JPWO2008142968A1 - 撮像素子およびそれを備えた撮像装置 - Google Patents

撮像素子およびそれを備えた撮像装置 Download PDF

Info

Publication number
JPWO2008142968A1
JPWO2008142968A1 JP2009515129A JP2009515129A JPWO2008142968A1 JP WO2008142968 A1 JPWO2008142968 A1 JP WO2008142968A1 JP 2009515129 A JP2009515129 A JP 2009515129A JP 2009515129 A JP2009515129 A JP 2009515129A JP WO2008142968 A1 JPWO2008142968 A1 JP WO2008142968A1
Authority
JP
Japan
Prior art keywords
base
signal
ccd
charge
image pickup
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009515129A
Other languages
English (en)
Inventor
秀樹 冨永
秀樹 冨永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Publication of JPWO2008142968A1 publication Critical patent/JPWO2008142968A1/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/148Charge coupled imagers
    • H01L27/14806Structural or functional details thereof
    • H01L27/14812Special geometry or disposition of pixel-elements, address lines or gate-electrodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/71Charge-coupled device [CCD] sensors; Charge-transfer registers specially adapted for CCD sensors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/71Charge-coupled device [CCD] sensors; Charge-transfer registers specially adapted for CCD sensors
    • H04N25/713Transfer or readout registers; Split readout registers or multiple readout registers

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

この発明の撮像装置は、各々の垂直転送用CCDにそれぞれ接続された読み出しアンプ22を垂直転送用CCDの数と同数に備え、電源部9aおよびタイミングジェネレータ9bは、各読み出しアンプ22を順次に駆動させるように制御することで、信号読み出し時の蓄積用CCD、垂直転送用CCDの転送周期や信号の出力周波数を低減させることなく、読み出しアンプ22では、垂直転送用CCDの数分の一だけ読み出し周波数を低くすることができ、それによって蓄積用CCDや垂直転送用CCDで発生する暗信号ノイズを低く抑えたまま、アンプの読み出しノイズを低減させることができる。

Description

この発明は、入射光を電荷に変換することでその光の強度に応じた信号電荷を発生させて撮像を行う撮像素子およびそれを備えた撮像装置に関する。
この種の撮像素子として、例えばCCD(Charge Coupled Device)型固体撮像素子がある。近年、かかるCCD型固体撮像素子(以下、『CCD』と略記する)において、高速撮像を可能にするために、入射光を電荷に変換することでその光の強度に応じた信号電荷を発生させる光電変換部(例えばフォトダイオード)の傍らに、光電変換部から発生した信号電荷を蓄積して記憶する複数の電荷蓄積部(例えば蓄積用CCDセル)を備える素子がある(例えば、特許文献1参照)。この撮像素子では光電変換部や電荷蓄積部をチップ上に配設している。
特許文献1では、『画素周辺記録型撮像素子』と呼ばれるCCDを採用している。このCCDについて、図7を参照して説明する。図7に示すように、CCD50は、上述したフォトダイオード51と蓄積用CCD52とを複数個備えるとともに、これら蓄積用CCD52内の信号電荷を図7に示す垂直方向に転送する垂直転送用CCD53とを備えている。そして、フォトダイオード51からそれに隣接した蓄積用CCD52へ信号電荷を読み出す読み出しゲート54を各フォトダイオード51の傍らにそれぞれ配設している。その他に、垂直転送用CCD53から転送された信号電荷を図7に示す水平方向に転送する水平転送用CCD55を備えている。
この『画素周辺記録型撮像素子』では、ライン状の蓄積用CCD52は斜め方向に延びている。このように斜め方向にすることでチップ上に無駄な空地が生じないようにCCDセルを詰め込むことができる。
このように、『画素周辺記録型撮像素子』では、複数の蓄積用CCDを備えることで、撮影速度が1.0×10フレーム/秒(1,000,000フレーム/秒)の高速撮像のように撮影周期が1μsと短い場合であっても、短い撮影周期で蓄積用CCDからそれに隣接する蓄積用CCDに信号電荷を順次に蓄積しながら転送して撮像を行うことができる。
図7の説明に戻って、水平転送用CCD55の下流には読み出しアンプ56を備えた読み出し部57が接続されている。ここでフォトダイオードやフォトゲートなどに代表される光電変換部による露光・電荷発生と蓄積用CCDに代表される電荷蓄積部への転送・蓄積を『撮影』と呼び、垂直転送用CCDや水平転送用CCDなどに代表される電荷転送部による電荷転送と読み出しアンプを経由しての外部出力とを『読み出し』と呼べば、この『撮影』と『読み出し』との動作が時間的に完全に独立して行われることが『画素周辺記録型撮像素子』の特徴である。すなわち、読み出し周波数(アンプの駆動周波数)は撮影周波数(すなわち撮影速度)には一切律束されず、完全に独立に設定することができる。
なお、『撮影』と『読み出し』との動作を完全に独立させるために、フォトダイオード、読み出しゲート、蓄積用CCDおよび垂直転送用CCDをCCD構造として採用し、読み出しアンプを含んだ読み出し部をCMOS(Complementary Metal Oxide Semiconductor)構造として採用して、半導体製造プロセスを用いて別々に形成する(例えば、非特許文献1参照)。具体的には、フォトダイオード、読み出しゲート、蓄積用CCDおよび垂直転送用CCDをCCD基盤上に配設し、読み出しアンプを含んだ読み出し部をROIC(CMOS Read Out Integrated Circuit)基盤上に配設する。そして、インジウムバンプによってCCD基盤とROIC基盤とを電気的に接続する。
特開平9−55889号公報 Xinqiao(Chiao) Liu, Boyd A. Fowler, Steve K. Onishi, Paul Vu, David D. Wen, Hung Do, and Stuart Horn, "CCD/CMOS Hybrid FPA for Low Light Level Imaging" , Fairchild Imaging, Inc. , 1801 McCarthy Boulevard, Milpitas, CA 95035 U.S. Army Night Vision and Electronic Sensors Directorate, 10221 Burbeck Rd. , Fort Belvoir, VA 22060-5806
しかしながら、このような構成を有するCCDの場合には、次のような問題がある。
すなわち、蓄積用CCDに蓄積された信号電荷には蓄積時間に比例して暗信号ノイズが加算されていくので、『撮影』終了後は速やかに信号電荷を読み出さなければならない。このために『読み出し』時に読み出し周波数を上げて(すなわちサンプリング周期を小さくして)アンプを高速で駆動すれば、今度はアンプの読み出しノイズが増え等価ノイズ電子数分が信号電荷に加算されてしまう。図8はこのようなアンプの読み出しノイズとサンプリング周期との関係を示したものである。つまり、蓄積用CCDで発生する暗信号ノイズを小さくしようとして高速で読み出せば、今度はアンプの読み出しノイズが増えるというジレンマに陥る。
この発明は、このような事情に鑑みてなされたものであって、信号蓄積・滞留時に信号に加算される暗信号ノイズおよび読み出し時に信号に加算されるアンプの読み出しノイズの両方を低減させることができる撮像素子およびそれを備えた撮像装置を提供することを目的とする。
この発明は、このような目的を達成するために、次のような構成をとる。
すなわち、この発明の撮像素子は、入射光を電荷に変換することでその光の強度に応じた信号電荷を発生させる複数の光電変換手段と、その光電変換手段から発生した信号電荷を蓄積して記憶する複数の電荷蓄積手段と、これら複数の電荷蓄積手段の信号電荷を読み出して転送する電荷転送手段とを備えることで、前記光電変換手段によって信号電荷を発生させて、その信号電荷を前記電荷蓄積手段からそれに隣接する電荷蓄積手段に順次に蓄積しながら転送して撮像を行うように構成された撮像素子であって、各々の前記電荷転送手段にそれぞれ接続された読み出しアンプを電荷転送手段の数と同数に備え、各読み出しアンプを順次に駆動させるように構成することを特徴とするものである。
上述したように、電荷蓄積手段(蓄積用CCD)に蓄積された信号電荷には蓄積時間に比例して暗信号ノイズが加算されていくが、図9に示すように、信号蓄積・滞在時間が、例えば、Si−SiO界面の界面準位が電子によって満たされる時間より短いならば、所定の信号蓄積・滞在時間に達するまでは暗信号ノイズが発生しない。図9はこのような暗信号ノイズと信号蓄積・滞在時間との関係を示したものである。したがって、『読み出し』時に電荷蓄積手段(蓄積用CCD)に信号電荷が滞留する時間をある程度より短くすることが望ましい。このためには図7のような従来型の読み出しアンプが1個しかない構造においてはできる限り短い時間で信号電荷を外部へ全て読み出すために、読み出しアンプを高速で動かしてサンプリングする。しかし、このようにサンプリング周期を小さくする(すなわち読み出し周波数を上げる)と、上述したように、今度は逆に読み出しアンプにおいて付加される読み出しノイズが増える。そこで、この発明の撮像素子によれば、各々の電荷転送手段にそれぞれ接続された読み出しアンプを電荷転送手段の数と同数に備え、各読み出しアンプを順次に駆動させる。すると、電荷蓄積・電荷転送手段の転送周波数と信号最終出力端からセンサ外部へ出力される信号の周波数は従来と同じままであるが、電荷転送手段と同数で、それぞれ接続された読み出しアンプでは、電荷転送手段の数の倍だけ従来よりもサンプリング周期を長くする(電荷転送手段の数分の一だけ従来よりも読み出し周波数を低くする)ことができるので、出力信号に付加されるアンプの読み出しノイズだけが低減する。すなわち、電荷蓄積・電荷転送手段において暗信号が発生しない程度の時間間隔で、速やかに全ての信号電荷を外部へ読み出しているにも関わらず、各々の読み出しアンプについてみれば極めて低速で動作しているので、出力信号へ付加される読み出しノイズはほとんどないという理想的な状況が生じる。その結果、信号蓄積・滞留時に信号に加算される暗信号ノイズおよび読み出し時に信号に加算されるアンプの読み出しノイズの両方を低減させることができる。
上述した発明の一例は、撮像素子を第1基盤およびそれとは別の第2基盤上に配設するように構成し、光電変換手段、電荷蓄積手段および電荷転送手段を第1基盤上に配設するとともに、読み出しアンプを第2基盤上に配設し、第1基盤と第2基盤とを電気的に接続することである。
また、上述した発明の他の一例は、撮像素子を、第1基盤、それとは別の第2基盤およびそれら基盤とはさらなる別の第3基盤上に配設するように構成し、電荷蓄積手段および電荷転送手段を第1基盤上に配設するとともに、読み出しアンプを第2基盤上に配設し、光電変換手段を第3基盤上に配設し、第3基盤と第1基盤とを電気的に接続するとともに、第1基盤と第2基盤とを電気的に接続することである。
少なくとも電荷蓄積手段および電荷転送手段と読み出しアンプとは通常の互いに異なる構造となっている(例えば電荷蓄積手段および電荷転送手段はCCD構造で読み出しアンプはCMOS構造)。そこで、前者の一例や後者の一例のように、撮像素子を第1基盤およびそれとは別の第2基盤上に配設し、少なくとも電荷蓄積手段および電荷転送手段を第1基盤上に配設するとともに、読み出しアンプを第2基盤上に配設し、第1基盤と第2基盤とを電気的に接続することで、各々の基盤を別々の半導体製造プロセスを用いて形成することができる。このように別々のプロセスで製造された基盤を基盤間接続技術(例えばインジウムバンプなど)によって電気的に結合(接続)することによって、例えば電荷蓄積手段、電荷転送手段はアナログ信号を面積効率よく保持できる埋め込みチャネルのCCDプロセスで製造し、またシフトレジスタや読み出しアンプなどの信号読み出し回路はCMOSプロセスを用いて集積化し、複雑な読み出し制御を実現したり、読み出しノイズの低減を図るなど、各々のプロセスの利点を生かして最適設計をすることができる。また、後者の一例の場合には、光電変換手段を第3基盤上に配設しているので、電荷蓄積手段および電荷転送手段に占有されることなく光電変換手段の面積を大きくすることができて、開口率を向上させることができる。
前者の一例では、具体的に、第1基盤をCCDプロセスで製造された基盤とし、第2基盤をCMOSプロセスで製造された基盤とする。そして、CCDプロセスで製造された第1基盤とCMOSプロセスで製造された第2基盤とをインジウムバンプを用いて電気的に接続する。より具体的には、電荷転送手段の最下端にある転送ゲートに隣接して電荷注入拡散層を形成し、CCDプロセスで製造された第1基盤の電荷注入拡散層と、CMOSプロセスで製造された第2基盤の読み出しアンプとが電気的に接続されるように、第1基盤上に第2基盤を積層して、インジウムバンプによって各基盤を互いに電気的に接続する。
後者の一例では、具体的に、光電変換手段はフォトダイオードであって、第1基盤をCCDプロセスで製造された基盤とし、第2基盤をCMOSプロセスで製造された基盤とし、さらに第3基盤をフォトダイオードを配設した基盤とする。
この発明の撮像装置は、入射光を電荷に変換することでその光の強度に応じた信号電荷を発生させる複数の光電変換手段と、その光電変換手段から発生した信号電荷を蓄積して記憶する複数の電荷蓄積手段と、これら複数の電荷蓄積手段の信号電荷を読み出して転送する電荷転送手段とを備えることで、前記光電変換手段によって信号電荷を発生させて、その信号電荷を前記電荷蓄積手段からそれに隣接する電荷蓄積手段に順次に蓄積しながら転送して撮像を行うように構成された撮像素子と、その撮像素子の駆動を制御する撮像素子制御手段とを備えた撮像装置であって、前記撮像素子は、各々の前記電荷転送手段にそれぞれ接続された読み出しアンプを電荷転送手段の数と数に備え、前記撮像素子制御手段は、各読み出しアンプを順次に駆動させるように制御することを特徴とするものである。
この発明の撮像装置によれば、各々の電荷転送手段にそれぞれ接続された読み出しアンプを電荷転送手段の数と同数に備え、撮像素子制御手段は、各読み出しアンプを順次に駆動させるように制御することで、読み出しアンプでは、電荷転送手段の数倍だけ従来よりもサンプリング周期を長くする(電荷転送手段の数分の一だけ従来よりも読み出し周波数を低くする)ことができて、アンプの読み出しノイズを低減させることができる。一方で、信号最終出力端からの信号の出力周波数は従来と変わりなく、よって電荷蓄積・電荷転送手段に信号電荷が留まる時間は小さいので、暗信号ノイズが余計に付加されることもない。
この発明に係る撮像素子およびそれを備えた撮像装置によれば、各々の電荷転送手段にそれぞれ接続された読み出しアンプを電荷転送手段の数と同数に備え、各読み出しアンプを順次に駆動させることで、読み出しアンプでは、電荷転送手段の数倍だけ従来よりもサンプリング周期を長くする(電荷転送手段の数分の一だけ従来よりも読み出し周波数を低くする)ことができて、アンプの読み出しノイズを低減させることができる。一方で、信号最終出力端からの信号の出力周波数は従来と変わりなく、よって電荷蓄積・電荷転送手段に信号電荷が留まる時間は小さいので、余計に暗信号ノイズが付加されることもない。
実施例に係るCCD型固体撮像素子(CCD)を用いた撮像装置の概略を示すブロック図である。 実施例に係るCCDの構成を示すブロック図である。 実施例に係る読み出し部の回路図およびその周辺の概略図である。 (a)、(b)は、実施例に係るCCD基盤およびROIC基盤の配置関係を示した概略図である。 (a)〜(d)は、実施例に係る読み出しに関する各信号のタイミングチャート、(e)は、従来の読み出しに関する各信号のタイミングチャートである。 変形例に係るCCD基盤およびROIC基盤の配置関係を示した概略図である。 従来のCCDの構成を示すブロック図である。 アンプの読み出しノイズとサンプリング周期との関係を示したグラフである。 暗信号ノイズと信号蓄積・滞在時間との関係を示したグラフである。
符号の説明
1 … CCD型固体撮像素子(CCD)
9a … 電源部
9b … タイミングジェネレータ
11 … フォトダイオード
12 … 蓄積用CCD
13 … 垂直転送用CCD
22 … 読み出しアンプ
30 … CCD基盤
40 … ROIC基盤
以下、図面を参照してこの発明の実施例を説明する。
図1は、実施例に係るCCD型固体撮像素子(CCD)を用いた撮像装置の概略を示すブロック図であり、図2は、CCDの構成を示すブロック図である。
実施例に係る撮像装置は、被写体の光学像を取り込み、取り込まれた光学像を信号電荷に変換するとともに電気信号に変換して被写体を撮像するように構成されている。すなわち、撮像装置は、図1に示すように、固体撮像素子(CCD)1を備えるとともに、レンズ2と相関二重サンプリング部3とADコンバータ4と画像処理演算部5とモニタ6と操作部7と制御部8とを備えている。さらに、撮像装置は、電源部9aとタイミングジェネレータ9bとを備えている。この撮像装置は、撮影速度が1.0×10フレーム/秒(1,000,000フレーム/秒)の高速撮像として用いられる。固体撮像素子(CCD)1は、この発明における撮像素子に相当し、電源部9aおよびタイミングジェネレータ9bは、この発明における撮像素子制御手段に相当する。
レンズ2は、被写体の光学像を取り込む。相関二重サンプリング部3は、CCD1の個述する読み出しアンプ22によって信号電荷数に比例した電圧振幅に変換された電気信号からリセットノイズ成分を取り除く処理をして後段へ渡す。ADコンバータ4は、その電気信号をディジタル信号に変換する。画像処理演算部5は、ADコンバータ4でディジタル化された電気信号に基づいて被写体の2次元画像を作成するために各種の演算処理を行う。モニタ6は、その2次元画像を画面に出力する。操作部7は、撮像の実行に必要な種々の操作を行う。制御部8は、操作部7により設定された撮影条件などの操作にしたがって装置全体を統括制御する。
電源部9aは、後述する読み出しゲート14(図2を参照)や、CCD1内の信号電荷を転送する転送電極などに電圧を印加する。タイミングジェネレータ9bは、電圧の印加のタイミングや撮像のタイミングやクロックなどを生成する。このように、タイミングジェネレータ9bがタイミングやクロックなどを生成して、電源部9aが転送電極などに電圧を印加することで、電源部9aおよびタイミングジェネレータ9bはCCD1を駆動する。特に、本実施例では、後述する図5(a)〜図5(d)のタイミングチャートに示すように、後述する各々の垂直転送用CCD13(図2を参照)ごとの読み出し部20(図2を参照)を順次に駆動させるように制御するように構成されている。
次に、CCD1の具体的な構成について、従来のCCDの構成を示すブロック図である図7と比較しながら図2を参照して説明する。
CCD1は、図2に示すように、入射光(被写体の光学像)を電荷に変換することでその光の強度に応じた信号電荷を発生させるフォトダイオード11と、そのフォトダイオード11から発生した信号電荷を蓄積して記憶する複数の蓄積用CCD12と、これら蓄積用CCD12内の信号電荷を図2に示す垂直方向に転送する垂直転送用CCD13とを備えている。フォトダイオード11は、この発明における光電変換手段に相当し、蓄積用CCD12は、この発明における電荷蓄積手段に相当し、垂直転送用CCD13は、この発明における電荷転送手段に相当する。
各フォトダイオード11の傍らには読み出しゲート14をそれぞれ配設しており、このフォトダイオード11からそれに隣接した蓄積用CCD12へ各読み出しゲート14は信号電荷を読み出す。
各蓄積用CCD12についてはそれぞれをライン状に接続して構成しており、ライン状の蓄積用CCD12を複数本分配設している。フォトダイオード11から発生した信号電荷を、隣接する蓄積用CCD12に順次に転送しながら各蓄積用CCD12に蓄積する。そして、蓄積用CCD12から順次に転送された信号電荷を垂直転送用CCD13に合流させる。垂直転送用CCD13から転送されたこの信号電荷を後述する読み出し部20に読み出す。
フォトダイオード11を2次元状に配置しており、水平および垂直方向に平行して各フォトダイオード11を並べて配設する関係上、ライン状の蓄積用CCD12は斜め方向に延びている。本実施例に係るCCD1は、いわゆる『画素周辺記録型撮像素子』と呼ばれているものである。
なお、このように複数の蓄積用CCD12を備えることで、蓄積用CCD12からそれに隣接する蓄積用CCD12に信号電荷を順次に蓄積しながら転送して撮像を行う。したがって、撮影速度が1.0×10フレーム/秒(1,000,000フレーム/秒)の高速撮像のように撮影周期が1μsと短い場合であっても、短い撮影周期で撮像を行うことができる。
本実施例では、従来のCCD(図7を参照)との相違点は、従来では読み出しアンプ56を備えた読み出し部57を、図2に示すように、読み出し部20として垂直転送用CCD13の下流に配設して、水平転送用CCD55(図7を参照)をなくした点にある。より具体的に説明すると、各々の垂直転送用CCD13にそれぞれ接続された読み出し部20の読み出しアンプ22(図3を参照)を垂直転送用CCD13の数と同数に備えている。そして、後述するロウセレクタ23(図3を参照)を介して、電源部9aおよびタイミングジェネレータ9bによって後述する各読み出しアンプ22を順次に駆動させている。
次に、読み出し部20のより具体的な構成について、図3を参照して説明する。図3は、読み出し部の回路図およびその周辺の概略図である。図3ではCCD基盤30側において4相パルス駆動を例に採って説明する。なお、4相パルス駆動に限定されず、例えば2相や3相や5相パルス駆動であってもよい。
本実施例では、フォトダイオード11、読み出しゲート14、蓄積用CCD12および垂直転送用CCD13(いずれも図2を参照)をCCD基盤30上に配設しており、読み出しアンプ22を含んだ読み出し部20をROIC(CMOS Read Out Integrated Circuit)基盤40上に配設している。また、本実施例では、CCD基盤30はN−sub/P−well型を採用している。
すなわち、CCD基盤30は、図3に示すように、N型シリコン基盤(図3では「N−sub」で表記)31、それにP型イオンが拡散されたP−well領域32(図3では「P−well領域」で表記)、それにN型イオン(図3では「n」で表記)がさらに拡散された埋め込みチャネル33を備えて構成されている。4相パルス駆動として、4つの転送電極Φ,Φ,Φ,Φを印加するための転送ゲート34を埋め込みチャネル33上に積層している。
垂直転送用CCD13(図2を参照)の最下端には、信号TX(TX1,TX2,TX3,TX4,…)を印加するための転送ゲート35をP−well領域32上に積層するとともに、P−well領域32に高濃度のN型イオン(図3では「n」で表記)が拡散された電荷注入拡散層(「フローティングディフュージョン」あるいは「センスノード」とも呼ぶ)36を転送ゲート35に隣接させて形成している。
一方、ROIC基盤40(すなわち、読み出し部20)はCMOS(Complementary Metal Oxide Semiconductor)構造を採用している。読み出し部20は、電源電圧VDDに接続され、信号RX(RX1,RX2,RX3,RX4,…)をゲートに印加したリセットゲート21と、それに接続された読み出しアンプ22(図3では「Buf」で表記、AMP1,AMP2,AMP3,AMP4,…)と、それに接続され、信号RS(RS1,RS2,RS3,RS4,…)をゲートに印加したロウセレクタ23と、リセットゲート21のゲートに信号RX(RX1,RX2,RX3,RX4,…)を印加するとともに、ロウセレクタ23のゲートに信号RS(RS1,RS2,RS3,RS4,…)を印加するシフトレジスタ24(図3では「Shift Register」で表記)とを備えて構成されている。垂直転送用CCD13(図2を参照)ごとに読み出しアンプ22を備えている関係で、読み出し部20内のリセットゲート21やロウセレクタ23も垂直転送用CCD13の数と同数になり、各信号TXやRXやRSも垂直転送用CCD13の数と同数になる。読み出しアンプ22は、この発明における読み出しアンプに相当する。
CCD基盤30の電荷注入拡散層36と、ROIC基盤40(読み出し部20)のリセットゲート21および読み出しアンプ22とは、リード線(図示省略)などを延ばして、インジウムバンプ50によって電気的に接続されている。一方、読み出し部20のロウセレクタ23の下流では、列(Row)に並んだ垂直転送用CCD13(図2を参照)ごとのロウセレクタ23の出力を1つにまとめて、金属配線25(図2、図3を参照)に接続する。
この構成から明らかなように、読み出し部20は、従来のフローティングディフュージョン検出器(Floating Diffusion Amplifier: FDA) と呼ばれる検出器と、ロウセレクタ23およびシフトレジスタ24とを組み合わせた構成となっている。上述した転送電極Φ,Φ,Φ,Φや、信号TX(TX1,TX2,TX3,TX4,…)や信号RX(RX1,RX2,RX3,RX4,…)や信号RS(RS1,RS2,RS3,RS4,…)は、上述した読み出しゲート14(図2を参照)に印加する印加電圧などとともに、電源部9aによって生成され、タイミングジェネレータ9bによって所定のタイミングで印加される。
特に、本実施例では、電源部9aおよびタイミングジェネレータ9bが、後述する図5(a)〜図5(d)のタイミングチャートに示すタイミングで、信号TX(TX1,TX2,TX3,TX4,…)や信号RX(RX1,RX2,RX3,RX4,…)や信号RS(RS1,RS2,RS3,RS4,…)を制御することで、各読み出しアンプ22を順次に駆動させる。なお、信号RX(RX1,RX2,RX3,RX4,…)や信号RS(RS1,RS2,RS3,RS4,…)を、電源部9aおよびタイミングジェネレータ9bからシフトレジスタ24を介して、リセットゲート21のゲートおよびロウセレクタ23のゲートにそれぞれ印加する。
このように、信号TX(TX1,TX2,TX3,TX4,…)や信号RX(RX1,RX2,RX3,RX4,…)や信号RS(RS1,RS2,RS3,RS4,…)を制御することで、各ロウセレクタ23は、列(Row)に並んだ垂直転送用CCD13(図2を参照)を1つずつ選択して、選択された垂直転送用CCD13ごとにゲートのスイッチングを順次にONにして駆動させる。
次に、各基盤30,40の具体的な配置関係について、図4を参照して説明する。図4は、CCD基盤およびROIC基盤の配置関係を示した概略図である。
フォトダイオード11、読み出しゲート14、蓄積用CCD12および垂直転送用CCD13(いずれも図2を参照)と、読み出しアンプ22を含んだ読み出し部20(図3を参照)とは通常の互いに異なる構造となっている。フォトダイオード11、読み出しゲート14、蓄積用CCD12および垂直転送用CCD13は、上述したようにCCD構造で、読み出し部20はCMOS構造である。そこで、図3、図4に示すように、フォトダイオード11、読み出しゲート14、蓄積用CCD12および垂直転送用CCD13をCCD基盤30上に配設するとともに、読み出しアンプ22を含んだ読み出し部20をROIC基盤40上に配設している。そして、インジウムバンプ50によってCCD基盤30とROIC基盤40とを電気的に接続することで、各々の基盤30,40を別々の半導体製造プロセスを用いて形成することができる。
このように別々のプロセスで製造された基盤30,40を基盤間接続技術(例えばインジウムバンプ50など)によって電気的に結合(接続)することによって、例えば蓄積用CCD12や垂直転送用CCD13はアナログ信号を面積効率よく保持できる埋め込みチャネルのCCDプロセスで製造し、またシフトレジスタ24や読み出しアンプ22などの信号読み出し回路(本実施例では読み出し部20)はCMOSプロセスを用いて集積化し、複雑な読み出し制御を実現したり、読み出しノイズの低減を図るなど、各々のプロセスの利点を生かして最適設計をすることができる。CCD基盤30は、この発明における第1基盤に相当し、ROIC基盤40は、この発明における第2基盤に相当する。
図4(a)に示すように、CCD基盤30上にROIC基盤40を重ねる。このときインジウムバンプ50によってCCD基盤30の電荷注入拡散層36とROIC基盤40のリセットゲート21および読み出しアンプ22(いずれも図3を参照)とが電気的に接続されるように各基盤30,40の位置を合わせる。そして、図4(b)に示すように、CCD基盤30上にROIC基盤40を積層して、インジウムバンプ50によって各基盤30,40が互いに電気的に接続する。
続いて、読み出し部20の具体的な駆動制御について、図5(a)〜図5(d)を参照して説明する。図5(a)〜図5(d)は、本実施例に係る読み出しに関する各信号のタイミングチャートである。また、従来の読み出しに関する各信号のタイミングチャートと比較するために、図5(e)を参照して説明する。図5(e)は、従来の読み出しに関する各信号のタイミングチャートである。本実施例では、読み出し部20の読み出しアンプ22の読み出し周波数を1MHz(サンプリング周期1μs、図5(a)〜図5(d)では「1000ns」で表記)とするとともに、垂直転送用CCD13の本数を4として説明する。
また、図5(a)は、リセットゲート21(図3を参照、図5(a)では「Reset Gate」で表記)のゲートに印加される各々の垂直転送用CCD13ごとの信号RX1,RX2,RX3,RX4のタイミングチャートである。図5(b)は、転送ゲート35(図3を参照、図5(b)では「Transfer Gate」で表記)に印加される各々の垂直転送用CCD13ごとの信号TX1,TX2,TX3,TX4のタイミングチャートである。図5(c)は、ロウセレクタ23(図3を参照、図5(c)では「Row Select」で表記)のゲートに印加される各々の垂直転送用CCD13ごとの信号RS1,RS2,RS3,RS4のタイミングチャートである。また、図5(d)は、1つの読み出しアンプ22(図3を参照、図5(d)では「AMP1」)に注目したときの各信号RX1,TX1,RS1のタイミングチャートである。
また、図5(a)〜図5(d)の比較のために用いられる従来の図5(e)は、従来のCCD50における水平転送用CCD55の下流にある読み出し部57での1つの読み出しアンプ56(いずれも図7を参照)に関する各信号RX,TX,RSのタイミングチャートである。図5(e)では、読み出しアンプ56の読み出し周波数を4MHz(サンプリング周期0.25μs、図5(e)では「250ns」で表記)とする。
1つの読み出しアンプ22(図3を参照、図5(d)では「AMP1」)に注目したときには、図5(d)に示すように、各信号RX1,TX1,RS1は印加される。具体的には、リセットゲート21(図3を参照、図5(a)では「Reset Gate」で表記)のゲートに信号RX1を印加する。この信号RX1の印加によって、電荷注入拡散層36(図3を参照)の電位をリセットする。信号RX1の印加を停止させると電荷注入拡散層36の電位がフローティング(すなわち浮いた状態)となる。
この信号RX1の印加の停止後に、垂直転送用CCD13(図2を参照)の最下端に信号電荷を転送した状態で、今度は、転送ゲート35(図3を参照、図5(b)では「Transfer Gate」で表記)に信号TX1を印加する。この信号TX1の印加によって、上述した最下端に転送された信号電荷を、転送ゲート35を介して電荷注入拡散層36(図3を参照)に送り込む。この電荷注入拡散層36への信号電荷の送り込みによって、フローティングの電荷注入拡散層36の電位が変化する。信号電荷による電荷注入拡散層36の電位の変化は、送り込まれた信号電荷に比例する。この電位変化を、引き続きロウセレクタ23(図3を参照、図5(c)では「Row Select」で表記)のゲートへの信号RS1への印加によって取り出す。
読み出しアンプだけ注目すると、読み出し周波数を除けば、図5(d)のタイミングチャートと従来の図5(e)のタイミングチャートとは同じである。従来の図5(e)のタイミングチャートとの相違点は、図5(a)〜図5(c)に示すように、信号RX1,RX2,RX3,RX4や信号TX1,TX2,TX3,TX4や信号RS1,RS2,RS3,RS4を印加して垂直転送用CCD13(図2を参照)ごとに順次にONにすることで、選択された垂直転送用CCD13ごとにゲートのスイッチングを順次にONにして駆動させる点にある。
すなわち、リセットゲート21(図3を参照、図5(a)では「Reset Gate」で表記)に着目して、リセットゲート21のゲートに信号RX1,RX2,RX3,RX4をそれぞれ印加するときには、図5(a)に示すように、各々の垂直転送用CCD13ごとに信号RX1,RX2,RX3,RX4を順次に印加する。具体的には、リセットゲート21のゲートに信号RX1を印加している間には、残りのリセットゲート21のゲートには信号RX2,RX3,RX4を印加しない。つまり、読み出しアンプ22に接続された信号RX1に関するリセットゲート21のみを選択して、電荷注入拡散層36(図3を参照)の電位をリセットして、信号RX2,RX3,RX4に関する残りのリセットゲート21については選択しない。信号RX1の印加を停止させると、次の信号(図5(a)では信号RX2)をリセットゲート21のゲートに印加する。同様に、リセットゲート21のゲートに信号RX2を印加している間には、残りのリセットゲート21のゲートには信号RX1,RX3,RX4を印加しない。
同じ要領で、信号RX2の印加を停止させると、次の信号(図5(a)では信号RX3)をリセットゲート21のゲートに印加する。同様に、リセットゲート21のゲートに信号RX3を印加している間には、残りのリセットゲート21のゲートには信号RX1,RX2,RX4を印加しない。同じ要領で、信号RX3の印加を停止させると、次の信号(図5(a)では信号RX4)をリセットゲート21のゲートに印加する。同様に、リセットゲート21のゲートに信号RX4を印加している間には、残りのリセットゲート21のゲートには信号RX1,RX2,RX3を印加しない。本実施例では、垂直転送用CCD13の本数を4としているので、信号RX4の印加を停止させると、次の信号は信号RX1に戻って、同じ手順でリセットゲート21のゲートに信号RX1を印加する。
転送ゲート35(図3を参照、図5(b)では「Transfer Gate」で表記)に着目して、転送ゲート35に信号TX1,TX2,TX3,TX4をそれぞれ印加するときには、図5(b)に示すように、各々の垂直転送用CCD13ごとに信号TX1,TX2,TX3,TX4を順次印加する。具体的には、転送ゲート35に信号TX1を印加すると、図5(a)の信号RX1,RX2,RX3,RX4の印加の相互の時間遅れ分だけ時間を遅らして、次の信号(図5(b)では信号TX2)を転送ゲート35に印加する。つまり、信号TX1を印加すると、電荷注入拡散層36(図3を参照)に信号電荷を送り込んで、上述した時間遅れ分だけ遅らした後に信号TX2を印加して、電荷注入拡散層36に信号電荷を送り込む。
同じ要領で、転送ゲート35に信号TX2を印加すると、図5(a)の信号RX1,RX2,RX3,RX4の印加の相互の時間遅れ分だけ時間を遅らして、次の信号(図5(b)では信号TX3)を転送ゲート35に印加する。同じ要領で、転送ゲート35に信号TX3を印加すると、図5(a)の信号RX1,RX2,RX3,RX4の印加の相互の時間遅れ分だけ時間を遅らして、次の信号(図5(b)では信号TX4)を転送ゲート35に印加する。垂直転送用CCD13の本数を4としているので、転送ゲート35に信号TX4を印加すると、次の信号は信号TX1に戻って、同じ手順で転送ゲート35に信号TXを印加する。なお、転送ゲート35に信号TX4を印加する際には、転送ゲート35への信号TX1の印加は既に停止していることに留意されたい。
ロウセレクタ23(図3を参照、図5(c)では「Row Select」で表記)に着目して、ロウセレクタ23のゲートに信号RS1,RS2,RS3,RS4をそれぞれ印加するときには、図5(c)に示すように、各々の垂直転送用CCD13ごとに信号RS1,RS2,RS3,RS4を順次に印加する。具体的には、ロウセレクタ23のゲートに信号RS1を印加している間には、残りのロウセレクタ23のゲートには信号RS2,RS3,RS4を印加しない。つまり、読み出しアンプ22に接続された信号RS1に関するロウセレクタ23のみを選択して、電荷注入拡散層36(図3を参照)から電位変化を取り出して読み出しアンプ22を駆動させて、信号RS2,RS3,RS4に関する残りのロウセレクタ23に接続された読み出しアンプ22については駆動しない。信号RS1の印加を停止させると、次の信号(図5(c)では信号RS2)をロウセレクタ23のゲートに印加する。同様に、ロウセレクタ23のゲートに信号RS2を印加している間には、残りのロウセレクタ23のゲートには信号RS1,RS3,RS4を印加しない。
同じ要領で、信号RS2の印加を停止させると、次の信号(図5(c)では信号RS3)をロウセレクタ23のゲートに印加する。同様に、ロウセレクタ23のゲートに信号RS3を印加している間には、残りのロウセレクタ23のゲートには信号RS1,RS2,RS4を印加しない。同じ要領で、信号RS3の印加を停止させると、次の信号(図5(c)では信号RS4)をロウセレクタ23のゲートに印加する。同様に、ロウセレクタ23のゲートに信号RS4を印加している間には、残りのロウセレクタ23のゲートには信号RS1,RS2,RS3を印加しない。本実施例では、垂直転送用CCD13の本数を4としているので、信号RS4の印加を停止させると、次の信号は信号RS1に戻って、同じ手順でロウセレクタ23のゲートに信号RS1を印加する。なお、図5(a)の信号RX1,RX2,RX3,RX4の印加の相互の時間遅れ分は、図5(c)の信号RS1,RS2,RS3,RS4の印加の相互の時間遅れ分と同じであることに留意されたい。
以上をまとめると、リセットゲート21(図3を参照、図5(a)では「Reset Gate」で表記)のゲートに信号RX1を印加することで、読み出しアンプ22に接続された信号RX1に関するリセットゲート22のみを選択して、電荷注入拡散層36(図3を参照)の電位をリセットする。この信号RXの印加の停止後に、転送ゲート35(図3を参照、図5(b)では「Transfer Gate」で表記)に信号TX1を印加することで、電荷注入拡散層36に信号電荷を送り込む。信号TX1を印加した状態で、ロウセレクタ23(図3を参照、図5(c)では「Row Select」で表記)のゲートに信号RS1を印加することで、読み出しアンプ22に接続された信号RS1に関するロウセレクタ23のみを選択して、電荷注入拡散層36から電位変化を取り出して読み出しアンプ22を駆動させる。
信号RX1,TX1,RS1に関する読み出しアンプ22とは別に、リセットゲート21(図3を参照、図5(a)では「Reset Gate」で表記)のゲートへの信号RX1の印加後に、図5(a)の信号RX1,RX2,RX3,RX4の印加の相互の時間遅れ分だけ時間を遅らして、リセットゲート21のゲートに信号RX2を印加することで、信号RX2に関するリセットゲート21のみを選択して、電荷注入拡散層36(図3を参照)の電位をリセットする。信号TX2やRS2については、信号TX1やRS1と同様であるので、その説明を省略する。
信号RX2,TX2,RS2に関する読み出しアンプ22とは別に、リセットゲート21(図3を参照、図5(a)では「Reset Gate」で表記)のゲートへの信号RX2の印加後に、図5(a)の信号RX1,RX2,RX3,RX4の印加の相互の時間遅れ分だけ時間を遅らして、リセットゲート21のゲートに信号RX3を印加することで、信号RX3に関するリセットゲート21のみを選択して、電荷注入拡散層36(図3を参照)の電位をリセットする。信号TX3やRS3についても、信号TX1やRS1と同様であるので、その説明を省略する。また、その後の信号RX4,TX4,RS4に関する読み出しアンプ22についても、信号RX1,TX1,RS1に関する読み出しアンプ22と同様であるので、その説明を省略する。
上述したように、蓄積用CCD12に蓄積された信号電荷には蓄積時間に比例して暗信号ノイズが加算されていくが、図9に示すように、信号蓄積・滞在時間が、例えば、Si−SiO界面の界面準位が電子によって満たされる時間より短いならば、所定の信号蓄積・滞在時間に達するまでは暗信号ノイズが発生しない。したがって、『読み出し』時に蓄積用CCD12に信号電荷が滞留する時間をある程度より短くすることが望ましい。このためには図7のような従来構造(読み出しアンプ56が1個のみの構造)においては蓄積CCDに蓄積されている信号電荷の全てを速やかにセンサ外部に読み出すために1つしかない読み出しアンプ22を高い周波数で高速駆動する。しかし、このようにサンプリング周期を小さくする(すなわち読み出し周波数を上げる)と、上述したように、今度は逆に読み出しアンプ22において付加される読み出しノイズが増える。
そこで、上述したCCD1およびそれを備えた撮像装置によれば、各々の垂直転送用CCD13にそれぞれ接続された読み出しアンプ22を垂直転送用CCD13の数と同数(本実施例では4つ)に備え、電源部9aおよびタイミングジェネレータ9bは、各読み出しアンプ22を順次に駆動させる。すると、蓄積用CCD12・垂直転送用CCD13の転送周波数と信号最終出力端からセンサ外部へ出力される信号の周波数は従来と同じままであるが、垂直転送用CCD13と同数で、それぞれ接続された読み出しアンプ22では、垂直転送用CCD13の数倍(本実施例では4倍)だけ従来よりもサンプリング周期を長くする(垂直転送用CCD13の数分の一(本実施例では四分の一)だけ従来よりも読み出し周波数を低くする)(図5(a)〜図5(b)では1MHz、サンプリング周期1000ns)ことができるので、出力信号に付加されるアンプの読み出しノイズだけが低減する。すなわち、蓄積用CCD12・垂直転送用CCD13において暗信号が発生しない程度の時間間隔で、速やかに全ての信号電荷を外部へ読み出しているにも関わらず、各々の読み出しアンプ22についてみれば極めて低速で動作しているので、出力信号へ付加される読み出しノイズはほとんどないという理想的な状況が生じる。したがって、電荷の転送速度や最終出力端からの信号の出力周波数を遅くすることなく各々の読み出しアンプ22のサンプリング周波数だけを遅くすることによって、アンプの読み出しノイズのみを低減させることができる。その結果、信号蓄積・滞留時に信号に加算される暗信号ノイズおよび読み出し時に信号に加算されるアンプの読み出しノイズの両方を低減させることができる。
この発明は、上記実施形態に限られることはなく、下記のように変形実施することができる。
(1)上述した実施例では、撮影速度が100,000フレーム/秒以上の高速撮像に適しているが、撮影速度が100,000フレーム/秒未満の通常の撮像に適用してもよい。
(2)上述した実施例では、光電変換手段としてフォトダイオードを例に採って説明したが、フォトゲートを替わりに用いてもよい。
(3)上述した実施例では、斜行CCDによる『画素周辺記録型撮像素子』を例に採って説明したが、ライン状の蓄積用CCDを垂直方向に延在するように構成した撮像素子、またはマトリクス状の蓄積用CCDで構成した蓄積素子にもこの発明は適用することができる。
(4)上述した実施例では、図4に示すように、フォトダイオード11、読み出しゲート14、蓄積用CCD12および垂直転送用CCD13(いずれも図2を参照)をCCD基盤30上に配設するとともに、読み出しアンプ22を含んだ読み出し部20(図3を参照)をROIC基盤40上に配設し、CCD基盤30とROIC基盤40とを電気的に接続したが、図4に示す構造に限定されない。例えば、図6に示すように、CCD基盤30、それとは別のROIC基盤40およびそれら基盤30,40とはさらなる別のPD(Photo Diode)基盤60を備え、蓄積用CCD12および垂直転送用CCD13(いずれも図2を参照)をCCD基盤30上に配設するとともに、読み出しアンプ22を含んだ読み出し部20(図3を参照)をROIC基盤40上に配設し、フォトダイオード11をPD基盤60上に配設し、PD基盤60とCCD基盤30とを電気的に接続するとともに、CCD基盤30とROIC基盤40とを電気的に接続してもよい。この変形例(4)の場合には、フォトダイオード11をPD基盤60上に配設しているので、蓄積用CCD12および垂直転送用CCD13に占有されることなくフォトダイオード11の面積を大きくすることができて、開口率を向上させることができる。PD基盤60は、この発明における第3基盤に相当する。

Claims (8)

  1. 入射光を電荷に変換することでその光の強度に応じた信号電荷を発生させる複数の光電変換手段と、その光電変換手段から発生した信号電荷を蓄積して記憶する複数の電荷蓄積手段と、これら複数の電荷蓄積手段の信号電荷を読み出して転送する電荷転送手段とを備えることで、前記光電変換手段によって信号電荷を発生させて、その信号電荷を前記電荷蓄積手段からそれに隣接する電荷蓄積手段に順次に蓄積しながら転送して撮像を行うように構成された撮像素子であって、各々の前記電荷転送手段にそれぞれ接続された読み出しアンプを電荷転送手段の数と同数に備え、各読み出しアンプを順次に駆動させるように構成することを特徴とする撮像素子。
  2. 請求項1に記載の撮像素子において、前記撮像素子を第1基盤およびそれとは別の第2基盤上に配設するように構成し、前記光電変換手段、前記電荷蓄積手段および前記電荷転送手段を前記第1基盤上に配設するとともに、前記読み出しアンプを前記第2基盤上に配設し、第1基盤と第2基盤とを電気的に接続することを特徴とする撮像素子。
  3. 請求項2に記載の撮像素子において、前記第1基盤をCCDプロセスで製造された基盤とし、前記第2基盤をCMOSプロセスで製造された基盤とすることを特徴とする撮像素子。
  4. 請求項3に記載の撮像素子において、CCDプロセスで製造された前記第1基盤とCMOSプロセスで製造された前記第2基盤とをインジウムバンプを用いて電気的に接続することを特徴とする撮像素子。
  5. 請求項4に記載の撮像素子において、前記電荷転送手段の最下端にある転送ゲートに隣接して電荷注入拡散層を形成し、CCDプロセスで製造された前記第1基盤の前記電荷注入拡散層と、CMOSプロセスで製造された前記第2基盤の前記読み出しアンプとが電気的に接続されるように、第1基盤上に第2基盤を積層して、前記インジウムバンプによって各基盤を互いに電気的に接続する。
  6. 請求項1に記載の撮像素子において、前記撮像素子を、第1基盤、それとは別の第2基盤およびそれら基盤とはさらなる別の第3基盤上に配設するように構成し、前記電荷蓄積手段および前記電荷転送手段を前記第1基盤上に配設するとともに、前記読み出しアンプを前記第2基盤上に配設し、前記光電変換手段を前記第3基盤上に配設し、第3基盤と第1基盤とを電気的に接続するとともに、第1基盤と第2基盤とを電気的に接続することを特徴とする撮像素子。
  7. 請求項6に記載の撮像素子において、前記光電変換手段はフォトダイオードであって、前記第1基盤をCCDプロセスで製造された基盤とし、前記第2基盤をCMOSプロセスで製造された基盤とし、さらに前記第3基盤を前記フォトダイオードを配設した基盤とすることを特徴とする撮像素子。
  8. 入射光を電荷に変換することでその光の強度に応じた信号電荷を発生させる複数の光電変換手段と、その光電変換手段から発生した信号電荷を蓄積して記憶する複数の電荷蓄積手段と、これら複数の電荷蓄積手段の信号電荷を読み出して転送する電荷転送手段とを備えることで、前記光電変換手段によって信号電荷を発生させて、その信号電荷を前記電荷蓄積手段からそれに隣接する電荷蓄積手段に順次に蓄積しながら転送して撮像を行うように構成された撮像素子と、その撮像素子の駆動を制御する撮像素子制御手段とを備えた撮像装置であって、前記撮像素子は、各々の前記電荷転送手段にそれぞれ接続された読み出しアンプを電荷転送手段の数と同数に備え、前記撮像素子制御手段は、各読み出しアンプを順次に駆動させるように制御することを特徴とする撮像装置。
JP2009515129A 2007-05-21 2008-04-30 撮像素子およびそれを備えた撮像装置 Pending JPWO2008142968A1 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007134214 2007-05-21
JP2007134214 2007-05-21
PCT/JP2008/058264 WO2008142968A1 (ja) 2007-05-21 2008-04-30 撮像素子およびそれを備えた撮像装置

Publications (1)

Publication Number Publication Date
JPWO2008142968A1 true JPWO2008142968A1 (ja) 2010-08-05

Family

ID=40031684

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009515129A Pending JPWO2008142968A1 (ja) 2007-05-21 2008-04-30 撮像素子およびそれを備えた撮像装置

Country Status (2)

Country Link
JP (1) JPWO2008142968A1 (ja)
WO (1) WO2008142968A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5917883B2 (ja) 2011-11-02 2016-05-18 浜松ホトニクス株式会社 固体撮像装置
JP5941659B2 (ja) 2011-11-02 2016-06-29 浜松ホトニクス株式会社 固体撮像装置
GB201516701D0 (en) 2015-09-21 2015-11-04 Innovation & Business Dev Solutions Ltd Time of flight distance sensor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000165750A (ja) * 1998-09-22 2000-06-16 Koji Eto 高速撮像素子
JP2002135656A (ja) * 2000-10-24 2002-05-10 Canon Inc 固体撮像装置及び撮像システム

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0485961A (ja) * 1990-07-30 1992-03-18 Mitsubishi Electric Corp 光検知装置
JP4167443B2 (ja) * 2002-01-30 2008-10-15 日本放送協会 固体撮像素子

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000165750A (ja) * 1998-09-22 2000-06-16 Koji Eto 高速撮像素子
JP2002135656A (ja) * 2000-10-24 2002-05-10 Canon Inc 固体撮像装置及び撮像システム

Also Published As

Publication number Publication date
WO2008142968A1 (ja) 2008-11-27

Similar Documents

Publication Publication Date Title
US11350044B2 (en) Solid-state imaging device, method for driving solid-state imaging device, and electronic apparatus
TWI539814B (zh) 電子設備及其驅動方法
TWI667922B (zh) Solid-state imaging device, method of manufacturing solid-state imaging device, and electronic device
JP3728260B2 (ja) 光電変換装置及び撮像装置
KR102542664B1 (ko) 고체 촬상 장치 및 그 구동 방법, 및 전자 기기
US10368019B2 (en) Solid-state imaging device, method for driving solid-state imaging device, and electronic apparatus
US8289425B2 (en) Solid-state image pickup device with an improved output amplifier circuitry
JP4821921B2 (ja) 固体撮像装置および電子機器
JP4691930B2 (ja) 物理情報取得方法および物理情報取得装置、並びに物理量分布検知の半導体装置、プログラム、および撮像モジュール
JP6144426B2 (ja) 固体撮像装置、固体撮像装置の製造方法、および電子機器
WO2015166900A1 (ja) 固体撮像装置および撮像装置
TW201030951A (en) Solid state image sensor, method for driving a solid state image sensor, imaging apparatus, and electronic device
US20180295303A1 (en) Imaging element
WO2018105334A1 (ja) 固体撮像素子及び電子機器
TW202205652A (zh) 固體攝像裝置、固體攝像裝置的製造方法、以及電子機器
WO2018012068A1 (ja) 固体撮像装置、固体撮像装置の駆動方法、及び、電子機器
JP2011151797A (ja) 撮像素子、半導体装置、及び撮像方法、撮像装置
JP2006108497A (ja) 固体撮像装置
JPWO2008142968A1 (ja) 撮像素子およびそれを備えた撮像装置
KR102060194B1 (ko) 이미지 센싱 장치 및 이의 동작 방법
JP4241692B2 (ja) 光電変換装置用の走査回路
JP4537271B2 (ja) 撮像装置及び撮像システム
WO2023027017A1 (ja) 撮像素子および撮像装置
JP2023031837A (ja) 撮像素子および撮像装置
JP2013187872A (ja) 撮像装置

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110531

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111011