JPWO2009001529A1 - プラズマディスプレイパネル駆動装置及びプラズマディスプレイ - Google Patents

プラズマディスプレイパネル駆動装置及びプラズマディスプレイ Download PDF

Info

Publication number
JPWO2009001529A1
JPWO2009001529A1 JP2009520325A JP2009520325A JPWO2009001529A1 JP WO2009001529 A1 JPWO2009001529 A1 JP WO2009001529A1 JP 2009520325 A JP2009520325 A JP 2009520325A JP 2009520325 A JP2009520325 A JP 2009520325A JP WO2009001529 A1 JPWO2009001529 A1 JP WO2009001529A1
Authority
JP
Japan
Prior art keywords
electrode
switch
voltage
gate
recovery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009520325A
Other languages
English (en)
Inventor
竜夫 森田
竜夫 森田
柳原 学
学 柳原
秀俊 石田
秀俊 石田
上本 康裕
康裕 上本
井上 学
学 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Publication of JPWO2009001529A1 publication Critical patent/JPWO2009001529A1/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/28Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels
    • G09G3/288Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels using AC panels
    • G09G3/291Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels using AC panels controlling the gas discharge to control a cell condition, e.g. by means of specific pulse shapes
    • G09G3/294Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels using AC panels controlling the gas discharge to control a cell condition, e.g. by means of specific pulse shapes for lighting or sustain discharge
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/28Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/28Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels
    • G09G3/288Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels using AC panels
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/28Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels
    • G09G3/288Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels using AC panels
    • G09G3/296Driving circuits for producing the waveforms applied to the driving electrodes
    • G09G3/2965Driving circuits for producing the waveforms applied to the driving electrodes using inductors for energy recovery
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/66Transforming electric information into light information

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Power Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Control Of Gas Discharge Display Tubes (AREA)

Abstract

プラズマディスプレイパネル駆動装置は、プラズマディスプレイパネルの電極に印加する駆動パルスを生成する電極駆動部を備えている。電極駆動部は複数のスイッチを有し、複数のスイッチのうちの少なくとも1つは、デュアルゲート半導体素子を用10いたスイッチ素子である。デュアルゲート半導体素子10は、基板11の上に形成され、窒化物半導体又は炭化珪素からなる半導体で構成された半導体層積層体13と、半導体層積層体13の上に互いに間隔をおいて形成されたソース電極16及びドレイン電極17と、ソース電極16とドレイン電極17との間に、ソース電極16側から順に形成された、第1のゲート電極18A及び第2のゲート電極18Bとを有する。

Description

本発明は、プラズマディスプレイパネル駆動装置及びプラズマディスプレイに関する。
プラズマディスプレイは、気体放電に伴う発光現象を利用した表示装置である。プラズマディスプレイの表示部分、すなわちプラズマディスプレイパネル(PDP)は、大画面化、薄型化、及び広視野角の点で他の表示装置より有利である。PDPは、直流パルスで動作するDC型と、交流パルスで動作するAC型とに大別される。AC型PDPは特に、輝度が高く且つ構造が簡素である。従って、AC型PDPは量産化と画素の精細化とに適し、広範に使用されている。
AC型PDPは例えば三電極面放電型構造を有する(例えば、特許文献1を参照。)。その構造では、PDPの背面基板上にアドレス電極がパネルの縦方向に配置され、PDPの前面基板上に維持電極と走査電極とが交互に、且つパネルの横方向に配置される。アドレス電極と走査電極とは一般に、一本ずつ個別に電位を変化させる。
互いに隣り合う維持電極と走査電極との対及びアドレス電極の交差点には放電セルが設置されている。放電セルの表面には、誘電体から成る層(誘電体層)、電極と誘電体層とを保護するための層(保護層)と、蛍光物質を含む層(蛍光層)とが設けられている。放電セルの内部にはガスが封入されている。維持電極、走査電極及びアドレス電極の間に対してパルス電圧を印加することにより放電セル中に放電が生じるとき、放電セル中のガスの分子は電離して紫外線を発する。その紫外線が放電セル表面の蛍光物質を励起し、蛍光を発生させる。こうして、放電セルが発光する。
PDP駆動装置は一般に、PDPの維持電極、走査電極及びアドレス電極の電位を、ADS(Address Display-period Separation)方式に従い制御する。ADS方式はサブフィールド方式の一種である。サブフィールド方式では画像の一フィールドが複数のサブフィールドに分けられる。サブフィールドは、初期化期間、アドレス期間及び放電維持期間を含む。ADS方式では特に、PDPの全ての放電セルに対しこの三つの期間が共通に設定される(例えば、特許文献1参照)。
初期化期間では、初期化パルス電圧が維持電極と走査電極との間に印加される。これにより、全ての放電セルにおいて壁電荷が均一化される。
アドレス期間では、走査パルス電圧が走査電極に対し順次印加され、信号パルス電圧がアドレス電極のいくつかに対し印加される。ここで、信号パルス電圧が印加されるべきアドレス電極は、外部から入力される映像信号に基づき選択される。走査パルス電圧が走査電極の一つに印加され、且つ信号パルス電圧がアドレス電極の一つに印加されるとき、その走査電極とアドレス電極との交差点に位置する放電セルにおいて放電が生じる。この放電によりその放電セル表面には壁電荷が蓄積される。
放電維持期間では、放電維持パルス電圧が維持電極と走査電極との全ての対に対し同時に且つ周期的に印加される。このとき、アドレス期間中に壁電荷が蓄積された放電セルにおいてはガスによる放電が維持され、発光が生じる。放電維持期間の長さはサブフィールドごとに異なるので、放電セルの一フィールド当たりの発光時間、すなわち放電セルの輝度は発光させるサブフィールドを選択することにより調整される。
図27に従来のPDP駆動装置の構成を示す。図27は特に走査電極駆動部とPDPを示している。走査電極駆動部110は、走査パルス発生部111、初期化パルス発生部112及び放電維持パルス発生部113を含む。放電維持パルス発生部113は、直列に接続されたハイサイド維持スイッチQ7Yとローサイド維持スイッチQ8Yを含み、ハイサイド維持スイッチQ7Y及びローサイド維持スイッチQ8Yを通じて、維持電圧源Vs又はグランド電位により維持電極Xと走査電極Yとの間の電圧を制御する。PDP120は、維持電極Xと走査電極Yとの間の浮遊容量Cp(以下「PDPのパネル容量」という)により等価的に表されており、放電セルでの放電時にPDP120を流れる電流の経路は省略している。図27において、維持電極Xに接続する維持電極駆動部は省略しており、図中、維持電極Xは接地状態で表している。
初期化期間にPDPの全ての放電セルにおいて壁電荷を均一化させるには、初期化パルス電圧の上限が十分に高くなければならない。また、アドレス期間にアドレス放電を起こすには、走査パルス電圧の下限は十分に低くなければならない。従って、初期化パルス電圧の上限は一般に放電維持パルス電圧の上限より高く設定される。また、走査パルス電圧の下限は一般に放電維持パルス電圧の下限より低く設定される。従って、初期化パルス電圧が放電維持パルス電圧の上限でクランプされるのを防ぐには、初期化期間では放電維持パルス発生部113の維持電圧源Vsが初期化パルス発生部112から分離されなければならない。従って、走査パルス電圧が放電維持パルス電圧の下限でクランプされるのを防ぐには、アドレス期間では放電維持パルス発生部113の維持電圧源Vsが走査パルス発生部111から分離されなければならない。
従来のPDP駆動装置では、分離スイッチQS1及び分離スイッチQS2が維持電圧源Vsと初期化パルス発生部112との間に設置されている。図27の例では、ハイサイド分離スイッチQS1及びローサイド分離スイッチQS2が挿入されている。
放電維持期間では、ハイサイド分離スイッチQS1及びローサイド分離スイッチQS2がオン状態となり、放電維持パルス発生部113のハイサイド維持スイッチQ7Y及びローサイド維持スイッチQ8Yのスイッチングによって、維持電圧源Vsの正極及び負極の電位が放電維持パルス発生部113の出力端子JY2から供給される。
初期化期間では、ハイサイド分離スイッチQS1及びローサイド分離スイッチQS2をオフ状態とし、初期化パルス発生部112が維持電圧源Vsから分離される。
こうして、初期化パルス電圧が放電維持パルス電圧の上限及び下限でクランプされることなく、所定の上限まで上昇及び所定の下限まで下降する。従って、初期化期間ではPDPの全ての放電セルに対し、壁電荷の均一化に十分な電圧が印加される。
さらに、従来のPDP駆動装置は、放電維持期間中に、ハイサイド回収スイッチQ9Y及びローサイド回収スイッチQ10Y、第1の回収ダイオードD1、第2の回収ダイオードD2、回収インダクタCY及び回収コンデンサLYからなる共振回路によってパネル容量Cpの電力を回収している。ここで使用される第1の回収ダイオードD1及び第2の回収ダイオードD2は、ハイサイド維持スイッチQ7Y及びローサイド維持スイッチQ8Yがオン状態となった際に、回収コンデンサCYに電流が流れ込むのを防ぎ、回収コンデンサCYを一定値(Vs/2)に保つ役割がある。
特開2005−70787号公報
しかしながら、ハイサイド分離スイッチQS1及びローサイド分離スイッチQS2には放電維持期間中、放電維持パルス電圧の印加に伴う電流(PDPの放電セルでの放電による電流)が流れる。この電流量は他のパルス電圧の印加に伴う電流より一般に大きく、ハイサイド分離スイッチQS1及びローサイド分離スイッチQS2における導通損失により、PDP駆動装置の消費電力が大きく増大するという問題がある。スイッチ素子の導通損失を低減するために、多数の半導体素子を並列に接続し、低抵抗で大電流を制御する分離スイッチを構成する方法が知られている。しかし、この場合には実装面積が増大してしまう。また、部品点数が増大することにより製造コストも増大するという問題がある。
また、回収動作の際に流れる回収電流は大電流であるため、第1の回収ダイオードD1及び第2の回収ダイオードD2における導通損失もPDP駆動装置の消費電力を大きく増大させる原因となる。この場合にも、多数のダイオードを並列に接続することにより低抵抗で大電流の回収ダイオードを構成する方法が知られているが、実装面積が増大してしまう。また、部品点数が増大することにより製造コストも増大する。
このように、前記従来のPDP装置においては、消費電力の削減と実装面積の低減つまり部品点数の低減とを両立させることが困難であるという問題がある。
本願は、前記従来の問題を解決し、部品点数が少なく且つ消費電力が小さいプラズマディスプレイパネル駆動装置を実現できるようにすることを目的とする。
前記の目的を達成するため、本発明はプラズマディスプレイパネル駆動装置を、デュアルゲート半導体素子を用いたスイッチ素子を備える構成とする。
具体的に、本発明に係るプラズマディスプレイパネル駆動装置は、プラズマディスプレイパネルの電極に印加する駆動パルスを生成する電極駆動部を備え、電極駆動部は複数のスイッチを有し、複数のスイッチのうちの少なくとも1つは、デュアルゲート半導体素子を用いたスイッチ素子であり、デュアルゲート半導体素子は、基板の上に形成された窒化物半導体又は炭化珪素からなる半導体で構成された半導体層積層体と、半導体層積層体の上に互いに間隔をおいて形成されたソース電極及びドレイン電極と、ソース電極とドレイン電極との間に、ソース電極側から順に形成された、第1のゲート電極及び第2のゲート電極とを有することを特徴とする。
本発明のプラズマディスプレイパネル駆動装置は、デュアルゲート半導体素子を用いたスイッチ素子を使用している。このため、複数のトランジスタとダイオードとを用いてスイッチを構成した場合と比べて、素子の導通損失を大幅に低減できる。また、スイッチの占有面積も大幅に低減できる。これにより、プラズマディスプレイパネル駆動装置の消費電力を低減すると共に小型化することが可能となる。
本発明のプラズマディスプレイパネル駆動装置において、電極駆動部は、プラズマディスプレイパネルの放電を維持するための電圧を発生させる維持電圧源を有し、複数のスイッチは、維持電圧源の正極と負極との間に直列に接続されたハイサイド維持スイッチ及びローサイド維持スイッチを含み、ハイサイド維持スイッチ及びローサイド維持スイッチのうちの少なくとも一方は、デュアルゲート半導体素子を用いたスイッチ素子である。
本発明のプラズマディスプレイパネル駆動装置において、電極駆動部は、プラズマディスプレイパネルの放電を維持するための電圧を発生する維持電圧源を有し、複数のスイッチは、維持電圧源の正極と負極との間に直列に接続されたハイサイド維持スイッチ及びローサイド維持スイッチと、ハイサイド維持スイッチとローサイド維持スイッチとの接続ノードとプラズマディプレイパネルの電極との間に接続された分離スイッチとを含み、分離スイッチはデュアルゲート半導体素子を用いたスイッチ素子であってもよい。
本発明のプラズマディスプレイパネル駆動装置において、電極駆動部は、プラズマディスプレイパネルの電極に蓄積された電荷を回収して蓄積する回収コンデンサを有し、複数のスイッチは、プラズマディスプレイパネルの電極と回収コンデンサとの間に設けられた回収スイッチを含み、回収スイッチは、デュアルゲート半導体素子を用いたスイッチ素子であってもよい。
本発明のプラズマディスプレイパネル駆動装置において、電極駆動部は、プラズマディスプレイパネルの電極に蓄積された電荷を回収して蓄積する回収コンデンサを有し、複数のスイッチは、プラズマディスプレイパネルの電極と回収コンデンサとの間に設けられた第1の回収スイッチ及び第2の回収スイッチを含み、第1の回収スイッチ及び第2の回収スイッチは、それぞれデュアルゲート半導体素子を用いたスイッチ素子であってもよい。
本発明のプラズマディスプレイパネル駆動装置において、回収スイッチは、回収コンデンサから電極へ電流を流す際には、回収コンデンサから電極へ電流を流し且つ回収コンデンサへ流れる電流を遮断する第1のモードとなり、電極から回収コンデンサへ電流を流す際には、電極から回収コンデンサへ電流を流し且つ回収コンデンサから流れる電流を遮断する第2のモードとなってもよい。
本発明のプラズマディスプレイパネル駆動装置において、回収スイッチは、回収コンデンサから電極へ電流を流す際には、回収スイッチが第1のモードになる前に、ソース電極の電位を基準として第1のゲート電極の閾値電圧以上の電圧を第1のゲート電極に印加し、且つ、ドレイン電極の電位を基準として第2のゲート電極の閾値電圧以上の電圧を第2のゲート電極に印加することで、ドレイン電極とソース電極との間に電流を通電する第3のモードとなり、電極から回収コンデンサへ電流を流す際には、回収スイッチが第2のモードになる前に、第3のモードとなってもよい。
本発明のプラズマディスプレイパネル駆動装置において、第1の回収スイッチは、回収コンデンサから電極へ電流を流す際には、回収コンデンサから電極へ電流を流し且つ回収コンデンサへ流れる電流を遮断する第1のモードとなり、第2の回収スイッチは、電極から回収コンデンサへ電流を流す際には、電極から回収コンデンサへ電流を流し且つ回収コンデンサから流れる電流を遮断する第2のモードとなってもよい。
本発明のプラズマディスプレイパネル駆動装置において、第1の回収スイッチは、回収コンデンサから電極へ電流を流す際には、第1のモードとなる前に、ソース電極の電位を基準として第1のゲート電極の閾値電圧以上の電圧を第1のゲート電極に印加し、且つ、ドレイン電極の電位を基準として第2のゲート電極の閾値電圧以上の電圧を第2のゲート電極に印加することで、ドレイン電極とソース電極との間に電流を通電する第3のモードとなり、第2の回収スイッチは、電極から回収コンデンサへ電流を流す際には、第2のモードとなる前に、第3のモードとなってもよい。
本発明のプラズマディスプレイパネル駆動装置において、デュアルゲート半導体素子はノーマリーオフであってもよい。
本発明のプラズマディスプレイパネル駆動装置において、半導体層積層体は、第1の半導体層と、該第1の半導体層の上に選択的に形成された第1のp型半導体層とを有し、第1のゲート電極は、第1のp型半導体層の上に形成されていてもよい。
本発明のプラズマディスプレイパネル駆動装置において、半導体層積層体は、第1の半導体層と、該第1の半導体層の上に選択的に形成された第2のp型半導体層とを有し、第2のゲート電極は、第2のp型半導体層の上に形成されていてもよい。
本発明のプラズマディスプレイパネル駆動装置は、第1のゲート電極及び第2のゲート電極の少なくとも一方と、半導体層積層体との間に形成された絶縁膜をさらに備えていてもよい。
本発明のプラズマディスプレイパネル駆動装置において、半導体層積層体は、凹部を有し、第1のゲート電極及び第2のゲート電極の少なくとも一方は、凹部を埋めるように形成されていてもよい。
本発明のプラズマディスプレイパネル駆動装置において、デュアルゲート半導体素子の第1のゲート電極の閾値電圧と第2のゲート電極の閾値電圧とは、互いに異なっていてもよい。
本発明のプラズマディスプレイパネル駆動装置において、デュアルゲート半導体素子の第2のゲート電極とドレイン電極とは、電気的に接続されていてもよい。
本発明のプラズマディスプレイパネル駆動装置において、デュアルゲート半導体素子の第1のゲート電極と第2のゲート電極との間隔は、ソース電極と第1のゲート電極との間隔よりも大きく、且つ、ドレイン電極と第2のゲート電極との間隔よりも大きくてもよい。
本発明のプラズマディスプレイパネル駆動装置において、デュアルゲート半導体素子の半導体層積層体は、基板側から順次積層された第1の半導体層及び第2の半導体層を有し、第2の半導体層は、第1の半導体層と比べてバンドギャップが大きくてもよい。
本発明のプラズマディスプレイパネル駆動装置において、半導体層積層体は、窒化ガリウム及び窒化アルミニウムガリウムの少なくとも一方を含んでいてもよい。
本発明に係るプラズマディスプレイは、電極間の放電により蛍光体が発光するプラズマディスプレイパネルと、本発明のプラズマディスプレイパネル駆動装置とを備えている。
本発明に係るプラズマディスプレイパネル駆動装置及びプラズマディスプレイによれば、部品点数が少なく且つ消費電力が小さいプラズマディスプレイパネル駆動装置及びプラズマディスプレイを実現できる。
本発明の第1の実施形態に係るプラズマディスプレイを示すブロック図である。 本発明の第1の実施形態に係るプラズマディスプレイ駆動装置の走査電極駆動部を示す回路図である。 本発明の第1の実施形態に係るプラズマディスプレイ駆動装置の走査電極駆動部の動作を示すタイミング図である。 複数のトランジスタにより構成した双方向スイッチを示す回路図である。 本発明の第1の実施形態に係るプラズマディスプレイ駆動装置に用いる第1のデュアルゲート半導体素子を示す断面図である。 本発明の第1の実施形態に係るプラズマディスプレイ駆動装置に用いるデュアルゲート半導体素子の双方向スイッチ動作を説明するための回路図である。 (a)〜(c)は本発明の第1の実施形態に係るプラズマディスプレイ駆動装置に用いるデュアルゲート半導体素子の逆阻止動作を説明するための回路図である。 (a)〜(c)は本発明の第1の実施形態に係るプラズマディスプレイ駆動装置に用いるデュアルゲート半導体素子の動作特性を示すグラフである。 本発明の第1の実施形態に係るプラズマディスプレイ駆動装置に用いる第2のデュアルゲート半導体素子を示す断面図である。 本発明の第1の実施形態に係るプラズマディスプレイ駆動装置に用いる第3のデュアルゲート半導体素子を示す断面図である。 本発明の第1の実施形態に係るプラズマディスプレイ駆動装置に用いるデュアルゲート半導体素子を駆動する駆動部の一例を示す回路図である。 本発明の第1の実施形態に係るプラズマディスプレイ駆動装置の走査電極駆動部を示す回路図である。 本発明の第1の実施形態に係るプラズマディスプレイ駆動装置の走査電極駆動部の第1の動作を示すタイミング図である。 本発明の第1の実施形態に係るプラズマディスプレイ駆動装置の走査電極駆動部の第2の動作を示すタイミング図である。 本発明の第2の実施形態に係るプラズマディスプレイ駆動装置の走査電極駆動部を示す回路図である。 本発明の第2の実施形態に係るプラズマディスプレイ駆動装置の走査電極駆動部の第1の動作を示すタイミング図である。 本発明の第2の実施形態に係るプラズマディスプレイ駆動装置の走査電極駆動部の第2の動作を示すタイミング図である。 本発明の第3の実施形態に係るプラズマディスプレイ駆動装置の走査電極駆動部を示す回路図である。 本発明の第3の実施形態に係るプラズマディスプレイ駆動装置の走査電極駆動部の第1の動作を示すタイミング図である。 本発明の第3の実施形態に係るプラズマディスプレイ駆動装置の走査電極駆動部の第2の動作を示すタイミング図である。 本発明の第4の実施形態に係るプラズマディスプレイ駆動装置の走査電極駆動部を示す回路図である。 本発明の第4の実施形態に係るプラズマディスプレイ駆動装置に用いるデュアルゲート半導体素子を示す断面図である。 本発明の第4の実施形態に係るプラズマディスプレイ駆動装置に用いるデュアルゲート半導体素子を示す断面図である。 本発明の第4の実施形態に係るプラズマディスプレイ駆動装置に用いるデュアルゲート半導体素子を示す断面図である。 本発明の第4の実施形態に係るプラズマディスプレイ駆動装置に用いる放電維持パルス発生回路の変形例を示す回路図である。 本発明の第4の実施形態に係るプラズマディスプレイ駆動装置に用いる放電維持パルス発生回路の変形例を示す回路図である。 従来例に係るプラズマディスプレイ駆動装置の走査電極駆動部を示す回路図である。
符号の説明
10 デュアルゲート半導体素子
11 基板
12 バッファ層
13 半導体層積層体
14 GaN層
15 AlGaN層
16 ソース電極
16A 第1のオーミック電極
16B 第2のオーミック電極
17 ドレイン電極
18A 第1のゲート電極
18B 第2のゲート電極
19A 第1のp型半導体層
19B 第2のp型半導体層
20 駆動部
23 負荷電源
24 第1の電源
25 第2の電源
28 第1のゲート駆動回路
29 第2のゲート駆動回路
36 第1のトランジスタ
37 第2のトランジスタ
41 保護膜
42 配線
60 プラズマディスプレイパネル
62 プラズマディスプレイパネル駆動装置
64 制御部
66 入力端子
71 走査電極駆動部
72 維持電極駆動部
73 アドレス電極駆動部
75 回収スイッチ回路
(第1の実施形態)
1.1 構成
1.1.1 プラズマディスプレイ
まず、本発明の第1の実施形態に係るプラズマディスプレイ全体の構成について説明する。
図1は第1の実施形態に係るプラズマディスプレイの構成を示している。プラズマディスプレイは、プラズマディスプレイパネル(PDP)60、PDP駆動装置62及び制御部64を備えている。
(プラズマディスプレイパネル)
PDP60は例えばAC型であり、3電極面放電型構造を有する。PDP60の背面基板上にはアドレス電極A1、アドレス電極A2、アドレス電極A3、・・・アドレス電極Anがパネルの幅方向に沿って配置されている。PDP60の前面基板上には維持電極X1、維持電極X2、維持電極X3、・・・維持電極Xnと、走査電極Y1、走査電極Y2、走査電極Y3、・・・走査電極Ynとが交互に、且つパネルの長手方向に沿って配置されている。維持電極X1〜維持電極Xnは互いに接続されており、電位が実質的に等しい。アドレス電極A1〜アドレス電極Anと、走査電極Y1〜走査電極Ynとは、一本ずつ個別に電位を変化させることができる。
互いに隣り合う維持電極と走査電極との対(例えば維持電極X2と走査電極Y2との対)とアドレス電極(例えばアドレス電極A2)との交差点には放電セルが設置されている(例えば、図1のP部分を参照。)。放電セルの表面には、誘電体からなる誘電体層と、電極と誘電体層を保護するための保護層と、蛍光物質を含む蛍光層とが設けられている。放電セルの内部にはガスが封入されている。維持電極、走査電極及びアドレス電極の間に所定のパルス電圧が印加されると、放電セルにおいて放電が生じる。この際に、放電セル中のガス分子が脱励起し、紫外線を発する。発生した紫外線は放電セルの表面に設けられた蛍光層の蛍光物質を励起し、蛍光を発生させる。このようにして放電セルが発光する。
(PDP駆動装置)
PDP駆動装置62は、PDP60の各電極を駆動する電極駆動部である走査電極駆動部71と、維持電極駆動部72と、アドレス電極駆動部73とを含む。
走査電極駆動部71及び維持電極駆動部72の入力端子66は、電源部(図示せず)と接続される。電源部は、外部の商用交流電源からの交流電圧を一定の直流電圧(例えば400V)にまず変換する。次に、変換した直流電圧を直流−直流(DC−DC)コンバータにより、所定の維持電圧Vsへ変換する。維持電圧VsはPDP駆動装置62に印加される。これにより、入力端子66の電位は、接地電位(=0)に対して維持電圧Vsだけ高く維持される。
走査電極駆動部71の出力端子はPDP60の走査電極Y1〜走査電極Ynのそれぞれに個別に接続されている。走査電極駆動部71は走査電極Y1〜走査電極Ynのそれぞれの電位を個別に変化させる。
維持電極駆動部72の出力端子はPDP60の維持電極X1〜維持電極Xnと接続されている。維持電極駆動部72は維持電極X1〜維持電極Xnの電位を一様に変化させる。
アドレス電極駆動部73はPDP60のアドレス電極A1〜アドレス電極Anのそれぞれに個別に接続されている。アドレス電極駆動部73は、外部からの映像信号に基づき信号パルス電圧を発生させ、アドレス電極A1〜アドレス電極Anの中から選択された電極に対し印加する。
PDP駆動装置62はADS(Address Display-period Separation)方式に従い、PDP60の各電極の電位を制御する。ADS方式はサブフィールド方式の一種である。例えば日本のテレビ放送では画像が1フィールドずつ、1/60秒(=約16.7msec)間隔で送られる。それにより、1フィールド当たりの表示時間が一定である。サブフィールド方式ではフィールドがそれぞれ複数のサブフィールドに分けられる。ADS方式ではさらに、サブフィールドごとに、PDP60の全ての放電セルに対し3つの期間(初期化期間、アドレス期間、及び放電維持期間)が共通に設定される。放電維持期間の長さはサブフィールドごとに異なる。初期化期間、アドレス期間、及び放電維持期間のそれぞれでは、異なるパルス電圧が次のように、放電セルに対し印加される。
初期化期間では、初期化パルス電圧が維持電極X1〜維持電極Xnと走査電極Y1〜走査電極Ynとの間に印加される。これにより、全ての放電セルで壁電荷が均一化される。
アドレス期間では、走査電極駆動部71が、走査電極Y1〜走査電極Ynに対し走査パルス電圧を順次印加する。走査パルス電圧の印加と同時に、アドレス電極駆動部73が選択されたアドレス電極に対し信号パルス電圧を印加する。信号パルス電圧を印加するアドレス電極は、外部から入力される映像信号に基づき選択される。走査パルス電圧が走査電極の1つに印加され、且つ信号パルス電圧がアドレス電極の1つに印加されるとき、その走査電極とアドレス電極との交差点に位置する放電セルで放電が生じる。放電が生じた放電セルの表面には新たな壁電荷が蓄積される。
放電維持期間では、走査電極駆動部71と維持電極駆動部72とが、放電維持パルス電圧をそれぞれ、走査電極Y1〜走査電極Ynと維持電極X1〜維持電極Xnとに対して交互に印加する。これにより、アドレス期間中に壁電荷が蓄積された放電セルでは放電が維持されるので、発光が生じる。放電維持期間の長さはサブフィールドごとに異なるので、放電セルの1フィールド当たりの発光時間、すなわち放電セルの輝度は、発光させるサブフィールドを選択することにより調整する。
走査電極駆動部71、維持電極駆動部72及びアドレス電極駆動部73はそれぞれ、内部にスイッチングインバータを含む。制御部64は、各駆動部についてスイッチング制御を行う。これにより、初期化パルス電圧、走査パルス電圧、信号パルス電圧及び放電維持パルス電圧をそれぞれ所定の波形及びタイミングで発生させる。また、制御部64は外部からの映像信号に基づき、信号パルス電圧を印加するアドレス電極を選択する。さらに、制御部64は、信号パルス電圧を印加した後の放電維持期間の長さ、すなわち信号パルス電圧を印加すべきサブフィールドを決定する。その結果、それぞれの放電セルが適切な輝度で発光する。こうして、PDP60には映像信号に対応する映像が再現される。
1.1.2 走査電極駆動部
次に、電極駆動部について説明する。走査電極駆動部71と維持電極駆動部72とは基本的には同じ回路であるため、以下においては、走査電極駆動部71について説明を行う。
図2は、走査電極駆動部71の詳細な構成を示している。図2にはPDP60の等価回路も合わせて示している。走査電極駆動部71は、それぞれがスイッチングインバータを有する走査パルス発生部1Y、初期化パルス発生部2Y及び放電維持パルス発生部3Yを含む。PDP60は、維持電極Xと走査電極Yとの間の浮遊容量Cp(PDPのパネル容量)により等価的に表されており、放電セルでの放電時にPDP60を流れる電流の経路は省略している。図2において、維持電極Xに接続する維持電極駆動部は省略しており、図中において、維持電極Xは接地状態で表している。
(走査パルス発生部)
走査パルス発生部1Yは、第1の定電圧源V1、ハイサイド走査スイッチQ1Y及びローサイド走査スイッチQ2Yを含む。
第1の定電圧源V1は、例えばDC−DCコンバータ(図示せず)により、電源部から印加される維持電圧Vsに基づき、第2の定電圧源V1は正極の電位を負極の電位より一定の電圧V1だけ高く維持する。
ハイサイド走査スイッチQ1Y及びローサイド走査スイッチQ2Yは例えばMOSFET(金属−酸化膜−半導体電界効果トランジスタ)である。その他にIGBT(絶縁ゲートトランジスタ)又はバイポーラトランジスタであってもよい。
第1の定電圧源V1の正極はハイサイド走査スイッチQ1Yのドレインに接続されている。ハイサイド走査スイッチQ1Yのソースはローサイド走査スイッチQ2Yのドレインに接続されている。それらの間の接続点J1YはPDP60の走査電極の一つYに接続されている。ローサイド走査スイッチQ2Yのソースは、第1の定電圧源V1の負極に接続されている。
ここで、ハイサイド走査スイッチQ1Yとローサイド走査スイッチQ2Yの直列接続回路(図2に示される実線で囲まれた部分)は、実際には、走査電極Y1、Y2、・・・Ynと同数だけ設けられ、走査電極Y1、Y2、・・・Ynのそれぞれに一つずつ接続されている。
(初期化パルス発生部)
初期化パルス発生部2Yは、第2の定電圧源V2、ハイサイドランプ波形発生部QR1、ローサイドランプ波形発生部QR2及び第3の定電圧源V3を含む。
第2の定電圧源V2は、その正極の電位を、例えばDC−DCコンバータによって電源部から印加される維持電圧Vsに対して所定電圧V2だけ高く維持する。
第3の定電圧源V3は、例えばDC−DCコンバータにより、電源部から印加される維持電圧Vsに基づき、その正極の電位を負極の電位より所定電圧V3だけ高く維持する。
ハイサイドランプ波形発生部QR1及びローサイドランプ波形発生部QR2は例えばNチャネルMOSFET(NMOS)を含む。そのNMOSのゲートとドレインとはコンデンサで接続される。ハイサイドランプ波形発生部QR1及びローサイドランプ波形発生部QR2がオン状態となるとき、ドレインソース間電圧は実質的に一定の速度で0まで変化する。
第2の定電圧源V2の正極はハイサイドランプ波形発生部QR1のドレインに接続されている。ハイサイドランプ波形発生部QR1のソースは第1の定電圧源V1の負極に接続されている。第2の定電圧源V2の負極は放電維持パルス発生部3Yの維持電圧源Vsの正極に接続されている。ローサイドランプ波形発生部QR2のドレインは第1の定電圧源V1の負極に接続され、ローサイドランプ波形発生部QR2のソースは第3の定電圧源V3の負極に接続される。第3の定電圧源V3の正極は接地されている。ハイサイドランプ波形発生部QR1のソースとローサイドランプ波形発生部QR2のドレインとの接続点は接続ノードJ2Yとなっている。
(放電維持パルス発生部)
放電維持パルス発生部3Yは、ハイサイド維持スイッチQ7Yとローサイド維持スイッチQ8Yの直列回路と、回収インダクタLYと、回収スイッチ回路75と、回収コンデンサCYとを含む。
維持電圧源Vsは、正極の電位を負極の電位より一定の電圧Vs(維持電圧)だけ高く維持する。維持電圧源Vsの正極はハイサイド維持スイッチQ7Yのドレインに接続され、ハイサイド維持スイッチQ7Yのソースはローサイド維持スイッチQ8Yのドレインに接続されている。ローサイド維持スイッチQ8Yのソースは維持電圧源Vsの負極に接続されている。維持電圧源Vsの負極は例えば0V(接地状態)である。ハイサイド維持スイッチQ7Yとローサイド維持スイッチQ8Yとが接続された出力ノードJ3Yは、放電維持パルス発生部3Yの出力ノードとして、第1の定電圧源V1の負極に接続されている。放電維持パルス発生部3Yの出力ノードJ3Yからローサイド走査スイッチQ2Yのドレインまでの経路を以下「放電維持パルス伝達路」という。
(双方向スイッチ素子)
放電維持パルス発生部3Yにおいて、特に、ハイサイド維持スイッチQ7Y及びローサイド維持スイッチQ8Yは、双方向スイッチ素子で構成される。本実施形態及び以下の実施形態において、「双方向スイッチ素子」とは以下のようないずれかの特性を持つスイッチ素子をいう。
<特性1>
−オン状態では、ドレインからソース方向及びソースからドレイン方向の双方向に電流を流すことができる。
−オフ状態では、ドレインからソース方向及びソースからドレイン方向の双方向において電流を流さない。オフ期間では、その素子の絶対最大定格のドレインソース間電圧及び絶対最大定格のソース・ドレイン間電圧ともに十分な値を確保している。(以降、絶対最大定格のドレイン・ソース間電圧及び絶対最大定格のソースドレイン間電圧のことを「双方向スイッチ素子の耐圧」という。)
<特性2>
−オン状態では、ドレインからソース方向に電流を流すことができるが、ソースからドレイン方向には電流を流さない。
−オフ状態では、ドレインからソース方向及びソースからドレイン方向の双方向において電流を流さない。オフ状態では、その素子の絶対最大定格のドレインソース間電圧及び絶対最大定格のソースドレイン間電圧ともに十分な値を確保している。
ハイサイド維持スイッチQ7Y及びローサイド維持スイッチQ8Yを双方向スイッチ素子で構成することにより、ハイサイド維持スイッチQ7Y及びローサイド維持スイッチQ8Yに対して高い電圧が印加されても逆導通を阻止できる。このため、ハイサイド維持スイッチQ7Y及びローサイド維持スイッチQ8Yを双方向スイッチ素子で構成することで、従来のPDPの駆動装置において、初期化期間における逆導通を阻止するために用いられていた分離スイッチ素子を設ける必要がなくなり、部品点数を低減でき、電力損失を低減できる。
(回収スイッチ回路)
回収スイッチ回路75は、第1の回収ダイオードD1、第2の回収ダイオードD2、ハイサイド回収スイッチQ9Y及びローサイド回収スイッチQ10Yを含む。ハイサイド回収スイッチQ9Y及びローサイド回収スイッチQ10Yは例えばMOSFETである。その他にIGBT又はバイポーラトランジスタであってもよい。
ハイサイド回収スイッチQ9Yのソースは第1の回収ダイオードD1のアノードと接続され、第1の回収ダイオードD1のカソードは第2の回収ダイオードD2のアノードと接続され、第2の回収ダイオードD2のカソードは、ローサイド回収スイッチQ10Yのドレインと接続されている。回収インダクタLYの一端は出力ノードJ3Yに接続され、他端は第1の回収ダイオードD1のカソードと第2の回収ダイオードD2のアノードとの接続点J4Yに接続されている。回収コンデンサCYの一端は維持電圧源Vsの負極と接続され、他端はハイサイド回収スイッチQ9Yのドレイン及びローサイド回収スイッチQ10Yのソースと接続されている。
回収コンデンサCYの容量はPDP60のパネル容量Cpより十分に大きい。回収コンデンサCYの両端電圧は、電源部から印加される維持電圧Vsの半値Vs/2と実質的に等しく維持される。
1.2 動作
以下に、走査電極駆動部71の動作について説明する。走査電極駆動部の動作は、先に述べた初期化期間、アドレス期間及び放電維持期間の3つの期間に別けることができる。図3は、初期化期間、アドレス期間及び放電維持期間においてPDP60の走査電極Yに印加する電圧の波形と、走査電極駆動部71に含まれる各スイッチの状態とを示している。図中において斜線で示した期間が対応するスイッチがオン状態の期間を示している。
1.2.1 初期化期間
初期化期間は初期化パルス電圧の変化に応じてモードI〜Vに分けられる。
<モードI>
ローサイド走査スイッチQ2Y及びローサイド維持スイッチQ8Yをオン状態に維持する。残りのスイッチはオフ状態に維持する。これにより、走査電極Yは接地電位(例えば0V)に維持される。
<モードII>
ローサイド走査スイッチQ2Y及びハイサイド維持スイッチQ7Yをオン状態に維持する。残りのスイッチはオフ状態に維持する。これにより、走査電極Yの電位が接地電位から維持電圧源Vsの電圧Vsだけ高い電位まで上昇する。
<モードIII>
ローサイド走査スイッチQ2Yをオン状態に維持したまま、ハイサイド維持スイッチQ7Yをオフ状態とし、ハイサイドランプ波形発生部QR1をオン状態とする。残りのスイッチはオフ状態に維持する。これにより、走査電極Yの電位が一定の速度で、接地電位から維持電圧源Vsの電圧Vsと第2の定電圧源V2の電圧V2との和だけ高い電位Vr(以下、初期化パルスの上限電圧という。)まで上昇する。
これにより、PDP60の全ての放電セルに対する印加電圧は、一様に初期化パルス電圧の上限Vrまで比較的緩やかに上昇する。その結果、PDP60の全ての放電セルにおいて一様な壁電荷が蓄積される。このとき、印加電圧の上昇速度は小さいので、放電セルの発光は微弱に抑えられる。
<モードIV>
ローサイド走査スイッチQ2Yをオン状態に維持したまま、ハイサイドランプ波形発生部QR1をオフ状態とし、ハイサイド維持スイッチQ7Yをオン状態とする。また、残りのスイッチはオフ状態に維持する。これにより、走査電極Yの電位は、初期化パルスの上限電圧Vrから下降して、接地電位よりも維持電圧源Vsの電圧Vsだけ高い電位となる。
<モードV>
ローサイド走査スイッチQ2Yをオン状態に維持したまま、ハイサイド維持スイッチQ7Yをオフ状態とし、ローサイドランプ波形発生部QR2をオン状態とする。残りのスイッチはオフ状態に維持される。走査電極Yの電位は一定の速度で下降して、接地電位よりも第3の定電圧源V3の電圧V3だけ低い電位−V3(以下、初期化パルスの下限電圧という。)となる。従って、PDP60の放電セルには、モードII〜モードIVにおいて印加された電圧とは逆極性の電圧が印加される。特に、印加電圧は比較的緩やかに下降する。これにより、全ての放電セルにおいて壁電荷が一様に除去され、均一化される。このとき、印加電圧の下降速度が小さいので、放電セルの発光は微弱に抑えられる。
1.2.2 アドレス期間
アドレス期間中、走査電極駆動部71では、ローサイドランプ波形発生部QR2及びハイサイド走査スイッチQ1Yがオン状態に維持される。従って、ハイサイド走査スイッチQ1Yのドレインは初期化パルスの下限電圧−V3から第1の定電圧源V1の電圧V1だけ高い電位Vp(以下、走査パルスの上限電圧Vpという)に維持され、ローサイド走査スイッチQ2Yのソースは初期化パルスの下限電圧−V3に維持される。
アドレス期間の開始時、全ての走査電極Yについて、ハイサイド走査スイッチQ1Yがオン状態に維持され、ローサイド走査スイッチQ2Yがオフ状態に維持される。これにより、全ての走査電極Yの電位が一様に走査パルスの上限電圧Vpに維持される。
走査電極駆動部71は続いて、走査電極Yの電位を次のように変化させる(図3に示された走査パルス電圧SPを参照。)。1つの走査電極Yが選択されると、選択された走査電極Yと接続されたハイサイド走査スイッチQ1Yをオフ状態とし、ローサイド走査スイッチQ2Yをオン状態とする。これにより、選択された走査電極Yの電位は初期化パルスの下限電圧−V3まで下降する。選択された走査電極Yの電位が所定時間、初期化パルスの下限電圧−V3に維持された後、選択された走査電極Yと接続されたローサイド走査スイッチQ2Yをオフ状態とし、ハイサイド走査スイッチQ1Yをオン状態とする。これにより、選択された走査電極Yの電位は再び走査パルスの上限電圧Vpまで上昇する。走査電極駆動部71は走査電極Yのそれぞれと接続されたハイサイド走査スイッチQ1Y及びローサイド走査スイッチQ2Yについて、同様のスイッチング動作を順次行う。これにより、走査パルス電圧SPが走査電極Yのそれぞれに対して順次印加される。
アドレス期間中、外部から入力される映像信号に基づき、1つのアドレス電極Aが選択されると、選択されたアドレス電極Aの電位は所定時間、信号パルスの上限電圧Vaまで上昇する(図示せず)。
例えば、走査パルス電圧SPを1つの走査電極Yに印加すると共に信号パルス電圧を1つのアドレス電極Aに印加すると、その走査電極Yとアドレス電極Aとの間の電圧は他の電極間の電圧よりも高くなる。従って、その走査電極Yとアドレス電極Aとの間の交差点に位置する放電セルは放電する。放電した放電セルの表面には、放電による新たな壁電荷が蓄積される。
その後、放電維持期間において、走査電極駆動部71と維持電極駆動部72(図示せず)とが交互に、放電維持パルス電圧をそれぞれ、走査電極Yと維持電極Xとに対し印加する。このとき、アドレス期間中に壁電荷が蓄積された放電セルでは放電が維持されるので発光が生じる。
1.2.3 放電維持期間
放電維持期間について説明する。ローサイド走査スイッチQ2Yは常にオン状態に維持する。
ハイサイド回収スイッチQ9Yをオン状態とする直前に、ローサイド維持スイッチQ8Yをオン状態とし、パネル容量Cpの両端の電圧は0Vに維持される。ハイサイド回収スイッチQ9Yをオン状態とすると、回収コンデンサCYと、ハイサイド回収スイッチQ9Yと、第1の回収ダイオードD1と、回収インダクタLYと、パネル容量Cpとにより、LC共振回路が形成される。これにより、パネル容量Cpの両端の電圧はVsまで増加する。残りのスイッチはオフ状態に維持する。
次に、ハイサイド回収スイッチQ9Yをオフ状態として、ハイサイド維持スイッチQ7Yをオン状態とすれば、パネル容量Cpの両端電圧はVsに維持される。このとき、ハイサイド維持スイッチQ7Yのドレインソース間電圧は0であるので、ほぼ損失なくオン状態とすることができる(残りのスイッチ素子はオフ状態に維持される)。
所定時間経過後、ハイサイド維持スイッチQ7Yをオフ状態とし、ローサイド回収スイッチQ10Yをオン状態とすると、回収コンデンサCYと、ローサイド回収スイッチQ10Yと、第2の回収ダイオードD2と、回収インダクタLYと、パネル容量Cpとにより、LC共振回路が形成される。これにより、パネル容量Cpの両端の電圧は0まで減少する。
次に、ローサイド回収スイッチQ10Yをオフ状態として、ローサイド維持スイッチQ8Yをオン状態とすれば、パネル容量Cpの両端の電圧は0に維持される。このとき、ローサイド維持スイッチQ8Yのドレイン・ソース間電圧は0であるので、ほぼ損失なくオン状態とすることができる(残りのスイッチ素子はオフ状態に維持される)。
走査電極Yの電位が上下するとき、回収コンデンサCYとパネル容量Cpとの間で電力が効率良く交換される。このため、放電維持パルス電圧の印加時、パネル容量Cpの充放電に起因する無効電力を低減できる。
1.3 デュアルゲート半導体素子
以上のような動作をさせるために、ハイサイド維持スイッチQ7Y及びローサイド維持スイッチQ8Yに用いるスイッチ素子は少なくとも先に述べた特性1を満たす双方向スイッチである必要がある。
このよう双方向スイッチ素子は、例えば図4に示すように複数のトランジスタとダイオードとを、接続することにより実現することができる。しかし、双方向スイッチを実現するために図4に示すような複数のトランジスタとダイオードとを組み合わせた場合には、部品点数が増大してしまう。また、複数のトランジスタ及びダイオードからなるため、ダイオードの順方向立上り電圧がオン電圧に付加され、導通損失の影響が大きく、消費電力が増大してしまう。
本実施形態のPDP駆動装置は、ハイサイド維持スイッチQ7Y及びローサイド維持スイッチQ8Yにデュアルゲート半導体素子を用いている。このため、1つの素子により双方向スイッチが実現できるため、部品点数を削減でき、PDP駆動装置の占有面積を低減できる。また、電力損失も低減できる。
1.3.1 第1のデュアルゲート半導体素子
図5は、デュアルゲート半導体素子10の第1の例について断面構成を示している。図5に示すように、デュアルゲート半導体素子10は、シリコン(Si)からなる基板11の上に厚さが10nm窒化アルミニウム(AlN)と厚さが10nmの窒化ガリウム(GaN)とが交互に積層されてなる厚さが1μmのバッファ層12が形成され、その上に半導体層積層体13が形成されている。半導体層積層体13は、2つの半導体層が基板側から順次積層されており、上側の半導体層は下側の半導体層と比べてバンドギャップが大きい。本実施形態においては、下側の半導体層は、厚さが2μmのアンドープの窒化ガリウム(GaN)層14であり、上側の半導体層は、厚さが20nmのn型の窒化アルミニウムガリウム(AlGaN)層15である。
GaN層14のAlGaN層15とのヘテロ界面近傍には、自発分極及びピエゾ分極による電荷が生じる。これにより、シートキャリア濃度が1×1013cm-2以上で且つ移動度が1000cm2V/sec以上の2次元電子ガス(2DEG)層であるチャネル領域が生成されている。
半導体層積層体13の上には、互いに間隔をおいて第1のオーミック電極であるソース電極16と第2のオーミック電極であるドレイン電極17とが形成されている。ソース電極16及びドレイン電極17は、チタン(Ti)とアルミニウム(Al)とが積層されており、チャネル領域とオーミック接触している。図1においては、コンタクト抵抗を低減するために、AlGaN層15の一部を除去すると共にGaN層14を40nm程度掘り下げて、ソース電極16及びドレイン電極17がAlGaN層15とGaN層14との界面に接するように形成した例を示している。なお、ソース電極16及びドレイン電極17は、AlGaN層15の上に形成してもよい。
n型のAlGaN層15の上におけるソース電極16及びドレイン電極17との間の領域には、第1のp型半導体層19A及び第2のp型半導体層19Bが互いに間隔をおいて選択的に形成されている。第1のp型半導体層19Aの上には第1のゲート電極18Aが形成され、第2のp型半導体層19Bの上には第2のゲート電極18Bが形成されている。第1のゲート電極18A及び第2のゲート電極18Bは、それぞれパラジウム(Pd)と金(Au)とが積層されており、第1のp型半導体層19A及び第2のp型半導体層19Bとオーミック接触している。
AlGaN層15及び第1のp型半導体層19A及び第2のp型半導体層19Bを覆うように窒化シリコン(SiN)からなる保護膜41が形成されている。保護膜41を形成することで、いわゆる電流コラプスの原因となる欠陥を保障し、電流コラプスを改善することが可能となる。
第1のp型半導体層19A及び第2のp型半導体層19Bは、それぞれ厚さが300nmで、マグネシウム(Mg)がドープされたp型のGaNからなる。第1のp型半導体層19A及び第2のp型半導体層19Bと、AlGaN層15とによりPN接合がそれぞれ形成される。これにより、第1のオーミック電極と第1のゲート電極間との電圧が例えば0Vでは、第1のp型GaN層からチャネル領域中に空乏層が広がるため、チャネルに流れる電流を遮断することができ、同様に、第2のオーミック電極と第2のゲート電極間との電圧が例えば0V以下のときには、第2のp型GaN層からチャネル領域中に空乏層が広がるため、チャネルに流れる電流を遮断することができ、いわゆるノーマリーオフ動作をするデュアルゲート半導体素子を実現している。
また、このような構造とすることにより、ドレインとソースとの間に流れる電流を遮断するために印加する第1のゲート電極18Aの閾値電圧は、ソース電極16を基準として約+1.5Vとなり、第2のゲート電極18Bの閾値電圧は、ドレイン電極17を基準として約+1.5Vとなる。
また、第1のゲート電極18A及び第2のゲート電極18Bはそれぞれ第1のp型半導体層19A及び第2のp型半導体層19Bを介してAlGaN層15に接している。このため、第1のゲート電極18A及び第2のゲート電極18Bに順方向電流が流れるとき、第1のp型半導体層19A及び第2のp型半導体層19Bを介してチャネル領域に正孔が注入される。注入された正孔は、同量の電子をチャネル中に発生させるので、チャネル領域内に電子を発生される効果が高くなり、ドナーイオンのような機能を発揮する。つまり、チャネル領域内においてキャリア濃度の変調を行うことが可能となるため、ノーマリーオフ動作をしつつ動作電流を大きくすることが可能となる。
デュアルゲート半導体素子10は、耐圧を確保するためのチャネル領域を第1のゲート電極18Aと第2のゲート電極18Bとが共有する。2つのダイオードと2つのトランジスタとを用いて同様のスイッチ素子を形成した場合には、耐圧を確保するチャネル領域が2素子分の面積が必要である。しかし、デュアルゲート半導体素子10は1素子分のチャネル領域の面積でスイッチ素子が実現可能であり、スイッチ素子全体を考えると、2つのダイオードと2つのトランジスタとを用いた場合と比べてチップ面積をより少なくすることができる。
以下に、デュアルゲート半導体素子10の動作について説明する。デュアルゲート半導体素子10は、オン状態においては、ドレイン側からソース側及びソース側からドレイン側の双方向に電流を流すことができ、オフ状態においては、ドレイン側からソース側及びソース側からドレイン側の双方向において電流を遮断できる、いわゆる双方向スイッチ動作を行わせることができる。
図6は、図5に示したデュアルゲート半導体素子10に双方向スイッチ動作を行わせる場合の回路を示している。この場合には、負極がソース電極16と接続され正極が第1のゲート電極18Aと接続された第1の電源24と、負極がドレイン電極17と接続され正極が第2のゲート電極18Bと接続された第2の電源25とを有する駆動部20によりデュアルゲート半導体素子を駆動する。なお、第1の電源24の出力をVg1、第2の電源25の出力をVg2とする。なお、図6は、説明のため負荷電源23の負極がデュアルゲート半導体素子10のソース電極16と接続され、正極がドレイン電極17と接続されている例を示している。
ソース電極16からドレイン電極17へ流れる電流及びドレイン電極17からソース電極16へ流れる電流の両方を遮断するためには、ソース電極16を基準として第1のゲート電極18Aの閾値電圧以下の電圧を第1のゲート電極18Aに印加し、第1のp型半導体層19Aからチャネル領域に空乏層を広げ、チャネル領域をピンチオフする。同時に、ドレイン電極17を基準として第2のゲート電極18Bの閾値電圧以下の電圧を第2のゲート電極18Bに印加し、第2のp型半導体層19Bからチャネル領域に空乏層を広げ、チャネル領域をピンチオフする。具体的にはVg1とVg2を例えば0Vとする。このような動作をすることで、ドレイン電極17の電位がソース電極16の電位より高いとき、第1のp型半導体層19Aから空乏層がチャネル領域に広がり、ドレイン電極17からソース電極16へ流れる電流を遮断することがきる。同様に、ソース電極16の電位がドレイン電極17の電位より高いとき、第2のp型半導体層19Bから空乏層がチャネル領域に広がり、ソース電極16からドレイン電極17へ流れる電流を遮断することができる。
双方向に電流を通電させるためには、ソース電極16を基準として第1のゲート電極18Aの閾値電圧よりも高い電圧を第1のゲート電極18Aに印加し、第1のp型半導体層19Aから広がる空乏層を縮小し、チャネル領域を通電状態にし、同時に、ドレイン電極17を基準として第2のゲート電極18Bの閾値電圧よりも高い電圧を第2のゲート電極18Bに印加し、第2のp型半導体層19Bから広がる空乏層を縮小し、チャネル領域を通電状態にする。具体的には例えばVg1とVg2を5Vにする。このような動作をすることで、ソース電極16とドレイン電極17との間に双方向に電流を通電することが可能となる。
また、双方向の電流が通電している状態において、チャネル上にダイオードがないため、ダイオードの順方向立上り電圧によるオン電圧の上昇はこの双方向スイッチには発生しない。このため、従来の直列に接続されたダイオードとトランジスタとからなる双方向スイッチに比べ、そのオン電圧を低減でき、PDP駆動電力を低減できる。
また、デュアルゲート半導体素子10は、オン状態においてはドレイン電極17とソース電極16との間に一方向に電流を流し、他方向の電流は遮断し、オフ状態においては双方向に電流を遮断する逆阻止動作を行わせることもできる。
逆阻止動作についてまず、第1のゲート電極18Aに第1のゲート電極18Aの閾値電圧よりも高い電圧を印加し、第2のゲート電極18Bに第2のゲート電極18Bの閾値電圧以下の電圧を印加した場合の動作について説明する。図5のデュアルゲート半導体素子を等価回路で表すと図7(a)に示すように第1のトランジスタ36と第2のトランジスタ37とが直列に接続された回路とみなすことができる。この場合、第1のトランジスタ36のソース(S)がデュアルゲート半導体素子のソース電極16、第1のトランジスタ36のゲート(G)が第1のゲート電極18Aに対応し、第2のトランジスタ37のソース(S)がデュアルゲートトランジスタのドレイン電極17、第2のトランジスタ37のゲート(G)が第2のゲート電極18Bに対応する。図7は、説明のため負荷電源23の負極がデュアルゲート半導体素子のソース電極16と接続され、正極がドレイン電極17と接続されている例を示している。
このような回路において、例えば、Vg1を5V、Vg2を0Vとした場合、Vg2が0Vであるということは第2のトランジスタ37のゲートとソースが短絡されている状態と等しいため、デュアルゲート半導体素子の第2のトランジスタは図7(b)に示すような回路とみなすことができる。
以下において、図7(b)に示すトランジスタのソース(S)をA端子、ドレイン(D)をB端子、ゲート(G)をC端子として説明を行う。
B端子の電位がA端子の電位よりも高い場合には、A端子がソースでB端子がドレインであるトランジスタとみなすことができる。このような場合、C端子(ゲート)とA端子(ソース)との間の電圧は0Vであり、閾値電圧以下のため、B端子(ドレイン)からA端子(ソース)に電流は流れない。
一方、A端子の電位がB端子の電位よりも高い場合には、B端子がソースでA端子がドレインのトランジスタとみなすことができる。このような場合、C端子(ゲート)とA端子(ドレイン)との電位が同じであるため、A端子の電位がB端子を基準として閾値電圧以上となると、ゲートにB端子(ソース)を基準として閾値電圧以上の電圧が印加され、A端子(ドレイン)からB端子(ソース)へ電流を流すことができる。
つまり、トランジスタのゲートとソースとを短絡させた場合、ドレインがカソードでソースがアノードのダイオードとして機能し、その順方向立上り電圧はトランジスタの閾値電圧となる。
そのため、図7(a)に示す第2のトランジスタ37の部分は、ダイオードとみなすことができ、図7(c)に示すように第1のトランジスタとダイオードとが直列接続された等価回路として表すことができる。図7(c)に示す等価回路において、スイッチ素子のドレインの電位がソースの電位よりも高い場合、第1のトランジスタ36のゲートに5Vが印加されているので、第1のトランジスタ36はオン状態であり、ドレインからソースへ電流を流すことが可能となる。但し、ダイオードの順方向立上り電圧によるオン電圧が発生する。また、スイッチ素子のソースの電位がドレインの電位よりも高い場合、その電圧は第2のトランジスタ37からなるダイオードが担い、スイッチ素子のソースからドレインへ流れる電流を阻止する。つまり、第1のゲート電極18Aに閾値電圧以上の電圧を与え、第2のゲート電極18Bに閾値電圧以下の電圧を与えることにより、いわゆる逆阻止動作を行わせることができる。
図8(a)〜(c)は、デュアルゲート半導体素子10に双方向スイッチ動作及び逆阻止動作を行わせた場合の動作特性を示している。図8において、横軸はソース電極16を基準としたドレイン電極17の電圧であり、ここではVdsと記載する。また、縦軸はドレイン電極17とソース電極16との間を流れる電流Idsであり、ドレイン電極17からソース電極16へ流れる電流を正としている。
図8(a)は、第1の電源の出力Vg1と第2の電源の出力Vg2は同じ電圧になるように出力し、Vg1とVg2とを0V、1V、2V、3V、4V、5Vとしたときの特性を示している。図8に示すように、Vg1とVg2とが0Vのときには明らかに双方向の電流を遮断し、Vg1とVg2とが5Vのときには明らかに双方向の電流を通電し、双方向スイッチの動作を実現している。
図8(b)は、Vg2を0Vとなるように出力し、Vg1を0V、1V、2V、3V、4V、5VとしたときのIdsとVdsとの特性を示している。図8(b)に示すように、Vg1が5Vのときでは、Vdsが正の電圧であるときに電流を通電し、Vdsが負の電圧であるときには電流を遮断している。この動作は、ソース電極がカソード、ドレイン電極がアノードとなるダイオードの動作と同じとなる。
図8(c)は、Vg1を0Vとなるように出力し、Vg2を0V、1V、2V、3V、4V、5VとしたときのIdsとVdsとの特性を示している。図8(c)に示すように、Vg2が5Vのときには、Vdsが負の電圧であるときに電流を通電し、Vdsが正の電圧であるときには電流を遮断している。この動作は、ソース電極がアノード、ドレイン電極がカソードとなるダイオードの動作と同じとなる。
以上のように、本実施形態のデュアルゲート半導体素子10は、そのゲートバイアス条件により、双方向の電流を遮断及び通電する双方向スイッチ動作をさせることも、逆阻止動作をさせることも可能である。また、逆阻止動作の際に電流が通電する方向も切り換えることができる。
デュアルゲート半導体素子に逆阻止動作をさせる場合には、第1のゲート電極18A又は第2のゲート電極18Bに印加する電圧を調整するだけでよいが、双方向スイッチ動作をさせる場合には、第1のゲート電極18A及び第2のゲート電極18Bのそれぞれに電圧を印加する駆動部が必要となる。
1.3.2 第2のデュアルゲート半導体素子
図9は、デュアルゲート半導体素子10の第2の例について断面構成を示している。図9において図5と同一の構成要素には同一の符号を附すことにより説明を省略する。
図9に示すように、第2のデュアルゲート半導体素子は、第1のデュアルゲート半導体素子と比べ、第1のp型半導体と第2のp型半導体がなく、第1のゲート電極と第2のゲート電極が前記AlGaN層上に形成されており、第1のゲート電極及び第2のゲート電極はAlGaN層とショットキー接合を形成しており、ノーマリーオフ動作を可能とするため、AlGaN層の膜厚が薄くなっており、例えば5nm程度になっている点で異なる。
このような構造とすることで、第1のデュアルゲート半導体素子と同様に双方向スイッチ動作及び逆阻止スイッチ動作が可能なデュアルゲート半導体素子を構成することができる。
また、AlGaN層の膜厚を厚くするか、又はAlGaN層のAl組成を高めことで、チャネル領域の電子のキャリア濃度をより高めることができる。そのため、チャネル領域の抵抗は低減し、デュアルゲート半導体素子のオン抵抗を低減し、前記走査電極駆動の電力消費を低減することが可能となる。但し、このような構造とする場合、ノーマリーオン型のデュアルゲート半導体素子となり、閾値電圧が負の電圧となってしまう。そのため、走査電極駆動部のスイッチ素子と用いる場合には、デュアルゲート半導体素子による短絡故障を防止するため、デュアルゲート半導体素子のソース又はドレインに電圧が印加される前に、閾値電圧以下の電圧を第1ゲート及び第2ゲートに印加する。これによりノーマリオン型のデュアルゲート半導体素子を用いたPDP駆動装置を動作することが可能となる。
1.3.3 第3のデュアルゲート半導体素子
図10は、デュアルゲート半導体素子10の第3の例について断面構成を示している。図10において図5と同一の構成要素には同一の符号を附すことにより説明を省略する。
図10に示すように、第3のデュアルゲート半導体素子は、第1のデュアルゲート半導体素子と比べ、第1のp型半導体と第2のp型半導体がなく、AlGaN層15に2つの凹部が形成され、その凹部の底辺に接するように第1のゲート電極18Aと第2のゲート電極18Bとが形成され、第1のゲート電極18A及び第2のゲート電極18BはAlGaN層15とショットキー接合を形成している点で異なる。図10に示すように、AlGaN層15を部分的に薄膜化することで、AlGaN層15を薄膜化することによるチャネル層の電子のキャリア濃度低減を抑制しつつ、ゲートの閾値電圧を正の電圧にすることができる。このため、オン抵抗が小さく且つノーマリーオフ動作が可能なデュアルゲート半導体素子が実現可能となる。
なお、各デュアルゲート半導体素子に用いる基板は、窒化物半導体が成長できる限りSi以外でもよく、例えばGaN、サファイア、炭化珪素(SiC)、酸化亜鉛(ZnO)、砒化ガリウム(GaAs)、リン化ガリウム(GaP)、リン化インジウム(InP)、酸化リチウムガリウム(LiGaO2)若しくは酸化リチウムアルミニウム(LiAlO2)又はこれらの混晶等であってもよい。
また、ゲート電極の材料はPdとAuを用いたが、p型半導体とオーミック接合を形成し、AlGaN層とショットキー接合を形成する限り、Pd以外の金属でもよく、Ni、Pt、インジウムスズ酸化物、ZnInSnO又はGaInSnO等を用いてもよい。
また、各例に係るデュアルゲート半導体素子において、第1のゲート電極18A又は第2のゲート電極18Bにオン電圧を印加する際には、第1のゲート電極18A又は第2のゲート電極18BとAlGaN層15とにより形成されるダイオードの順方向の立ち上がり電圧(約1V)以上の電圧を印加することになる。このため、第1のゲート電極18A又は第2のゲート電極18Bからソース電極16又はドレイン電極17へ電流が流れてしまい、スイッチ素子のゲート駆動電力が増大してしまうという問題がある。このため、第1のゲート電極18A又は第2のゲート電極18Bに印加するオン電圧を1V程度として、デュアルゲート半導体素子を駆動する必要がある。この場合には、PDP駆動装置内に発生するノイズの影響により、デュアルゲート半導体素子が誤作動してしまうおそれがある。誤作動を回避するために、第1のゲート電極18A又は第2のゲート電極18Bは、絶縁膜を介してAlGaN層15の上に形成してもよい。この場合の絶縁膜は、酸化シリコン(SiO2)、酸化ハフニウム(HfO2)、酸化アルミニウム(Al23)、酸化タンタル(Ta25)、窒化アルミニウム(AlN)又は窒化シリコン(SiN)等を用いればよい。このような構造とすることで、MOSFETに代表されるいわゆるMIS(金属−絶縁体−半導体)構造のゲート電極が形成され、第1のゲート電極18A又は第2のゲート電極18Bに高いオン電圧を印加しても、高いオン電圧が印加されたゲート電極からソース電極又はドレイン電極へ流れる電流を抑制することができる。
1.4 デュアルゲート半導体素子のゲート駆動回路
図11は、デュアルゲート半導体素子を駆動する駆動部20の具体例を示している。デュアルゲート半導体素子10の第1のゲート電極18Aは第1のゲート駆動回路28により駆動され、第2のゲート電極18Bは第2のゲート駆動回路29により駆動される。
デュアルゲート半導体素子により先に述べた特性1を有する双方向スイッチを実現しハイサイド維持スイッチQ7Y又はローサイド維持スイッチQ8Yに適用する場合には、以下に説明するようなゲート駆動回路を用いる。
第1のゲート駆動回路28及び第2のゲート駆動回路29は、VIN端子に入力された信号をVIN端子と電気的に絶縁して信号を伝達する絶縁型信号伝達回路を介し、伝達された信号をもとにゲートバイアス電圧をVO端子から出力するゲート駆動回路である。絶縁型信号伝達回路には、光で信号を伝達し、入力と出力とを電気的に絶縁して信号を伝達でき、高速スイッチングが可能なフォトカプラを用いればよい。なお、絶縁型信号伝達回路には、トランスにより信号を伝達する絶縁カプラでもよく、コンデンサにより信号を伝達する絶縁カプラでもよい。
第1のゲート駆動回路28及び第2のゲート駆動回路29では、VB端子、VS端子及びVO端子は、VIN端子及びGND端子から絶縁されている。第1のゲート駆動回路28及び第2のゲート駆動回路29は、VIN端子とGND端子との間の電圧が所定の電圧よりも低い場合には、VO端子をVS端子と接続し、VO端子とVB端子との間を開放する。また、VIN端子とGND端子との間の電圧が所定の電圧以上の場合には、VO端子とVS端子との間を開放し、VO端子とVB端子とを接続する。第1のゲート駆動回路28のVO端子は第1のゲート電極18Aと接続され、VS端子はソース電極16及び第1の電源24の負極と接続され、VB端子は第1の電源24の正極と接続されている。また、第2のゲート駆動回路のVO端子は第2のゲート電極18Bと接続され、VS端子はドレイン電極17及び第2の電源25の負極と接続され、VB端子は第2の電源25の正極と接続されている。なお、第1の電源24及び第2の電源25はPDP駆動装置の基準電位から絶縁されている。
第1のゲート駆動回路28のVIN端子とGND端子との間に所定の電圧を印加することにより、ソース電極16を基準とした第1の電源24の電圧を第1のゲート電極18Aに印加することが可能となる。また同様に、第2のゲート駆動回路のVIN端子とGND端子との間に所定の電圧を印加することにより、ドレイン電極17を基準とした第2の電源25の電圧を第2のゲート電極18Bに印加することが可能となる。
図11に示した駆動部20は、第1の電源24及び第2の電源25として、PDP駆動装置の基準電位から絶縁された電源を使用している。このため、デュアルゲート半導体素子10のソース電極16又はドレイン電極17の電位と図1に示す制御部64の基準電位とが異なる場合でも、第1のゲート電極18A及び第2のゲート電極18Bにバイアス電圧を印加することが可能である。その結果、駆動部20によるデュアルゲート半導体素子10の制御が可能となる。
1.5 デュアルゲート半導体素子を適用した第1の例
1.3において示したデュアルゲート半導体素子を走査電極駆動部71に適用した例について説明する。
1.5.1 走査電極駆動部
図12は、デュアルゲート半導体素子を用いたPDP駆動装置の一例を示している。本実施形態のPDP駆動装置は、走査電極駆動部71のハイサイド維持スイッチQ7Y及びローサイド維持スイッチQ8Yとしてデュアルゲート半導体素子を用いている。図12においてドレインDはデュアルゲート半導体素子のドレイン電極17であり、ソースSはソース電極16であり、第1ゲートG1は第1のゲート電極18Aであり、第2ゲートG2は第2のゲート電極18Bである。なお、先に示したいずれのデュアルゲート半導体素子についても、同様に用いることができる。
このようにハイサイド維持スイッチQ7Y及びローサイド維持スイッチQ8Yをデュアルゲート半導体素子で構成することで、従来の走査電極駆動部において、初期化期間における逆導通を阻止するために用いられていた分離スイッチ素子を設ける必要がなくなり、部品点数を低減でき、電力損失を低減できる。
また、シリコン(Si)を材料とする従来の半導体素子を用いて双方向スイッチを形成する場合には、Siの材料限界のためにオン抵抗の低減が困難になっていた。そこで、材料限界を打破して導通損失を低減するために、GaNに代表される窒化物系半導体又は炭化珪素(SiC)等のワイドギャップ半導体を用いた双方向スイッチを用いることで、さらに導通損失を低減し、走査電極駆動部の電力損失を低減することが可能となる。
1.5.2 第1の動作
図13は、図12に示した走査電極駆動部71の第1の動作を示している。図13に示すように、各スイッチがオン状態となる期間は、図3において各スイッチがオン状態となった期間と同じである。
但し、ハイサイド維持スイッチQ7Yとローサイド維持スイッチQ8Yは第1ゲート(G1)と第2ゲート(G2)とを有しているため、以下においてハイサイド維持スイッチQ7Y及びローサイド維持スイッチQ8Yの第1ゲートG1と第2ゲートG2がオン状態となる期間について説明する。ハイサイド維持スイッチQ7Y及びローサイド維持スイッチQ8Yに用いるデュアルゲート半導体素子は第1ゲートG1と第2ゲートG2とを同時にオン状態とすることにより双方向の電流を通電する双方向導通状態となり、第1ゲートG1と第2ゲートG2を同時にオフ状態とすることにより双方向の電流を遮断する双方向遮断状態となる。このため、ハイサイド維持スイッチQ7Yの第1ゲートG1及び第2ゲートG2をオン状態とする期間は、1.2において示したハイサイド維持スイッチQ7Yをオン状態とする期間と同様となる。また、ローサイド維持スイッチQ8Yの第1ゲートG1及び第2ゲートG2をオン状態とする期間は、1.2において示したローサイド維持スイッチQ8Yをオン状態とする期間と同様となる。以上のようにハイサイド維持スイッチQ7Y及びローサイド維持スイッチQ8Yの第1ゲートG1及び第2ゲートG2を同時にオン状態とすることにより逆阻止動作時に発生していたオン電圧を発生させずに、オン状態とすることが可能となり、PDP駆動装置の電力損失をより低減することができる。
1.5.3 第2の動作
図14は、図12に示した走査電極駆動部71の第2の動作を示している。
図14に示すように第2の動作方法においては、デュアルゲート半導体素子からなるハイサイド維持スイッチQ7Yとローサイド維持スイッチQ8Yのそれぞれにおいて、第1ゲートG1及び第2ゲートG2の一方がオン状態、他方がオフ状態という期間が設けられている。
基本的に、ハイサイド維持スイッチQ7Y及びローサイド維持スイッチQ8Yがオン状態となる期間とオフ状態となる期間とは第1の駆動方法と同一である。
但し、ハイサイド維持スイッチQ7Yは、初期化期間のモードIII以外の期間においオフ状態となる場合には、第1ゲートG1にローレベルの電圧を印加し、第2ゲートG2にハイレベルの電圧を印加し、ドレインDからソースSへ流れる電流を遮断している。初期化期間のモードIIIにおいては、第1ゲートG1にハイレベルの電圧を印加し、第2ゲートG2にローレベルの電圧を印加し、ソースSからドレインDへ流れる電流を遮断している。また、初期化期間のモードIIにおいてオン状態となる場合には、第1ゲートG1にハイレベルの電圧を印加し、第2ゲートG2にローレベルの電圧を印加し、ドレインDからソースSへ電流を流している。モードIVにおいてオン状態となる場合には、第1ゲートG1にハイレベルの電圧を印加し、第2ゲートG2にローレベルの電圧を印加して、ソースSからドレインDへ電流を流している。放電期間においてオン状態となる場合には、第1ゲートG1及び第2ゲートG2の両方にハイレベルの電圧を印加して、双方向に電流を流すことができるようにしている。
一方、ローサイド維持スイッチQ8Yは、初期化期間のモードII、モードIII及びモードIVにおいてオフ状態となる場合には、第1ゲートG1にローレベルの電圧を印加し、第2ゲートG2にハイレベルの電圧を印加して、ドレインDからソースSへ流れる電流を遮断している。アドレス期間においてオフ状態となる場合には、第1ゲートG1にハイレベルの電圧を印加し、第2ゲートG2にローレベルの電圧を印加して、ソースSからドレインDへ流れる電流を遮断している。初期化期間のモードVにおいてオフ状態となる場合には、第1ゲートG1及び第2ゲートG2の両方にローレベルの電圧を印加することにより、電流を遮断している。また、放電維持期間において、オフ状態となる場合には、第1ゲートG1にローレベルの電圧を印加し、第2ゲートG2にハイレベルの電圧を印加することにより、電流を遮断する。オン状態となる場合には、第1ゲートG1及び第2ゲートG2の両方にハイレベルの電圧を印加して、双方向に電流を流すことができるようにしている。
なお、ハイサイド維持スイッチQ7Y及びローサイド維持スイッチQ8Yともに、オフ状態とする際には、第1ゲートG1及び第2ゲートG2の両方にローレベルの電圧を印加して双方向に電流を遮断してもよい。
なお、初期化期間のモードIIにおいて、ハイサイド維持スイッチQ7Yの第1ゲートG1と第2ゲートG2とに共にハイレベルの電圧を印加してもよい。モードIIにおいて、ハイサイド維持スイッチQ7Yに電流を通電することにより、パネル電圧をVsまで上昇させている。パネル電圧が0VからVsまで上昇する過渡状態において、回路の配線に寄生するインダクタンスが電圧を発生する。このため、ハイサイド維持スイッチQ7Yに逆阻止動作をさせた場合、インダクタンスによる起電圧により、パネルにVsよりも高い電圧が印加されるおそれがある。これは、プラズマディスプレイパネルの誤放電の原因となる。ハイサイド維持スイッチQ7Yの第1ゲートG1と第2ゲートG2とを共にオン状態として、双方向に電流を通電すると、過渡的に発生する前記インダクタンスによる起電圧を、ハイサイド維持スイッチQ7Yを介して維持電圧源Vsへ逆流させ、パネルに高い電圧が印加されることを抑えることが可能となる。
また、初期化期間のモードIVにおいても、ハイサイド維持スイッチQ7Yの第1ゲートG1と第2ゲートG2とを共にオン状態としてもよい。これにより、モードIIと同様に配線に寄生するインダクタンスによって生じる起電圧がパネルに印加されることを防止し、プラズマディスプレイパネルの誤動作を防止する効果が得られる。
1.6 まとめ
本実施形態のPDP駆動装置62は、ハイサイド維持スイッチQ7Y及びローサイド維持スイッチQ8Yをデュアルゲート半導体素子で構成することにより、初期化期間におけるハイサイド維持スイッチQ7Y及びローサイド維持スイッチQ8Yの逆導通を阻止できる。このため、従来のPDPの駆動装置において用いられていた分離スイッチ素子を設ける必要がなくなる。すなわち、図12に示す通り、維持電圧源Vsから、放電維持パルス発生部3Yの出力ノードJ3Yを介して、ローサイド走査スイッチQ2Yのソースに至る経路には、ハイサイド維持スイッチQ7Y及びローサイド維持スイッチQ8Yしか存在しない。このため、本実施形態によれば、従来の装置と比べて、PDP駆動装置において部品点数をより少なくでき、実装面積を低減できる。特に、維持放電期間では分離スイッチ素子に大電流が流れることから、従来、分離スイッチ素子を多数並列に接続して設ける必要があったため、分離スイッチ素子を要しない本実施形態によれば、回路規模の削減効果が大きい。また、実装面積が小さくなることで、基板による配線インピーダンスを低減でき、PDPへの電圧印加時に発生する高周波数成分であるリンギングを低減できることから、PDPの動作マージンが拡大する。さらに、放電維持期間での分離スイッチ素子による導通損失が大きく削減されるので、消費電力を低減できる。
また、従来のPDP駆動装置に用いられてきたSiを材料とする従来の半導体素子を用いて双方向スイッチを形成する場合には、Siの材料限界のためにオン抵抗の低減が困難になっていた。その材料限界を打破して導通損失を低減するために、GaNに代表される窒化物系半導体又は炭化珪素(SiC)等のワイドギャップ半導体を用いた双方向スイッチを用いることでさらに導通損失を低減し、消費電力を低減できる。
また、従来例に示したようなMOSFETの場合にはPN接合によるボディーダイオードがドレインとソースとの間に形成される。このため、半導体スイッチのスイッチング動作において、ダイオードによるいわゆるリカバリー電流が発生する。従って、消費電力の低減には限界があった。
例えば、図27に示したような分離スイッチQS1を設けた場合には、初期化期間のモードIIにおいては、分離スイッチQS1であるMOSFETのPN接合からなるボディーダイオードを介して維持電圧源Vsから接続ノードJ2Yへ電流が流れている。次に、モードIIIに変化すると、接続ノードJ2Yの電位が上昇し、QS1のボディーダイオードに通電方向とは逆の電圧(逆バイアス)が印加されることにより電流が遮断状態となる。
つまり、分離スイッチQS1のボディーダイオードに通電した直後に、逆バイアスが印加される動作がある。この瞬間に、ボディーダイオードには逆方向に流れる電流であるリカバリー電流が瞬間的に発生する。発生したリカバリー電流とボディーダイオードに印加されている電圧との積がスイッチング損失となり、PDP駆動回路の電力損失の一部を占める。
一般的にPN接合のダイオードのリカバリー電流は、少数キャリア蓄積効果により、通電時に注入された少数キャリアが、逆バイアス時に排出される課程で、ダイオードの整流作用と反して逆方向の電流として排出されことで発生する。このため、PN接合を用いたダイオードにおいては、リカバリー電流の発生を防止できずスイッチング損失の低減は困難である。
本実施形態のデュアルゲート半導体素子は、P型半導体はゲートとして機能するため、ゲートに積極的に電流を流さないようなゲート電圧において逆阻止動作をさせる限り、チャネル中にはほとんど正孔が注入されることがない。このため、チャネル中には少数キャリアである正孔はほとんどなく、先に説明したような少数キャリアの蓄積効果はほとんどない。その結果、リカバリー電流は少なく、PDP駆動回路のスイッチング損失を低減することができるという効果も得られる。
なお、本実施形態では、説明の便宜上、特に走査電極駆動部の構成に基づいて説明を行ったが、維持電極駆動部及びアドレス電極駆動部においても本発明の思想が同様に適用できる。
(第2の実施形態)
以下に、本発明の第2の実施形態に係るPDP駆動装置について図面を参照して説明する。
2.1 走査電極駆動部
図15は、第2の実施形態に係るPDP駆動装置の走査電極駆動部71を示している。図15において図2と同一の構成要素には同一の符号を附すことにより説明を省略する。
図15に示すように本実施形態の走査電極駆動部71は、初期化パルス発生部2Yのハイサイドランプ波形発生部QR1とローサイドランプ波形発生部QR2との接続ノードJ2Yと、放電維持パルス発生部3Yの出力ノードJ3Yとの間に、分離スイッチQS3が設けられている。また、第2の定電圧源V2の負極が、維持電圧源Vsの正極ではなく、放電維持パルス発生部3Yの出力ノードJ3Yと接続されている。
本実施形態の分離スイッチQS3は、デュアルゲート半導体素子からなるスイッチ素子であり、デュアルゲート半導体素子のドレインDが接続ノードJ2Yと接続され、ソースSが放電維持パルス発生部3Yの出力ノードJ3Yと接続されている。なお、ドレインDとソースSとは入れ替えてもかまわない。
本実施形態の分離スイッチQS3に用いるデュアルゲート半導体素子には、第1の実施形態において示した各デュアルゲート半導体素子を用いることができる。また、第1ゲートG1及び第2ゲートG2を駆動する駆動部も、第1の実施形態において示したものを用いることができる。
図15にはハイサイド維持スイッチQ7Y及びローサイド維持スイッチQ8Yに、MOSFET等を用いる例を示しているが、IGBT又はバイポーラトランジスタ等を用いてもよく、第1の実施形態と同様にデュアルゲート半導体素子を用いてもよい。
以下に、第2の実施形態に係るPDP駆動装置の動作について説明する。本実施形態のPDP駆動装置の駆動方法は、分離スイッチQS3の第1ゲートG1及び第2ゲートG2のオン状態とオフ状態とを常に同時に切り換える第1の動作方法と、必要に応じて第1ゲートG1と第2ゲートとの一方のみをオン状態として逆阻止動作を行わせる第2の動作方法とが考えられる。
2.2 第1の動作
図16は、本実施形態の走査電極駆動部71の第1の動作を示している。図25において、斜線部は各スイッチがオン状態の場合を示している。また、本動作では、分離スイッチQS3は、第1ゲートG1及び第2ゲートG2の両方をオン状態として、双方向に電流が流れる状態とし、第1ゲートG1及び第2ゲートG2の両方をオフ状態として、双方向に電流を遮断する。
2.2.1 初期化期間
初期化パルス電圧の変化に応じてモードI〜Vに分けられる。
<モードI>
ローサイド走査スイッチQ2Y、分離スイッチQS3及びローサイド維持スイッチQ8Yをオン状態に維持する。残りのスイッチはオフ状態に維持する。これにより、走査電極Yは接地電位(=0)に維持される。
<モードII>
ローサイド走査スイッチQ2Y、分離スイッチQS3及びハイサイド維持スイッチQ7Yをオン状態に維持する。残りのスイッチはオフ状態に維持する。これにより、走査電極Yの電位が接地電位から維持電圧源Vsの電圧Vsだけ高い電位まで上昇する。
<モードIII>
ローサイド走査スイッチQ2Y及びハイサイド維持スイッチQ7Yをオン状態に維持したまま、分離スイッチQS3をオフ状態とし、ハイサイドランプ波形発生部QR1をオン状態とする。残りのスイッチはオフ状態に維持する。これにより、走査電極Yの電位が一定の速度で、接地電位から維持電圧源Vsの電圧Vsと第2の定電圧源V2の電圧V2との和だけ高い電位Vrまで上昇する。
これにより、PDP60の全ての放電セルに対する印加電圧は、一様に初期化パルス電圧の上限Vrまで比較的緩やかに上昇する。その結果、PDP60の全ての放電セルにおいて一様な壁電荷が蓄積される。このとき、印加電圧の上昇速度は小さいので、放電セルの発光は微弱に抑えられる。
<モードIV>
ローサイド走査スイッチQ2Y及びハイサイド維持スイッチQ7Yをオン状態に維持したまま、ハイサイドランプ波形発生部QR1をオフ状態とし、分離スイッチQS3をオン状態とする。残りのスイッチはオフ状態に維持する。これにより、走査電極Yの電位が接地電位から維持電圧源Vsの電圧Vsだけ高い電位まで下降する。
<モードV>
ローサイド走査スイッチQ2Yをオン状態に維持したまま、分離スイッチQS3及びハイサイド維持スイッチQ7Yをオフ状態とし、ローサイドランプ波形発生部QR2をオン状態とする。残りのスイッチはオフ状態に維持する。走査電極Yの電位は一定の速度で、接地電位から第3の定電圧源V3の電圧V3だけ低い電位−V3となる。従って、PDP60の放電セルには、モードII〜モードIVにおいて印加された電圧とは逆極性の電圧が印加される。特に、印加電圧は比較的緩やかに下降する。これにより、全ての放電セルにおいて壁電荷が一様に除去され、均一化される。このとき、印加電圧の下降速度が小さいので、放電セルの発光は微弱に抑えられる。
2.2.2 アドレス期間
本実施形態におけるアドレス期間の動作は実施の形態1で説明したものと同様である。
また,アドレス期間中、分離スイッチQS3は常にオフ状態とする。
2.2.3 放電維持期間
放電維持期間中は分離スイッチQS3及びローサイド走査スイッチQ2Yは、常にオンに維持する。放電維持期間中の他のスイッチング素子の動作は、第1の実施形態と同じである。
2.3 第2の動作
図17は、本実施形態の走査電極駆動部71の第2の動作を示している。図25において、斜線部は各スイッチがオン状態の場合を示している。以下に、分離スイッチQS3の第1ゲートG1及び第2ゲートG2の動作に着目して、各期間の動作について説明する。
図17に示すように第2の動作における分離スイッチQS3の第1ゲートG1及び第2ゲートG2を含む各スイッチをオン状態とする期間は、図16において示した第1の動作における期間と同じである。但し、初期化期間のモードIIIにおいて、分離スイッチQS3は少なくともドレインからソースへ流れる電流を遮断できればよいので、分離スイッチQS3の第1ゲートG1をオフ状態とし、第2ゲートG2をオン状態とし、分離スイッチQS3のドレインからソースへ流れる電流を遮断する。また、アドレス期間において、分離スイッチQS3はソースからドレインへ流れる電流を遮断できればよいので、分離スイッチQS3の第1ゲートG1をオン状態とし、第2ゲートG2をオフ状態とすることにより、ソースからドレインへの電流を遮断する。以上のように、第1の動作において示した分離スイッチQS3の第1ゲートG1及び第2ゲートG2をオン状態とする期間以外においても、分離スイッチQS3の第1ゲートG1及び第2ゲートG2をオン状態とする期間がある点で第2の動作は第1の動作と異なる。具体的には、第2の動作においては、分離スイッチQS3の第1ゲートG1と第2ゲートG2とをオン状態とする期間が異なっている。
以上のような動作をすることで、先に示したデュアルゲート半導体素子をQS3に適用した場合でもPDP駆動装置が動作可能となる。
2.4 まとめ
本実施形態の走査電極駆動部71は、図15に示すように、放電維持パルス発生部3Yの出力ノード(ハイサイド維持スイッチQ7Yとローサイド維持スイッチQ8Y間の接続点)J3Yから、ローサイド走査スイッチQ2Yのソースまでの間の経路に、デュアルゲート半導体素子で構成された分離スイッチQS3を設けている。これにより、放電維持パルス発生部3Yの出力ノードJ3Yにおける電位はVsから0まで変化する。一方、分離スイッチQS3を設けない構成の場合には、出力ノードJ3Yの電位は初期化パルスの上限電圧(Vs+V2)から接地電位と初期化パルスの下限電圧−V3まで変化する。このように本実施形態の走査電極駆動部71は、従来よりも、放電維持パルス発生部3Yの出力ノードJ3Yの電位の変化範囲を狭くできる。つまり、本実施形態によれば、放電維持パルス発生部3Yにおける各スイッチ素子に低耐圧部品が使える。一般的に耐圧と単位面積当たりの抵抗値の関係は、耐圧が上昇すると抵抗値も上昇するので、流すことができる電流量が大幅に減少する。このため、本実施形態においては、従来と比べて、放電維持パルス発生部3Yにおける各スイッチ素子の並列数を削減でき、また実装面積を低減できる。特に、放電維持パルス発生部の各スイッチQ7Y、Q8Y、Q9Y、Q10Yには大電流が流れるため、各スイッチ素子の抵抗値が小さくなれば、並列数が減らせる。よって、本発明の意義は大きい。また実装面積が小さくなるので、基板による配線インピーダンスが小さくなり、PDPへの電圧印加時に発生する高周波数成分であるリンギングが小さくなり、PDPの動作するマージンが拡大する。
(第3の実施形態)
以下に、本発明の第3の実施形態に係るPDP駆動装置について図面を参照して説明する。
3.1 走査電極駆動部
図18は、第3の実施形態に係るPDP駆動装置の走査電極駆動部71を示している。図18において図2と同一の構成要素には同一の符号を附すことにより説明を省略する。
図18に示すように本実施形態の走査電極駆動部71は、放電維持パルス発生部3Yの回収スイッチ回路75が双方向スイッチ動作を行うデュアルゲート半導体素子からなる回収スイッチQ11Yにより形成されている。本実施形態の回収スイッチQ11Yには、第1の実施形態において示した各デュアルゲート半導体素子を用いることができる。
また、従来の回収スイッチ回路75は、双方向スイッチを少なくとも2つのMOSFETと2つのダイオードで構成していたが、回収スイッチ回路75をデュアルゲート半導体素子により代替することで、1素子で構成することが可能となり、部品点数を削減でき、回路規模を低減できる。また、Siを材料とする従来の半導体素子を用いて双方向スイッチを形成する場合には、Siの材料限界のためにオン抵抗の低減が困難になっていた。その材料限界を打破して導通損失を低減するために、GaNに代表される窒化物系半導体又は炭化珪素(SiC)等のワイドギャップ半導体を用いた双方向スイッチを用いることでさらに導通損失を低減し、走査電極駆動部の電力損失を低減することが可能となる。
回収スイッチQ11Yは、そのドレインが回収インダクタLYの一端に接続され、そのソースが回収コンデンサCYの一端に接続されている。回収インダクタLYの他端は、ハイサイド維持スイッチQ7Yとローサイド維持スイッチQ8Yとが接続された出力ノードJ3Yに接続され、回収コンデンサCYの他端は接地されている。
回収コンデンサCYの容量はPDP60のパネル容量Cpより十分に大きい。回収コンデンサCYの両端電圧は、電源部から印加される直流電圧Vsの半値Vs/2と実質的に等しく維持される。
なお、図18に示す構成において、ハイサイド維持スイッチQ7Y及びローサイド維持スイッチQ8Yは第1の実施形態で示した双方向スイッチ素子であり、その動作は第1の実施形態の「1.2 動作」の欄において示した動作と同じである。
また、ハイサイド維持スイッチQ7Y及びローサイド維持スイッチQ8Yが双方向スイッチ素子でない場合、図27に示す従来例と同様に、ハイサイド維持スイッチQ7Y及びローサイド維持スイッチQ8Yに対してそれぞれハイサイド分離スイッチQS1及びローサイド分離スイッチQS2を接続する必要がある。また、分離スイッチ素子を維持電圧源Vsの正極又は負極と走査電極との間に配置してもよい。
また、回収スイッチ回路75は、走査電極(走査電極駆動部71)以外、すなわち維持電極(維持電極駆動部72)及びアドレス電極(アドレス電極駆動部73)に対しても適用できる。
3.2 第1の動作
図19は、本実施形態のPDP駆動装置の走査電極駆動部71の第1の動作を示している。
3.2.1 初期化期間、アドレス期間
初期化期間及びアドレス期間における走査電極駆動部71の各スイッチの動作は第1の実施形態で説明した図3の動作と同様である。但し、第1の実施形態と異なることは、回収スイッチ回路75がデュアルゲート半導体素子からなる回収スイッチQ11Yだけになった点である。
回収スイッチQ11Yは初期化期間及びアドレス期間中において双方向に電流を通電しない。従って、初期化期間及びアドレス期間においては回収スイッチQ11Yの第1ゲートG1及び第2ゲートG2をオフ状態として、双方向に電流を遮断する。
3.2.2 放電維持期間
図19を参照して、放電維持期間の動作について説明する。
放電維持期間では、ローサイド走査スイッチQ2Yは常にオン状態を維持する。
回収スイッチQ11Yがオン状態となる直前には、ローサイド維持スイッチQ8Yをオン状態とし、パネル容量Cpの両端電圧を0Vに維持する。回収スイッチQ11Yをオン状態とすると、回収コンデンサCYと、回収スイッチQ11Yと、回収インダクタLYと、パネル容量CpとによりLC共振回路が形成され、パネル容量Cpの両端電圧はVsまで増加する(残りのスイッチ素子はオフ状態に維持される)。このとき、回収スイッチQ11Yは、第1ゲートG1をオフ状態とし、第2ゲートG2をオン状態とし、ソースからドレインへ電流を流し、ドレインからソースへ電流を流さない逆阻止動作をさせる。
次に、ハイサイド維持スイッチQ7Yをオン状態とすることにより、パネル容量Cpの両端電圧は維持電圧Vsを維持する。この切り替え時、回収スイッチQ11Yは、ドレインからソースへ電流が流れない逆阻止動作をしているので、維持電圧源Vsから回収コンデンサCYへ電流が流れない。この後、回収スイッチQ11Yの第2ゲートG2をオフ状態とする。なお、ハイサイド維持スイッチQ7Yをオン状態とすると同時に、回収スイッチQ11Yの第2ゲートG2をオフ状態としてもよい。
また、このとき、ハイサイド維持スイッチQ7Yは、そのドレインソース間電圧が0であるので、ほぼ損失なくオン状態とすることができる(残りのスイッチ素子はオフ状態に維持される)。
所定時間経過後、ハイサイド維持スイッチQ7Yをオフ状態として、回収スイッチQ11Yをオン状態とすると、回収コンデンサCYと、回収スイッチQ11Yと、回収インダクタLYと、パネル容量CpとによりLC共振回路が形成され、パネル容量Cpの両端電圧は0まで減少する(残りのスイッチ素子はオフ状態に維持される)。このとき、回収スイッチQ11Yは、第1ゲートG1をオン状態とし、第2ゲートG2をオフ状態とし、ドレインからソースへ電流を流し、ソースからドレインへ電流が流れない逆阻止動作をさせる。
次に、ローサイド維持スイッチQ8Yをオン状態とすることにより、パネル容量Cpの両端電圧は0を維持する。この切り替え時、回収スイッチQ11Yは、ソースからドレインへの電流が流れない逆阻止動作をしているので、回収コンデンサCYからグランドへ蓄積した電荷は電流として流れない。この後、回収スイッチQ11Yの第1ゲートG1をオフ状態としている。しかし、ローサイド維持スイッチQ8Yをオン状態とすると同時に、回収スイッチQ11Yの第1ゲートG1をオフ状態としてもよい。
また、ローサイド維持スイッチQ8Yは、そのドレインソース間電圧が0であるので、ほぼ損失なくオン状態とすることができる(残りのスイッチ素子はオフ状態に維持される)。
以上説明したように、走査電極Yの電位が上下するとき、回収コンデンサCYとパネル容量Cpとの間で電力が効率良く交換される。こうして、放電維持パルス電圧の印加時、パネル容量の充放電に起因する無効電力が低減する。
図18に示した走査電極駆動部71においてハイサイド維持スイッチQ7Yがオン状態となった瞬間に、維持電圧源Vsから回収コンデンサCYに向かって電流が流れようとする。このため、回収スイッチに通常の半導体スイッチを用いていたならば、回収スイッチをオフ状態に切り換えるタイミングは、ハイサイド維持スイッチQ7Yがオン状態となるタイミングと完全に同期させる必要がある。しかし、現実にはこのような動作は不可能であり、ダイオードを挿入して維持電圧源Vsから回収コンデンサCYに向かって流れようとする電流を素子する必要がある。挿入されたダイオードはオン抵抗を有するため、消費電力が増大する原因となる。
一方、本実施形態のPDP駆動装置は、回収スイッチQ11Yが、ドレインDからソースSへ電流が流れない逆阻止動作をしている。このため、ダイオードの挿入しなくても、維持電圧源Vsから回収コンデンサCYへ電流が流れることはない。従って、ダイオードによる消費電力の増大を防ぐことができる。さらに、本実施形態のPDP駆動装置においては、回収スイッチQ11Yの第2ゲートをオフ状態とするタイミングが、ハイサイド維持スイッチQ7Yがオン状態となるタイミングよりも後にずれていても問題ない。
同様に、回収コンデンサCYに蓄積された電流が接地へ流れることを防ぐためには、ローサイド維持スイッチQ8Yがオン状態となるのと完全に同期して回収スイッチ回路75をオフ状態とするか、ダイオードを挿入する必要がある。しかし、本実施形態のPDP駆動装置は、回収スイッチQ11Yが、ソースSからドレインDへ電流が流れない逆阻止動作をしている。従って、本実施形態のPDP駆動装置においては、ダイオードによる消費電力の増大が防止できると共に、回収スイッチQ11Yの第1ゲートをオフ状態とするタイミングが、ローサイド維持スイッチQ8Yがオン状態となるタイミングよりも後にずれていても問題ない。
3.3 第2の動作
図20は第3の実施形態に係るPDP駆動装置の第2の動作を示している。第2の動作方法においては、放電維持期間において、回収スイッチQ11Yをオン状態とする際に、回収スイッチQ11Yの第1ゲートG1及び第2ゲートG2の両方をオン状態としている。これにより、回収スイッチQ11Yを逆阻止動作させる際に発生していたオン電圧を0Vとすることができ、回収スイッチ回路75の導通損失をさらに低減できる。
3.3.1 初期化期間、アドレス期間
初期化期間及びアドレス期間における走査電極駆動部71の各スイッチの動作は図19を用いて説明した第1の動作と同じである。
3.3.2 放電維持期間
図20を参照して、放電維持期間の動作について説明する。
放電維持期間では、ローサイド走査スイッチQ2Yは常にオン状態を維持する。
回収スイッチQ11Yをオン状態とする直前には、ローサイド維持スイッチQ8Yをオンとしており、パネル容量Cpの両端電圧は0Vに維持される。回収スイッチQ11Yをオン状態とすると、回収コンデンサCYと、回収スイッチQ11Yと、回収インダクタLYと、パネル容量Cpとにより、LC共振回路が形成され、パネル容量Cpの両端電圧はVsまで増加する(残りのスイッチ素子はオフ状態に維持される)。このとき、回収スイッチQ11Yは、第1ゲートG1及び第2ゲートG2をオン状態とし、ドレインとソースとの間に双方向の電流を通電させる双方向導通動作をさせる。このような動作をさせることにより、逆阻止動作時に発生していたオン電圧を0Vとすることが可能となり、回収スイッチQ11Yの導通損失を低減することが可能となる。
次に、ハイサイド維持スイッチQ7Yをオン状態とする直前に、回収スイッチQ11Yの第1ゲートG1をオフ状態とし、回収スイッチQ11Yにソースからドレインへの電流は通電し、ドレインからソースへの電流を遮断する逆阻止動作をさせる。
その後、ハイサイド維持スイッチQ7Yをオンとすれば、パネル容量Cpの両端電圧はVsを維持する。この切り替え時、回収スイッチQ11Yは、ドレインからソースへ電流が流れない逆阻止動作をしているので、維持電圧源Vsから回収コンデンサCYへ電流が流れない。この後、回収スイッチQ11Yの第2ゲートG2をオフ状態としている。しかし、ハイサイド維持スイッチQ7Yをオン状態とすると同時に、回収スイッチQ11Yの第2ゲートG2をオフ状態としてもよい。
また、このとき、ハイサイド維持スイッチQ7Yは、そのドレインソース間電圧が0であるので、ほぼ損失なくオン状態とすることができる(残りのスイッチ素子はオフ状態に維持される)。
所定時間経過後、ハイサイド維持スイッチQ7Yをオフ状態として、回収スイッチQ11Yをオン状態とすると、回収コンデンサCYと、回収スイッチQ11Yと、回収インダクタLYと、パネル容量CpとによりLC共振回路が形成され、パネル容量Cpの両端電圧は0まで減少する(残りのスイッチ素子はオフ状態に維持される)。このとき、回収スイッチQ11Yは、第1ゲートG1及び第2ゲートG2をオン状態とし、ドレインとソースとの間に双方向の電流を通電させる双方向導通動作をさせる。このような動作をさせることで、逆阻止動作時に発生していたオン電圧を0Vとすることが可能となり、回収スイッチQ11Yの導通損失を低減することが可能となる。
次に、ローサイド維持スイッチQ8Yをオン状態とする直前に、回収スイッチQ11Yの第2ゲートG2をオフ状態とし、回収スイッチQ11Yにドレインからソースへの電流は通電し、ソースからドレインへの電流を遮断する逆阻止動作をさせる。
その後、ローサイド維持スイッチQ8Yをオン状態とすれば、パネル容量Cpの両端電圧は0を維持する。この切り替え時、回収スイッチQ11Yは、ソースからドレインへ電流が流れない逆阻止動作をしているので、回収コンデンサCYからローサイド維持スイッチQ8Yを介してグランドへ電流が流れないようにしている。この後、回収スイッチQ11Yの第1ゲートG1をオフ状態としている。しかし、ローサイド維持スイッチQ8Yをオン状態とすると同時に、回収スイッチQ11Yの第1ゲートG1をオフ状態としてもよい。
また、このとき、ローサイド維持スイッチQ8Yは、そのドレインソース間電圧が0であるので、ほぼ損失なくオン状態とすることができる(残りのスイッチ素子はオフ状態に維持される)。
走査電極Yの電位が上下するとき、回収コンデンサCYとパネル容量Cpとの間で電力が効率良く交換される。こうして、放電維持パルス電圧の印加時、パネル容量の充放電に起因する無効電力が低減する。
3.4 まとめ
本実施形態のPDP駆動装置は、図18に示すように回収スイッチ回路75を、デュアルゲート半導体素子である回収スイッチQ11Yのみにより構成している。つまり、回収コンデンサCYからインダクタLYを介して、ローサイド走査スイッチQ2Yのソースまでの間の経路には、回収スイッチQ11Yしか存在しない。このように、本実施形態のPDP駆動装置62は従来の装置と異なり、第1の回収ダイオードD1、第2の回収ダイオードD2を削減できる。それ故、本実施形態のPDP駆動装置62は従来の装置よりも部品点数を削減でき、実装面積を低減できる。
特に第1の回収ダイオードD1及び第2の回収ダイオードD2には大電流が流れるため、通常は多数のダイオードを並列に接続しているので、第1の回収ダイオードD1及び第2の回収ダイオードD2がなくなる意味は大きい。また、放電維持期間においての第1の回収ダイオードD1及び第2の回収ダイオードD2による導通損失が大きく削減されるので、消費電力が小さくなる。
また、回収スイッチQ11Yに電流を通電する際に、双方向に電流を通電する双方向スイッチ動作と逆阻止動作とを組み合わせることにより、逆阻止動作時に発生するオン電圧を低減し、導通損失を低減することが可能となる。
なお、本実施形態のPDP駆動装置において、回収スイッチQ11Yの第1ゲートG1及び第2ゲートG2を駆動する駆動回路は、第1の実施形態において示した駆動回路と同一のものを用いることができる。
ハイサイド維持スイッチQ7Y及びローサイド維持スイッチQ8Yは、第1の実施形態と同様にしてデュアルゲート半導体素子を用いればよい。また、複数のトランジスタとダイオードとを組み合わせて形成した双方向スイッチを用いてもかまわない。さらに、維持スイッチ素子と分離スイッチ素子とを組み合わせて形成してもよい。
また、本実施形態の回収スイッチ回路75及びその駆動方法は、走査電極駆動部71だけでなく維持電極駆動部72及びアドレス電極駆動部73に対しても適用できる。
(第4の実施形態)
以下に、本発明の第4の実施形態に係るPDP駆動装置について図面を参照して説明する。
4.1 走査電極駆動部
図21は、第4の実施形態に係るPDP駆動装置の走査電極駆動部71を示している。図21において図2と同一の構成要素には同一の符号を附すことにより説明を省略する。
図21に示すように本実施形態の走査電極駆動部71は、放電維持パルス発生部3Yの回収スイッチ回路75が、デュアルゲート半導体素子を用いたスイッチ素子であるハイサイド回収スイッチQ9Yとローサイド回収スイッチQ10Yとにより形成されている。
本実施形態のハイサイド回収スイッチQ9Y及びローサイド回収スイッチQ10Yには、第1の実施形態において示した各デュアルゲート半導体素子を用いることができる。本実施形態においては、デュアルゲート半導体素子をその第2のゲート電極とドレイン電極とを短絡して、逆阻止動作を行う逆阻止スイッチとして用いる。
従来の回収スイッチ回路75は、双方向スイッチを少なくとも2つのMOSFETと2つのダイオードで構成していたが、回収スイッチ回路75を2つのデュアルゲート半導体素子で代替することで、2素子で構成することが可能となり、部品点数を削減でき、回路規模を低減できる。
ハイサイド回収スイッチQ9Yのソースとローサイド回収スイッチQ10Yのドレインが回収インダクタLYの一端に接続され、ハイサイド回収スイッチQ9Yのドレインとローサイド回収スイッチQ10Yのソースが回収コンデンサCYの一端に接続されている。回収インダクタLYの他端は、ハイサイド維持スイッチQ7Yとローサイド維持スイッチQ8Yとが接続された出力ノードJ3Yに接続され、回収コンデンサCYの他端は接地されている。
回収コンデンサCYの容量はPDP60のパネル容量Cpより十分に大きい。回収コンデンサCYの両端電圧は、維持電圧源Vsから印加される直流電圧Vsの半値Vs/2と実質的に等しく維持される。
なお、図21に示す構成において、ハイサイド維持スイッチQ7Y及びローサイド維持スイッチQ8Yはデュアルゲート半導体素子でなくてもよい。その場合、ハイサイド維持スイッチQ7Y及びローサイド維持スイッチQ8Yのそれぞれに対してハイサイド分離スイッチQS1及びローサイド分離スイッチQS2をそれぞれ接続する必要がある。また、第2の実施形態と同様に分離スイッチ素子を維持電圧源Vsの正極又は負極と走査電極Yとの間に配置してもよい。
また、回収スイッチ回路75は、走査電極(走査電極駆動部71)以外、すなわち維持電極(維持電極駆動部72)及びアドレス電極(アドレス電極駆動部73)に対しても適用できる。
本実施形態のハイサイド回収スイッチQ9Y及びローサイド回収スイッチQ10Yとしてデュアルゲート半導体素子を用いる場合には、第2のゲート電極とドレイン電極とを短絡してもよい。この場合、図22に示すように第2のゲート電極18Bとドレイン電極17と短絡する配線42は、半導体素子と一体に形成してもよい。この場合、配線42にはAu等を用いればよい。
このような構成とすることにより、ソース電極がソース、ドレイン電極がドレイン、第1ゲートがゲートであるいわゆる3端子のトランジスタが実現できる。3端子のトランジスタとすることによりゲート駆動が容易になるという利点がある。
この場合、第2のゲート電極18Bとドレイン電極17とは電気的に短絡しており、その間の電圧は0Vとなるため、常に第2のゲート電極18Bに閾値電圧以下の電圧が印加される状態となる。このため、図22に示す素子は、オン状態では、ドレインからソース方向に電流を流すことができるが、ソースからドレイン方向には電流を流さず、オフ状態では、ドレインからソース方向又はソースからドレイン方向の双方向において電流を流さない。また、オフ状態では、素子の絶対最大定格のドレインソース間電圧及び絶対最大定格のソースドレイン間電圧ともに十分な値を確保している。
なお、図5に示した第1のデュアルゲート半導体素子だけでなく、図9及び10に示したデュアルゲート半導体素子も同様の構成とすることができる。
また、図23に示すように第1のゲート電極18Aと第2のゲート電極18Bとが異なる構造を有するようにしてもよい。図23においては、第1のゲート電極18Aは第1のp型半導体層19Aを介在させてAlGaN層15の上に形成され、第2のゲート電極18BはAlGaN層15と接するように形成されている。これにより、第2のゲート電極18BはAlGaN層15とショットキー接合を形成している。
このような構造とすることにより、第1のゲート電極18Aの閾値電圧と第2のゲート電極18Bの閾値電圧とを異なった値とすることができる。例えば、第1のゲート電極の閾値電圧を約1V、第2のゲート電極の閾値電圧を約0Vとすれば、第2のゲート電極18Bの閾値電圧に起因するオン電圧、つまり図7(c)に示したダイオードのオン電圧をほぼ0Vとすることができる。これにより、スイッチ素子の損失をさらに低減し、PDP駆動装置の電力消費をより低減することが可能となる。
なお、第2のゲート電極の閾値電圧を0V以上とするためには、AlGaN層15の膜厚を図5に示したデュアルゲート半導体素子よりも薄く、例えば5nm程度とすることが好ましい。
また、図24に示すように、第2のゲート電極18BをAlGaN層15に形成された凹部を埋めるように形成してもよい。このような構成としても、第2のゲート電極18Bの閾値電圧に起因したオン電圧をほぼ0にすることができる。さらに、AlGaN層15の厚さを全体に薄くすることなく、ノーマリオフ特性を実現できる。このため、チャネル領域の電子のシートキャリア濃度を高く保つことができるので、オン抵抗をさらに小さくすることができる。
なお、配線42は第2のゲート電極18Bとドレイン電極17とを電気的に接続できればどのようなものでもよく、Auに代えてアルミニウム(Al)又は銅(Cu)等の金属を用いてもよい。
ハイサイド維持スイッチQ7Y及びローサイド維持スイッチQ8Yは、第1の実施形態と同様にしてデュアルゲート半導体素子を用いればよい。また、複数のトランジスタとダイオードとを組み合わせて形成した双方向スイッチを用いてもかまわない。さらに、維持スイッチ素子と分離スイッチ素子とを組み合わせて形成してもよい。
4.2 動作
本実施形態の走査電極駆動部71は、初期化期間、アドレス期間及び放電維持期間のそれぞれにおいてPDP60の走査電極Yに対して印加する電圧の波形及び走査電極駆動部71に含まれる各スイッチをオン状態とする期間は、第1の実施形態において図3に示した動作と同様である。
4.3 まとめ
第4の実施形態においては、図23に示すように回収スイッチ回路75を、デュアルゲート半導体素子であるハイサイド回収スイッチQ9Yとローサイド回収スイッチQ10Yとにより構成している。つまり、回収コンデンサCYからインダクタLYを介して、ローサイド走査スイッチQ2Yのソースまでの間の経路には、回収スイッチQ9Y又は回収スイッチQ10Yしか存在しない。このように、本実施形態によるPDP駆動装置62は従来の装置と異なり、第1の回収ダイオードD1及び第2の回収ダイオードD2を削減できる。このため、本実施形態のPDP駆動装置62は従来の装置よりも部品点数を削減でき、実装面積を低減できる。
特に、第1の回収ダイオードD1及び第2の回収ダイオードD2には大電流が流れるため、通常は多数のダイオードを並列に接続するため、第1の回収ダイオードD1及び第2の回収ダイオードD2がなくなる意味は大きい。また、放電維持期間において第1の回収ダイオードD1及び第2の回収ダイオードD2による導通損失が大きく削減されるので、消費電力が小さくなる。
また、図23又は図24に示すオン電圧が小さいデュアルゲート半導体素子をハイサイド回収スイッチQ9Y及びローサイド回収スイッチQ10Yとして用いることにより、電流が通電している際に、オン電圧に起因して発生する導通損失を低減することが可能となる。
なお、図21には、回収インダクタLYが1つの例を示しているが、図25又は図26に示すように、ハイサイド回収インダクタLY1とローサイド回収インダクタLY2とを設ける構成としてもよい。この場合ハイサイド回収インダクタLY1とローサイド回収インダクタLY2とを異なる値とすることができ、回収コンデンサCYからパネル容量Cpに電流が流れる場合と、パネル容量Cpから回収コンデンサCYに電流が流れる場合のそれぞれにおいて、最適な共振電流を発生させることが可能となる。
また、第1の実施形態と同様に、デュアルゲート半導体素子にGaN又はSiC等に代表されるワイドバンドギャップ半導体を用いることにより、導通損失を少なくすることが可能となり、消費電力を低減できる。
なお、各実施形態において、PDP駆動装置の走査電極駆動部を例にあげて説明を行ったが、維持電極駆動部及びアドレス電極駆動部の基本的な構成は、走査電極駆動部と同一であり、維持電極駆動部及びアドレス電極駆動部においても本発明の思想が同様に適用できる。
本発明に係るプラズマディスプレイパネル駆動装置及びプラズマディスプレイは、部品点数が少なく且つ消費電力が小さいPDP駆動装置を実現でき、プラズマディスプレイパネル駆動装置及びプラズマディスプレイ等として有用である。
本発明はプラズマディスプレイパネル駆動装置及びプラズマディスプレイに関する。
プラズマディスプレイは、気体放電に伴う発光現象を利用した表示装置である。プラズマディスプレイの表示部分、すなわちプラズマディスプレイパネル(PDP)は、大画面化、薄型化、及び広視野角の点で他の表示装置より有利である。PDPは、直流パルスで動作するDC型と、交流パルスで動作するAC型とに大別される。AC型PDPは特に、輝度が高く且つ構造が簡素である。従って、AC型PDPは量産化と画素の精細化とに適し、広範に使用されている。
AC型PDPは例えば三電極面放電型構造を有する(例えば、特許文献1を参照。)。その構造では、PDPの背面基板上にアドレス電極がパネルの縦方向に配置され、PDPの前面基板上に維持電極と走査電極とが交互に、且つパネルの横方向に配置される。アドレス電極と走査電極とは一般に、一本ずつ個別に電位を変化させる。
互いに隣り合う維持電極と走査電極との対及びアドレス電極の交差点には放電セルが設置されている。放電セルの表面には、誘電体から成る層(誘電体層)、電極と誘電体層とを保護するための層(保護層)と、蛍光物質を含む層(蛍光層)とが設けられている。放電セルの内部にはガスが封入されている。維持電極、走査電極及びアドレス電極の間に対してパルス電圧を印加することにより放電セル中に放電が生じるとき、放電セル中のガスの分子は電離して紫外線を発する。その紫外線が放電セル表面の蛍光物質を励起し、蛍光を発生させる。こうして、放電セルが発光する。
PDP駆動装置は一般に、PDPの維持電極、走査電極及びアドレス電極の電位を、ADS(Address Display-period Separation)方式に従い制御する。ADS方式はサブフィールド方式の一種である。サブフィールド方式では画像の一フィールドが複数のサブフィールドに分けられる。サブフィールドは、初期化期間、アドレス期間及び放電維持期間を含む。ADS方式では特に、PDPの全ての放電セルに対しこの三つの期間が共通に設定される(例えば、特許文献1参照)。
初期化期間では、初期化パルス電圧が維持電極と走査電極との間に印加される。これにより、全ての放電セルにおいて壁電荷が均一化される。
アドレス期間では、走査パルス電圧が走査電極に対し順次印加され、信号パルス電圧がアドレス電極のいくつかに対し印加される。ここで、信号パルス電圧が印加されるべきアドレス電極は、外部から入力される映像信号に基づき選択される。走査パルス電圧が走査電極の一つに印加され、且つ信号パルス電圧がアドレス電極の一つに印加されるとき、その走査電極とアドレス電極との交差点に位置する放電セルにおいて放電が生じる。この放電によりその放電セル表面には壁電荷が蓄積される。
放電維持期間では、放電維持パルス電圧が維持電極と走査電極との全ての対に対し同時に且つ周期的に印加される。このとき、アドレス期間中に壁電荷が蓄積された放電セルにおいてはガスによる放電が維持され、発光が生じる。放電維持期間の長さはサブフィールドごとに異なるので、放電セルの一フィールド当たりの発光時間、すなわち放電セルの輝度は発光させるサブフィールドを選択することにより調整される。
図27に従来のPDP駆動装置の構成を示す。図27は特に走査電極駆動部とPDPを示している。走査電極駆動部110は、走査パルス発生部111、初期化パルス発生部112及び放電維持パルス発生部113を含む。放電維持パルス発生部113は、直列に接続されたハイサイド維持スイッチQ7Yとローサイド維持スイッチQ8Yを含み、ハイサイド維持スイッチQ7Y及びローサイド維持スイッチQ8Yを通じて、維持電圧源Vs又はグランド電位により維持電極Xと走査電極Yとの間の電圧を制御する。PDP120は、維持電極Xと走査電極Yとの間の浮遊容量Cp(以下「PDPのパネル容量」という)により等価的に表されており、放電セルでの放電時にPDP120を流れる電流の経路は省略している。図27において、維持電極Xに接続する維持電極駆動部は省略しており、図中、維持電極Xは接地状態で表している。
初期化期間にPDPの全ての放電セルにおいて壁電荷を均一化させるには、初期化パルス電圧の上限が十分に高くなければならない。また、アドレス期間にアドレス放電を起こすには、走査パルス電圧の下限は十分に低くなければならない。従って、初期化パルス電圧の上限は一般に放電維持パルス電圧の上限より高く設定される。また、走査パルス電圧の下限は一般に放電維持パルス電圧の下限より低く設定される。従って、初期化パルス電圧が放電維持パルス電圧の上限でクランプされるのを防ぐには、初期化期間では放電維持パルス発生部113の維持電圧源Vsが初期化パルス発生部112から分離されなければならない。従って、走査パルス電圧が放電維持パルス電圧の下限でクランプされるのを防ぐには、アドレス期間では放電維持パルス発生部113の維持電圧源Vsが走査パルス発生部111から分離されなければならない。
従来のPDP駆動装置では、分離スイッチQS1及び分離スイッチQS2が維持電圧源Vsと初期化パルス発生部112との間に設置されている。図27の例では、ハイサイド分離スイッチQS1及びローサイド分離スイッチQS2が挿入されている。
放電維持期間では、ハイサイド分離スイッチQS1及びローサイド分離スイッチQS2がオン状態となり、放電維持パルス発生部113のハイサイド維持スイッチQ7Y及びローサイド維持スイッチQ8Yのスイッチングによって、維持電圧源Vsの正極及び負極の電位が放電維持パルス発生部113の出力端子JY2から供給される。
初期化期間では、ハイサイド分離スイッチQS1及びローサイド分離スイッチQS2をオフ状態とし、初期化パルス発生部112が維持電圧源Vsから分離される。
こうして、初期化パルス電圧が放電維持パルス電圧の上限及び下限でクランプされることなく、所定の上限まで上昇及び所定の下限まで下降する。従って、初期化期間ではPDPの全ての放電セルに対し、壁電荷の均一化に十分な電圧が印加される。
さらに、従来のPDP駆動装置は、放電維持期間中に、ハイサイド回収スイッチQ9Y及びローサイド回収スイッチQ10Y、第1の回収ダイオードD1、第2の回収ダイオードD2、回収インダクタLY及び回収コンデンサCYからなる共振回路によってパネル容量Cpの電力を回収している。ここで使用される第1の回収ダイオードD1及び第2の回収ダイオードD2は、ハイサイド維持スイッチQ7Y及びローサイド維持スイッチQ8Yがオン状態となった際に、回収コンデンサCYに電流が流れ込むのを防ぎ、回収コンデンサCYを一定値(Vs/2)に保つ役割がある。
特開2005−70787号公報
しかしながら、ハイサイド分離スイッチQS1及びローサイド分離スイッチQS2には放電維持期間中、放電維持パルス電圧の印加に伴う電流(PDPの放電セルでの放電による電流)が流れる。この電流量は他のパルス電圧の印加に伴う電流より一般に大きく、ハイサイド分離スイッチQS1及びローサイド分離スイッチQS2における導通損失により、PDP駆動装置の消費電力が大きく増大するという問題がある。スイッチ素子の導通損失を低減するために、多数の半導体素子を並列に接続し、低抵抗で大電流を制御する分離スイッチを構成する方法が知られている。しかし、この場合には実装面積が増大してしまう。また、部品点数が増大することにより製造コストも増大するという問題がある。
また、回収動作の際に流れる回収電流は大電流であるため、第1の回収ダイオードD1及び第2の回収ダイオードD2における導通損失もPDP駆動装置の消費電力を大きく増大させる原因となる。この場合にも、多数のダイオードを並列に接続することにより低抵抗で大電流の回収ダイオードを構成する方法が知られているが、実装面積が増大してしまう。また、部品点数が増大することにより製造コストも増大する。
このように、前記従来のPDP装置においては、消費電力の削減と実装面積の低減つまり部品点数の低減とを両立させることが困難であるという問題がある。
本願は、前記従来の問題を解決し、部品点数が少なく且つ消費電力が小さいプラズマディスプレイパネル駆動装置を実現できるようにすることを目的とする。
前記の目的を達成するため、本発明はプラズマディスプレイパネル駆動装置を、デュアルゲート半導体素子を用いたスイッチ素子を備える構成とする。
具体的に、本発明に係るプラズマディスプレイパネル駆動装置は、プラズマディスプレイパネルの電極に印加する駆動パルスを生成する電極駆動部を備え、電極駆動部は複数のスイッチを有し、複数のスイッチのうちの少なくとも1つは、デュアルゲート半導体素子を用いたスイッチ素子であり、デュアルゲート半導体素子は、基板の上に形成された窒化物半導体又は炭化珪素からなる半導体で構成された半導体層積層体と、半導体層積層体の上に互いに間隔をおいて形成されたソース電極及びドレイン電極と、ソース電極とドレイン電極との間に、ソース電極側から順に形成された、第1のゲート電極及び第2のゲート電極とを有することを特徴とする。
本発明のプラズマディスプレイパネル駆動装置は、デュアルゲート半導体素子を用いたスイッチ素子を使用している。このため、複数のトランジスタとダイオードとを用いてスイッチを構成した場合と比べて、素子の導通損失を大幅に低減できる。また、スイッチの占有面積も大幅に低減できる。これにより、プラズマディスプレイパネル駆動装置の消費電力を低減すると共に小型化することが可能となる。
本発明のプラズマディスプレイパネル駆動装置において、電極駆動部は、プラズマディスプレイパネルの放電を維持するための電圧を発生させる維持電圧源を有し、複数のスイッチは、維持電圧源の正極と負極との間に直列に接続されたハイサイド維持スイッチ及びローサイド維持スイッチを含み、ハイサイド維持スイッチ及びローサイド維持スイッチのうちの少なくとも一方は、デュアルゲート半導体素子を用いたスイッチ素子である。
本発明のプラズマディスプレイパネル駆動装置において、電極駆動部は、プラズマディスプレイパネルの放電を維持するための電圧を発生する維持電圧源を有し、複数のスイッチは、維持電圧源の正極と負極との間に直列に接続されたハイサイド維持スイッチ及びローサイド維持スイッチと、ハイサイド維持スイッチとローサイド維持スイッチとの接続ノードとプラズマディプレイパネルの電極との間に接続された分離スイッチとを含み、分離スイッチはデュアルゲート半導体素子を用いたスイッチ素子であってもよい。
本発明のプラズマディスプレイパネル駆動装置において、電極駆動部は、プラズマディスプレイパネルの電極に蓄積された電荷を回収して蓄積する回収コンデンサを有し、複数のスイッチは、プラズマディスプレイパネルの電極と回収コンデンサとの間に設けられた回収スイッチを含み、回収スイッチは、デュアルゲート半導体素子を用いたスイッチ素子であってもよい。
本発明のプラズマディスプレイパネル駆動装置において、電極駆動部は、プラズマディスプレイパネルの電極に蓄積された電荷を回収して蓄積する回収コンデンサを有し、複数のスイッチは、プラズマディスプレイパネルの電極と回収コンデンサとの間に設けられた第1の回収スイッチ及び第2の回収スイッチを含み、第1の回収スイッチ及び第2の回収スイッチは、それぞれデュアルゲート半導体素子を用いたスイッチ素子であってもよい。
本発明のプラズマディスプレイパネル駆動装置において、回収スイッチは、回収コンデンサから電極へ電流を流す際には、回収コンデンサから電極へ電流を流し且つ回収コンデンサへ流れる電流を遮断する第1のモードとなり、電極から回収コンデンサへ電流を流す際には、電極から回収コンデンサへ電流を流し且つ回収コンデンサから流れる電流を遮断する第2のモードとなってもよい。
本発明のプラズマディスプレイパネル駆動装置において、回収スイッチは、回収コンデンサから電極へ電流を流す際には、回収スイッチが第1のモードになる前に、ソース電極の電位を基準として第1のゲート電極の閾値電圧以上の電圧を第1のゲート電極に印加し、且つ、ドレイン電極の電位を基準として第2のゲート電極の閾値電圧以上の電圧を第2のゲート電極に印加することで、ドレイン電極とソース電極との間に電流を通電する第3のモードとなり、電極から回収コンデンサへ電流を流す際には、回収スイッチが第2のモードになる前に、第3のモードとなってもよい。
本発明のプラズマディスプレイパネル駆動装置において、第1の回収スイッチは、回収コンデンサから電極へ電流を流す際には、回収コンデンサから電極へ電流を流し且つ回収コンデンサへ流れる電流を遮断する第1のモードとなり、第2の回収スイッチは、電極から回収コンデンサへ電流を流す際には、電極から回収コンデンサへ電流を流し且つ回収コンデンサから流れる電流を遮断する第2のモードとなってもよい。
本発明のプラズマディスプレイパネル駆動装置において、第1の回収スイッチは、回収コンデンサから電極へ電流を流す際には、第1のモードとなる前に、ソース電極の電位を基準として第1のゲート電極の閾値電圧以上の電圧を第1のゲート電極に印加し、且つ、ドレイン電極の電位を基準として第2のゲート電極の閾値電圧以上の電圧を第2のゲート電極に印加することで、ドレイン電極とソース電極との間に電流を通電する第3のモードとなり、第2の回収スイッチは、電極から回収コンデンサへ電流を流す際には、第2のモードとなる前に、第3のモードとなってもよい。
本発明のプラズマディスプレイパネル駆動装置において、デュアルゲート半導体素子はノーマリーオフであってもよい。
本発明のプラズマディスプレイパネル駆動装置において、半導体層積層体は、第1の半導体層と、該第1の半導体層の上に選択的に形成された第1のp型半導体層とを有し、第1のゲート電極は、第1のp型半導体層の上に形成されていてもよい。
本発明のプラズマディスプレイパネル駆動装置において、半導体層積層体は、第1の半導体層と、該第1の半導体層の上に選択的に形成された第2のp型半導体層とを有し、第2のゲート電極は、第2のp型半導体層の上に形成されていてもよい。
本発明のプラズマディスプレイパネル駆動装置は、第1のゲート電極及び第2のゲート電極の少なくとも一方と、半導体層積層体との間に形成された絶縁膜をさらに備えていてもよい。
本発明のプラズマディスプレイパネル駆動装置において、半導体層積層体は、凹部を有し、第1のゲート電極及び第2のゲート電極の少なくとも一方は、凹部を埋めるように形成されていてもよい。
本発明のプラズマディスプレイパネル駆動装置において、デュアルゲート半導体素子の第1のゲート電極の閾値電圧と第2のゲート電極の閾値電圧とは、互いに異なっていてもよい。
本発明のプラズマディスプレイパネル駆動装置において、デュアルゲート半導体素子の第2のゲート電極とドレイン電極とは、電気的に接続されていてもよい。
本発明のプラズマディスプレイパネル駆動装置において、デュアルゲート半導体素子の第1のゲート電極と第2のゲート電極との間隔は、ソース電極と第1のゲート電極との間隔よりも大きく、且つ、ドレイン電極と第2のゲート電極との間隔よりも大きくてもよい。
本発明のプラズマディスプレイパネル駆動装置において、デュアルゲート半導体素子の半導体層積層体は、基板側から順次積層された第1の半導体層及び第2の半導体層を有し、第2の半導体層は、第1の半導体層と比べてバンドギャップが大きくてもよい。
本発明のプラズマディスプレイパネル駆動装置において、半導体層積層体は、窒化ガリウム及び窒化アルミニウムガリウムの少なくとも一方を含んでいてもよい。
本発明に係るプラズマディスプレイは、電極間の放電により蛍光体が発光するプラズマディスプレイパネルと、本発明のプラズマディスプレイパネル駆動装置とを備えている。
本発明に係るプラズマディスプレイパネル駆動装置及びプラズマディスプレイによれば、部品点数が少なく且つ消費電力が小さいプラズマディスプレイパネル駆動装置及びプラズマディスプレイを実現できる。
(第1の実施形態)
1.1 構成
1.1.1 プラズマディスプレイ
まず、本発明の第1の実施形態に係るプラズマディスプレイ全体の構成について説明する。
図1は第1の実施形態に係るプラズマディスプレイの構成を示している。プラズマディスプレイは、プラズマディスプレイパネル(PDP)60、PDP駆動装置62及び制御部64を備えている。
(プラズマディスプレイパネル)
PDP60は例えばAC型であり、3電極面放電型構造を有する。PDP60の背面基板上にはアドレス電極A1、アドレス電極A2、アドレス電極A3、・・・アドレス電極Anがパネルの幅方向に沿って配置されている。PDP60の前面基板上には維持電極X1、維持電極X2、維持電極X3、・・・維持電極Xnと、走査電極Y1、走査電極Y2、走査電極Y3、・・・走査電極Ynとが交互に、且つパネルの長手方向に沿って配置されている。維持電極X1〜維持電極Xnは互いに接続されており、電位が実質的に等しい。アドレス電極A1〜アドレス電極Anと、走査電極Y1〜走査電極Ynとは、一本ずつ個別に電位を変化させることができる。
互いに隣り合う維持電極と走査電極との対(例えば維持電極X2と走査電極Y2との対)とアドレス電極(例えばアドレス電極A2)との交差点には放電セルが設置されている(例えば、図1のP部分を参照。)。放電セルの表面には、誘電体からなる誘電体層と、電極と誘電体層を保護するための保護層と、蛍光物質を含む蛍光層とが設けられている。放電セルの内部にはガスが封入されている。維持電極、走査電極及びアドレス電極の間に所定のパルス電圧が印加されると、放電セルにおいて放電が生じる。この際に、放電セル中のガス分子が脱励起し、紫外線を発する。発生した紫外線は放電セルの表面に設けられた蛍光層の蛍光物質を励起し、蛍光を発生させる。このようにして放電セルが発光する。
(PDP駆動装置)
PDP駆動装置62は、PDP60の各電極を駆動する電極駆動部である走査電極駆動部71と、維持電極駆動部72と、アドレス電極駆動部73とを含む。
走査電極駆動部71及び維持電極駆動部72の入力端子66は、電源部(図示せず)と接続される。電源部は、外部の商用交流電源からの交流電圧を一定の直流電圧(例えば400V)にまず変換する。次に、変換した直流電圧を直流−直流(DC−DC)コンバータにより、所定の維持電圧Vsへ変換する。維持電圧VsはPDP駆動装置62に印加される。これにより、入力端子66の電位は、接地電位(=0)に対して維持電圧Vsだけ高く維持される。
走査電極駆動部71の出力端子はPDP60の走査電極Y1〜走査電極Ynのそれぞれに個別に接続されている。走査電極駆動部71は走査電極Y1〜走査電極Ynのそれぞれの電位を個別に変化させる。
維持電極駆動部72の出力端子はPDP60の維持電極X1〜維持電極Xnと接続されている。維持電極駆動部72は維持電極X1〜維持電極Xnの電位を一様に変化させる。
アドレス電極駆動部73はPDP60のアドレス電極A1〜アドレス電極Anのそれぞれに個別に接続されている。アドレス電極駆動部73は、外部からの映像信号に基づき信号パルス電圧を発生させ、アドレス電極A1〜アドレス電極Anの中から選択された電極に対し印加する。
PDP駆動装置62はADS(Address Display-period Separation)方式に従い、PDP60の各電極の電位を制御する。ADS方式はサブフィールド方式の一種である。例えば日本のテレビ放送では画像が1フィールドずつ、1/60秒(=約16.7msec)間隔で送られる。それにより、1フィールド当たりの表示時間が一定である。サブフィールド方式ではフィールドがそれぞれ複数のサブフィールドに分けられる。ADS方式ではさらに、サブフィールドごとに、PDP60の全ての放電セルに対し3つの期間(初期化期間、アドレス期間、及び放電維持期間)が共通に設定される。放電維持期間の長さはサブフィールドごとに異なる。初期化期間、アドレス期間、及び放電維持期間のそれぞれでは、異なるパルス電圧が次のように、放電セルに対し印加される。
初期化期間では、初期化パルス電圧が維持電極X1〜維持電極Xnと走査電極Y1〜走査電極Ynとの間に印加される。これにより、全ての放電セルで壁電荷が均一化される。
アドレス期間では、走査電極駆動部71が、走査電極Y1〜走査電極Ynに対し走査パルス電圧を順次印加する。走査パルス電圧の印加と同時に、アドレス電極駆動部73が選択されたアドレス電極に対し信号パルス電圧を印加する。信号パルス電圧を印加するアドレス電極は、外部から入力される映像信号に基づき選択される。走査パルス電圧が走査電極の1つに印加され、且つ信号パルス電圧がアドレス電極の1つに印加されるとき、その走査電極とアドレス電極との交差点に位置する放電セルで放電が生じる。放電が生じた放電セルの表面には新たな壁電荷が蓄積される。
放電維持期間では、走査電極駆動部71と維持電極駆動部72とが、放電維持パルス電圧をそれぞれ、走査電極Y1〜走査電極Ynと維持電極X1〜維持電極Xnとに対して交互に印加する。これにより、アドレス期間中に壁電荷が蓄積された放電セルでは放電が維持されるので、発光が生じる。放電維持期間の長さはサブフィールドごとに異なるので、放電セルの1フィールド当たりの発光時間、すなわち放電セルの輝度は、発光させるサブフィールドを選択することにより調整する。
走査電極駆動部71、維持電極駆動部72及びアドレス電極駆動部73はそれぞれ、内部にスイッチングインバータを含む。制御部64は、各駆動部についてスイッチング制御を行う。これにより、初期化パルス電圧、走査パルス電圧、信号パルス電圧及び放電維持パルス電圧をそれぞれ所定の波形及びタイミングで発生させる。また、制御部64は外部からの映像信号に基づき、信号パルス電圧を印加するアドレス電極を選択する。さらに、制御部64は、信号パルス電圧を印加した後の放電維持期間の長さ、すなわち信号パルス電圧を印加すべきサブフィールドを決定する。その結果、それぞれの放電セルが適切な輝度で発光する。こうして、PDP60には映像信号に対応する映像が再現される。
1.1.2 走査電極駆動部
次に、電極駆動部について説明する。走査電極駆動部71と維持電極駆動部72とは基本的には同じ回路であるため、以下においては、走査電極駆動部71について説明を行う。
図2は、走査電極駆動部71の詳細な構成を示している。図2にはPDP60の等価回路も合わせて示している。走査電極駆動部71は、それぞれがスイッチングインバータを有する走査パルス発生部1Y、初期化パルス発生部2Y及び放電維持パルス発生部3Yを含む。PDP60は、維持電極Xと走査電極Yとの間の浮遊容量Cp(PDPのパネル容量)により等価的に表されており、放電セルでの放電時にPDP60を流れる電流の経路は省略している。図2において、維持電極Xに接続する維持電極駆動部は省略しており、図中において、維持電極Xは接地状態で表している。
(走査パルス発生部)
走査パルス発生部1Yは、第1の定電圧源V1、ハイサイド走査スイッチQ1Y及びローサイド走査スイッチQ2Yを含む。
第1の定電圧源V1は、例えばDC−DCコンバータ(図示せず)により、電源部から印加される維持電圧Vsに基づき、第2の定電圧源V1は正極の電位を負極の電位より一定の電圧V1だけ高く維持する。
ハイサイド走査スイッチQ1Y及びローサイド走査スイッチQ2Yは例えばMOSFET(金属−酸化膜−半導体電界効果トランジスタ)である。その他にIGBT(絶縁ゲートトランジスタ)又はバイポーラトランジスタであってもよい。
第1の定電圧源V1の正極はハイサイド走査スイッチQ1Yのドレインに接続されている。ハイサイド走査スイッチQ1Yのソースはローサイド走査スイッチQ2Yのドレインに接続されている。それらの間の接続点J1YはPDP60の走査電極の一つYに接続されている。ローサイド走査スイッチQ2Yのソースは、第1の定電圧源V1の負極に接続されている。
ここで、ハイサイド走査スイッチQ1Yとローサイド走査スイッチQ2Yの直列接続回路(図2に示される実線で囲まれた部分)は、実際には、走査電極Y1、Y2、・・・Ynと同数だけ設けられ、走査電極Y1、Y2、・・・Ynのそれぞれに一つずつ接続されている。
(初期化パルス発生部)
初期化パルス発生部2Yは、第2の定電圧源V2、ハイサイドランプ波形発生部QR1、ローサイドランプ波形発生部QR2及び第3の定電圧源V3を含む。
第2の定電圧源V2は、その正極の電位を、例えばDC−DCコンバータによって電源部から印加される維持電圧Vsに対して所定電圧V2だけ高く維持する。
第3の定電圧源V3は、例えばDC−DCコンバータにより、電源部から印加される維持電圧Vsに基づき、その正極の電位を負極の電位より所定電圧V3だけ高く維持する。
ハイサイドランプ波形発生部QR1及びローサイドランプ波形発生部QR2は例えばNチャネルMOSFET(NMOS)を含む。そのNMOSのゲートとドレインとはコンデンサで接続される。ハイサイドランプ波形発生部QR1及びローサイドランプ波形発生部QR2がオン状態となるとき、ドレインソース間電圧は実質的に一定の速度で0まで変化する。
第2の定電圧源V2の正極はハイサイドランプ波形発生部QR1のドレインに接続されている。ハイサイドランプ波形発生部QR1のソースは第1の定電圧源V1の負極に接続されている。第2の定電圧源V2の負極は放電維持パルス発生部3Yの維持電圧源Vsの正極に接続されている。ローサイドランプ波形発生部QR2のドレインは第1の定電圧源V1の負極に接続され、ローサイドランプ波形発生部QR2のソースは第3の定電圧源V3の負極に接続される。第3の定電圧源V3の正極は接地されている。ハイサイドランプ波形発生部QR1のソースとローサイドランプ波形発生部QR2のドレインとの接続点は接続ノードJ2Yとなっている。
(放電維持パルス発生部)
放電維持パルス発生部3Yは、ハイサイド維持スイッチQ7Yとローサイド維持スイッチQ8Yの直列回路と、回収インダクタLYと、回収スイッチ回路75と、回収コンデンサCYとを含む。
維持電圧源Vsは、正極の電位を負極の電位より一定の電圧Vs(維持電圧)だけ高く維持する。維持電圧源Vsの正極はハイサイド維持スイッチQ7Yのドレインに接続され、ハイサイド維持スイッチQ7Yのソースはローサイド維持スイッチQ8Yのドレインに接続されている。ローサイド維持スイッチQ8Yのソースは維持電圧源Vsの負極に接続されている。維持電圧源Vsの負極は例えば0V(接地状態)である。ハイサイド維持スイッチQ7Yとローサイド維持スイッチQ8Yとが接続された出力ノードJ3Yは、放電維持パルス発生部3Yの出力ノードとして、第1の定電圧源V1の負極に接続されている。放電維持パルス発生部3Yの出力ノードJ3Yからローサイド走査スイッチQ2Yのドレインまでの経路を以下「放電維持パルス伝達路」という。
(双方向スイッチ素子)
放電維持パルス発生部3Yにおいて、特に、ハイサイド維持スイッチQ7Y及びローサイド維持スイッチQ8Yは、双方向スイッチ素子で構成される。本実施形態及び以下の実施形態において、「双方向スイッチ素子」とは以下のようないずれかの特性を持つスイッチ素子をいう。
<特性1>
−オン状態では、ドレインからソース方向及びソースからドレイン方向の双方向に電流を流すことができる。
−オフ状態では、ドレインからソース方向及びソースからドレイン方向の双方向において電流を流さない。オフ期間では、その素子の絶対最大定格のドレインソース間電圧及び絶対最大定格のソース・ドレイン間電圧ともに十分な値を確保している。(以降、絶対最大定格のドレイン・ソース間電圧及び絶対最大定格のソースドレイン間電圧のことを「双方向スイッチ素子の耐圧」という。)
<特性2>
−オン状態では、ドレインからソース方向に電流を流すことができるが、ソースからドレイン方向には電流を流さない。
−オフ状態では、ドレインからソース方向及びソースからドレイン方向の双方向において電流を流さない。オフ状態では、その素子の絶対最大定格のドレインソース間電圧及び絶対最大定格のソースドレイン間電圧ともに十分な値を確保している。
ハイサイド維持スイッチQ7Y及びローサイド維持スイッチQ8Yを双方向スイッチ素子で構成することにより、ハイサイド維持スイッチQ7Y及びローサイド維持スイッチQ8Yに対して高い電圧が印加されても逆導通を阻止できる。このため、ハイサイド維持スイッチQ7Y及びローサイド維持スイッチQ8Yを双方向スイッチ素子で構成することで、従来のPDPの駆動装置において、初期化期間における逆導通を阻止するために用いられていた分離スイッチ素子を設ける必要がなくなり、部品点数を低減でき、電力損失を低減できる。
(回収スイッチ回路)
回収スイッチ回路75は、第1の回収ダイオードD1、第2の回収ダイオードD2、ハイサイド回収スイッチQ9Y及びローサイド回収スイッチQ10Yを含む。ハイサイド回収スイッチQ9Y及びローサイド回収スイッチQ10Yは例えばMOSFETである。その他にIGBT又はバイポーラトランジスタであってもよい。
ハイサイド回収スイッチQ9Yのソースは第1の回収ダイオードD1のアノードと接続され、第1の回収ダイオードD1のカソードは第2の回収ダイオードD2のアノードと接続され、第2の回収ダイオードD2のカソードは、ローサイド回収スイッチQ10Yのドレインと接続されている。回収インダクタLYの一端は出力ノードJ3Yに接続され、他端は第1の回収ダイオードD1のカソードと第2の回収ダイオードD2のアノードとの接続点J4Yに接続されている。回収コンデンサCYの一端は維持電圧源Vsの負極と接続され、他端はハイサイド回収スイッチQ9Yのドレイン及びローサイド回収スイッチQ10Yのソースと接続されている。
回収コンデンサCYの容量はPDP60のパネル容量Cpより十分に大きい。回収コンデンサCYの両端電圧は、電源部から印加される維持電圧Vsの半値Vs/2と実質的に等しく維持される。
1.2 動作
以下に、走査電極駆動部71の動作について説明する。走査電極駆動部の動作は、先に述べた初期化期間、アドレス期間及び放電維持期間の3つの期間に別けることができる。図3は、初期化期間、アドレス期間及び放電維持期間においてPDP60の走査電極Yに印加する電圧の波形と、走査電極駆動部71に含まれる各スイッチの状態とを示している。図中において斜線で示した期間が対応するスイッチがオン状態の期間を示している。
1.2.1 初期化期間
初期化期間は初期化パルス電圧の変化に応じてモードI〜Vに分けられる。
<モードI>
ローサイド走査スイッチQ2Y及びローサイド維持スイッチQ8Yをオン状態に維持する。残りのスイッチはオフ状態に維持する。これにより、走査電極Yは接地電位(例えば0V)に維持される。
<モードII>
ローサイド走査スイッチQ2Y及びハイサイド維持スイッチQ7Yをオン状態に維持する。残りのスイッチはオフ状態に維持する。これにより、走査電極Yの電位が接地電位から維持電圧源Vsの電圧Vsだけ高い電位まで上昇する。
<モードIII>
ローサイド走査スイッチQ2Yをオン状態に維持したまま、ハイサイド維持スイッチQ7Yをオフ状態とし、ハイサイドランプ波形発生部QR1をオン状態とする。残りのスイッチはオフ状態に維持する。これにより、走査電極Yの電位が一定の速度で、接地電位から維持電圧源Vsの電圧Vsと第2の定電圧源V2の電圧V2との和だけ高い電位Vr(以下、初期化パルスの上限電圧という。)まで上昇する。
これにより、PDP60の全ての放電セルに対する印加電圧は、一様に初期化パルス電圧の上限Vrまで比較的緩やかに上昇する。その結果、PDP60の全ての放電セルにおいて一様な壁電荷が蓄積される。このとき、印加電圧の上昇速度は小さいので、放電セルの発光は微弱に抑えられる。
<モードIV>
ローサイド走査スイッチQ2Yをオン状態に維持したまま、ハイサイドランプ波形発生部QR1をオフ状態とし、ハイサイド維持スイッチQ7Yをオン状態とする。また、残りのスイッチはオフ状態に維持する。これにより、走査電極Yの電位は、初期化パルスの上限電圧Vrから下降して、接地電位よりも維持電圧源Vsの電圧Vsだけ高い電位となる。
<モードV>
ローサイド走査スイッチQ2Yをオン状態に維持したまま、ハイサイド維持スイッチQ7Yをオフ状態とし、ローサイドランプ波形発生部QR2をオン状態とする。残りのスイッチはオフ状態に維持される。走査電極Yの電位は一定の速度で下降して、接地電位よりも第3の定電圧源V3の電圧V3だけ低い電位−V3(以下、初期化パルスの下限電圧という。)となる。従って、PDP60の放電セルには、モードII〜モードIVにおいて印加された電圧とは逆極性の電圧が印加される。特に、印加電圧は比較的緩やかに下降する。これにより、全ての放電セルにおいて壁電荷が一様に除去され、均一化される。このとき、印加電圧の下降速度が小さいので、放電セルの発光は微弱に抑えられる。
1.2.2 アドレス期間
アドレス期間中、走査電極駆動部71では、ローサイドランプ波形発生部QR2及びハイサイド走査スイッチQ1Yがオン状態に維持される。従って、ハイサイド走査スイッチQ1Yのドレインは初期化パルスの下限電圧−V3から第1の定電圧源V1の電圧V1だけ高い電位Vp(以下、走査パルスの上限電圧Vpという)に維持され、ローサイド走査スイッチQ2Yのソースは初期化パルスの下限電圧−V3に維持される。
アドレス期間の開始時、全ての走査電極Yについて、ハイサイド走査スイッチQ1Yがオン状態に維持され、ローサイド走査スイッチQ2Yがオフ状態に維持される。これにより、全ての走査電極Yの電位が一様に走査パルスの上限電圧Vpに維持される。
走査電極駆動部71は続いて、走査電極Yの電位を次のように変化させる(図3に示された走査パルス電圧SPを参照。)。1つの走査電極Yが選択されると、選択された走査電極Yと接続されたハイサイド走査スイッチQ1Yをオフ状態とし、ローサイド走査スイッチQ2Yをオン状態とする。これにより、選択された走査電極Yの電位は初期化パルスの下限電圧−V3まで下降する。選択された走査電極Yの電位が所定時間、初期化パルスの下限電圧−V3に維持された後、選択された走査電極Yと接続されたローサイド走査スイッチQ2Yをオフ状態とし、ハイサイド走査スイッチQ1Yをオン状態とする。これにより、選択された走査電極Yの電位は再び走査パルスの上限電圧Vpまで上昇する。走査電極駆動部71は走査電極Yのそれぞれと接続されたハイサイド走査スイッチQ1Y及びローサイド走査スイッチQ2Yについて、同様のスイッチング動作を順次行う。これにより、走査パルス電圧SPが走査電極Yのそれぞれに対して順次印加される。
アドレス期間中、外部から入力される映像信号に基づき、1つのアドレス電極Aが選択されると、選択されたアドレス電極Aの電位は所定時間、信号パルスの上限電圧Vaまで上昇する(図示せず)。
例えば、走査パルス電圧SPを1つの走査電極Yに印加すると共に信号パルス電圧を1つのアドレス電極Aに印加すると、その走査電極Yとアドレス電極Aとの間の電圧は他の電極間の電圧よりも高くなる。従って、その走査電極Yとアドレス電極Aとの間の交差点に位置する放電セルは放電する。放電した放電セルの表面には、放電による新たな壁電荷が蓄積される。
その後、放電維持期間において、走査電極駆動部71と維持電極駆動部72(図示せず)とが交互に、放電維持パルス電圧をそれぞれ、走査電極Yと維持電極Xとに対し印加する。このとき、アドレス期間中に壁電荷が蓄積された放電セルでは放電が維持されるので発光が生じる。
1.2.3 放電維持期間
放電維持期間について説明する。ローサイド走査スイッチQ2Yは常にオン状態に維持する。
ハイサイド回収スイッチQ9Yをオン状態とする直前に、ローサイド維持スイッチQ8Yをオン状態とし、パネル容量Cpの両端の電圧は0Vに維持される。ハイサイド回収スイッチQ9Yをオン状態とすると、回収コンデンサCYと、ハイサイド回収スイッチQ9Yと、第1の回収ダイオードD1と、回収インダクタLYと、パネル容量Cpとにより、LC共振回路が形成される。これにより、パネル容量Cpの両端の電圧はVsまで増加する。残りのスイッチはオフ状態に維持する。
次に、ハイサイド回収スイッチQ9Yをオフ状態として、ハイサイド維持スイッチQ7Yをオン状態とすれば、パネル容量Cpの両端電圧はVsに維持される。このとき、ハイサイド維持スイッチQ7Yのドレインソース間電圧は0であるので、ほぼ損失なくオン状態とすることができる(残りのスイッチ素子はオフ状態に維持される)。
所定時間経過後、ハイサイド維持スイッチQ7Yをオフ状態とし、ローサイド回収スイッチQ10Yをオン状態とすると、回収コンデンサCYと、ローサイド回収スイッチQ10Yと、第2の回収ダイオードD2と、回収インダクタLYと、パネル容量Cpとにより、LC共振回路が形成される。これにより、パネル容量Cpの両端の電圧は0まで減少する。
次に、ローサイド回収スイッチQ10Yをオフ状態として、ローサイド維持スイッチQ8Yをオン状態とすれば、パネル容量Cpの両端の電圧は0に維持される。このとき、ローサイド維持スイッチQ8Yのドレイン・ソース間電圧は0であるので、ほぼ損失なくオン状態とすることができる(残りのスイッチ素子はオフ状態に維持される)。
走査電極Yの電位が上下するとき、回収コンデンサCYとパネル容量Cpとの間で電力が効率良く交換される。このため、放電維持パルス電圧の印加時、パネル容量Cpの充放電に起因する無効電力を低減できる。
1.3 デュアルゲート半導体素子
以上のような動作をさせるために、ハイサイド維持スイッチQ7Y及びローサイド維持スイッチQ8Yに用いるスイッチ素子は少なくとも先に述べた特性1を満たす双方向スイッチである必要がある。
このよう双方向スイッチ素子は、例えば図4に示すように複数のトランジスタとダイオードとを、接続することにより実現することができる。しかし、双方向スイッチを実現するために図4に示すような複数のトランジスタとダイオードとを組み合わせた場合には、部品点数が増大してしまう。また、複数のトランジスタ及びダイオードからなるため、ダイオードの順方向立上り電圧がオン電圧に付加され、導通損失の影響が大きく、消費電力が増大してしまう。
本実施形態のPDP駆動装置は、ハイサイド維持スイッチQ7Y及びローサイド維持スイッチQ8Yにデュアルゲート半導体素子を用いている。このため、1つの素子により双方向スイッチが実現できるため、部品点数を削減でき、PDP駆動装置の占有面積を低減できる。また、電力損失も低減できる。
1.3.1 第1のデュアルゲート半導体素子
図5は、デュアルゲート半導体素子10の第1の例について断面構成を示している。図5に示すように、デュアルゲート半導体素子10は、シリコン(Si)からなる基板11の上に厚さが10nm窒化アルミニウム(AlN)と厚さが10nmの窒化ガリウム(GaN)とが交互に積層されてなる厚さが1μmのバッファ層12が形成され、その上に半導体層積層体13が形成されている。半導体層積層体13は、2つの半導体層が基板側から順次積層されており、上側の半導体層は下側の半導体層と比べてバンドギャップが大きい。本実施形態においては、下側の半導体層は、厚さが2μmのアンドープの窒化ガリウム(GaN)層14であり、上側の半導体層は、厚さが20nmのn型の窒化アルミニウムガリウム(AlGaN)層15である。
GaN層14のAlGaN層15とのヘテロ界面近傍には、自発分極及びピエゾ分極による電荷が生じる。これにより、シートキャリア濃度が1×1013cm-2以上で且つ移動度が1000cm2V/sec以上の2次元電子ガス(2DEG)層であるチャネル領域が生成されている。
半導体層積層体13の上には、互いに間隔をおいて第1のオーミック電極であるソース電極16と第2のオーミック電極であるドレイン電極17とが形成されている。ソース電極16及びドレイン電極17は、チタン(Ti)とアルミニウム(Al)とが積層されており、チャネル領域とオーミック接触している。図1においては、コンタクト抵抗を低減するために、AlGaN層15の一部を除去すると共にGaN層14を40nm程度掘り下げて、ソース電極16及びドレイン電極17がAlGaN層15とGaN層14との界面に接するように形成した例を示している。なお、ソース電極16及びドレイン電極17は、AlGaN層15の上に形成してもよい。
n型のAlGaN層15の上におけるソース電極16及びドレイン電極17との間の領域には、第1のp型半導体層19A及び第2のp型半導体層19Bが互いに間隔をおいて選択的に形成されている。第1のp型半導体層19Aの上には第1のゲート電極18Aが形成され、第2のp型半導体層19Bの上には第2のゲート電極18Bが形成されている。第1のゲート電極18A及び第2のゲート電極18Bは、それぞれパラジウム(Pd)と金(Au)とが積層されており、第1のp型半導体層19A及び第2のp型半導体層19Bとオーミック接触している。
AlGaN層15及び第1のp型半導体層19A及び第2のp型半導体層19Bを覆うように窒化シリコン(SiN)からなる保護膜41が形成されている。保護膜41を形成することで、いわゆる電流コラプスの原因となる欠陥を保障し、電流コラプスを改善することが可能となる。
第1のp型半導体層19A及び第2のp型半導体層19Bは、それぞれ厚さが300nmで、マグネシウム(Mg)がドープされたp型のGaNからなる。第1のp型半導体層19A及び第2のp型半導体層19Bと、AlGaN層15とによりPN接合がそれぞれ形成される。これにより、第1のオーミック電極と第1のゲート電極間との電圧が例えば0Vでは、第1のp型GaN層からチャネル領域中に空乏層が広がるため、チャネルに流れる電流を遮断することができ、同様に、第2のオーミック電極と第2のゲート電極間との電圧が例えば0V以下のときには、第2のp型GaN層からチャネル領域中に空乏層が広がるため、チャネルに流れる電流を遮断することができ、いわゆるノーマリーオフ動作をするデュアルゲート半導体素子を実現している。
また、このような構造とすることにより、ドレインとソースとの間に流れる電流を遮断するために印加する第1のゲート電極18Aの閾値電圧は、ソース電極16を基準として約+1.5Vとなり、第2のゲート電極18Bの閾値電圧は、ドレイン電極17を基準として約+1.5Vとなる。
また、第1のゲート電極18A及び第2のゲート電極18Bはそれぞれ第1のp型半導体層19A及び第2のp型半導体層19Bを介してAlGaN層15に接している。このため、第1のゲート電極18A及び第2のゲート電極18Bに順方向電流が流れるとき、第1のp型半導体層19A及び第2のp型半導体層19Bを介してチャネル領域に正孔が注入される。注入された正孔は、同量の電子をチャネル中に発生させるので、チャネル領域内に電子を発生される効果が高くなり、ドナーイオンのような機能を発揮する。つまり、チャネル領域内においてキャリア濃度の変調を行うことが可能となるため、ノーマリーオフ動作をしつつ動作電流を大きくすることが可能となる。
デュアルゲート半導体素子10は、耐圧を確保するためのチャネル領域を第1のゲート電極18Aと第2のゲート電極18Bとが共有する。2つのダイオードと2つのトランジスタとを用いて同様のスイッチ素子を形成した場合には、耐圧を確保するチャネル領域が2素子分の面積が必要である。しかし、デュアルゲート半導体素子10は1素子分のチャネル領域の面積でスイッチ素子が実現可能であり、スイッチ素子全体を考えると、2つのダイオードと2つのトランジスタとを用いた場合と比べてチップ面積をより少なくすることができる。
以下に、デュアルゲート半導体素子10の動作について説明する。デュアルゲート半導体素子10は、オン状態においては、ドレイン側からソース側及びソース側からドレイン側の双方向に電流を流すことができ、オフ状態においては、ドレイン側からソース側及びソース側からドレイン側の双方向において電流を遮断できる、いわゆる双方向スイッチ動作を行わせることができる。
図6は、図5に示したデュアルゲート半導体素子10に双方向スイッチ動作を行わせる場合の回路を示している。この場合には、負極がソース電極16と接続され正極が第1のゲート電極18Aと接続された第1の電源24と、負極がドレイン電極17と接続され正極が第2のゲート電極18Bと接続された第2の電源25とを有する駆動部20によりデュアルゲート半導体素子を駆動する。なお、第1の電源24の出力をVg1、第2の電源25の出力をVg2とする。なお、図6は、説明のため負荷電源23の負極がデュアルゲート半導体素子10のソース電極16と接続され、正極がドレイン電極17と接続されている例を示している。
ソース電極16からドレイン電極17へ流れる電流及びドレイン電極17からソース電極16へ流れる電流の両方を遮断するためには、ソース電極16を基準として第1のゲート電極18Aの閾値電圧以下の電圧を第1のゲート電極18Aに印加し、第1のp型半導体層19Aからチャネル領域に空乏層を広げ、チャネル領域をピンチオフする。同時に、ドレイン電極17を基準として第2のゲート電極18Bの閾値電圧以下の電圧を第2のゲート電極18Bに印加し、第2のp型半導体層19Bからチャネル領域に空乏層を広げ、チャネル領域をピンチオフする。具体的にはVg1とVg2を例えば0Vとする。このような動作をすることで、ドレイン電極17の電位がソース電極16の電位より高いとき、第1のp型半導体層19Aから空乏層がチャネル領域に広がり、ドレイン電極17からソース電極16へ流れる電流を遮断することがきる。同様に、ソース電極16の電位がドレイン電極17の電位より高いとき、第2のp型半導体層19Bから空乏層がチャネル領域に広がり、ソース電極16からドレイン電極17へ流れる電流を遮断することができる。
双方向に電流を通電させるためには、ソース電極16を基準として第1のゲート電極18Aの閾値電圧よりも高い電圧を第1のゲート電極18Aに印加し、第1のp型半導体層19Aから広がる空乏層を縮小し、チャネル領域を通電状態にし、同時に、ドレイン電極17を基準として第2のゲート電極18Bの閾値電圧よりも高い電圧を第2のゲート電極18Bに印加し、第2のp型半導体層19Bから広がる空乏層を縮小し、チャネル領域を通電状態にする。具体的には例えばVg1とVg2を5Vにする。このような動作をすることで、ソース電極16とドレイン電極17との間に双方向に電流を通電することが可能となる。
また、双方向の電流が通電している状態において、チャネル上にダイオードがないため、ダイオードの順方向立上り電圧によるオン電圧の上昇はこの双方向スイッチには発生しない。このため、従来の直列に接続されたダイオードとトランジスタとからなる双方向スイッチに比べ、そのオン電圧を低減でき、PDP駆動電力を低減できる。
また、デュアルゲート半導体素子10は、オン状態においてはドレイン電極17とソース電極16との間に一方向に電流を流し、他方向の電流は遮断し、オフ状態においては双方向に電流を遮断する逆阻止動作を行わせることもできる。
逆阻止動作についてまず、第1のゲート電極18Aに第1のゲート電極18Aの閾値電圧よりも高い電圧を印加し、第2のゲート電極18Bに第2のゲート電極18Bの閾値電圧以下の電圧を印加した場合の動作について説明する。図5のデュアルゲート半導体素子を等価回路で表すと図7(a)に示すように第1のトランジスタ36と第2のトランジスタ37とが直列に接続された回路とみなすことができる。この場合、第1のトランジスタ36のソース(S)がデュアルゲート半導体素子のソース電極16、第1のトランジスタ36のゲート(G)が第1のゲート電極18Aに対応し、第2のトランジスタ37のソース(S)がデュアルゲートトランジスタのドレイン電極17、第2のトランジスタ37のゲート(G)が第2のゲート電極18Bに対応する。図7は、説明のため負荷電源23の負極がデュアルゲート半導体素子のソース電極16と接続され、正極がドレイン電極17と接続されている例を示している。
このような回路において、例えば、Vg1を5V、Vg2を0Vとした場合、Vg2が0Vであるということは第2のトランジスタ37のゲートとソースが短絡されている状態と等しいため、デュアルゲート半導体素子の第2のトランジスタは図7(b)に示すような回路とみなすことができる。
以下において、図7(b)に示すトランジスタのソース(S)をA端子、ドレイン(D)をB端子、ゲート(G)をC端子として説明を行う。
B端子の電位がA端子の電位よりも高い場合には、A端子がソースでB端子がドレインであるトランジスタとみなすことができる。このような場合、C端子(ゲート)とA端子(ソース)との間の電圧は0Vであり、閾値電圧以下のため、B端子(ドレイン)からA端子(ソース)に電流は流れない。
一方、A端子の電位がB端子の電位よりも高い場合には、B端子がソースでA端子がドレインのトランジスタとみなすことができる。このような場合、C端子(ゲート)とA端子(ドレイン)との電位が同じであるため、A端子の電位がB端子を基準として閾値電圧以上となると、ゲートにB端子(ソース)を基準として閾値電圧以上の電圧が印加され、A端子(ドレイン)からB端子(ソース)へ電流を流すことができる。
つまり、トランジスタのゲートとソースとを短絡させた場合、ドレインがカソードでソースがアノードのダイオードとして機能し、その順方向立上り電圧はトランジスタの閾値電圧となる。
そのため、図7(a)に示す第2のトランジスタ37の部分は、ダイオードとみなすことができ、図7(c)に示すように第1のトランジスタとダイオードとが直列接続された等価回路として表すことができる。図7(c)に示す等価回路において、スイッチ素子のドレインの電位がソースの電位よりも高い場合、第1のトランジスタ36のゲートに5Vが印加されているので、第1のトランジスタ36はオン状態であり、ドレインからソースへ電流を流すことが可能となる。但し、ダイオードの順方向立上り電圧によるオン電圧が発生する。また、スイッチ素子のソースの電位がドレインの電位よりも高い場合、その電圧は第2のトランジスタ37からなるダイオードが担い、スイッチ素子のソースからドレインへ流れる電流を阻止する。つまり、第1のゲート電極18Aに閾値電圧以上の電圧を与え、第2のゲート電極18Bに閾値電圧以下の電圧を与えることにより、いわゆる逆阻止動作を行わせることができる。
図8(a)〜(c)は、デュアルゲート半導体素子10に双方向スイッチ動作及び逆阻止動作を行わせた場合の動作特性を示している。図8において、横軸はソース電極16を基準としたドレイン電極17の電圧であり、ここではVdsと記載する。また、縦軸はドレイン電極17とソース電極16との間を流れる電流Idsであり、ドレイン電極17からソース電極16へ流れる電流を正としている。
図8(a)は、第1の電源の出力Vg1と第2の電源の出力Vg2は同じ電圧になるように出力し、Vg1とVg2とを0V、1V、2V、3V、4V、5Vとしたときの特性を示している。図8に示すように、Vg1とVg2とが0Vのときには明らかに双方向の電流を遮断し、Vg1とVg2とが5Vのときには明らかに双方向の電流を通電し、双方向スイッチの動作を実現している。
図8(b)は、Vg2を0Vとなるように出力し、Vg1を0V、1V、2V、3V、4V、5VとしたときのIdsとVdsとの特性を示している。図8(b)に示すように、Vg1が5Vのときでは、Vdsが正の電圧であるときに電流を通電し、Vdsが負の電圧であるときには電流を遮断している。この動作は、ソース電極がカソード、ドレイン電極がアノードとなるダイオードの動作と同じとなる。
図8(c)は、Vg1を0Vとなるように出力し、Vg2を0V、1V、2V、3V、4V、5VとしたときのIdsとVdsとの特性を示している。図8(c)に示すように、Vg2が5Vのときには、Vdsが負の電圧であるときに電流を通電し、Vdsが正の電圧であるときには電流を遮断している。この動作は、ソース電極がアノード、ドレイン電極がカソードとなるダイオードの動作と同じとなる。
以上のように、本実施形態のデュアルゲート半導体素子10は、そのゲートバイアス条件により、双方向の電流を遮断及び通電する双方向スイッチ動作をさせることも、逆阻止動作をさせることも可能である。また、逆阻止動作の際に電流が通電する方向も切り換えることができる。
デュアルゲート半導体素子に逆阻止動作をさせる場合には、第1のゲート電極18A又は第2のゲート電極18Bに印加する電圧を調整するだけでよいが、双方向スイッチ動作をさせる場合には、第1のゲート電極18A及び第2のゲート電極18Bのそれぞれに電圧を印加する駆動部が必要となる。
1.3.2 第2のデュアルゲート半導体素子
図9は、デュアルゲート半導体素子10の第2の例について断面構成を示している。図9において図5と同一の構成要素には同一の符号を附すことにより説明を省略する。
図9に示すように、第2のデュアルゲート半導体素子は、第1のデュアルゲート半導体素子と比べ、第1のp型半導体と第2のp型半導体がなく、第1のゲート電極と第2のゲート電極が前記AlGaN層上に形成されており、第1のゲート電極及び第2のゲート電極はAlGaN層とショットキー接合を形成しており、ノーマリーオフ動作を可能とするため、AlGaN層の膜厚が薄くなっており、例えば5nm程度になっている点で異なる。
このような構造とすることで、第1のデュアルゲート半導体素子と同様に双方向スイッチ動作及び逆阻止スイッチ動作が可能なデュアルゲート半導体素子を構成することができる。
また、AlGaN層の膜厚を厚くするか、又はAlGaN層のAl組成を高めことで、チャネル領域の電子のキャリア濃度をより高めることができる。そのため、チャネル領域の抵抗は低減し、デュアルゲート半導体素子のオン抵抗を低減し、前記走査電極駆動の電力消費を低減することが可能となる。但し、このような構造とする場合、ノーマリーオン型のデュアルゲート半導体素子となり、閾値電圧が負の電圧となってしまう。そのため、走査電極駆動部のスイッチ素子と用いる場合には、デュアルゲート半導体素子による短絡故障を防止するため、デュアルゲート半導体素子のソース又はドレインに電圧が印加される前に、閾値電圧以下の電圧を第1ゲート及び第2ゲートに印加する。これによりノーマリオン型のデュアルゲート半導体素子を用いたPDP駆動装置を動作することが可能となる。
1.3.3 第3のデュアルゲート半導体素子
図10は、デュアルゲート半導体素子10の第3の例について断面構成を示している。図10において図5と同一の構成要素には同一の符号を附すことにより説明を省略する。
図10に示すように、第3のデュアルゲート半導体素子は、第1のデュアルゲート半導体素子と比べ、第1のp型半導体と第2のp型半導体がなく、AlGaN層15に2つの凹部が形成され、その凹部の底辺に接するように第1のゲート電極18Aと第2のゲート電極18Bとが形成され、第1のゲート電極18A及び第2のゲート電極18BはAlGaN層15とショットキー接合を形成している点で異なる。図10に示すように、AlGaN層15を部分的に薄膜化することで、AlGaN層15を薄膜化することによるチャネル層の電子のキャリア濃度低減を抑制しつつ、ゲートの閾値電圧を正の電圧にすることができる。このため、オン抵抗が小さく且つノーマリーオフ動作が可能なデュアルゲート半導体素子が実現可能となる。
なお、各デュアルゲート半導体素子に用いる基板は、窒化物半導体が成長できる限りSi以外でもよく、例えばGaN、サファイア、炭化珪素(SiC)、酸化亜鉛(ZnO)、砒化ガリウム(GaAs)、リン化ガリウム(GaP)、リン化インジウム(InP)、酸化リチウムガリウム(LiGaO2)若しくは酸化リチウムアルミニウム(LiAlO2)又はこれらの混晶等であってもよい。
また、ゲート電極の材料はPdとAuを用いたが、p型半導体とオーミック接合を形成し、AlGaN層とショットキー接合を形成する限り、Pd以外の金属でもよく、Ni、Pt、インジウムスズ酸化物、ZnInSnO又はGaInSnO等を用いてもよい。
また、各例に係るデュアルゲート半導体素子において、第1のゲート電極18A又は第2のゲート電極18Bにオン電圧を印加する際には、第1のゲート電極18A又は第2のゲート電極18BとAlGaN層15とにより形成されるダイオードの順方向の立ち上がり電圧(約1V)以上の電圧を印加することになる。このため、第1のゲート電極18A又は第2のゲート電極18Bからソース電極16又はドレイン電極17へ電流が流れてしまい、スイッチ素子のゲート駆動電力が増大してしまうという問題がある。このため、第1のゲート電極18A又は第2のゲート電極18Bに印加するオン電圧を1V程度として、デュアルゲート半導体素子を駆動する必要がある。この場合には、PDP駆動装置内に発生するノイズの影響により、デュアルゲート半導体素子が誤作動してしまうおそれがある。誤作動を回避するために、第1のゲート電極18A又は第2のゲート電極18Bは、絶縁膜を介してAlGaN層15の上に形成してもよい。この場合の絶縁膜は、酸化シリコン(SiO2)、酸化ハフニウム(HfO2)、酸化アルミニウム(Al23)、酸化タンタル(Ta25)、窒化アルミニウム(AlN)又は窒化シリコン(SiN)等を用いればよい。このような構造とすることで、MOSFETに代表されるいわゆるMIS(金属−絶縁体−半導体)構造のゲート電極が形成され、第1のゲート電極18A又は第2のゲート電極18Bに高いオン電圧を印加しても、高いオン電圧が印加されたゲート電極からソース電極又はドレイン電極へ流れる電流を抑制することができる。
1.4 デュアルゲート半導体素子のゲート駆動回路
図11は、デュアルゲート半導体素子を駆動する駆動部20の具体例を示している。デュアルゲート半導体素子10の第1のゲート電極18Aは第1のゲート駆動回路28により駆動され、第2のゲート電極18Bは第2のゲート駆動回路29により駆動される。
デュアルゲート半導体素子により先に述べた特性1を有する双方向スイッチを実現しハイサイド維持スイッチQ7Y又はローサイド維持スイッチQ8Yに適用する場合には、以下に説明するようなゲート駆動回路を用いる。
第1のゲート駆動回路28及び第2のゲート駆動回路29は、VIN端子に入力された信号をVIN端子と電気的に絶縁して信号を伝達する絶縁型信号伝達回路を介し、伝達された信号をもとにゲートバイアス電圧をVO端子から出力するゲート駆動回路である。絶縁型信号伝達回路には、光で信号を伝達し、入力と出力とを電気的に絶縁して信号を伝達でき、高速スイッチングが可能なフォトカプラを用いればよい。なお、絶縁型信号伝達回路には、トランスにより信号を伝達する絶縁カプラでもよく、コンデンサにより信号を伝達する絶縁カプラでもよい。
第1のゲート駆動回路28及び第2のゲート駆動回路29では、VB端子、VS端子及びVO端子は、VIN端子及びGND端子から絶縁されている。第1のゲート駆動回路28及び第2のゲート駆動回路29は、VIN端子とGND端子との間の電圧が所定の電圧よりも低い場合には、VO端子をVS端子と接続し、VO端子とVB端子との間を開放する。また、VIN端子とGND端子との間の電圧が所定の電圧以上の場合には、VO端子とVS端子との間を開放し、VO端子とVB端子とを接続する。第1のゲート駆動回路28のVO端子は第1のゲート電極18Aと接続され、VS端子はソース電極16及び第1の電源24の負極と接続され、VB端子は第1の電源24の正極と接続されている。また、第2のゲート駆動回路のVO端子は第2のゲート電極18Bと接続され、VS端子はドレイン電極17及び第2の電源25の負極と接続され、VB端子は第2の電源25の正極と接続されている。なお、第1の電源24及び第2の電源25はPDP駆動装置の基準電位から絶縁されている。
第1のゲート駆動回路28のVIN端子とGND端子との間に所定の電圧を印加することにより、ソース電極16を基準とした第1の電源24の電圧を第1のゲート電極18Aに印加することが可能となる。また同様に、第2のゲート駆動回路のVIN端子とGND端子との間に所定の電圧を印加することにより、ドレイン電極17を基準とした第2の電源25の電圧を第2のゲート電極18Bに印加することが可能となる。
図11に示した駆動部20は、第1の電源24及び第2の電源25として、PDP駆動装置の基準電位から絶縁された電源を使用している。このため、デュアルゲート半導体素子10のソース電極16又はドレイン電極17の電位と図1に示す制御部64の基準電位とが異なる場合でも、第1のゲート電極18A及び第2のゲート電極18Bにバイアス電圧を印加することが可能である。その結果、駆動部20によるデュアルゲート半導体素子10の制御が可能となる。
1.5 デュアルゲート半導体素子を適用した第1の例
1.3において示したデュアルゲート半導体素子を走査電極駆動部71に適用した例について説明する。
1.5.1 走査電極駆動部
図12は、デュアルゲート半導体素子を用いたPDP駆動装置の一例を示している。本実施形態のPDP駆動装置は、走査電極駆動部71のハイサイド維持スイッチQ7Y及びローサイド維持スイッチQ8Yとしてデュアルゲート半導体素子を用いている。図12においてドレインDはデュアルゲート半導体素子のドレイン電極17であり、ソースSはソース電極16であり、第1ゲートG1は第1のゲート電極18Aであり、第2ゲートG2は第2のゲート電極18Bである。なお、先に示したいずれのデュアルゲート半導体素子についても、同様に用いることができる。
このようにハイサイド維持スイッチQ7Y及びローサイド維持スイッチQ8Yをデュアルゲート半導体素子で構成することで、従来の走査電極駆動部において、初期化期間における逆導通を阻止するために用いられていた分離スイッチ素子を設ける必要がなくなり、部品点数を低減でき、電力損失を低減できる。
また、シリコン(Si)を材料とする従来の半導体素子を用いて双方向スイッチを形成する場合には、Siの材料限界のためにオン抵抗の低減が困難になっていた。そこで、材料限界を打破して導通損失を低減するために、GaNに代表される窒化物系半導体又は炭化珪素(SiC)等のワイドギャップ半導体を用いた双方向スイッチを用いることで、さらに導通損失を低減し、走査電極駆動部の電力損失を低減することが可能となる。
1.5.2 第1の動作
図13は、図12に示した走査電極駆動部71の第1の動作を示している。図13に示すように、各スイッチがオン状態となる期間は、図3において各スイッチがオン状態となった期間と同じである。
但し、ハイサイド維持スイッチQ7Yとローサイド維持スイッチQ8Yは第1ゲート(G1)と第2ゲート(G2)とを有しているため、以下においてハイサイド維持スイッチQ7Y及びローサイド維持スイッチQ8Yの第1ゲートG1と第2ゲートG2がオン状態となる期間について説明する。ハイサイド維持スイッチQ7Y及びローサイド維持スイッチQ8Yに用いるデュアルゲート半導体素子は第1ゲートG1と第2ゲートG2とを同時にオン状態とすることにより双方向の電流を通電する双方向導通状態となり、第1ゲートG1と第2ゲートG2を同時にオフ状態とすることにより双方向の電流を遮断する双方向遮断状態となる。このため、ハイサイド維持スイッチQ7Yの第1ゲートG1及び第2ゲートG2をオン状態とする期間は、1.2において示したハイサイド維持スイッチQ7Yをオン状態とする期間と同様となる。また、ローサイド維持スイッチQ8Yの第1ゲートG1及び第2ゲートG2をオン状態とする期間は、1.2において示したローサイド維持スイッチQ8Yをオン状態とする期間と同様となる。以上のようにハイサイド維持スイッチQ7Y及びローサイド維持スイッチQ8Yの第1ゲートG1及び第2ゲートG2を同時にオン状態とすることにより逆阻止動作時に発生していたオン電圧を発生させずに、オン状態とすることが可能となり、PDP駆動装置の電力損失をより低減することができる。
1.5.3 第2の動作
図14は、図12に示した走査電極駆動部71の第2の動作を示している。
図14に示すように第2の動作方法においては、デュアルゲート半導体素子からなるハイサイド維持スイッチQ7Yとローサイド維持スイッチQ8Yのそれぞれにおいて、第1ゲートG1及び第2ゲートG2の一方がオン状態、他方がオフ状態という期間が設けられている。
基本的に、ハイサイド維持スイッチQ7Y及びローサイド維持スイッチQ8Yがオン状態となる期間とオフ状態となる期間とは第1の駆動方法と同一である。
但し、ハイサイド維持スイッチQ7Yは、初期化期間のモードIII以外の期間においオフ状態となる場合には、第1ゲートG1にローレベルの電圧を印加し、第2ゲートG2にハイレベルの電圧を印加し、ドレインDからソースSへ流れる電流を遮断している。初期化期間のモードIIIにおいては、第1ゲートG1にハイレベルの電圧を印加し、第2ゲートG2にローレベルの電圧を印加し、ソースSからドレインDへ流れる電流を遮断している。また、初期化期間のモードIIにおいてオン状態となる場合には、第1ゲートG1にハイレベルの電圧を印加し、第2ゲートG2にローレベルの電圧を印加し、ドレインDからソースSへ電流を流している。モードIVにおいてオン状態となる場合には、第1ゲートG1にハイレベルの電圧を印加し、第2ゲートG2にローレベルの電圧を印加して、ソースSからドレインDへ電流を流している。放電期間においてオン状態となる場合には、第1ゲートG1及び第2ゲートG2の両方にハイレベルの電圧を印加して、双方向に電流を流すことができるようにしている。
一方、ローサイド維持スイッチQ8Yは、初期化期間のモードII、モードIII及びモードIVにおいてオフ状態となる場合には、第1ゲートG1にローレベルの電圧を印加し、第2ゲートG2にハイレベルの電圧を印加して、ドレインDからソースSへ流れる電流を遮断している。アドレス期間においてオフ状態となる場合には、第1ゲートG1にハイレベルの電圧を印加し、第2ゲートG2にローレベルの電圧を印加して、ソースSからドレインDへ流れる電流を遮断している。初期化期間のモードVにおいてオフ状態となる場合には、第1ゲートG1及び第2ゲートG2の両方にローレベルの電圧を印加することにより、電流を遮断している。また、放電維持期間において、オフ状態となる場合には、第1ゲートG1にローレベルの電圧を印加し、第2ゲートG2にハイレベルの電圧を印加することにより、電流を遮断する。オン状態となる場合には、第1ゲートG1及び第2ゲートG2の両方にハイレベルの電圧を印加して、双方向に電流を流すことができるようにしている。
なお、ハイサイド維持スイッチQ7Y及びローサイド維持スイッチQ8Yともに、オフ状態とする際には、第1ゲートG1及び第2ゲートG2の両方にローレベルの電圧を印加して双方向に電流を遮断してもよい。
なお、初期化期間のモードIIにおいて、ハイサイド維持スイッチQ7Yの第1ゲートG1と第2ゲートG2とに共にハイレベルの電圧を印加してもよい。モードIIにおいて、ハイサイド維持スイッチQ7Yに電流を通電することにより、パネル電圧をVsまで上昇させている。パネル電圧が0VからVsまで上昇する過渡状態において、回路の配線に寄生するインダクタンスが電圧を発生する。このため、ハイサイド維持スイッチQ7Yに逆阻止動作をさせた場合、インダクタンスによる起電圧により、パネルにVsよりも高い電圧が印加されるおそれがある。これは、プラズマディスプレイパネルの誤放電の原因となる。ハイサイド維持スイッチQ7Yの第1ゲートG1と第2ゲートG2とを共にオン状態として、双方向に電流を通電すると、過渡的に発生する前記インダクタンスによる起電圧を、ハイサイド維持スイッチQ7Yを介して維持電圧源Vsへ逆流させ、パネルに高い電圧が印加されることを抑えることが可能となる。
また、初期化期間のモードIVにおいても、ハイサイド維持スイッチQ7Yの第1ゲートG1と第2ゲートG2とを共にオン状態としてもよい。これにより、モードIIと同様に配線に寄生するインダクタンスによって生じる起電圧がパネルに印加されることを防止し、プラズマディスプレイパネルの誤動作を防止する効果が得られる。
1.6 まとめ
本実施形態のPDP駆動装置62は、ハイサイド維持スイッチQ7Y及びローサイド維持スイッチQ8Yをデュアルゲート半導体素子で構成することにより、初期化期間におけるハイサイド維持スイッチQ7Y及びローサイド維持スイッチQ8Yの逆導通を阻止できる。このため、従来のPDPの駆動装置において用いられていた分離スイッチ素子を設ける必要がなくなる。すなわち、図12に示す通り、維持電圧源Vsから、放電維持パルス発生部3Yの出力ノードJ3Yを介して、ローサイド走査スイッチQ2Yのソースに至る経路には、ハイサイド維持スイッチQ7Y及びローサイド維持スイッチQ8Yしか存在しない。このため、本実施形態によれば、従来の装置と比べて、PDP駆動装置において部品点数をより少なくでき、実装面積を低減できる。特に、維持放電期間では分離スイッチ素子に大電流が流れることから、従来、分離スイッチ素子を多数並列に接続して設ける必要があったため、分離スイッチ素子を要しない本実施形態によれば、回路規模の削減効果が大きい。また、実装面積が小さくなることで、基板による配線インピーダンスを低減でき、PDPへの電圧印加時に発生する高周波数成分であるリンギングを低減できることから、PDPの動作マージンが拡大する。さらに、放電維持期間での分離スイッチ素子による導通損失が大きく削減されるので、消費電力を低減できる。
また、従来のPDP駆動装置に用いられてきたSiを材料とする従来の半導体素子を用いて双方向スイッチを形成する場合には、Siの材料限界のためにオン抵抗の低減が困難になっていた。その材料限界を打破して導通損失を低減するために、GaNに代表される窒化物系半導体又は炭化珪素(SiC)等のワイドギャップ半導体を用いた双方向スイッチを用いることでさらに導通損失を低減し、消費電力を低減できる。
また、従来例に示したようなMOSFETの場合にはPN接合によるボディーダイオードがドレインとソースとの間に形成される。このため、半導体スイッチのスイッチング動作において、ダイオードによるいわゆるリカバリー電流が発生する。従って、消費電力の低減には限界があった。
例えば、図27に示したような分離スイッチQS1を設けた場合には、初期化期間のモードIIにおいては、分離スイッチQS1であるMOSFETのPN接合からなるボディーダイオードを介して維持電圧源Vsから接続ノードJ2Yへ電流が流れている。次に、モードIIIに変化すると、接続ノードJ2Yの電位が上昇し、QS1のボディーダイオードに通電方向とは逆の電圧(逆バイアス)が印加されることにより電流が遮断状態となる。
つまり、分離スイッチQS1のボディーダイオードに通電した直後に、逆バイアスが印加される動作がある。この瞬間に、ボディーダイオードには逆方向に流れる電流であるリカバリー電流が瞬間的に発生する。発生したリカバリー電流とボディーダイオードに印加されている電圧との積がスイッチング損失となり、PDP駆動回路の電力損失の一部を占める。
一般的にPN接合のダイオードのリカバリー電流は、少数キャリア蓄積効果により、通電時に注入された少数キャリアが、逆バイアス時に排出される課程で、ダイオードの整流作用と反して逆方向の電流として排出されことで発生する。このため、PN接合を用いたダイオードにおいては、リカバリー電流の発生を防止できずスイッチング損失の低減は困難である。
本実施形態のデュアルゲート半導体素子は、P型半導体はゲートとして機能するため、ゲートに積極的に電流を流さないようなゲート電圧において逆阻止動作をさせる限り、チャネル中にはほとんど正孔が注入されることがない。このため、チャネル中には少数キャリアである正孔はほとんどなく、先に説明したような少数キャリアの蓄積効果はほとんどない。その結果、リカバリー電流は少なく、PDP駆動回路のスイッチング損失を低減することができるという効果も得られる。
なお、本実施形態では、説明の便宜上、特に走査電極駆動部の構成に基づいて説明を行ったが、維持電極駆動部及びアドレス電極駆動部においても本発明の思想が同様に適用できる。
(第2の実施形態)
以下に、本発明の第2の実施形態に係るPDP駆動装置について図面を参照して説明する。
2.1 走査電極駆動部
図15は、第2の実施形態に係るPDP駆動装置の走査電極駆動部71を示している。図15において図2と同一の構成要素には同一の符号を附すことにより説明を省略する。
図15に示すように本実施形態の走査電極駆動部71は、初期化パルス発生部2Yのハイサイドランプ波形発生部QR1とローサイドランプ波形発生部QR2との接続ノードJ2Yと、放電維持パルス発生部3Yの出力ノードJ3Yとの間に、分離スイッチQS3が設けられている。また、第2の定電圧源V2の負極が、維持電圧源Vsの正極ではなく、放電維持パルス発生部3Yの出力ノードJ3Yと接続されている。
本実施形態の分離スイッチQS3は、デュアルゲート半導体素子からなるスイッチ素子であり、デュアルゲート半導体素子のドレインDが接続ノードJ2Yと接続され、ソースSが放電維持パルス発生部3Yの出力ノードJ3Yと接続されている。なお、ドレインDとソースSとは入れ替えてもかまわない。
本実施形態の分離スイッチQS3に用いるデュアルゲート半導体素子には、第1の実施形態において示した各デュアルゲート半導体素子を用いることができる。また、第1ゲートG1及び第2ゲートG2を駆動する駆動部も、第1の実施形態において示したものを用いることができる。
図15にはハイサイド維持スイッチQ7Y及びローサイド維持スイッチQ8Yに、MOSFET等を用いる例を示しているが、IGBT又はバイポーラトランジスタ等を用いてもよく、第1の実施形態と同様にデュアルゲート半導体素子を用いてもよい。
以下に、第2の実施形態に係るPDP駆動装置の動作について説明する。本実施形態のPDP駆動装置の駆動方法は、分離スイッチQS3の第1ゲートG1及び第2ゲートG2のオン状態とオフ状態とを常に同時に切り換える第1の動作方法と、必要に応じて第1ゲートG1と第2ゲートとの一方のみをオン状態として逆阻止動作を行わせる第2の動作方法とが考えられる。
2.2 第1の動作
図16は、本実施形態の走査電極駆動部71の第1の動作を示している。図25において、斜線部は各スイッチがオン状態の場合を示している。また、本動作では、分離スイッチQS3は、第1ゲートG1及び第2ゲートG2の両方をオン状態として、双方向に電流が流れる状態とし、第1ゲートG1及び第2ゲートG2の両方をオフ状態として、双方向に電流を遮断する。
2.2.1 初期化期間
初期化パルス電圧の変化に応じてモードI〜Vに分けられる。
<モードI>
ローサイド走査スイッチQ2Y、分離スイッチQS3及びローサイド維持スイッチQ8Yをオン状態に維持する。残りのスイッチはオフ状態に維持する。これにより、走査電極Yは接地電位(=0)に維持される。
<モードII>
ローサイド走査スイッチQ2Y、分離スイッチQS3及びハイサイド維持スイッチQ7Yをオン状態に維持する。残りのスイッチはオフ状態に維持する。これにより、走査電極Yの電位が接地電位から維持電圧源Vsの電圧Vsだけ高い電位まで上昇する。
<モードIII>
ローサイド走査スイッチQ2Y及びハイサイド維持スイッチQ7Yをオン状態に維持したまま、分離スイッチQS3をオフ状態とし、ハイサイドランプ波形発生部QR1をオン状態とする。残りのスイッチはオフ状態に維持する。これにより、走査電極Yの電位が一定の速度で、接地電位から維持電圧源Vsの電圧Vsと第2の定電圧源V2の電圧V2との和だけ高い電位Vrまで上昇する。
これにより、PDP60の全ての放電セルに対する印加電圧は、一様に初期化パルス電圧の上限Vrまで比較的緩やかに上昇する。その結果、PDP60の全ての放電セルにおいて一様な壁電荷が蓄積される。このとき、印加電圧の上昇速度は小さいので、放電セルの発光は微弱に抑えられる。
<モードIV>
ローサイド走査スイッチQ2Y及びハイサイド維持スイッチQ7Yをオン状態に維持したまま、ハイサイドランプ波形発生部QR1をオフ状態とし、分離スイッチQS3をオン状態とする。残りのスイッチはオフ状態に維持する。これにより、走査電極Yの電位が接地電位から維持電圧源Vsの電圧Vsだけ高い電位まで下降する。
<モードV>
ローサイド走査スイッチQ2Yをオン状態に維持したまま、分離スイッチQS3及びハイサイド維持スイッチQ7Yをオフ状態とし、ローサイドランプ波形発生部QR2をオン状態とする。残りのスイッチはオフ状態に維持する。走査電極Yの電位は一定の速度で、接地電位から第3の定電圧源V3の電圧V3だけ低い電位−V3となる。従って、PDP60の放電セルには、モードII〜モードIVにおいて印加された電圧とは逆極性の電圧が印加される。特に、印加電圧は比較的緩やかに下降する。これにより、全ての放電セルにおいて壁電荷が一様に除去され、均一化される。このとき、印加電圧の下降速度が小さいので、放電セルの発光は微弱に抑えられる。
2.2.2 アドレス期間
本実施形態におけるアドレス期間の動作は実施の形態1で説明したものと同様である。
また,アドレス期間中、分離スイッチQS3は常にオフ状態とする。
2.2.3 放電維持期間
放電維持期間中は分離スイッチQS3及びローサイド走査スイッチQ2Yは、常にオンに維持する。放電維持期間中の他のスイッチング素子の動作は、第1の実施形態と同じである。
2.3 第2の動作
図17は、本実施形態の走査電極駆動部71の第2の動作を示している。図25において、斜線部は各スイッチがオン状態の場合を示している。以下に、分離スイッチQS3の第1ゲートG1及び第2ゲートG2の動作に着目して、各期間の動作について説明する。
図17に示すように第2の動作における分離スイッチQS3の第1ゲートG1及び第2ゲートG2を含む各スイッチをオン状態とする期間は、図16において示した第1の動作における期間と同じである。但し、初期化期間のモードIIIにおいて、分離スイッチQS3は少なくともドレインからソースへ流れる電流を遮断できればよいので、分離スイッチQS3の第1ゲートG1をオフ状態とし、第2ゲートG2をオン状態とし、分離スイッチQS3のドレインからソースへ流れる電流を遮断する。また、アドレス期間において、分離スイッチQS3はソースからドレインへ流れる電流を遮断できればよいので、分離スイッチQS3の第1ゲートG1をオン状態とし、第2ゲートG2をオフ状態とすることにより、ソースからドレインへの電流を遮断する。以上のように、第1の動作において示した分離スイッチQS3の第1ゲートG1及び第2ゲートG2をオン状態とする期間以外においても、分離スイッチQS3の第1ゲートG1及び第2ゲートG2をオン状態とする期間がある点で第2の動作は第1の動作と異なる。具体的には、第2の動作においては、分離スイッチQS3の第1ゲートG1と第2ゲートG2とをオン状態とする期間が異なっている。
以上のような動作をすることで、先に示したデュアルゲート半導体素子をQS3に適用した場合でもPDP駆動装置が動作可能となる。
2.4 まとめ
本実施形態の走査電極駆動部71は、図15に示すように、放電維持パルス発生部3Yの出力ノード(ハイサイド維持スイッチQ7Yとローサイド維持スイッチQ8Y間の接続点)J3Yから、ローサイド走査スイッチQ2Yのソースまでの間の経路に、デュアルゲート半導体素子で構成された分離スイッチQS3を設けている。これにより、放電維持パルス発生部3Yの出力ノードJ3Yにおける電位はVsから0まで変化する。一方、分離スイッチQS3を設けない構成の場合には、出力ノードJ3Yの電位は初期化パルスの上限電圧(Vs+V2)から接地電位と初期化パルスの下限電圧−V3まで変化する。このように本実施形態の走査電極駆動部71は、従来よりも、放電維持パルス発生部3Yの出力ノードJ3Yの電位の変化範囲を狭くできる。つまり、本実施形態によれば、放電維持パルス発生部3Yにおける各スイッチ素子に低耐圧部品が使える。一般的に耐圧と単位面積当たりの抵抗値の関係は、耐圧が上昇すると抵抗値も上昇するので、流すことができる電流量が大幅に減少する。このため、本実施形態においては、従来と比べて、放電維持パルス発生部3Yにおける各スイッチ素子の並列数を削減でき、また実装面積を低減できる。特に、放電維持パルス発生部の各スイッチQ7Y、Q8Y、Q9Y、Q10Yには大電流が流れるため、各スイッチ素子の抵抗値が小さくなれば、並列数が減らせる。よって、本発明の意義は大きい。また実装面積が小さくなるので、基板による配線インピーダンスが小さくなり、PDPへの電圧印加時に発生する高周波数成分であるリンギングが小さくなり、PDPの動作するマージンが拡大する。
(第3の実施形態)
以下に、本発明の第3の実施形態に係るPDP駆動装置について図面を参照して説明する。
3.1 走査電極駆動部
図18は、第3の実施形態に係るPDP駆動装置の走査電極駆動部71を示している。図18において図2と同一の構成要素には同一の符号を附すことにより説明を省略する。
図18に示すように本実施形態の走査電極駆動部71は、放電維持パルス発生部3Yの回収スイッチ回路75が双方向スイッチ動作を行うデュアルゲート半導体素子からなる回収スイッチQ11Yにより形成されている。本実施形態の回収スイッチQ11Yには、第1の実施形態において示した各デュアルゲート半導体素子を用いることができる。
また、従来の回収スイッチ回路75は、双方向スイッチを少なくとも2つのMOSFETと2つのダイオードで構成していたが、回収スイッチ回路75をデュアルゲート半導体素子により代替することで、1素子で構成することが可能となり、部品点数を削減でき、回路規模を低減できる。また、Siを材料とする従来の半導体素子を用いて双方向スイッチを形成する場合には、Siの材料限界のためにオン抵抗の低減が困難になっていた。その材料限界を打破して導通損失を低減するために、GaNに代表される窒化物系半導体又は炭化珪素(SiC)等のワイドギャップ半導体を用いた双方向スイッチを用いることでさらに導通損失を低減し、走査電極駆動部の電力損失を低減することが可能となる。
回収スイッチQ11Yは、そのドレインが回収インダクタLYの一端に接続され、そのソースが回収コンデンサCYの一端に接続されている。回収インダクタLYの他端は、ハイサイド維持スイッチQ7Yとローサイド維持スイッチQ8Yとが接続された出力ノードJ3Yに接続され、回収コンデンサCYの他端は接地されている。
回収コンデンサCYの容量はPDP60のパネル容量Cpより十分に大きい。回収コンデンサCYの両端電圧は、電源部から印加される直流電圧Vsの半値Vs/2と実質的に等しく維持される。
なお、図18に示す構成において、ハイサイド維持スイッチQ7Y及びローサイド維持スイッチQ8Yは第1の実施形態で示した双方向スイッチ素子であり、その動作は第1の実施形態の「1.2 動作」の欄において示した動作と同じである。
また、ハイサイド維持スイッチQ7Y及びローサイド維持スイッチQ8Yが双方向スイッチ素子でない場合、図27に示す従来例と同様に、ハイサイド維持スイッチQ7Y及びローサイド維持スイッチQ8Yに対してそれぞれハイサイド分離スイッチQS1及びローサイド分離スイッチQS2を接続する必要がある。また、分離スイッチ素子を維持電圧源Vsの正極又は負極と走査電極との間に配置してもよい。
また、回収スイッチ回路75は、走査電極(走査電極駆動部71)以外、すなわち維持電極(維持電極駆動部72)及びアドレス電極(アドレス電極駆動部73)に対しても適用できる。
3.2 第1の動作
図19は、本実施形態のPDP駆動装置の走査電極駆動部71の第1の動作を示している。
3.2.1 初期化期間、アドレス期間
初期化期間及びアドレス期間における走査電極駆動部71の各スイッチの動作は第1の実施形態で説明した図3の動作と同様である。但し、第1の実施形態と異なることは、回収スイッチ回路75がデュアルゲート半導体素子からなる回収スイッチQ11Yだけになった点である。
回収スイッチQ11Yは初期化期間及びアドレス期間中において双方向に電流を通電しない。従って、初期化期間及びアドレス期間においては回収スイッチQ11Yの第1ゲートG1及び第2ゲートG2をオフ状態として、双方向に電流を遮断する。
3.2.2 放電維持期間
図19を参照して、放電維持期間の動作について説明する。
放電維持期間では、ローサイド走査スイッチQ2Yは常にオン状態を維持する。
回収スイッチQ11Yがオン状態となる直前には、ローサイド維持スイッチQ8Yをオン状態とし、パネル容量Cpの両端電圧を0Vに維持する。回収スイッチQ11Yをオン状態とすると、回収コンデンサCYと、回収スイッチQ11Yと、回収インダクタLYと、パネル容量CpとによりLC共振回路が形成され、パネル容量Cpの両端電圧はVsまで増加する(残りのスイッチ素子はオフ状態に維持される)。このとき、回収スイッチQ11Yは、第1ゲートG1をオフ状態とし、第2ゲートG2をオン状態とし、ソースからドレインへ電流を流し、ドレインからソースへ電流を流さない逆阻止動作をさせる。
次に、ハイサイド維持スイッチQ7Yをオン状態とすることにより、パネル容量Cpの両端電圧は維持電圧Vsを維持する。この切り替え時、回収スイッチQ11Yは、ドレインからソースへ電流が流れない逆阻止動作をしているので、維持電圧源Vsから回収コンデンサCYへ電流が流れない。この後、回収スイッチQ11Yの第2ゲートG2をオフ状態とする。なお、ハイサイド維持スイッチQ7Yをオン状態とすると同時に、回収スイッチQ11Yの第2ゲートG2をオフ状態としてもよい。
また、このとき、ハイサイド維持スイッチQ7Yは、そのドレインソース間電圧が0であるので、ほぼ損失なくオン状態とすることができる(残りのスイッチ素子はオフ状態に維持される)。
所定時間経過後、ハイサイド維持スイッチQ7Yをオフ状態として、回収スイッチQ11Yをオン状態とすると、回収コンデンサCYと、回収スイッチQ11Yと、回収インダクタLYと、パネル容量CpとによりLC共振回路が形成され、パネル容量Cpの両端電圧は0まで減少する(残りのスイッチ素子はオフ状態に維持される)。このとき、回収スイッチQ11Yは、第1ゲートG1をオン状態とし、第2ゲートG2をオフ状態とし、ドレインからソースへ電流を流し、ソースからドレインへ電流が流れない逆阻止動作をさせる。
次に、ローサイド維持スイッチQ8Yをオン状態とすることにより、パネル容量Cpの両端電圧は0を維持する。この切り替え時、回収スイッチQ11Yは、ソースからドレインへの電流が流れない逆阻止動作をしているので、回収コンデンサCYからグランドへ蓄積した電荷は電流として流れない。この後、回収スイッチQ11Yの第1ゲートG1をオフ状態としている。しかし、ローサイド維持スイッチQ8Yをオン状態とすると同時に、回収スイッチQ11Yの第1ゲートG1をオフ状態としてもよい。
また、ローサイド維持スイッチQ8Yは、そのドレインソース間電圧が0であるので、ほぼ損失なくオン状態とすることができる(残りのスイッチ素子はオフ状態に維持される)。
以上説明したように、走査電極Yの電位が上下するとき、回収コンデンサCYとパネル容量Cpとの間で電力が効率良く交換される。こうして、放電維持パルス電圧の印加時、パネル容量の充放電に起因する無効電力が低減する。
図18に示した走査電極駆動部71においてハイサイド維持スイッチQ7Yがオン状態となった瞬間に、維持電圧源Vsから回収コンデンサCYに向かって電流が流れようとする。このため、回収スイッチに通常の半導体スイッチを用いていたならば、回収スイッチをオフ状態に切り換えるタイミングは、ハイサイド維持スイッチQ7Yがオン状態となるタイミングと完全に同期させる必要がある。しかし、現実にはこのような動作は不可能であり、ダイオードを挿入して維持電圧源Vsから回収コンデンサCYに向かって流れようとする電流を素子する必要がある。挿入されたダイオードはオン抵抗を有するため、消費電力が増大する原因となる。
一方、本実施形態のPDP駆動装置は、回収スイッチQ11Yが、ドレインDからソースSへ電流が流れない逆阻止動作をしている。このため、ダイオードの挿入しなくても、維持電圧源Vsから回収コンデンサCYへ電流が流れることはない。従って、ダイオードによる消費電力の増大を防ぐことができる。さらに、本実施形態のPDP駆動装置においては、回収スイッチQ11Yの第2ゲートをオフ状態とするタイミングが、ハイサイド維持スイッチQ7Yがオン状態となるタイミングよりも後にずれていても問題ない。
同様に、回収コンデンサCYに蓄積された電流が接地へ流れることを防ぐためには、ローサイド維持スイッチQ8Yがオン状態となるのと完全に同期して回収スイッチ回路75をオフ状態とするか、ダイオードを挿入する必要がある。しかし、本実施形態のPDP駆動装置は、回収スイッチQ11Yが、ソースSからドレインDへ電流が流れない逆阻止動作をしている。従って、本実施形態のPDP駆動装置においては、ダイオードによる消費電力の増大が防止できると共に、回収スイッチQ11Yの第1ゲートをオフ状態とするタイミングが、ローサイド維持スイッチQ8Yがオン状態となるタイミングよりも後にずれていても問題ない。
3.3 第2の動作
図20は第3の実施形態に係るPDP駆動装置の第2の動作を示している。第2の動作方法においては、放電維持期間において、回収スイッチQ11Yをオン状態とする際に、回収スイッチQ11Yの第1ゲートG1及び第2ゲートG2の両方をオン状態としている。これにより、回収スイッチQ11Yを逆阻止動作させる際に発生していたオン電圧を0Vとすることができ、回収スイッチ回路75の導通損失をさらに低減できる。
3.3.1 初期化期間、アドレス期間
初期化期間及びアドレス期間における走査電極駆動部71の各スイッチの動作は図19を用いて説明した第1の動作と同じである。
3.3.2 放電維持期間
図20を参照して、放電維持期間の動作について説明する。
放電維持期間では、ローサイド走査スイッチQ2Yは常にオン状態を維持する。
回収スイッチQ11Yをオン状態とする直前には、ローサイド維持スイッチQ8Yをオンとしており、パネル容量Cpの両端電圧は0Vに維持される。回収スイッチQ11Yをオン状態とすると、回収コンデンサCYと、回収スイッチQ11Yと、回収インダクタLYと、パネル容量Cpとにより、LC共振回路が形成され、パネル容量Cpの両端電圧はVsまで増加する(残りのスイッチ素子はオフ状態に維持される)。このとき、回収スイッチQ11Yは、第1ゲートG1及び第2ゲートG2をオン状態とし、ドレインとソースとの間に双方向の電流を通電させる双方向導通動作をさせる。このような動作をさせることにより、逆阻止動作時に発生していたオン電圧を0Vとすることが可能となり、回収スイッチQ11Yの導通損失を低減することが可能となる。
次に、ハイサイド維持スイッチQ7Yをオン状態とする直前に、回収スイッチQ11Yの第1ゲートG1をオフ状態とし、回収スイッチQ11Yにソースからドレインへの電流は通電し、ドレインからソースへの電流を遮断する逆阻止動作をさせる。
その後、ハイサイド維持スイッチQ7Yをオンとすれば、パネル容量Cpの両端電圧はVsを維持する。この切り替え時、回収スイッチQ11Yは、ドレインからソースへ電流が流れない逆阻止動作をしているので、維持電圧源Vsから回収コンデンサCYへ電流が流れない。この後、回収スイッチQ11Yの第2ゲートG2をオフ状態としている。しかし、ハイサイド維持スイッチQ7Yをオン状態とすると同時に、回収スイッチQ11Yの第2ゲートG2をオフ状態としてもよい。
また、このとき、ハイサイド維持スイッチQ7Yは、そのドレインソース間電圧が0であるので、ほぼ損失なくオン状態とすることができる(残りのスイッチ素子はオフ状態に維持される)。
所定時間経過後、ハイサイド維持スイッチQ7Yをオフ状態として、回収スイッチQ11Yをオン状態とすると、回収コンデンサCYと、回収スイッチQ11Yと、回収インダクタLYと、パネル容量CpとによりLC共振回路が形成され、パネル容量Cpの両端電圧は0まで減少する(残りのスイッチ素子はオフ状態に維持される)。このとき、回収スイッチQ11Yは、第1ゲートG1及び第2ゲートG2をオン状態とし、ドレインとソースとの間に双方向の電流を通電させる双方向導通動作をさせる。このような動作をさせることで、逆阻止動作時に発生していたオン電圧を0Vとすることが可能となり、回収スイッチQ11Yの導通損失を低減することが可能となる。
次に、ローサイド維持スイッチQ8Yをオン状態とする直前に、回収スイッチQ11Yの第2ゲートG2をオフ状態とし、回収スイッチQ11Yにドレインからソースへの電流は通電し、ソースからドレインへの電流を遮断する逆阻止動作をさせる。
その後、ローサイド維持スイッチQ8Yをオン状態とすれば、パネル容量Cpの両端電圧は0を維持する。この切り替え時、回収スイッチQ11Yは、ソースからドレインへ電流が流れない逆阻止動作をしているので、回収コンデンサCYからローサイド維持スイッチQ8Yを介してグランドへ電流が流れないようにしている。この後、回収スイッチQ11Yの第1ゲートG1をオフ状態としている。しかし、ローサイド維持スイッチQ8Yをオン状態とすると同時に、回収スイッチQ11Yの第1ゲートG1をオフ状態としてもよい。
また、このとき、ローサイド維持スイッチQ8Yは、そのドレインソース間電圧が0であるので、ほぼ損失なくオン状態とすることができる(残りのスイッチ素子はオフ状態に維持される)。
走査電極Yの電位が上下するとき、回収コンデンサCYとパネル容量Cpとの間で電力が効率良く交換される。こうして、放電維持パルス電圧の印加時、パネル容量の充放電に起因する無効電力が低減する。
3.4 まとめ
本実施形態のPDP駆動装置は、図18に示すように回収スイッチ回路75を、デュアルゲート半導体素子である回収スイッチQ11Yのみにより構成している。つまり、回収コンデンサCYからインダクタLYを介して、ローサイド走査スイッチQ2Yのソースまでの間の経路には、回収スイッチQ11Yしか存在しない。このように、本実施形態のPDP駆動装置62は従来の装置と異なり、第1の回収ダイオードD1、第2の回収ダイオードD2を削減できる。それ故、本実施形態のPDP駆動装置62は従来の装置よりも部品点数を削減でき、実装面積を低減できる。
特に第1の回収ダイオードD1及び第2の回収ダイオードD2には大電流が流れるため、通常は多数のダイオードを並列に接続しているので、第1の回収ダイオードD1及び第2の回収ダイオードD2がなくなる意味は大きい。また、放電維持期間においての第1の回収ダイオードD1及び第2の回収ダイオードD2による導通損失が大きく削減されるので、消費電力が小さくなる。
また、回収スイッチQ11Yに電流を通電する際に、双方向に電流を通電する双方向スイッチ動作と逆阻止動作とを組み合わせることにより、逆阻止動作時に発生するオン電圧を低減し、導通損失を低減することが可能となる。
なお、本実施形態のPDP駆動装置において、回収スイッチQ11Yの第1ゲートG1及び第2ゲートG2を駆動する駆動回路は、第1の実施形態において示した駆動回路と同一のものを用いることができる。
ハイサイド維持スイッチQ7Y及びローサイド維持スイッチQ8Yは、第1の実施形態と同様にしてデュアルゲート半導体素子を用いればよい。また、複数のトランジスタとダイオードとを組み合わせて形成した双方向スイッチを用いてもかまわない。さらに、維持スイッチ素子と分離スイッチ素子とを組み合わせて形成してもよい。
また、本実施形態の回収スイッチ回路75及びその駆動方法は、走査電極駆動部71だけでなく維持電極駆動部72及びアドレス電極駆動部73に対しても適用できる。
(第4の実施形態)
以下に、本発明の第4の実施形態に係るPDP駆動装置について図面を参照して説明する。
4.1 走査電極駆動部
図21は、第4の実施形態に係るPDP駆動装置の走査電極駆動部71を示している。図21において図2と同一の構成要素には同一の符号を附すことにより説明を省略する。
図21に示すように本実施形態の走査電極駆動部71は、放電維持パルス発生部3Yの回収スイッチ回路75が、デュアルゲート半導体素子を用いたスイッチ素子であるハイサイド回収スイッチQ9Yとローサイド回収スイッチQ10Yとにより形成されている。
本実施形態のハイサイド回収スイッチQ9Y及びローサイド回収スイッチQ10Yには、第1の実施形態において示した各デュアルゲート半導体素子を用いることができる。本実施形態においては、デュアルゲート半導体素子をその第2のゲート電極とドレイン電極とを短絡して、逆阻止動作を行う逆阻止スイッチとして用いる。
従来の回収スイッチ回路75は、双方向スイッチを少なくとも2つのMOSFETと2つのダイオードで構成していたが、回収スイッチ回路75を2つのデュアルゲート半導体素子で代替することで、2素子で構成することが可能となり、部品点数を削減でき、回路規模を低減できる。
ハイサイド回収スイッチQ9Yのソースとローサイド回収スイッチQ10Yのドレインが回収インダクタLYの一端に接続され、ハイサイド回収スイッチQ9Yのドレインとローサイド回収スイッチQ10Yのソースが回収コンデンサCYの一端に接続されている。回収インダクタLYの他端は、ハイサイド維持スイッチQ7Yとローサイド維持スイッチQ8Yとが接続された出力ノードJ3Yに接続され、回収コンデンサCYの他端は接地されている。
回収コンデンサCYの容量はPDP60のパネル容量Cpより十分に大きい。回収コンデンサCYの両端電圧は、維持電圧源Vsから印加される直流電圧Vsの半値Vs/2と実質的に等しく維持される。
なお、図21に示す構成において、ハイサイド維持スイッチQ7Y及びローサイド維持スイッチQ8Yはデュアルゲート半導体素子でなくてもよい。その場合、ハイサイド維持スイッチQ7Y及びローサイド維持スイッチQ8Yのそれぞれに対してハイサイド分離スイッチQS1及びローサイド分離スイッチQS2をそれぞれ接続する必要がある。また、第2の実施形態と同様に分離スイッチ素子を維持電圧源Vsの正極又は負極と走査電極Yとの間に配置してもよい。
また、回収スイッチ回路75は、走査電極(走査電極駆動部71)以外、すなわち維持電極(維持電極駆動部72)及びアドレス電極(アドレス電極駆動部73)に対しても適用できる。
本実施形態のハイサイド回収スイッチQ9Y及びローサイド回収スイッチQ10Yとしてデュアルゲート半導体素子を用いる場合には、第2のゲート電極とドレイン電極とを短絡してもよい。この場合、図22に示すように第2のゲート電極18Bとドレイン電極17と短絡する配線42は、半導体素子と一体に形成してもよい。この場合、配線42にはAu等を用いればよい。
このような構成とすることにより、ソース電極がソース、ドレイン電極がドレイン、第1ゲートがゲートであるいわゆる3端子のトランジスタが実現できる。3端子のトランジスタとすることによりゲート駆動が容易になるという利点がある。
この場合、第2のゲート電極18Bとドレイン電極17とは電気的に短絡しており、その間の電圧は0Vとなるため、常に第2のゲート電極18Bに閾値電圧以下の電圧が印加される状態となる。このため、図22に示す素子は、オン状態では、ドレインからソース方向に電流を流すことができるが、ソースからドレイン方向には電流を流さず、オフ状態では、ドレインからソース方向又はソースからドレイン方向の双方向において電流を流さない。また、オフ状態では、素子の絶対最大定格のドレインソース間電圧及び絶対最大定格のソースドレイン間電圧ともに十分な値を確保している。
なお、図5に示した第1のデュアルゲート半導体素子だけでなく、図9及び10に示したデュアルゲート半導体素子も同様の構成とすることができる。
また、図23に示すように第1のゲート電極18Aと第2のゲート電極18Bとが異なる構造を有するようにしてもよい。図23においては、第1のゲート電極18Aは第1のp型半導体層19Aを介在させてAlGaN層15の上に形成され、第2のゲート電極18BはAlGaN層15と接するように形成されている。これにより、第2のゲート電極18BはAlGaN層15とショットキー接合を形成している。
このような構造とすることにより、第1のゲート電極18Aの閾値電圧と第2のゲート電極18Bの閾値電圧とを異なった値とすることができる。例えば、第1のゲート電極の閾値電圧を約1V、第2のゲート電極の閾値電圧を約0Vとすれば、第2のゲート電極18Bの閾値電圧に起因するオン電圧、つまり図7(c)に示したダイオードのオン電圧をほぼ0Vとすることができる。これにより、スイッチ素子の損失をさらに低減し、PDP駆動装置の電力消費をより低減することが可能となる。
なお、第2のゲート電極の閾値電圧を0V以上とするためには、AlGaN層15の膜厚を図5に示したデュアルゲート半導体素子よりも薄く、例えば5nm程度とすることが好ましい。
また、図24に示すように、第2のゲート電極18BをAlGaN層15に形成された凹部を埋めるように形成してもよい。このような構成としても、第2のゲート電極18Bの閾値電圧に起因したオン電圧をほぼ0にすることができる。さらに、AlGaN層15の厚さを全体に薄くすることなく、ノーマリオフ特性を実現できる。このため、チャネル領域の電子のシートキャリア濃度を高く保つことができるので、オン抵抗をさらに小さくすることができる。
なお、配線42は第2のゲート電極18Bとドレイン電極17とを電気的に接続できればどのようなものでもよく、Auに代えてアルミニウム(Al)又は銅(Cu)等の金属を用いてもよい。
ハイサイド維持スイッチQ7Y及びローサイド維持スイッチQ8Yは、第1の実施形態と同様にしてデュアルゲート半導体素子を用いればよい。また、複数のトランジスタとダイオードとを組み合わせて形成した双方向スイッチを用いてもかまわない。さらに、維持スイッチ素子と分離スイッチ素子とを組み合わせて形成してもよい。
4.2 動作
本実施形態の走査電極駆動部71は、初期化期間、アドレス期間及び放電維持期間のそれぞれにおいてPDP60の走査電極Yに対して印加する電圧の波形及び走査電極駆動部71に含まれる各スイッチをオン状態とする期間は、第1の実施形態において図3に示した動作と同様である。
4.3 まとめ
第4の実施形態においては、図23に示すように回収スイッチ回路75を、デュアルゲート半導体素子であるハイサイド回収スイッチQ9Yとローサイド回収スイッチQ10Yとにより構成している。つまり、回収コンデンサCYからインダクタLYを介して、ローサイド走査スイッチQ2Yのソースまでの間の経路には、回収スイッチQ9Y又は回収スイッチQ10Yしか存在しない。このように、本実施形態によるPDP駆動装置62は従来の装置と異なり、第1の回収ダイオードD1及び第2の回収ダイオードD2を削減できる。このため、本実施形態のPDP駆動装置62は従来の装置よりも部品点数を削減でき、実装面積を低減できる。
特に、第1の回収ダイオードD1及び第2の回収ダイオードD2には大電流が流れるため、通常は多数のダイオードを並列に接続するため、第1の回収ダイオードD1及び第2の回収ダイオードD2がなくなる意味は大きい。また、放電維持期間において第1の回収ダイオードD1及び第2の回収ダイオードD2による導通損失が大きく削減されるので、消費電力が小さくなる。
また、図23又は図24に示すオン電圧が小さいデュアルゲート半導体素子をハイサイド回収スイッチQ9Y及びローサイド回収スイッチQ10Yとして用いることにより、電流が通電している際に、オン電圧に起因して発生する導通損失を低減することが可能となる。
なお、図21には、回収インダクタLYが1つの例を示しているが、図25又は図26に示すように、ハイサイド回収インダクタLY1とローサイド回収インダクタLY2とを設ける構成としてもよい。この場合ハイサイド回収インダクタLY1とローサイド回収インダクタLY2とを異なる値とすることができ、回収コンデンサCYからパネル容量Cpに電流が流れる場合と、パネル容量Cpから回収コンデンサCYに電流が流れる場合のそれぞれにおいて、最適な共振電流を発生させることが可能となる。
また、第1の実施形態と同様に、デュアルゲート半導体素子にGaN又はSiC等に代表されるワイドバンドギャップ半導体を用いることにより、導通損失を少なくすることが可能となり、消費電力を低減できる。
なお、各実施形態において、PDP駆動装置の走査電極駆動部を例にあげて説明を行ったが、維持電極駆動部及びアドレス電極駆動部の基本的な構成は、走査電極駆動部と同一であり、維持電極駆動部及びアドレス電極駆動部においても本発明の思想が同様に適用できる。
本発明に係るプラズマディスプレイパネル駆動装置及びプラズマディスプレイは、部品点数が少なく且つ消費電力が小さいPDP駆動装置を実現でき、プラズマディスプレイパネル駆動装置及びプラズマディスプレイ等として有用である。
本発明の第1の実施形態に係るプラズマディスプレイを示すブロック図である。 本発明の第1の実施形態に係るプラズマディスプレイ駆動装置の走査電極駆動部を示す回路図である。 本発明の第1の実施形態に係るプラズマディスプレイ駆動装置の走査電極駆動部の動作を示すタイミング図である。 複数のトランジスタにより構成した双方向スイッチを示す回路図である。 本発明の第1の実施形態に係るプラズマディスプレイ駆動装置に用いる第1のデュアルゲート半導体素子を示す断面図である。 本発明の第1の実施形態に係るプラズマディスプレイ駆動装置に用いるデュアルゲート半導体素子の双方向スイッチ動作を説明するための回路図である。 (a)〜(c)は本発明の第1の実施形態に係るプラズマディスプレイ駆動装置に用いるデュアルゲート半導体素子の逆阻止動作を説明するための回路図である。 (a)〜(c)は本発明の第1の実施形態に係るプラズマディスプレイ駆動装置に用いるデュアルゲート半導体素子の動作特性を示すグラフである。 本発明の第1の実施形態に係るプラズマディスプレイ駆動装置に用いる第2のデュアルゲート半導体素子を示す断面図である。 本発明の第1の実施形態に係るプラズマディスプレイ駆動装置に用いる第3のデュアルゲート半導体素子を示す断面図である。 本発明の第1の実施形態に係るプラズマディスプレイ駆動装置に用いるデュアルゲート半導体素子を駆動する駆動部の一例を示す回路図である。 本発明の第1の実施形態に係るプラズマディスプレイ駆動装置の走査電極駆動部を示す回路図である。 本発明の第1の実施形態に係るプラズマディスプレイ駆動装置の走査電極駆動部の第1の動作を示すタイミング図である。 本発明の第1の実施形態に係るプラズマディスプレイ駆動装置の走査電極駆動部の第2の動作を示すタイミング図である。 本発明の第2の実施形態に係るプラズマディスプレイ駆動装置の走査電極駆動部を示す回路図である。 本発明の第2の実施形態に係るプラズマディスプレイ駆動装置の走査電極駆動部の第1の動作を示すタイミング図である。 本発明の第2の実施形態に係るプラズマディスプレイ駆動装置の走査電極駆動部の第2の動作を示すタイミング図である。 本発明の第3の実施形態に係るプラズマディスプレイ駆動装置の走査電極駆動部を示す回路図である。 本発明の第3の実施形態に係るプラズマディスプレイ駆動装置の走査電極駆動部の第1の動作を示すタイミング図である。 本発明の第3の実施形態に係るプラズマディスプレイ駆動装置の走査電極駆動部の第2の動作を示すタイミング図である。 本発明の第4の実施形態に係るプラズマディスプレイ駆動装置の走査電極駆動部を示す回路図である。 本発明の第4の実施形態に係るプラズマディスプレイ駆動装置に用いるデュアルゲート半導体素子を示す断面図である。 本発明の第4の実施形態に係るプラズマディスプレイ駆動装置に用いるデュアルゲート半導体素子を示す断面図である。 本発明の第4の実施形態に係るプラズマディスプレイ駆動装置に用いるデュアルゲート半導体素子を示す断面図である。 本発明の第4の実施形態に係るプラズマディスプレイ駆動装置に用いる放電維持パルス発生回路の変形例を示す回路図である。 本発明の第4の実施形態に係るプラズマディスプレイ駆動装置に用いる放電維持パルス発生回路の変形例を示す回路図である。 従来例に係るプラズマディスプレイ駆動装置の走査電極駆動部を示す回路図である。
10 デュアルゲート半導体素子
11 基板
12 バッファ層
13 半導体層積層体
14 GaN層
15 AlGaN層
16 ソース電極
16A 第1のオーミック電極
16B 第2のオーミック電極
17 ドレイン電極
18A 第1のゲート電極
18B 第2のゲート電極
19A 第1のp型半導体層
19B 第2のp型半導体層
20 駆動部
23 負荷電源
24 第1の電源
25 第2の電源
28 第1のゲート駆動回路
29 第2のゲート駆動回路
36 第1のトランジスタ
37 第2のトランジスタ
41 保護膜
42 配線
60 プラズマディスプレイパネル
62 プラズマディスプレイパネル駆動装置
64 制御部
66 入力端子
71 走査電極駆動部
72 維持電極駆動部
73 アドレス電極駆動部
75 回収スイッチ回路

Claims (20)

  1. プラズマディスプレイパネル駆動装置は、
    プラズマディスプレイパネルの電極に印加する駆動パルスを生成する電極駆動部を備え、
    前記電極駆動部は複数のスイッチを有し、
    前記複数のスイッチのうちの少なくとも1つは、デュアルゲート半導体素子を用いたスイッチ素子であり、
    前記デュアルゲート半導体素子は、
    基板の上に形成され、窒化物半導体又は炭化珪素からなる半導体で構成された半導体層積層体と、
    前記半導体層積層体の上に互いに間隔をおいて形成されたソース電極及びドレイン電極と、
    前記ソース電極と前記ドレイン電極との間に、前記ソース電極側から順に形成された、第1のゲート電極及び第2のゲート電極とを有する。
  2. 請求項1に記載のプラズマディスプレイパネル駆動装置において、
    前記電極駆動部は、前記プラズマディスプレイパネルの放電を維持するための電圧を発生させる維持電圧源を有し、
    前記複数のスイッチは、前記維持電圧源の正極と負極との間に直列に接続されたハイサイド維持スイッチ及びローサイド維持スイッチを含み、
    前記ハイサイド維持スイッチ及びローサイド維持スイッチのうちの少なくとも一方は、前記デュアルゲート半導体素子を用いたスイッチ素子である。
  3. 請求項1に記載のプラズマディスプレイパネル駆動装置において、
    前記電極駆動部は、前記プラズマディスプレイパネルの放電を維持するための電圧を発生する維持電圧源を有し、
    前記複数のスイッチは、前記維持電圧源の正極と負極との間に直列に接続されたハイサイド維持スイッチ及びローサイド維持スイッチと、前記ハイサイド維持スイッチとローサイド維持スイッチとの接続ノードと前記プラズマディプレイパネルの電極との間に接続された分離スイッチとを含み、
    前記分離スイッチは前記デュアルゲート半導体素子を用いたスイッチ素子である。
  4. 請求項1に記載のプラズマディスプレイパネル駆動装置において、
    前記電極駆動部は、前記プラズマディスプレイパネルの電極に蓄積された電荷を回収して蓄積する回収コンデンサを有し、
    前記複数のスイッチは、前記プラズマディスプレイパネルの電極と前記回収コンデンサとの間に設けられた回収スイッチを含み、
    前記回収スイッチは、前記デュアルゲート半導体素子を用いたスイッチ素子である。
  5. 請求項1に記載のプラズマディスプレイパネル駆動装置において、
    前記電極駆動部は、前記プラズマディスプレイパネルの電極に蓄積された電荷を回収して蓄積する回収コンデンサを有し、
    前記複数のスイッチは、前記プラズマディスプレイパネルの電極と前記回収コンデンサとの間に設けられた第1の回収スイッチ及び第2の回収スイッチを含み、
    前記第1の回収スイッチ及び第2の回収スイッチは、それぞれ前記デュアルゲート半導体素子を用いたスイッチ素子である。
  6. 請求項4に記載のプラズマディスプレイパネル駆動装置において、
    前記回収スイッチは、
    前記回収コンデンサから前記電極へ電流を流す際には、
    前記回収コンデンサから前記電極へ電流を流し且つ前記回収コンデンサへ流れる電流を遮断する第1のモードとなり、
    前記電極から前記回収コンデンサへ電流を流す際には、
    前記電極から前記回収コンデンサへ電流を流し且つ前記回収コンデンサから流れる電流を遮断する第2のモードとなる。
  7. 請求項6に記載のプラズマディスプレイパネル駆動装置において、
    前記回収スイッチは、
    前記回収コンデンサから前記電極へ電流を流す際には、
    前記回収スイッチが前記第1のモードになる前に、
    前記ソース電極の電位を基準として前記第1のゲート電極の閾値電圧以上の電圧を前記第1のゲート電極に印加し、且つ、前記ドレイン電極の電位を基準として前記第2のゲート電極の閾値電圧以上の電圧を前記第2のゲート電極に印加することで、前記ドレイン電極とソース電極との間に電流を通電する第3のモードとなり、
    前記電極から前記回収コンデンサへ電流を流す際には、
    前記回収スイッチが前記第2のモードになる前に、
    前記第3のモードとなる。
  8. 請求項5に記載のプラズマディスプレイパネル駆動装置において、
    前記第1の回収スイッチは、
    前記回収コンデンサから前記電極へ電流を流す際には、
    前記回収コンデンサから前記電極へ電流を流し且つ前記回収コンデンサへ流れる電流を遮断する第1のモードとなり、
    前記第2の回収スイッチは、
    前記電極から前記回収コンデンサへ電流を流す際には、
    前記電極から前記回収コンデンサへ電流を流し且つ前記回収コンデンサから流れる電流を遮断する第2のモードとなる。
  9. 請求項8に記載のプラズマディスプレイパネル駆動装置において、
    前記第1の回収スイッチは、
    前記回収コンデンサから前記電極へ電流を流す際には、
    前記第1のモードとなる前に、
    前記ソース電極の電位を基準として前記第1のゲート電極の閾値電圧以上の電圧を前記第1のゲート電極に印加し、且つ、前記ドレイン電極の電位を基準として前記第2のゲート電極の閾値電圧以上の電圧を前記第2のゲート電極に印加することで、前記ドレイン電極とソース電極との間に電流を通電する第3のモードとなり、
    前記第2の回収スイッチは、
    前記電極から前記回収コンデンサへ電流を流す際には、
    前記第2のモードとなる前に、
    前記第3のモードとなる。
  10. 請求項1記載のプラズマディスプレイパネル駆動装置において、
    前記デュアルゲート半導体素子はノーマリーオフである。
  11. 請求項1に記載のプラズマディスプレイパネル駆動装置において、
    前記半導体層積層体は、第1の半導体層と、該第1の半導体層の上に選択的に形成された第1のp型半導体層とを有し、
    前記第1のゲート電極は、前記第1のp型半導体層の上に形成されている。
  12. 請求項11に記載のプラズマディスプレイパネル駆動装置において、
    前記半導体層積層体は、第1の半導体層と、該第1の半導体層の上に選択的に形成された第2のp型半導体層とを有し、
    前記第2のゲート電極は、前記第2のp型半導体層の上に形成されている。
  13. 請求項1に記載のプラズマディスプレイパネル駆動装置は、
    前記第1のゲート電極及び第2のゲート電極の少なくとも一方と、前記半導体層積層体との間に形成された絶縁膜をさらに備えている。
  14. 請求項1に記載のプラズマディスプレイパネル駆動装置において、
    前記半導体層積層体は、凹部を有し、
    前記第1のゲート電極及び第2のゲート電極の少なくとも一方は、前記凹部を埋めるように形成されている。
  15. 請求項1に記載のプラズマディスプレイパネル駆動装置において、
    前記デュアルゲート半導体素子の前記第1のゲート電極の閾値電圧と前記第2のゲート電極の閾値電圧とは、互いに異なる。
  16. 請求項1に記載のプラズマディスプレイパネル駆動装置において、
    前記デュアルゲート半導体素子の前記第2のゲート電極と前記ドレイン電極とは、電気的に接続されている。
  17. 請求項1に記載のプラズマディスプレイパネル駆動装置において、
    前記デュアルゲート半導体素子の前記第1のゲート電極と前記第2のゲート電極との間隔は、前記ソース電極と前記第1のゲート電極との間隔よりも大きく、且つ、前記ドレイン電極と前記第2のゲート電極との間隔よりも大きい。
  18. 請求項1に記載のプラズマディスプレイパネル駆動装置において、
    前記デュアルゲート半導体素子の前記半導体層積層体は、前記基板側から順次積層された第1の半導体層及び第2の半導体層を有し、
    前記第2の半導体層は、前記第1の半導体層と比べてバンドギャップが大きい。
  19. 請求項1に記載のプラズマディスプレイパネル駆動装置において、
    前記半導体層積層体は、窒化ガリウム及び窒化アルミニウムガリウムの少なくとも一方を含む。
  20. プラズマディスプレイは、
    電極間の放電により蛍光体が発光するプラズマディスプレイパネルと、
    請求項1に記載のプラズマディスプレイパネル駆動装置とを備えている。
JP2009520325A 2007-06-22 2008-06-19 プラズマディスプレイパネル駆動装置及びプラズマディスプレイ Pending JPWO2009001529A1 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007165526 2007-06-22
JP2007165526 2007-06-22
PCT/JP2008/001588 WO2009001529A1 (ja) 2007-06-22 2008-06-19 プラズマディスプレイパネル駆動装置及びプラズマディスプレイ

Publications (1)

Publication Number Publication Date
JPWO2009001529A1 true JPWO2009001529A1 (ja) 2010-08-26

Family

ID=40185356

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009520325A Pending JPWO2009001529A1 (ja) 2007-06-22 2008-06-19 プラズマディスプレイパネル駆動装置及びプラズマディスプレイ

Country Status (5)

Country Link
US (1) US20100321363A1 (ja)
JP (1) JPWO2009001529A1 (ja)
CN (1) CN101568951A (ja)
GB (1) GB2457410B (ja)
WO (1) WO2009001529A1 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5309498B2 (ja) * 2007-08-09 2013-10-09 パナソニック株式会社 プラズマディスプレイ装置
WO2012056766A1 (ja) * 2010-10-27 2012-05-03 三菱電機株式会社 電力変換装置
US9501966B2 (en) * 2011-02-07 2016-11-22 Infineon Technologies Americas Corp. Gate driver with multiple slopes for plasma display panels
JP6406623B2 (ja) * 2014-01-07 2018-10-17 パナソニックIpマネジメント株式会社 回路定数可変回路
US9837522B2 (en) * 2015-11-02 2017-12-05 Infineon Technologies Austria Ag III-nitride bidirectional device
US9722595B2 (en) * 2015-12-29 2017-08-01 General Electric Company Ultra high performance silicon carbide gate drivers
US10461609B2 (en) * 2016-10-04 2019-10-29 Infineon Technologies Ag Multi-gate half-bridge circuit and package
GB2564482B (en) 2017-07-14 2021-02-10 Cambridge Entpr Ltd A power semiconductor device with a double gate structure
US11955478B2 (en) * 2019-05-07 2024-04-09 Cambridge Gan Devices Limited Power semiconductor device with an auxiliary gate structure

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10173137A (ja) * 1996-12-09 1998-06-26 Mitsubishi Electric Corp 半導体装置およびその製造方法
JP2003179158A (ja) * 2001-12-10 2003-06-27 Matsushita Electric Ind Co Ltd 半導体装置及びその製造方法
JP2005122107A (ja) * 2003-09-26 2005-05-12 Fujitsu Hitachi Plasma Display Ltd 負荷駆動回路及びそれを用いたディスプレイ装置
WO2005079370A2 (en) * 2004-02-12 2005-09-01 International Rectifier Corporation Iii-nitride bidirectional switch
JP2007057633A (ja) * 2005-08-23 2007-03-08 Matsushita Electric Ind Co Ltd プラズマディスプレイパネル駆動回路およびプラズマディスプレイ装置
JP2007529115A (ja) * 2003-12-30 2007-10-18 フェアチャイルド・セミコンダクター・コーポレーション パワー半導体デバイスおよびその製造方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6611248B2 (en) * 2000-05-31 2003-08-26 Casio Computer Co., Ltd. Shift register and electronic apparatus
US6681992B2 (en) * 2000-08-03 2004-01-27 Tomomi Iihama Image reading apparatus
US6984460B2 (en) * 2002-03-26 2006-01-10 Tdk Corporation Phosphor thin film, manufacturing method of the same, and electroluminescence panel
KR100515334B1 (ko) * 2003-08-25 2005-09-15 삼성에스디아이 주식회사 플라즈마 디스플레이 패널의 구동장치 및 플라즈마디스플레이 장치
KR100560472B1 (ko) * 2003-11-10 2006-03-13 삼성에스디아이 주식회사 플라즈마 디스플레이 패널, 그의 구동 장치 및 구동 방법
US7382001B2 (en) * 2004-01-23 2008-06-03 International Rectifier Corporation Enhancement mode III-nitride FET
JP4418794B2 (ja) * 2004-02-06 2010-02-24 パナソニック株式会社 炭化珪素半導体素子の製造方法
US7550781B2 (en) * 2004-02-12 2009-06-23 International Rectifier Corporation Integrated III-nitride power devices
JP4041075B2 (ja) * 2004-02-27 2008-01-30 株式会社東芝 半導体装置
JP4705412B2 (ja) * 2005-06-06 2011-06-22 パナソニック株式会社 電界効果トランジスタ及びその製造方法
JP4712459B2 (ja) * 2005-07-08 2011-06-29 パナソニック株式会社 トランジスタ及びその動作方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10173137A (ja) * 1996-12-09 1998-06-26 Mitsubishi Electric Corp 半導体装置およびその製造方法
JP2003179158A (ja) * 2001-12-10 2003-06-27 Matsushita Electric Ind Co Ltd 半導体装置及びその製造方法
JP2005122107A (ja) * 2003-09-26 2005-05-12 Fujitsu Hitachi Plasma Display Ltd 負荷駆動回路及びそれを用いたディスプレイ装置
JP2007529115A (ja) * 2003-12-30 2007-10-18 フェアチャイルド・セミコンダクター・コーポレーション パワー半導体デバイスおよびその製造方法
WO2005079370A2 (en) * 2004-02-12 2005-09-01 International Rectifier Corporation Iii-nitride bidirectional switch
JP2007057633A (ja) * 2005-08-23 2007-03-08 Matsushita Electric Ind Co Ltd プラズマディスプレイパネル駆動回路およびプラズマディスプレイ装置

Also Published As

Publication number Publication date
GB2457410B (en) 2012-01-04
WO2009001529A1 (ja) 2008-12-31
CN101568951A (zh) 2009-10-28
US20100321363A1 (en) 2010-12-23
GB2457410A (en) 2009-08-19
GB0910580D0 (en) 2009-07-29

Similar Documents

Publication Publication Date Title
JPWO2009001529A1 (ja) プラズマディスプレイパネル駆動装置及びプラズマディスプレイ
US7995046B2 (en) Display driving apparatus
US7471264B2 (en) Plasma display panel driver and plasma display
KR101438283B1 (ko) 반도체 스위치 및 전력 변환 장치
US20070115219A1 (en) Apparatus for driving plasma display panel and plasma display
WO2013046420A1 (ja) 半導体駆動回路およびそれを用いた電力変換装置
US11962242B2 (en) Converter output stage with bias voltage generator
US20050231440A1 (en) Plasma display panel driver and plasma display
US8072408B2 (en) Liquid crystal display device and method of driving thereof
US20090322293A1 (en) Switching converter including a rectifier element with nonlinear capacitance
JP5110773B2 (ja) プラズマディスプレイパネル駆動装置
JP4955956B2 (ja) 駆動回路および表示装置
JP3006534B2 (ja) 半導体装置
US7327334B2 (en) Plasma display panel driver circuit having two-direction energy recovery through one switch
US20070188415A1 (en) Apparatus for driving plasma display panel and plasma display
JP2005196131A (ja) 容量性負荷駆動装置、及びそれを搭載するプラズマディスプレイ
KR20050014672A (ko) 표시장치 구동 회로
JP5765978B2 (ja) 半導体素子およびその駆動方法
JP4569210B2 (ja) 表示装置駆動回路
US20060290631A1 (en) Driving Circuit of Plasma Display Panel
JP3569657B2 (ja) 表示装置
JP4666483B2 (ja) 同期整流駆動回路
CN1275388C (zh) 低功耗cmos型高压驱动电路
JP2010107697A (ja) プラズマディプレイ装置、及び半導体装置
JP2005316360A (ja) プラズマディスプレイパネルの駆動装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101201

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20120206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121218

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130521