理水をさらに効率よく加熱することができる。この予熱機能により処理時間を短縮させることができる。   In the condenser 3, the untreated water is preheated by taking heat from the mixture of steam and hot water. Since the preheated untreated water is sucked into the heat collecting unit 2, the untreated water can be efficiently heated in the heat collecting unit 2. When the reservoir tank 7 is provided, the untreated water is quickly introduced into the heat collecting unit 2 and at the same time, the untreated water in the reservoir tank 7 is preheated by the radiant heat from the heat collecting unit 2, and the condenser In combination with the preheating at 3, the untreated water at the heat collecting section 2 can be heated more efficiently. This preheating function can shorten the processing time.

図2に、さらに本発明の理解を容易にするために、実験で用いた実施の形態の一例を示す。本実施の形態に係る加熱滅菌浄水器21は、図1と同様に、集熱部22と、リザーバタンク27と、熱交換器を兼ねる凝縮器23と、第1の逆止弁24と、第2の逆止弁26を備える。さらに集熱部22に対向する位置に、太陽光Lを反射して集熱部22へ集光させるための凹面鏡29が配置される。また、未処理水31を収容した未処理水収容部28と、処理された処理水32を貯蔵する処理水貯蔵部25とが配置される。未処理水収容部28と処理水貯蔵部25は、この例では同じ高さ、同じ容積のガラス容器を用い、高さの異なる面上に配置される。   FIG. 2 shows an example of an embodiment used in an experiment in order to facilitate understanding of the present invention. The heat sterilization water purifier 21 according to the present embodiment includes a heat collecting unit 22, a reservoir tank 27, a condenser 23 also serving as a heat exchanger, a first check valve 24, Two check valves 26 are provided. Further, a concave mirror 29 for reflecting the sunlight L and condensing it on the heat collecting unit 22 is disposed at a position facing the heat collecting unit 22. Moreover, the untreated water accommodating part 28 which accommodated the untreated water 31 and the treated water storage part 25 which stores the treated water 32 processed are arrange | positioned. In this example, the untreated water storage unit 28 and the treated water storage unit 25 are disposed on surfaces having different heights using glass containers having the same height and the same volume.

そして、本実施の形態では、集熱部22とリザーバタンク27が、1つのU字管33によって構成される。すなわち、図2及び図3に示すように、U字管33の集熱側となる一方の垂直部33Aと、この垂直部33Aに一体に接合した集熱板34とにより集熱部22が構成される。この一方の垂直部33Aは凹面鏡29に対向しており、垂直部33Aの凹面鏡29側とは反対側に集熱板34が接合される。また、U字管33の他方の垂直部33Bは、リザーバタンクとして構成される。U字管33は、例えば真鍮製丸パイプをU字状に加工して形成することができる。   In the present embodiment, the heat collecting unit 22 and the reservoir tank 27 are configured by one U-shaped tube 33. That is, as shown in FIGS. 2 and 3, the heat collecting portion 22 is constituted by one vertical portion 33A on the heat collecting side of the U-shaped tube 33 and a heat collecting plate 34 integrally joined to the vertical portion 33A. Is done. The one vertical portion 33A faces the concave mirror 29, and a heat collecting plate 34 is joined to the opposite side of the vertical portion 33A to the concave mirror 29 side. The other vertical portion 33B of the U-shaped tube 33 is configured as a reservoir tank. The U-shaped tube 33 can be formed, for example, by processing a brass round pipe into a U shape.

集熱板34を太陽光の入射側から見て、U字管33の垂直部33Aの背面側に接合した構成とすることで、垂直部33Aに対し優先的に太陽光を照射することができ、垂直部33Aに対する加熱効率を高めることができる。同時に集熱板34からの輻射熱35によりリザーバタンクとして構成される他方の垂直部33Bに対する予熱も効率よく行える。   When the heat collecting plate 34 is viewed from the sunlight incident side and is configured to be joined to the back side of the vertical portion 33A of the U-shaped tube 33, the vertical portion 33A can be preferentially irradiated with sunlight. The heating efficiency for the vertical portion 33A can be increased. At the same time, the other vertical portion 33B configured as a reservoir tank can be efficiently preheated by the radiant heat 35 from the heat collecting plate.

集熱板34を接合したU字管33は、図示しないが、集熱部22で得られた熱を出来るだけ外部に放散させないために、太陽光を受ける領域を除いて周りを保温部材で被覆し、外側を熱的影響を受けない金属材で被覆するようにしても良い。   Although not shown, the U-shaped tube 33 joined with the heat collecting plate 34 is covered with a heat retaining member around the area except for a region receiving sunlight so as not to dissipate the heat obtained in the heat collecting unit 22 to the outside as much as possible. However, the outside may be covered with a metal material that is not affected by heat.

凝縮器23は、水蒸気が導入される内筒管23Aと、冷却のための未処理水が導入される外筒管23Bとを有する二重構造で構成される。U字管33の集熱部22となる一方の垂直部33Aの排出口33Abと、凝縮器23における内筒部33Aの吸入口23Aaとは、例えば断熱性の高い材質からなる配管41にて接続される。U字管33のリザーバタンクとなる他方の垂直部33Bの吸入口33Baと、凝縮器23における外筒部23Bの排出口23Bbとは、例えば断熱性の高い材質からなる配管42にて接続される。この配管42の途上に第1の逆止弁24が設置される。凝縮器23における外筒部23Bの吸入口23Baと、未処理水収容部28の下部側の排出口28bとは、例えば断熱性の高い材質からなる配管44にて接続される。   The condenser 23 has a double structure having an inner tube 23A into which water vapor is introduced and an outer tube 23B into which untreated water for cooling is introduced. The discharge port 33Ab of one vertical portion 33A that becomes the heat collecting portion 22 of the U-shaped tube 33 and the suction port 23Aa of the inner cylinder portion 33A of the condenser 23 are connected by, for example, a pipe 41 made of a highly heat-insulating material. Is done. The suction port 33Ba of the other vertical portion 33B serving as the reservoir tank of the U-shaped tube 33 and the discharge port 23Bb of the outer cylinder portion 23B of the condenser 23 are connected by, for example, a pipe 42 made of a highly heat-insulating material. . The first check valve 24 is installed in the middle of the pipe 42. The suction port 23Ba of the outer cylinder part 23B in the condenser 23 and the discharge port 28b on the lower side of the untreated water storage unit 28 are connected by, for example, a pipe 44 made of a highly heat-insulating material.

凝縮器33では、内筒管23Aの上端側が吸入口23Aaとなり、下端側が排出口23Abとなる。また、外筒管23Bの吸入口23Ba及び排出口23Bbは、外筒管23Bの側面に形成され、かつ排出口23Bbが上端側に形成され、吸入口23Baが下端側に形成される。外筒管23B内では未処理水が下から上へ流れるようにしている。これは向流型の方が熱交換率が高いからである。また、予熱された未処理水からは溶存していた気体成分が泡となって出てくることがあり、これが凝集部の中に溜まり過ぎると熱交換率だけでなく処理水量も低下するため、未処理水の排出口23Bbは上端側に設置し、気泡が排出されやすいようにしている。   In the condenser 33, the upper end side of the inner tube 23A is the suction port 23Aa, and the lower end side is the discharge port 23Ab. Further, the suction port 23Ba and the discharge port 23Bb of the outer tube 23B are formed on the side surface of the outer tube 23B, the discharge port 23Bb is formed on the upper end side, and the suction port 23Ba is formed on the lower end side. In the outer tube 23B, untreated water flows from the bottom to the top. This is because the countercurrent type has a higher heat exchange rate. In addition, dissolved gas components may come out as bubbles from the preheated untreated water, and if this accumulates too much in the agglomerated part, not only the heat exchange rate but also the amount of treated water will decrease. The untreated water discharge port 23Bb is installed on the upper end side so that bubbles are easily discharged.

さらに、凝縮器23における内筒部23Aの排出口23Abが、例えば柔軟性を有する樹脂チューブからなる配管45の一端に接続される。配管45の他端には逆U字管46の一端が接続され、逆U字管46が処理水貯蔵部25の上縁に支持されるようにして、逆U字管46の他端が処理水貯蔵部25内に挿入される。この配管26の凝縮器23との接続部近傍に第2の逆止弁26が設置される。   Further, the outlet 23Ab of the inner cylinder portion 23A in the condenser 23 is connected to one end of a pipe 45 made of, for example, a flexible resin tube. One end of the inverted U-shaped tube 46 is connected to the other end of the pipe 45, and the other end of the inverted U-shaped tube 46 is treated so that the inverted U-shaped tube 46 is supported on the upper edge of the treated water storage unit 25. It is inserted into the water storage unit 25. A second check valve 26 is installed in the vicinity of the connection portion between the pipe 26 and the condenser 23.

次に、図2の実施の形態に係る加熱滅菌浄水器21の動作を説明する。この加熱滅菌浄水器21では、未処理水収容部28の未処理水31の界面aより処理水貯蔵部25の上縁に支持された逆U字管46の排出口46bの位置bが上方にある。この界面aと位置bとの高さの差hに応じた予圧(正圧)が第1の逆止弁24に加わっている間は、第1の逆止弁24は閉じた状態になり、未処理水31は集熱部22に供給されない。   Next, operation | movement of the heat sterilization water purifier 21 which concerns on embodiment of FIG. 2 is demonstrated. In the heat sterilized water purifier 21, the position b of the outlet 46 b of the inverted U-shaped tube 46 supported on the upper edge of the treated water storage unit 25 from the interface a of the untreated water 31 of the untreated water storage unit 28 is upward. is there. While the preload (positive pressure) corresponding to the height difference h between the interface a and the position b is applied to the first check valve 24, the first check valve 24 is in a closed state, Untreated water 31 is not supplied to the heat collector 22.

先ず、逆U字管46を処理水貯蔵部25より外し、逆U字管46の排出口46bの位置を未処理水31の界面aより低い位置まで下ろして、未処理水31を、配管経路を通じてU字管33の集熱部22となる垂直部33A内へ供給する。その後、逆U字管46は元の位置b、すなわち処理水貯蔵部25の上縁に支持される。これによって、第1の逆止弁24は再び閉じた状態に戻る。   First, the reverse U-shaped pipe 46 is removed from the treated water storage unit 25, the position of the outlet 46b of the reversed U-shaped pipe 46 is lowered to a position lower than the interface a of the untreated water 31, and the untreated water 31 is supplied to the piping path. Then, the gas is supplied into the vertical portion 33 </ b> A serving as the heat collecting portion 22 of the U-shaped tube 33. Thereafter, the inverted U-shaped tube 46 is supported at the original position b, that is, the upper edge of the treated water storage unit 25. As a result, the first check valve 24 returns to the closed state again.

この状態において、凹面鏡29により集光された太陽光Lが集熱部22に照射され、集熱部22が加熱される。これにより、集熱部22内の未処理水が過加熱され、突沸して水蒸気となり細菌類は滅菌される。集熱部22内の未処理水は、集熱条件によっては全てが水蒸気となるが、通常は水蒸気と熱水の混合物となる。この水蒸気と熱水の混合物は、その水蒸気圧により凝縮器23の内筒管23Aに送られ、ここにおいて、外筒管23B内の未処理水31(例えば水温20℃)により冷却され、凝縮されて滅菌された処理水となる。この処理水32は、水蒸気圧により第2の逆止弁26及び配管45を通り処理水貯蔵部25内に貯蔵される。   In this state, the sunlight L collected by the concave mirror 29 is irradiated to the heat collecting unit 22 and the heat collecting unit 22 is heated. As a result, the untreated water in the heat collecting section 22 is overheated, bumps into water vapor, and the bacteria are sterilized. The untreated water in the heat collecting unit 22 becomes all water vapor depending on the heat collecting conditions, but is usually a mixture of water vapor and hot water. This mixture of water vapor and hot water is sent to the inner tube 23A of the condenser 23 by the water vapor pressure, where it is cooled and condensed by untreated water 31 (for example, water temperature 20 ° C.) in the outer tube 23B. Sterilized treated water. The treated water 32 is stored in the treated water storage unit 25 through the second check valve 26 and the pipe 45 by the water vapor pressure.

ここで、集熱部22では、U字管33の一方の垂直部33Aに集熱板34が接合されている。このため、有効集熱部51は、図3Bに示すように垂直33Aを中心に集熱板34の全域とすることができ、効率よく垂直部33A内の未処理水を加熱することができる。集熱板34は垂直部33Aの背面に形成されているので、垂直部33Aに対する加熱効率が良好になる。すなわち、垂直部33Aが直接太陽光を受けることになり、集熱板34を垂直部33Aの前面に接合した場合に比べて、垂直部33Aに対する加熱効率が向上する。   Here, in the heat collecting part 22, a heat collecting plate 34 is joined to one vertical part 33 </ b> A of the U-shaped tube 33. For this reason, as shown in FIG. 3B, the effective heat collection part 51 can be the entire area of the heat collection plate 34 centering on the vertical 33A, and can efficiently heat the untreated water in the vertical part 33A. Since the heat collecting plate 34 is formed on the back surface of the vertical portion 33A, the heating efficiency for the vertical portion 33A is improved. That is, the vertical portion 33A receives sunlight directly, and the heating efficiency for the vertical portion 33A is improved as compared with the case where the heat collecting plate 34 is joined to the front surface of the vertical portion 33A.

凝縮器23内で水蒸気が冷却され凝縮することにより、集熱部22から配管41、さらに凝縮器23の内筒管23Aの一部にわたって負圧となることから、第1の逆止弁24が開き、未処理水31がU字管33のリザーバタンク27となる他方の垂直部33Bを通じて集熱部22内に吸引される。すなわち、処理水として排出されると同時に、次の未処理水が集熱部22内に吸入される。   Since the water vapor is cooled and condensed in the condenser 23, a negative pressure is generated from the heat collecting section 22 to the pipe 41 and a part of the inner tube 23 </ b> A of the condenser 23. The untreated water 31 is opened and sucked into the heat collecting part 22 through the other vertical part 33 </ b> B which becomes the reservoir tank 27 of the U-shaped pipe 33. That is, at the same time as the treated water is discharged, the next untreated water is sucked into the heat collecting unit 22.

水蒸気が冷却され凝縮されて生じる負圧は、高さの差hに応じて得られる正圧(予圧)より大きくなるので、第1の逆止弁24が開き、未処理水を集熱部22内に吸引する。このときの吸引力は弱く、未処理水はU字管33の一方の垂直部33A、すなわち有効集熱部内のみに吸引される。   Since the negative pressure generated by cooling and condensing the water vapor is greater than the positive pressure (preload) obtained according to the height difference h, the first check valve 24 is opened, and the untreated water is removed from the heat collecting unit 22. Aspirate into. At this time, the suction force is weak, and the untreated water is sucked only into one vertical portion 33A of the U-shaped tube 33, that is, within the effective heat collecting portion.

集熱部33となる垂直部33A内のみに未処理水が吸引された後、第1の逆止弁24が再び上記正圧により閉じられ、未処理水の吸入は停止する。   After untreated water is sucked only into the vertical portion 33A serving as the heat collecting portion 33, the first check valve 24 is closed again by the positive pressure, and the suction of untreated water is stopped.

集熱部22の垂直部33A内へ吸引される未処理水は、U字管33におけるリサーバタンク27となる他方の垂直部33B内の未処理水となる。垂直部33B内の未処理水は、太陽光Lで加熱された集熱板34からの輻射熱35で予熱されているので、この予熱された未処理水が垂直部33Aに入り、加熱されるので加熱効率向上する。また、凝縮器23では、外筒管23B内の未処理水で内筒管23Aに排出された水蒸気が冷却され、凝縮されることから、ここでの熱交換で未処理水が予熱されることになる。未処理水の凝縮器23での予熱と、リザーバタンク27での予熱で、集熱部22における未処理水に対する加熱効率はさらに向上する。   Untreated water sucked into the vertical portion 33 </ b> A of the heat collecting unit 22 becomes untreated water in the other vertical portion 33 </ b> B that becomes the reservoir tank 27 in the U-shaped tube 33. Since the untreated water in the vertical portion 33B is preheated by the radiant heat 35 from the heat collecting plate 34 heated by the sunlight L, the preheated untreated water enters the vertical portion 33A and is heated. Increases heating efficiency. Moreover, in the condenser 23, since the water vapor | steam discharged | emitted by the inner cylinder pipe 23A with the untreated water in the outer cylinder pipe 23B is cooled and condensed, untreated water is preheated by heat exchange here. become. By preheating the untreated water in the condenser 23 and preheating in the reservoir tank 27, the heating efficiency of the untreated water in the heat collecting unit 22 is further improved.

そして、再び未処理水が加熱されて滅菌処理され、滅菌された処理水32が処理水貯蔵部25へ貯蔵されると共に、未処理水31は集熱部22へ吸引される。太陽光が照射されている間は、この動作が間歇的に繰り返され、自動的に処理水31が貯蔵部25に貯えられる。   Then, the untreated water is heated again and sterilized, and the sterilized treated water 32 is stored in the treated water storage unit 25 and the untreated water 31 is sucked into the heat collecting unit 22. While the sunlight is applied, this operation is intermittently repeated, and the treated water 31 is automatically stored in the storage unit 25.

凝縮器23は、水蒸気の凝縮機能と、未処理水に対する予熱機能と、第1の逆止弁24との共動によるポンプ機能を備える。このポンプ機能により、上記動作が間歇的に行われる。   The condenser 23 has a water vapor condensing function, a preheating function for untreated water, and a pump function by co-operation with the first check valve 24. The above operation is performed intermittently by this pump function.

そして、動作開始の初期段階では、処理水と未処理水が混在している恐れがあるので、複数サイクル動作させて滅菌処理された処理水31が安定して得られた時点で、一旦、貯蔵部25内の水を排出し、動作を継続させて貯蔵部25内に確実に処理水32のみを貯蔵するようになす。   In the initial stage of the operation start, treated water and untreated water may be mixed, so once treated water 31 that has been sterilized by multiple cycles of operation is stably obtained, it is temporarily stored. The water in the unit 25 is discharged, and the operation is continued to ensure that only the treated water 32 is stored in the storage unit 25.

ここで、図2の例では、未処理水収容部28と処理水貯蔵部25をガラス容器を用いているために、滅菌処理が進むにつれて、未処理水31の界面aが下がり、界面aと逆U字管46の排出口46bの位置bとの高さの差hが大きくなる。しかし、実際には、池、川から直接未処理水を供給することを考慮すると、未処理水の界面aは変化しないので、常に一定の高さの差hを維持することができ、連続して安定に動作させることができる。   Here, in the example of FIG. 2, since the glass container is used for the untreated water storage unit 28 and the treated water storage unit 25, as the sterilization process proceeds, the interface a of the untreated water 31 decreases, and the interface a The height difference h from the position b of the discharge port 46b of the inverted U-shaped tube 46 is increased. However, in actuality, considering that the untreated water is supplied directly from the pond or river, the interface a of the untreated water does not change, so that a constant height difference h can be maintained constantly. And stable operation.

上述した本実施の形態に係る加熱滅菌浄水器21によれば、前述の基本的な構成と同様に、発生する水蒸気と、第1の逆止弁24と、凝縮器23とによって構成されたポンプ機構により、処理水の排出と、未処理水の吸入が同時に行われる。そして、この動作が間歇的にかつ自動的に行われ、太陽光が利用できる間は連続して未処理水を滅菌処理された処理水に転換することができる。また、集熱部22とリザーバタンク27とをU字管33と集熱板34によって構成し、凝縮器23を内筒管23A及び外筒管23Bの二重構造にて構成することにより、浄水器全体の構成を簡素化することができる。しかも浄水器21はほぼメンテナンスフリーで動作させることができる。   According to the heat-sterilized water purifier 21 according to the present embodiment described above, a pump constituted by the generated water vapor, the first check valve 24, and the condenser 23, as in the basic configuration described above. The mechanism discharges treated water and sucks untreated water at the same time. And this operation | movement is performed intermittently and automatically, and while sunlight can be utilized, untreated water can be continuously converted into the sterilized treated water. Further, the heat collecting section 22 and the reservoir tank 27 are constituted by the U-shaped pipe 33 and the heat collecting plate 34, and the condenser 23 is constituted by a double structure of the inner cylindrical pipe 23A and the outer cylindrical pipe 23B. The configuration of the entire vessel can be simplified. Moreover, the water purifier 21 can be operated almost maintenance-free.

凝縮器23の処理水の排出側に設けた第2の逆止弁26は処理水を一方向に流すための弁である。この第2の逆止弁26は、第1の逆止弁24が閉じたときには開き、第1の逆止弁24が開いたときには閉じる。この第2の逆止弁26により、負圧が発生したときに処理水の逆流を防ぐことができる。この第2の逆止弁26があることで、ポンプ機能の能力を上げることができる。   The second check valve 26 provided on the treated water discharge side of the condenser 23 is a valve for flowing the treated water in one direction. The second check valve 26 is opened when the first check valve 24 is closed, and is closed when the first check valve 24 is opened. The second check valve 26 can prevent the backflow of the treated water when a negative pressure is generated. The presence of the second check valve 26 can increase the capacity of the pump function.

凝縮器23における外筒管23B内の未処理水は、内筒管23A内に導入された水蒸気が冷却、凝縮されるときに、熱を奪い予熱される。一方、U字管33のリザーバタンク27となる他方の垂直部33B内の未処理水は、集熱板34からの輻射熱により予熱される。両者で予熱された未処理水が集熱部22に吸引されるので、集熱部22での未処理水に対する加熱効率が上がり、処理時間の短縮を図ることができる。   The untreated water in the outer tube 23B in the condenser 23 is preheated by removing heat when the water vapor introduced into the inner tube 23A is cooled and condensed. On the other hand, the untreated water in the other vertical portion 33 </ b> B that becomes the reservoir tank 27 of the U-shaped tube 33 is preheated by the radiant heat from the heat collecting plate 34. Since the untreated water preheated by both is sucked into the heat collecting part 22, the heating efficiency of the untreated water in the heat collecting part 22 is increased, and the treatment time can be shortened.

凝縮器33の外筒管33Bでは、上端側に排出口33Bbを設け、下端側に吸入口33Baを設けて、予熱された未処理水中に溶存していた気体が原因で発生する気泡が排出されやすくしている。   In the outer tube 33B of the condenser 33, a discharge port 33Bb is provided on the upper end side, and a suction port 33Ba is provided on the lower end side, and bubbles generated due to the gas dissolved in the preheated untreated water are discharged. It is easy.

太陽光を利用する場合は、太陽光による熱エネルギーが十分得られなければ、水蒸気が発生せず、本浄水器21は動作しないので、浄水器としての機能は停止する。従って滅菌されない水は絶対に排出することはなく、処理水の安全性が確保される。換言すれば、本浄水器21は、安全装置の機能も備えていることになる。   When using sunlight, if sufficient heat energy from sunlight is not obtained, water vapor is not generated and the water purifier 21 does not operate, so the function as a water purifier is stopped. Therefore, water that is not sterilized is never discharged, and the safety of the treated water is ensured. In other words, the water purifier 21 also has a function of a safety device.

上例では熱源として太陽光を使用しているが、必要な熱量が得られれば他の熱源を使用しても、処理水の排出と未処理水の吸引を同時に行うポンプ機構が動作することは自明である。すなわち、太陽光が利用できないときには、常備可能で簡易に得られる熱源、例えばバーナー、あるいは焚き火の熱などを利用することができる。このバーナー、焚き火の熱などで集熱部を加熱することにより、上述の動作を行わせ、処理水を得ることができる。   In the above example, sunlight is used as a heat source, but if a necessary amount of heat is obtained, even if another heat source is used, a pump mechanism that simultaneously discharges treated water and sucks untreated water will operate. It is self-explanatory. That is, when sunlight cannot be used, a heat source that can be provided and can be easily obtained, such as the heat of a burner or a bonfire, can be used. By heating the heat collecting part with the heat of this burner, bonfire, etc., the above-mentioned operation is performed, and treated water can be obtained.

図2では、1本の真鍮パイプなどの金属パイプをU字状に加工して、集熱部22及びリザーバタンク27とが同一の金属パイプで連結された構成としている。この構成において、集熱部22の熱容量に影響を与える恐れがある場合には、図4に示すように集熱部22とリザーバタンク27との間を熱伝導率の低いチューブ53で連結してU字管33を構成することが望ましい。すなわち、金属パイプによる集熱部22とリザーバタンク27間の熱伝導を絶つためにU字管の構成金属より十分に低い熱伝導率のチューブ53で連結する。この目的のためには、シリコンチューブ、テフロン(登録商標)チューブ等が使用できる。なお、リザーバタンク27側にも集熱部22側の集熱板34と同様の集熱板を一体に連結し予熱効率を上げるように構成することも可能である。真鍮は、加工性が良いので使い易いが、熱伝導性の良い他の金属材料を用いることもできる。   In FIG. 2, a metal pipe such as a single brass pipe is processed into a U shape, and the heat collecting unit 22 and the reservoir tank 27 are connected by the same metal pipe. In this configuration, if there is a possibility of affecting the heat capacity of the heat collecting section 22, the heat collecting section 22 and the reservoir tank 27 are connected by a tube 53 having a low thermal conductivity as shown in FIG. It is desirable to construct the U-shaped tube 33. That is, in order to cut off the heat conduction between the heat collecting part 22 and the reservoir tank 27 by the metal pipe, the tube 53 is connected by the tube 53 having a heat conductivity sufficiently lower than that of the U-shaped constituent metal. For this purpose, a silicon tube, a Teflon (registered trademark) tube or the like can be used. Note that a heat collecting plate similar to the heat collecting plate 34 on the heat collecting section 22 side may be integrally connected to the reservoir tank 27 side so as to increase the preheating efficiency. Brass is easy to use because of its good workability, but other metal materials with good thermal conductivity can also be used.

さらには、例えば冷蔵庫やエアコンの廃材から銅製のパイプを取り出し、以下のようにして本発明の浄水器を構成することができる。図5に示すように、例えば真鍮などの熱伝導性のよい金属からなる2つの金属直管54,55を用意し、この2つの金属直管54,55を熱伝導率の低いチューブ53で連結してU字管33を構成することもできる。金属直管54に集熱板34を接合して集熱部22を構成する。金属直管55がリザーバタンク27となる。金属直管54の排出口54bに配管が接続され、金属直管55の吸入口55aに配管42が接続される。この場合は、金属直管54,55を利用できるので、金属パイプのU字加工が不要になり、U字管33の作成が簡単になる。   Furthermore, for example, a copper pipe can be taken out from a waste material of a refrigerator or an air conditioner, and the water purifier of the present invention can be configured as follows. As shown in FIG. 5, for example, two metal straight pipes 54 and 55 made of a metal having good thermal conductivity such as brass are prepared, and the two metal straight pipes 54 and 55 are connected by a tube 53 having a low thermal conductivity. Thus, the U-shaped tube 33 can be configured. The heat collecting plate 22 is configured by joining the heat collecting plate 34 to the metal straight pipe 54. The metal straight pipe 55 becomes the reservoir tank 27. A pipe is connected to the discharge port 54 b of the metal straight pipe 54, and a pipe 42 is connected to the suction port 55 a of the metal straight pipe 55. In this case, since the metal straight pipes 54 and 55 can be used, the U-shaped machining of the metal pipe becomes unnecessary, and the creation of the U-shaped pipe 33 is simplified.

集熱部の他の構成としては、図6A(上面図)、図6B(正面図)及び図6C(側面図)に示すように、多管型とすることもできる。この多管型集熱部57は、複数の金属パイプ58を2列に配列し、複数の金属パイプ58の一方端及び他方端を金属パイプ58と連通する内孔を有する連結部61及び62に連結して構成される。上下の連結部61及び62にはそれぞれ排出口61b及び吸入口62aが導出される。複数の金属パイプ58からなる有効集熱部63での熱容量を確保するために、金属パイプ53からなる有効集熱部63と、連結部61,62との間には、熱伝導率の低いプラスチック部材64で連結して、有効集熱部63からの熱放散を抑える構成とすることが望ましい。この図6の集熱部57を用いるときは、リザーバタンク66としては、図6Cの鎖線で示す構成とし、リザーバタンク66と集熱部57とを熱伝導率の低いチューブ67で接続するようになす。   As another structure of the heat collecting section, as shown in FIG. 6A (top view), FIG. 6B (front view), and FIG. 6C (side view), a multi-tube type can be used. The multi-tube type heat collecting part 57 includes a plurality of metal pipes 58 arranged in two rows, and one end and the other end of the plurality of metal pipes 58 are connected to connecting parts 61 and 62 having inner holes communicating with the metal pipe 58. Concatenated. A discharge port 61b and a suction port 62a are led out to the upper and lower connecting portions 61 and 62, respectively. In order to ensure the heat capacity in the effective heat collecting portion 63 composed of a plurality of metal pipes 58, a plastic having a low thermal conductivity is provided between the effective heat collecting portion 63 composed of the metal pipe 53 and the connecting portions 61 and 62. It is desirable to connect with the member 64 to suppress the heat dissipation from the effective heat collecting unit 63. When the heat collecting part 57 of FIG. 6 is used, the reservoir tank 66 is configured as shown by a chain line in FIG. 6C, and the reservoir tank 66 and the heat collecting part 57 are connected by a tube 67 having a low thermal conductivity. Eggplant.

図7に、凝縮器の他の例を示す。本例の凝縮器71は、それぞれ背中が平坦化された2つの筒状体72及び73を背中合わせに接合し、一方の筒状体72を水蒸気が導入される凝縮部となし、他方の筒状体73を未処理水が導入される未処理水導入部として構成される。但し、この構成は前述の二重構造に比べて効率は下がる。あるいは、図示しないが2つのパイプ状体をねじる合わせ凝縮器を構成することもできる。   FIG. 7 shows another example of the condenser. The condenser 71 of this example joins two cylindrical bodies 72 and 73 whose backs are flattened back to back, making one cylindrical body 72 a condensing part into which water vapor is introduced, and the other cylindrical shape. The body 73 is configured as an untreated water introduction unit into which untreated water is introduced. However, this configuration is less efficient than the double structure described above. Or although not shown in figure, the combined condenser which twists two pipe-shaped bodies can also be comprised.

河川、池などから未処理水を導入する際にごみ等により逆止弁、配管、その他等が詰まるのを防ぐために、凝縮器への未処理水供給用の配管に、例えば布などの適当なフィルタを設置するようにしても良い。   In order to prevent clogging of check valves, piping, etc. due to dust when introducing untreated water from rivers, ponds, etc., use appropriate cloth, such as cloth, in the piping for untreated water supply to the condenser. A filter may be installed.

現地で本加熱滅菌浄水器を使用する場合、一旦未処理水で満たし、最初の複数サイクル動作で浄水器内を滅菌する。最初の数サイクルは十分に滅菌されていないので、処理した水は飲料水には適さない。   When using this heat-sterilized water purifier locally, fill it with untreated water and sterilize the water purifier in the first multi-cycle operation. Since the first few cycles are not sufficiently sterilized, the treated water is not suitable for drinking water.

次に、本実施の形態に係る加熱滅菌浄水器21による滅菌実験の結果を示す。加熱滅菌浄水器21の間歇的日射20秒で、滅菌処理を開始した。
図8は、実験室内で培養した細菌を含む水を滅菌処理したグラフである。培養した細菌は、大腸菌、サルモネラ菌、ウェルシュ菌である。大腸菌は、災害時における水の主な汚染原因菌である。サルモネラ菌は、食中毒における原因菌である。ウェルシュ菌は、芽胞を形成する耐熱性細菌である。グラフの縦軸は生存菌数を表わす。大腸菌は、滅菌前には生存菌数が棒グラフ81で示す8.98×10[CFH/ml]であったが、滅菌後に0[CFH/ml]となった。サルモネラ菌は、滅菌前には生存菌数が棒グラフ82で示す1.09×10[FU/ml]であったが、滅菌後に0[CFU/ml]となった。ウェルシュ菌は、滅菌前には生存菌数が棒グラフ83で示す4.7×10[CFH/ml]であったが、滅菌後に0[CFH/ml]となった。
この実験結果から、培養した大腸菌、ウェルシュ菌及びサルモネラ菌を完全に滅菌できたことが認められた。
Next, the result of the sterilization experiment by the heat sterilization water purifier 21 according to the present embodiment is shown. The sterilization process was started with intermittent solar radiation 20 seconds in the heat sterilized water purifier 21.
FIG. 8 is a graph in which water containing bacteria cultured in a laboratory is sterilized. The cultured bacteria are Escherichia coli, Salmonella, and Clostridium perfringens. E. coli is a major cause of water pollution during disasters. Salmonella is a causative bacterium in food poisoning. Clostridium perfringens is a thermostable bacterium that forms spores. The vertical axis of the graph represents the number of viable bacteria. The number of surviving bacteria of E. coli was 8.98 × 10 5 [CFH / ml] indicated by the bar graph 81 before sterilization, but became 0 [CFH / ml] after sterilization. The number of surviving bacteria of Salmonella was 1.09 × 10 9 [FU / ml] indicated by the bar graph 82 before sterilization, but became 0 [CFU / ml] after sterilization. Prior to sterilization, the number of surviving bacteria was 4.7 × 10 5 [CFH / ml] as indicated by the bar graph 83, but became 0 [CFH / ml] after sterilization.
From this experimental result, it was confirmed that the cultured Escherichia coli, Clostridium perfringens and Salmonella were completely sterilized.

図9は、河川水(浦上川より採水)を滅菌処理したグラフである。評価対象細菌は、大腸菌群、従属栄養細菌である。これらの大腸菌群及び従属栄養細菌は、水道水水質基準項目に含まれている細菌である。日本の水道水水質基準では、大腸菌群が水中から検出されないこと、従属栄養細菌が100CFU/ml以下であること。大腸菌群検査法としてLB−BGLB法を用いた。従属栄養細菌検査法として混釈培養法を用いた。
図9のグラフの縦軸は生存菌数を表わす。大腸菌群は、滅菌前には棒グラフ84で示す1.1×10[MPN/100ml]であったが、滅菌後に0[MPN/100ml]となった。従属栄養細菌は、滅菌前には棒グラフ85で示す1.2×10[CFU/ml]であったが、滅菌後に棒グラフ86で示す20[CFU/ml]となった。
FIG. 9 is a graph in which river water (sampled from the Urakami River) is sterilized. The bacteria to be evaluated are coliform bacteria and heterotrophic bacteria. These coliform bacteria and heterotrophic bacteria are bacteria included in the tap water quality standard item. According to Japanese tap water quality standards, coliform bacteria are not detected in water, and heterotrophic bacteria are 100 CFU / ml or less. The LB-BGLB method was used as the coliform group test method. The pour culture method was used as a test method for heterotrophic bacteria.
The vertical axis of the graph in FIG. 9 represents the number of viable bacteria. The coliform group was 1.1 × 10 5 [MPN / 100 ml] indicated by the bar graph 84 before sterilization, but became 0 [MPN / 100 ml] after sterilization. Heterotrophic bacteria were 1.2 × 10 5 [CFU / ml] indicated by the bar graph 85 before sterilization, but became 20 [CFU / ml] indicated by the bar graph 86 after sterilization.

図10は、処理水温度、未処理水温度の経時変化を示すグラフである。縦軸に温度(℃)、横軸に処理時間(sec)をとる。未処理水温度は20℃である。処理水温度は100℃前後と80℃前後を間歇的に推移している。図11は、処理水量の経時変化を示すグラフである。縦軸に処理水量(ml)、横軸に処理時間(sec)をとる。処理水量は420secで約300mlであった。本実施の形態の加熱滅菌浄水器21は、81cm×82cmの大きさの凹面鏡を使用し、集熱板34付の集熱部22を使用することで、1人の人間が1日に必要とする2Lの水を約45分で処理できることになる。   FIG. 10 is a graph showing temporal changes in the treated water temperature and the untreated water temperature. The vertical axis represents temperature (° C.), and the horizontal axis represents processing time (sec). The untreated water temperature is 20 ° C. The treated water temperature is intermittently changing between around 100 ° C and around 80 ° C. FIG. 11 is a graph showing the change over time in the amount of treated water. The vertical axis represents the amount of treated water (ml) and the horizontal axis represents the treatment time (sec). The amount of treated water was about 300 ml in 420 sec. The heat-sterilized water purifier 21 according to the present embodiment uses a concave mirror having a size of 81 cm × 82 cm and uses a heat collecting part 22 with a heat collecting plate 34, so that one person needs one day. 2 L of water can be processed in about 45 minutes.

このように、本実施の形態に係る加熱滅菌浄水器にて滅菌された処理水は、大腸菌、サルモネラ菌、ウェルシュ菌などの細菌類は完全に死滅し、ほぼ水道水水質基準を満たす浄化された水となる。   In this way, the treated water sterilized by the heat sterilization water purifier according to the present embodiment is purified water that completely kills bacteria such as Escherichia coli, Salmonella, and Clostridium perfringens, and almost satisfies the tap water quality standards. It becomes.

本浄水器を災害時に使用しようとした場合、電気・ガス等が使用できない可能性が高いため、熱源としては太陽光を使用することが望ましい。しかしながら、災害時に凹面鏡が破損する可能性が高く、実際には使用することが困難であるという課題があった。そこで、破損の可能性が少ない凹面鏡の代替について検討した。
凹面鏡の代替品として、最も簡便である物は、衛星放送用パラボラアンテナのデータにアルミシートを張り付けるというものである。実験に使用したパラボラアンテナは、長辺26.50cm、短辺23.25cmであり、面積は約0.19mである。従来使用していた凹面鏡の面積は、0.66mであるので、有効受光面積は約1/3であった。実験結果を図12に示す。図12中に記載している水位差とは、未処理水との間の水位差であり、本浄水器がポンプ能力を有するために、50cm程度の水位差であっても自動的に未処理水を吸引して滅菌処理が可能であるが、水位差が大きくなる程処理浄水器での処理水量は低下する傾向にあることが判る。
有効受光面積は約1/3になるものの、処理能力を低下させる可能性がある熱電対を取り除く等の改造を行った結果、処理能力の低下は1/2程度になったに過ぎず、十分に実用的である。
When trying to use this water purifier during a disaster, it is highly possible that electricity or gas cannot be used, so it is desirable to use sunlight as the heat source. However, there is a high possibility that the concave mirror is damaged at the time of a disaster, and there is a problem that it is difficult to use in practice. Therefore, we examined alternatives to concave mirrors that are less likely to break.
The simplest alternative to the concave mirror is to attach an aluminum sheet to the satellite broadcasting parabolic antenna data. The parabolic antenna used in the experiment has a long side of 26.50 cm, a short side of 23.25 cm, and an area of about 0.19 m 2 . Since the area of the concave mirror conventionally used is 0.66 m 2 , the effective light receiving area is about 1/3. The experimental results are shown in FIG. The water level difference described in FIG. 12 is a water level difference from untreated water, and since this water purifier has a pumping capacity, even if it is a water level difference of about 50 cm, it is automatically untreated. Although sterilization is possible by sucking water, it can be seen that the amount of treated water tends to decrease as the water level difference increases.
Although the effective light-receiving area is about 1/3, as a result of modifications such as removing thermocouples that may reduce the processing capacity, the reduction in processing capacity is only about 1/2. Practical.

本浄水器をアフリカの貧困地区で使用するために現地調査を実施した際、調理に七輪を使用していることが判った。そこで、この七輪を熱源として本浄水器の滅菌性能を検討した。七輪に炭を入れて点火し、炭全体に火が回ったのち、浄水器を作動させた。浄水器の安定動作後に、500mlの未処理水を処理するのに要した時間は9分37秒であった。また、この時の滅菌実験結果は、下記表1のとおりであった。この結果から、熱源を七輪として調理を行いながら、本浄水器にて未処理水を実用的に滅菌することが可能であることが判った。   When a field survey was conducted to use this water purifier in poor areas in Africa, it was found that seven wheels were used for cooking. Therefore, we examined the sterilization performance of this water purifier using these seven wheels as a heat source. The charcoal was put into the seven wheels and ignited. After the whole charcoal was ignited, the water purifier was activated. After the stable operation of the water purifier, the time required to treat 500 ml of untreated water was 9 minutes and 37 seconds. The results of the sterilization experiment at this time are as shown in Table 1 below. From this result, it was found that it is possible to practically sterilize untreated water with this water purifier while cooking with seven heat sources as the heat source.

Figure 2009125702
Figure 2009125702

Claims (2)

未処理水を滅菌するための集熱部と、
前記集熱部で発生した水蒸気を凝縮させる凝縮部と、
前記集熱部への未処理水を供給する配管に設置された第1の逆止弁と、
前記凝縮部からの滅菌済みの処理水を貯蔵する貯蔵部とを備え、
前記凝縮部と前記貯蔵部との間に滅菌された処理水を一方向へ流す第2の逆止弁を備え、
前記水蒸気の凝縮の際に生じる減圧により間歇的に前記第1の逆止弁が開き、前記未処理水が前記集熱部へ吸引される
ことを特徴とする加熱滅菌浄水器。
A heat collecting part for sterilizing untreated water;
A condensing part for condensing water vapor generated in the heat collecting part;
A first check valve installed in a pipe for supplying untreated water to the heat collecting section;
A storage unit for storing sterilized treated water from the condensing unit,
A second check valve for flowing sterilized treated water in one direction between the condensing unit and the storage unit;
The heat sterilized water purifier, wherein the first check valve is intermittently opened by the reduced pressure generated during the condensation of the water vapor, and the untreated water is sucked into the heat collecting section.
前記集熱部に近接対向して配置されたリザーバタンクを有することを特徴とする請求項1記載の加熱滅菌浄水器。

The heat sterilized water purifier according to claim 1, further comprising a reservoir tank disposed in close proximity to the heat collecting unit.

JP2010507219A 2008-04-09 2009-04-01 Heat sterilization water purifier Pending JPWO2009125702A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008101770 2008-04-09
JP2008101770 2008-04-09
PCT/JP2009/056822 WO2009125702A1 (en) 2008-04-09 2009-04-01 Heat sterilizing water purifier

Publications (1)

Publication Number Publication Date
JPWO2009125702A1 true JPWO2009125702A1 (en) 2011-08-04

Family

ID=41161834

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010507219A Pending JPWO2009125702A1 (en) 2008-04-09 2009-04-01 Heat sterilization water purifier

Country Status (3)

Country Link
JP (1) JPWO2009125702A1 (en)
CN (1) CN101998935A (en)
WO (1) WO2009125702A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5002686B2 (en) * 2010-06-30 2012-08-15 パナソニック株式会社 Water generator
US10556810B2 (en) * 2018-05-05 2020-02-11 Blaine Clifford Readler Solar sterilization apparatus for incremental boiling
WO2019230952A1 (en) * 2018-06-01 2019-12-05 国立大学法人東北大学 Apparatus and method for sterilizing water within water supply pipe of dental unit

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE8401503L (en) * 1984-03-15 1985-09-16 Sven Runo Vilhelm Gebelius SET AND DEVICE FOR SALTING AND / OR PURIFICATION OF WATER
JPS62136287A (en) * 1985-12-10 1987-06-19 Kubota Ltd Pure water making apparatus utilizing solar heat
JP3259385B2 (en) * 1992-12-22 2002-02-25 栗田工業株式会社 Still
JP3297419B2 (en) * 2000-06-02 2002-07-02 鹿島建設株式会社 Method and apparatus for sterilizing wastewater containing microorganisms and / or viruses
JP2004160301A (en) * 2002-11-11 2004-06-10 Taira Maruyama Desalination system

Also Published As

Publication number Publication date
WO2009125702A1 (en) 2009-10-15
CN101998935A (en) 2011-03-30

Similar Documents

Publication Publication Date Title
US20070193872A1 (en) Integrated solar liquid heater, distiller and pasteurizer system
US20060226081A1 (en) Water purification system and modes of operation
US9796602B2 (en) Solar water purifier
JP2010214372A (en) Distillation method with vapor pressurization
US7811420B2 (en) Isothermal gas-free water distillation
WO2011085669A1 (en) Low-temperature heat-driven distillation separation apparatus for evaporating aqueous solution under negative pressure and method for obtaining distilled water
WO2009125702A1 (en) Heat sterilizing water purifier
Dhivagar A concise review on productivity and economic analysis of Auxiliary‐component‐assisted solar stills
CN102216222A (en) Wastewater treatment apparatus and method
CN102234144A (en) Membrane distillation water purifying device and method
AU2003203454B2 (en) Distillation system
CN209635926U (en) Falling film evaporation couples absorption refrigeration high-salt sewage processing equipment
KR101543426B1 (en) Water Treatment Apparatus using Membrane Distillation Method
WO2020081249A1 (en) Water desalinization systems
CN103910398A (en) System and method for desalinating seawater through absorbing solar energy via liquid-solid fluidized bed
CN215759323U (en) Air water making machine
AU2021105568A4 (en) An apparatus for water distillation and method thereof
CN203890083U (en) System for desalinating seawater through absorbing solar energy by using liquid-solid fluidized bed
US10556810B2 (en) Solar sterilization apparatus for incremental boiling
CN220572008U (en) Zero raw water drinking device
FR2471799A1 (en) Evaporative distn. of liq. for desalination etc. - using one torricellian tube as evaporator coupled to second one used as condenser
US20230249990A1 (en) Vacuum assisted liquid separation system
CN113669932B (en) Multi-space interaction high-temperature tin heat conduction device
CN206051606U (en) A kind of small-sized solar humidification sea water desalinating unit
KR101576571B1 (en) Water Treatment Apparatus using Membrane Distillation Method

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110415

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20110415