JPWO2008129938A1 - Conductive material for nanomaterial and conductive connection method of nanomaterial - Google Patents

Conductive material for nanomaterial and conductive connection method of nanomaterial Download PDF

Info

Publication number
JPWO2008129938A1
JPWO2008129938A1 JP2009510819A JP2009510819A JPWO2008129938A1 JP WO2008129938 A1 JPWO2008129938 A1 JP WO2008129938A1 JP 2009510819 A JP2009510819 A JP 2009510819A JP 2009510819 A JP2009510819 A JP 2009510819A JP WO2008129938 A1 JPWO2008129938 A1 JP WO2008129938A1
Authority
JP
Japan
Prior art keywords
conductive
manganese nitrate
nanomaterial
conductive connection
nitrate hexahydrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009510819A
Other languages
Japanese (ja)
Other versions
JP4919363B2 (en
Inventor
知秀 高見
知秀 高見
京一 安立
京一 安立
川合 知二
知二 川合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency, National Institute of Japan Science and Technology Agency filed Critical Japan Science and Technology Agency
Priority to JP2009510819A priority Critical patent/JP4919363B2/en
Publication of JPWO2008129938A1 publication Critical patent/JPWO2008129938A1/en
Application granted granted Critical
Publication of JP4919363B2 publication Critical patent/JP4919363B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • C01G45/08Nitrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties

Abstract

ナノ材料の導電接続方法を提供するものであり、ナノ材料相互もしくはナノ材料とその他の導電部材との間に導電接続を形成する導電材料が硝酸マンガン六水和物からなることナノ材料用導電材料およびそれを用いたナノ材料の導電接続方法。The present invention provides a conductive connection method for nanomaterials, and the conductive material for forming a conductive connection between nanomaterials or between nanomaterials and other conductive members is composed of manganese nitrate hexahydrate. And a conductive connection method of nanomaterials using the same.

Description

本発明は、カーボンナノチューブ等のナノメートルサイズの小さな材料、あるいはナノメートルサイズのブローブ等のナノ材料用導電材料、およびナノ材料の導電接続方法に関するものである。   The present invention relates to a nanometer-sized material such as a carbon nanotube, or a nanomaterial conductive material such as a nanometer-sized probe, and a conductive connection method of the nanomaterial.

カーボンナノチューブに代表されるナノ材料は、従来の物質にない特異な特性を有することから様々な用途においての利用が期待されている。
カーボンナノチューブ等のナノ物質を電子デバイス等として利用する場合には、これらの導電接続を形成することが不可欠である。
Nanomaterials typified by carbon nanotubes are expected to be used in various applications because they have unique properties not found in conventional substances.
When a nanomaterial such as a carbon nanotube is used as an electronic device or the like, it is essential to form these conductive connections.

ナノ材料の導電接続方法には所定の部分に配置して、真空蒸着等の方法によって金属膜の成膜を行ったり、あるいは導電性ペースト等を塗布する方法が考えられるが、真空蒸着による方法は導電性膜等を形成する他の基体を必要とし、自由度が乏しいものであるとともに、熱膨張をはじめとするわずかな動きによって切断する可能性があった。
また、導電性ペーストは、導電性物質を溶剤を含むバインダー中に分散したものであり、特性が安定したものを得ることが困難であった。
For the conductive connection method of nanomaterials, a method of arranging a metal film by a method such as vacuum deposition or applying a conductive paste or the like by placing it in a predetermined part is conceivable. Other substrates for forming a conductive film or the like are required, and the degree of freedom is low, and there is a possibility of cutting by slight movement including thermal expansion.
In addition, the conductive paste is obtained by dispersing a conductive substance in a binder containing a solvent, and it is difficult to obtain a conductive paste with stable characteristics.

本発明は、カーボンナノチューブ等のナノ材料の相互あるいはナノ材料と他の導電部材との間に安定な導電接続を形成する導電材料、およびカーボンナノチューブ等のナノ材料の相互あるいはナノ材料と他の導電部材との導電接続方法を提供するものである。   The present invention relates to a conductive material that forms a stable conductive connection between nanomaterials such as carbon nanotubes or between nanomaterials and other conductive members, and between nanomaterials such as carbon nanotubes or between nanomaterials and other conductive materials. The present invention provides a conductive connection method with a member.

本発明は、ナノ材料相互もしくはナノ材料とその他の導電接続部との間に導電接続を形成する導電材料が硝酸マンガン六水和物からなるナノ材料用導電材料に関するものである。
また、一端をナノ材料に付着させてナノ材料もしくはその他の導電接続部との間に硝酸マンガン六水和物を介在させて導電接続を形成するナノ材料の導電接続方法である。
硝酸マンガン六水和物が、揮発性有機化合物と硝酸マンガン六水和物とを混合して調製した液状物を付着させた後に揮発性有機化合物を揮発させることによって生成したものである前記のナノ材料の導電接続方法である。
The present invention relates to a conductive material for nanomaterials in which the conductive material that forms a conductive connection between nanomaterials or between the nanomaterial and another conductive connection portion is manganese nitrate hexahydrate.
Moreover, it is a conductive connection method of a nanomaterial in which one end is attached to the nanomaterial and a conductive connection is formed by interposing manganese nitrate hexahydrate between the nanomaterial or another conductive connection portion.
Manganese nitrate hexahydrate is produced by volatilizing a volatile organic compound after adhering a liquid material prepared by mixing a volatile organic compound and manganese nitrate hexahydrate. This is a conductive connection method for materials.

本発明は、導電性物質である硝酸マンガン六水和物を導電材料として、ナノ材料相互あるいはナノ材料と他の導電部材との導電接続を形成したので、室温で流動性があって自由度が大きく、しかも再現性良く良好な導電接続を形成することができる。   In the present invention, the conductive connection between the nanomaterials or between the nanomaterial and another conductive member is made using manganese nitrate hexahydrate, which is a conductive substance, so that it has fluidity and flexibility at room temperature. A large conductive connection with good reproducibility can be formed.

図1は、生成したワイヤー状の硝酸マンガン六水和物を説明する電子顕微鏡写真である。FIG. 1 is an electron micrograph illustrating the produced wire-like manganese nitrate hexahydrate. 図2は、本発明の一実施例の走査トンネル顕微鏡のプロファイルを説明する図である。FIG. 2 is a diagram for explaining a profile of a scanning tunneling microscope according to an embodiment of the present invention. 図3は、本発明の一実施例の走査トンネル顕微鏡のプロファイルを説明する図であり、導電接続の再現性を説明する図である。FIG. 3 is a diagram illustrating a profile of a scanning tunneling microscope according to an embodiment of the present invention, and is a diagram illustrating reproducibility of conductive connection. 図4は、本発明の一実施例の走査トンネル顕微鏡のプロファイルを説明する図であり、導電接続の繰り返し耐久性を説明する図である。FIG. 4 is a diagram for explaining the profile of the scanning tunneling microscope of one embodiment of the present invention, and is a diagram for explaining the repeated durability of the conductive connection. 図5は、本発明の一実施例の走査トンネル顕微鏡のプロファイルを説明する図であり、導電接続の繰り返し耐久性を説明する図である。FIG. 5 is a diagram for explaining the profile of the scanning tunneling microscope according to one embodiment of the present invention, and is a diagram for explaining the repeated durability of the conductive connection. 図6は、本発明の導電材料の抵抗の温度変化を説明する図である。FIG. 6 is a diagram for explaining the temperature change of the resistance of the conductive material of the present invention. 図7は、本発明の導電材料の抵抗の温度変化を説明する図である。FIG. 7 is a diagram for explaining the temperature change of the resistance of the conductive material of the present invention. 図8は、本発明の比較例の走査トンネル顕微鏡のプロファイルを説明する図である。FIG. 8 is a diagram for explaining a profile of a scanning tunneling microscope of a comparative example of the present invention.

符号の説明Explanation of symbols

1…探針電極を、2…ワイヤー状硝酸マンガン六水和物     1 ... probe electrode 2 ... wire-like manganese nitrate hexahydrate

本発明は、ナノ材料の相互、あるいはナノ材料と他の導電部材との間の導電接続方法について鋭意検討し、導電性物質として流動性がある物質を用いることを見いだし、特に溶媒を含まない導電性がある液状物質である硝酸マンガン六水和物を導電性材料としたものである。また、硝酸マンガン六水和物は、導電性が良好な液状物質であって、取り扱いが容易であるとともに、導電接続箇所を切り離した後に再度接続した場合にも再現性が良好な導電接続が形成されることを見いだしたものである。   The present invention has been intensively studied on a method of conductive connection between nanomaterials or between a nanomaterial and another conductive member, and found that a fluid material is used as a conductive material, and in particular, a conductive material that does not contain a solvent. Manganese nitrate hexahydrate, which is a liquid material with conductivity, is used as a conductive material. In addition, manganese nitrate hexahydrate is a liquid substance with good conductivity, and is easy to handle, and forms a conductive connection with good reproducibility when the conductive connection is disconnected and then reconnected. It is what has been found to be done.

一般に、液状物質は、収容される容器の形状に応じて任意の形状となるので、本発明のナノ材料の導電接続に有効な物質であるものと考えて鋭意検討をして本発明を想到したものである。ナノ材料の導電接続に有効な液状物質としては、それ自身が安定であるとともに、ナノ材料の利用環境の一つである減圧下において溶媒が蒸発して組成が変化することがないものであることが求められている。
また、導電性材料としては、充分な導電性を備えていることが必要となる。更に、走査トンネル顕微鏡の探針電極との導電接続を形成する目的で使用する場合には、導電接続が切り離された後に再度導電接続を形成した場合に、再現性良く導電接続を形成することが求められている。
In general, since the liquid substance has an arbitrary shape according to the shape of the container to be accommodated, the present invention has been conceived by earnestly considering that it is an effective substance for conductive connection of the nanomaterial of the present invention. Is. As a liquid substance effective for conductive connection of nanomaterials, the liquid material itself is stable and the composition does not change due to evaporation of the solvent under reduced pressure, which is one of the usage environments of nanomaterials. Is required.
Further, the conductive material needs to have sufficient conductivity. Furthermore, when used for the purpose of forming a conductive connection with the probe electrode of a scanning tunneling microscope, a conductive connection can be formed with good reproducibility when the conductive connection is formed again after the conductive connection is disconnected. It has been demanded.

そこで、液状の導電性材料として近年注目を受けているイオン液体を利用することを検討した、イオン液体は、融点が室温付近にある塩であり、蒸気圧がほとんどなく電解質溶液の代替液として用いられているものである。
しかしながら、イオン液体では、以下の比較例に記載のように、特性が安定せず初期の目的を達成することができないものであった。
Therefore, we examined the use of ionic liquids that have been attracting attention as liquid conductive materials in recent years. The ionic liquid is a salt with a melting point near room temperature and has almost no vapor pressure, so it can be used as a substitute for an electrolyte solution. It is what has been.
However, in the ionic liquid, as described in the following comparative examples, the characteristics are not stable and the initial purpose cannot be achieved.

本発明は、常温で液状である無機塩について検討し、硝酸マンガン六水和物が常温で安定な液体として存在するとともに、ナノ材料を接合した際にも優れた特性が得られることを見いだしたものである。
硝酸マンガン六水和物:Mn(NO32・6H2Oは、融点25.8℃、沸点129.5℃の液状物質であり、常温において安定な特性を有している。また、非極性有機溶媒中においては溶解することなく安定に存在するので、これらの有機溶媒を保護膜として使用することができる。具体的には、有機溶媒としてはフェニルオクタン、ヘキサン、トルエン等を挙げることができる。
一方、硝酸マンガン六水和物は、エタノールには溶解するので、エタノールを混合した溶液を用いて、ナノ材料の導電接続後にはエタノールを蒸発させて除去することによって、形成される硝酸マンガン六水和物の膜厚、導電性の調整が可能となる。
The present invention examined inorganic salts that are liquid at room temperature, and found that manganese nitrate hexahydrate exists as a stable liquid at room temperature and that excellent characteristics can be obtained when nanomaterials are joined. Is.
Manganese nitrate hexahydrate: Mn (NO 3 ) 2 .6H 2 O is a liquid substance having a melting point of 25.8 ° C. and a boiling point of 129.5 ° C., and has stable characteristics at room temperature. Moreover, since it exists stably, without melt | dissolving in a nonpolar organic solvent, these organic solvents can be used as a protective film. Specifically, examples of the organic solvent include phenyl octane, hexane, and toluene.
On the other hand, since manganese nitrate hexahydrate is dissolved in ethanol, manganese nitrate hexahydrate is formed by evaporating and removing ethanol after the conductive connection of the nanomaterial using a solution in which ethanol is mixed. The film thickness and conductivity of the Japanese product can be adjusted.

また、本発明のナノ材料の導電材料および導電接続方法は、単電子デバイス、有機分子メモリーにおける導電接続手段として、あるいは走査トンネル顕微鏡等の探針電極の導電性接続手段等として使用することができる。
以下に実施例を示し本発明を説明する。
Further, the conductive material and conductive connection method of the nanomaterial of the present invention can be used as a conductive connection means in a single electron device, an organic molecular memory, or as a conductive connection means of a probe electrode of a scanning tunnel microscope or the like. .
The following examples illustrate the invention.

実施例1
硝酸マンガン六水和物(和光純薬工業製硝酸マンガン(II)水和物 99.9%)を、劈開した雲母上に0.1ml滴下した試料を作製した。液状部分の電気抵抗値を接触面積が1ミリ平方メートルのプローブを用いて、デジタルマルチメータ(METEX製 P−16)で電極間隔5mmで計測したところ、50kΩの値を示した。
Example 1
Manganese nitrate hexahydrate (manufactured by Wako Pure Chemical Industries, Ltd., manganese nitrate (II) hydrate 99.9%) was dropped into 0.1 ml of cleaved mica to prepare a sample. When the electrical resistance value of the liquid portion was measured with a digital multimeter (P-16 made by METEX) using a probe having a contact area of 1 mm 2, a value of 50 kΩ was shown.

この試料を走査トンネル顕微鏡(RHK Technology製 ATM−300)において、先端部の直径20nmの白金イリジウム製の探針電極と試料との間に1.5Vの電圧を印加しながら電極先端を試料に近づけていったところ、電極先端が硝酸マンガン六水和物の液面に達した瞬間に硝酸マンガンが電極先端に付着して電流が流れた。   In the scanning tunneling microscope (ATM-300, manufactured by RHK Technology), this sample was brought close to the sample while applying a voltage of 1.5 V between the probe electrode made of platinum iridium having a diameter of 20 nm and the sample. As a result, as soon as the electrode tip reached the liquid level of manganese nitrate hexahydrate, manganese nitrate adhered to the electrode tip and current flowed.

次いで、電極を液面から離していったところ、300nmまでの距離までは電極先端に硝酸マンガン六水和物が付着した状態で引き伸ばされることを確認し、その間は電極と試料間で1nAの導電性が確認された。   Next, when the electrode was moved away from the liquid surface, it was confirmed that the electrode was stretched with manganese nitrate hexahydrate attached to the tip of the electrode up to a distance of up to 300 nm. Sex was confirmed.

次いで、探針電極に付着して引き伸ばされたものを、走査型電子顕微鏡(日立ハイテクノロジーズ S−4300)を用いて0.001Paの減圧下で観察し、その結果を図1に示す。1は探針電極を、2はワイヤー状となった硝酸マンガン六水和物である。   Subsequently, what was attached to the probe electrode and stretched was observed under a reduced pressure of 0.001 Pa using a scanning electron microscope (Hitachi High-Technologies S-4300), and the result is shown in FIG. 1 is a probe electrode, and 2 is a manganese nitrate hexahydrate in the form of a wire.

実施例2
硝酸マンガン六水和物をエタノールで1000倍の容量に薄めたものを劈開した雲母上に0.1ml滴下して、エタノールの蒸発後に形成された液膜を実施例1と同様にして、電気抵抗を測定したところ、100kΩの値を示した。
次いで、実施例1と同様にして、探針電極と試料との間に1.5Vの電圧を印加しながら電極先端を試料に近づけていったところ、電極先端が硝酸マンガン六水和物の液面に達した瞬間に硝酸マンガンが電極先端に付着して電流が流れた。
Example 2
0.1 ml of manganese nitrate hexahydrate diluted 1000 times in volume with ethanol was dropped on the cleaved mica, and the liquid film formed after the evaporation of ethanol was treated in the same manner as in Example 1 in terms of electrical resistance. Was measured to show a value of 100 kΩ.
Next, in the same manner as in Example 1, when the electrode tip was brought close to the sample while applying a voltage of 1.5 V between the probe electrode and the sample, the electrode tip was a liquid solution of manganese nitrate hexahydrate. As soon as it reached the surface, manganese nitrate adhered to the tip of the electrode and current flowed.

次いで、探針電極を液面から離していったところ、80nmまでの距離までは電極先端に硝酸マンガン六水和物が付着した状態で引き伸ばされていき、その間は電極と試料間で0.1nAの電流が流れた。
このように、エタノールを混合した溶液からエタノールを蒸発除去することによって、電気的な調整が可能となる。
Next, when the probe electrode was moved away from the liquid surface, it was stretched with manganese nitrate hexahydrate attached to the tip of the electrode up to a distance of up to 80 nm, and in the meantime, 0.1 nA between the electrode and the sample. Current flowed.
Thus, electrical adjustment is possible by evaporating and removing ethanol from a solution in which ethanol is mixed.

実施例3
実施例2と同様にしてして形成した硝酸マンガン六水和物の液膜上にフェニルオクタンを滴下して保護膜を作製した。次いで、実施例1と同様にして、探針電極と試料との間に1.5Vの電圧を印加しながら電極先端を試料に近づけていったところ、電極先端が硝酸マンガン六水和物の液面に達した瞬間に硝酸マンガンが電極先端に付着して電流が流れた。 次いで、探針電極を液面から離していったところ、80nmまでの距離までは電極先端に硝酸マンガン六水和物が付着した状態で引き伸ばされていき、その間は電極と試料間で0.1nAの電流が流れた。
Example 3
A protective film was prepared by dropping phenyloctane onto a manganese nitrate hexahydrate liquid film formed in the same manner as in Example 2. Next, in the same manner as in Example 1, when the electrode tip was brought close to the sample while applying a voltage of 1.5 V between the probe electrode and the sample, the electrode tip was a liquid solution of manganese nitrate hexahydrate. As soon as it reached the surface, manganese nitrate adhered to the tip of the electrode and current flowed. Next, when the probe electrode was moved away from the liquid surface, it was stretched with manganese nitrate hexahydrate attached to the tip of the electrode up to a distance of up to 80 nm, and in the meantime, 0.1 nA between the electrode and the sample. Current flowed.

次いで、探針電極の電流値を0.1nAに設定して、探針電極を試料の液面に平行な方向に速度1μm/sで走査しながら、液面からの間隔を離す操作と、液面に近づける操作を繰り返し行ったところ、図2に示すプロファイルが得られた。   Next, the probe electrode current value is set to 0.1 nA, the probe electrode is scanned in a direction parallel to the liquid surface of the sample at a speed of 1 μm / s, and the distance from the liquid surface is separated; When the operation of bringing the surface close to the surface was repeated, the profile shown in FIG. 2 was obtained.

また、繰り返し実験を始めてから300回までは、図3に示す断面プロファイルのように80nm前後の振幅で周期0.2sの鋸歯状のプロファイルが得られた。
更に、1000回から2000回では、約80nmの振幅で周期約0.2sのノコギリ波に戻っている。
更に、2000回から5000回では、また約60nmの幅で周期約0.13sのノコギリ波に戻っている。
そして、5000回を過ぎたところで図4に示す断面プロファイルのように振幅が約2倍で周期が約0.5sのノコギリ波へと変化した。そしてノコギリ波の立ち上がり部分に着目すると、階段状に変化している箇所があることがわかる。
この階段状変化は、電極先端に形成されている硝酸マンガン六水和物の状態が変化したものと考えられる。
Further, from the start of repeated experiments up to 300 times, a sawtooth profile with an amplitude of around 80 nm and a period of 0.2 s was obtained as in the cross-sectional profile shown in FIG.
Furthermore, from 1000 times to 2000 times, it returns to a sawtooth wave with an amplitude of about 80 nm and a period of about 0.2 s.
Further, from 2000 times to 5000 times, it returns to a sawtooth wave having a width of about 60 nm and a period of about 0.13 s.
Then, after 5000 times, as shown in the cross-sectional profile shown in FIG. 4, it changed to a sawtooth wave having an amplitude of about twice and a period of about 0.5 s. When attention is paid to the rising portion of the sawtooth wave, it can be seen that there is a portion that changes in a staircase pattern.
This step change is considered to be a change in the state of manganese nitrate hexahydrate formed at the electrode tip.

実施例4
硝酸マンガン六水和物を実施例1で用いたものと同様の装置の探針電極の先端に付着させた。次いで、導電性のグラファイトからなる試料を試料台に載置して、実施例1と同様にして探針電極を試料に近づけていくと、探針電極の先端がグラファイトの表面に達した瞬間に硝酸マンガンが試料に付着して電流が流れた。
Example 4
Manganese nitrate hexahydrate was adhered to the tip of the probe electrode of the same apparatus as used in Example 1. Next, when a sample made of conductive graphite is placed on the sample stage and the probe electrode is brought closer to the sample in the same manner as in Example 1, the moment the tip of the probe electrode reaches the surface of the graphite. Manganese nitrate adhered to the sample and current flowed.

次いで、探針電極をグラファイト表面から離していくと、0.8nmまでは探針電極先端に硝酸マンガン液体が付着した状態で引き伸ばされた。
次いで、このような接触と引き上げの操作を繰り返して耐久性を調べた結果、図5に示すように0.8nmの振幅で1.6Hzのノコギリ波が得られた。
この実験から、電極に直接接着させた硝酸マンガンを試料に脱着させたときの耐久性についても、5000回程度の繰り返し脱着に耐えられることがわかった。また、導電性についても同様な回数での脱着でも安定して用いることができる。
Next, when the probe electrode was moved away from the graphite surface, it was stretched up to 0.8 nm with the manganese nitrate liquid adhering to the tip of the probe electrode.
Next, as a result of examining the durability by repeating such contact and pulling operations, a sawtooth wave of 1.6 Hz with an amplitude of 0.8 nm was obtained as shown in FIG.
From this experiment, it was found that the durability when the manganese nitrate directly adhered to the electrode is desorbed from the sample can withstand repeated desorption of about 5000 times. In addition, the conductivity can be stably used even after desorption with the same number of times.

実施例5
雲母上に硝酸マンガン六水和物を滴下して、硝酸マンガン六水和物の雲母上で半径20mmの膜を形成し、抵抗測定プローブ間の距離を10mmとして、実施例1と同様の条件で電気抵抗の温度変化を測定し、その結果を図6に示す。
Example 5
Manganese nitrate hexahydrate was dropped on the mica to form a film with a radius of 20 mm on the mica of manganese nitrate hexahydrate, and the distance between the resistance measurement probes was 10 mm under the same conditions as in Example 1. The temperature change of the electrical resistance was measured, and the result is shown in FIG.

実施例6
アクリル樹脂板上に硝酸マンガン六水和物を滴下して、硝酸マンガン六水和物の雲母上で半径10mmの膜を形成し、抵抗測定プローブ間の距離を5mmとして、実施例1と同様の条件で電気抵抗の温度変化を測定し、その結果を図7に示す。
Example 6
Manganese nitrate hexahydrate was dropped on the acrylic resin plate to form a film having a radius of 10 mm on the mica of manganese nitrate hexahydrate, and the distance between the resistance measurement probes was set to 5 mm. The temperature change of the electrical resistance was measured under the conditions, and the result is shown in FIG.

比較例1
硝酸マンガン六水和物に代えてイオン液体である1−エチル−3−メチルイミダゾリウムビス(トリフルオロメタンスルホニル)イミドを用いた点を除き、実施例1と同様にして、探針電極と試料との間の電流の検出を試みたが電流を検出することができなかった。
Comparative Example 1
In the same manner as in Example 1 except that 1-ethyl-3-methylimidazolium bis (trifluoromethanesulfonyl) imide, which is an ionic liquid, was used instead of manganese nitrate hexahydrate, An attempt was made to detect the current during the period, but no current could be detected.

比較例2
硝酸マンガン六水和物に代えて比較例1で用いたイオン液体よりも粘性の高いイオン液体である1−オクチル−3−メチルイミダゾリウムトリフルオロメタンスルホネートを用いた点を除き、実施例1と同様にして、探針電極と試料との間の電流の検出を試みた。
電流検出感度を2pAに設定し、探針電極を試料に近づけていったところ、非常に不安定ではあるがトンネル電流を検知した。
Comparative Example 2
Similar to Example 1 except that 1-octyl-3-methylimidazolium trifluoromethanesulfonate, which is an ionic liquid having a higher viscosity than the ionic liquid used in Comparative Example 1, was used instead of manganese nitrate hexahydrate. Thus, an attempt was made to detect the current between the probe electrode and the sample.
When the current detection sensitivity was set to 2 pA and the probe electrode was brought close to the sample, a tunnel current was detected although it was very unstable.

次いで、実施例3と同様に、探針電極を試料に対して水平方向に速度1μm/sで走査しながら上記の脱着の動作を周期的に行って繰り返し実験を行ったところ、図8に示すプロファイルが得られた。このプロファイルから、電極と試料との動的な導電性は保たれているが、特定箇所との粘着性という点においても劣っており、電極同士間の安定な導電性を得るための十分な接着力を有していないものであった。   Next, as in Example 3, the above desorption operation was periodically performed while scanning the probe electrode with respect to the sample in the horizontal direction at a speed of 1 μm / s. A profile was obtained. From this profile, the dynamic conductivity between the electrode and the sample is maintained, but it is also inferior in terms of adhesion to a specific location, and sufficient adhesion to obtain stable conductivity between the electrodes. It did not have power.

本発明のナノ材料の導電材料およびナノ材料の導電接続方法は、液状であるために自由度が大きく、しかも再現性良く良好な導電接続を形成することができ、単電子デバイス、有機分子メモリー等のデバイスにおける導電接続、DNA、タンパク質等の微細な物質を観察する走査トンネル顕微鏡の探針電極との接続等において利用することができる。   The conductive material of the nanomaterial of the present invention and the conductive connection method of the nanomaterial have a high degree of freedom because it is liquid, and can form a good conductive connection with good reproducibility, such as a single electronic device, an organic molecular memory, etc. The device can be used for conductive connection in the device, connection with a probe electrode of a scanning tunneling microscope for observing fine substances such as DNA and protein.

Claims (3)

ナノ材料相互もしくはナノ材料とその他の導電部材との間に導電接続を形成する導電材料が硝酸マンガン六水和物からなることを特徴とするナノ材料用導電材料。   A conductive material for a nanomaterial, wherein the conductive material forming a conductive connection between the nanomaterials or between the nanomaterial and another conductive member is made of manganese nitrate hexahydrate. 一端をナノ材料に付着させてナノ材料もしくはその他の導電部材との間に硝酸マンガン六水和物を介在させて導電接続を形成することを特徴とするナノ材料の導電接続方法。   A method for conductive connection of nanomaterials, characterized in that one end is attached to the nanomaterial and a conductive connection is formed by interposing manganese nitrate hexahydrate between the nanomaterial or another conductive member. 硝酸マンガン六水和物が、揮発性有機化合物と硝酸マンガン六水和物とを混合して調製した液状物を付着させた後に揮発性有機化合物を揮発させることによって生成したものであることを特徴とする請求項2記載のナノ材料の導電接続方法。   Manganese nitrate hexahydrate is produced by volatilizing a volatile organic compound after adhering a liquid material prepared by mixing a volatile organic compound and manganese nitrate hexahydrate. The conductive connection method for nanomaterials according to claim 2.
JP2009510819A 2007-04-20 2008-04-08 Conductive material for nanomaterial and conductive connection method of nanomaterial Expired - Fee Related JP4919363B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009510819A JP4919363B2 (en) 2007-04-20 2008-04-08 Conductive material for nanomaterial and conductive connection method of nanomaterial

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2007112431 2007-04-20
JP2007112431 2007-04-20
JP2009510819A JP4919363B2 (en) 2007-04-20 2008-04-08 Conductive material for nanomaterial and conductive connection method of nanomaterial
PCT/JP2008/056908 WO2008129938A1 (en) 2007-04-20 2008-04-08 Conductive material for nanomaterial and method of conductive connection of nanomaterial

Publications (2)

Publication Number Publication Date
JPWO2008129938A1 true JPWO2008129938A1 (en) 2010-07-22
JP4919363B2 JP4919363B2 (en) 2012-04-18

Family

ID=39875466

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009510819A Expired - Fee Related JP4919363B2 (en) 2007-04-20 2008-04-08 Conductive material for nanomaterial and conductive connection method of nanomaterial

Country Status (2)

Country Link
JP (1) JP4919363B2 (en)
WO (1) WO2008129938A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005059148A (en) * 2003-08-13 2005-03-10 National Institute Of Advanced Industrial & Technology Adhering method and adhering device of carbon nanotube
JP2006244984A (en) * 2004-08-26 2006-09-14 Matsushita Electric Ind Co Ltd Composite particle for electrode, its manufacturing method, and nonaqueous electrolyte secondary battery
JP2006298713A (en) * 2005-04-22 2006-11-02 Univ Nagoya Method for manufacturing three-layer carbon nanotube and composition containing three-layer carbon nanotube

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005059148A (en) * 2003-08-13 2005-03-10 National Institute Of Advanced Industrial & Technology Adhering method and adhering device of carbon nanotube
JP2006244984A (en) * 2004-08-26 2006-09-14 Matsushita Electric Ind Co Ltd Composite particle for electrode, its manufacturing method, and nonaqueous electrolyte secondary battery
JP2006298713A (en) * 2005-04-22 2006-11-02 Univ Nagoya Method for manufacturing three-layer carbon nanotube and composition containing three-layer carbon nanotube

Also Published As

Publication number Publication date
WO2008129938A1 (en) 2008-10-30
JP4919363B2 (en) 2012-04-18

Similar Documents

Publication Publication Date Title
Nijhuis et al. Molecular rectification in metal− SAM− metal oxide− metal junctions
Haag et al. Electrical breakdown of aliphatic and aromatic self-assembled monolayers used as nanometer-thick organic dielectrics
JP4547852B2 (en) Manufacturing method of electrical parts
JP4644723B2 (en) Measuring device with nanotube probe
Tortorich et al. Inkjet-printed carbon nanotube electrodes with low sheet resistance for electrochemical sensor applications
US20050260453A1 (en) Method for synthesizing nanoscale structures in defined locations
Rothemund et al. Influence of the contact area on the current density across molecular tunneling junctions measured with EGaIn top-electrodes
JP4875517B2 (en) Chemical substance sensing element, chemical substance sensing device, and method of manufacturing chemical substance sensing element
Wang et al. Carbon “onions” as point electron sources
Wang et al. A novel gas ionization sensor using Pd nanoparticle-capped ZnO
Haiss et al. Wiring nanoparticles with redox molecules
WO2009016389A1 (en) Nanotube electrochemistry
Zandi et al. An optimized resistive CNT-based gas sensor with a novel configuration by top electrical contact
Pieters et al. Multiscale characterization of the influence of the organic–inorganic interface on the dielectric breakdown of nanocomposites
Koefoed et al. Functionalizing arrays of transferred monolayer graphene on insulating surfaces by bipolar electrochemistry
Dong et al. Development of CNT-ISFET based pH sensing system using atomic force microscopy
Bouhamed et al. Customizing hydrothermal properties of inkjet printed sensitive films by functionalization of carbon nanotubes
JP4919363B2 (en) Conductive material for nanomaterial and conductive connection method of nanomaterial
Kim et al. Better than 10 mA field emission from an isolated structure emitter of a metal oxide/CNT composite
Hu et al. Selective hydrogenation of WO3 for erasable conducting circuit
Shen et al. The fabrication of nanoelectrodes based on a single carbon nanotube
JP2005285344A (en) Electron emission source using carbon nanotubes and polymer, and its manufacturing method
JP2007001008A (en) Nanotube substrate and nanotube cartridge
Schlenker et al. Electrical characterization of ZnO nanorods
Cai et al. Fabrication of gas sensor based on field ionization from SWCNTs with tripolar microelectrode

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120120

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120126

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150210

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350