JPWO2008111294A1 - Laminated fabric - Google Patents

Laminated fabric Download PDF

Info

Publication number
JPWO2008111294A1
JPWO2008111294A1 JP2009503900A JP2009503900A JPWO2008111294A1 JP WO2008111294 A1 JPWO2008111294 A1 JP WO2008111294A1 JP 2009503900 A JP2009503900 A JP 2009503900A JP 2009503900 A JP2009503900 A JP 2009503900A JP WO2008111294 A1 JPWO2008111294 A1 JP WO2008111294A1
Authority
JP
Japan
Prior art keywords
laminated fabric
fabric
layer
laminated
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009503900A
Other languages
Japanese (ja)
Inventor
正利 竹野入
正利 竹野入
啓介 滝島
啓介 滝島
順一 杉野
順一 杉野
真也 稲田
真也 稲田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Publication of JPWO2008111294A1 publication Critical patent/JPWO2008111294A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A41WEARING APPAREL
    • A41DOUTERWEAR; PROTECTIVE GARMENTS; ACCESSORIES
    • A41D31/00Materials specially adapted for outerwear
    • A41D31/02Layered materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/26Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary
    • AHUMAN NECESSITIES
    • A41WEARING APPAREL
    • A41DOUTERWEAR; PROTECTIVE GARMENTS; ACCESSORIES
    • A41D31/00Materials specially adapted for outerwear
    • A41D31/04Materials specially adapted for outerwear characterised by special function or use
    • A41D31/10Impermeable to liquids, e.g. waterproof; Liquid-repellent
    • A41D31/102Waterproof and breathable
    • AHUMAN NECESSITIES
    • A41WEARING APPAREL
    • A41DOUTERWEAR; PROTECTIVE GARMENTS; ACCESSORIES
    • A41D31/00Materials specially adapted for outerwear
    • A41D31/04Materials specially adapted for outerwear characterised by special function or use
    • A41D31/18Elastic
    • A41D31/185Elastic using layered materials
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62DCHEMICAL MEANS FOR EXTINGUISHING FIRES OR FOR COMBATING OR PROTECTING AGAINST HARMFUL CHEMICAL AGENTS; CHEMICAL MATERIALS FOR USE IN BREATHING APPARATUS
    • A62D5/00Composition of materials for coverings or clothing affording protection against harmful chemical agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/022Non-woven fabric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/026Knitted fabric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/04Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer characterised by a layer being specifically extensible by reason of its structure or arrangement, e.g. by reason of the chemical nature of the fibres or filaments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/08Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer the fibres or filaments of a layer being of different substances, e.g. conjugate fibres, mixture of different fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0207Elastomeric fibres
    • B32B2262/0215Thermoplastic elastomer fibers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0223Vinyl resin fibres
    • B32B2262/023Aromatic vinyl resin, e.g. styrenic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0261Polyamide fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0276Polyester fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0292Polyurethane fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/306Resistant to heat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/51Elastic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/54Yield strength; Tensile strength
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/718Weight, e.g. weight per square meter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/724Permeability to gases, adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/726Permeability to liquids, absorption
    • B32B2307/7265Non-permeable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2437/00Clothing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2571/00Protective equipment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/60Nonwoven fabric [i.e., nonwoven strand or fiber material]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/60Nonwoven fabric [i.e., nonwoven strand or fiber material]
    • Y10T442/601Nonwoven fabric has an elastic quality
    • Y10T442/602Nonwoven fabric comprises an elastic strand or fiber material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/60Nonwoven fabric [i.e., nonwoven strand or fiber material]
    • Y10T442/608Including strand or fiber material which is of specific structural definition
    • Y10T442/614Strand or fiber material specified as having microdimensions [i.e., microfiber]

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Toxicology (AREA)
  • General Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Nonwoven Fabrics (AREA)
  • Laminated Bodies (AREA)
  • Filtering Materials (AREA)

Abstract

通気性およびフィルター性を有する積層布帛を提供する。前記積層布帛は、保持層に防護層が貼り合わされてなる積層布帛であって、前記防護層が、極細繊維で形成されている伸縮性不織布を含むとともに、前記積層布帛の通気度が2cc/cm2/sec以上であり、且つ1μm石英粉塵の捕集効率が90%以上である。また、積層布帛は、防護層を介して、さらに耐水層を保持層の反対側に備えていてもよい。Provided is a laminated fabric having air permeability and filter properties. The laminated fabric is a laminated fabric in which a protective layer is bonded to a holding layer, and the protective layer includes an elastic nonwoven fabric formed of ultrafine fibers, and the air permeability of the laminated fabric is 2 cc / cm 2. / Sec or more, and the collection efficiency of 1 μm quartz dust is 90% or more. In addition, the laminated fabric may further include a water resistant layer on the opposite side of the holding layer via the protective layer.

Description

関連出願Related applications

本願は、2007年3月15日出願の、特願2007−066496の優先権を主張するものであり、その全体を参照により本出願の一部をなすものとして引用する。   This application claims the priority of Japanese Patent Application No. 2007-066496 of an application on March 15, 2007, The whole is quoted as forming a part of this application by reference.

本発明は、強度、通気性、フィルター性を兼備する積層布帛に関し、さらには、低コストで容易に減容化可能な積層布帛に関する。   The present invention relates to a laminated fabric having strength, air permeability, and filter properties, and further relates to a laminated fabric that can be easily reduced in volume at low cost.

人体に有害な粉塵、感染性病原体、ウィルス等の有害物質から人体を保護するため、またはこのような有害物質が付着した感染性媒体からの二次感染を防ぐために、各種防護材が用いられている。このような防護材では、前記有害物質を有効に防護するためにフィルター性が求められる一方で、人体に直接防護材が接しても使用者が不快にならないよう、通気性が求められる。しかしながら、フィルター性と通気性とは相反する性質であるため、これら双方を両立させることは困難である。   Various protective materials are used to protect the human body from harmful substances such as dust, infectious pathogens and viruses that are harmful to the human body, or to prevent secondary infection from infectious media with such harmful substances attached. Yes. In such a protective material, filter properties are required to effectively protect the harmful substances, while air permeability is required so that the user does not become uncomfortable even if the protective material is in direct contact with the human body. However, since filter properties and air permeability are contradictory properties, it is difficult to achieve both of them.

例えば、特許文献1には、透湿・防水性不織布と、多孔質布と、それらの間に介在させた熱接着性不織布とが複合一体化した防護衣料用複合不織布が開示されている。しかし、この複合不織布では、熱接着性不織布を溶融軟化させてフィルム化して、透湿・防水性不織布と多孔質布とを複合一体化させているため、複合不織布全体としての通気性を向上することができない。   For example, Patent Document 1 discloses a composite nonwoven fabric for protective clothing in which a moisture-permeable and waterproof nonwoven fabric, a porous fabric, and a heat-adhesive nonwoven fabric interposed therebetween are combined and integrated. However, in this composite non-woven fabric, the heat-adhesive non-woven fabric is melted and softened into a film, and the moisture-permeable / water-proof non-woven fabric and the porous fabric are combined and integrated. I can't.

さらに、これら人体に有害な物質によって汚染された防護材を廃棄することが大きな問題となっている。例えば、前記したような防護材は、通常、使い捨て防護材として用いられ、使用後は特殊廃棄物としてポリ袋に貯め、処理業者によって処分されるが、防護材が嵩高いと輸送コストや廃棄コストが非常に高くなるという問題があるため、減容化によるコストダウンが近年要求されている。   Further, it is a big problem to dispose of the protective material contaminated with substances harmful to human bodies. For example, the protective material as described above is usually used as a disposable protective material, and after use, it is stored in a plastic bag as a special waste and disposed of by a processing company. In recent years, there has been a demand for cost reduction by volume reduction.

減容化方法としては、袋内を減圧または圧縮する方法や、乾熱ないしは湿熱で加熱減容する方法等が挙げられるが、減圧方法は排出空気中に汚染物質が漏れ出す恐れがあり好ましくない。   Examples of the volume reduction method include a method of reducing or compressing the inside of the bag, a method of reducing the volume by heating with dry heat or wet heat, etc., but the pressure reduction method is not preferable because there is a risk that contaminants may leak into the exhausted air. .

圧縮方法は汚染された廃棄物を加熱溶融してブロック状に減容化する装置や廃棄物を粉砕して減容化する装置が提案、市販されているが、装置が非常に高価であり、大掛かりとなるため好ましくない。また乾熱による減容方法も袋自体の耐熱性が要求され、結果としてコストが高くなる。   As a compression method, a device for reducing the volume of contaminated waste by heating and melting and a device for reducing the volume by crushing waste are proposed and marketed, but the device is very expensive, This is not preferable because of the large scale. Also, the volume reduction method by dry heat requires heat resistance of the bag itself, resulting in an increase in cost.

例えば、熱水による感染性医療廃棄物の減容方法および装置が提案されている(例えば、特許文献2参照。)。特許文献2は、50℃以下の水には溶けない親水性樹脂からなる感染性医療廃棄物(A)と水(B)を含み、かつ(A)/(B)の重量比が70/30〜20/80である混合物を70〜150℃の温度で処理して、該感染性医療廃棄物(A)を減容化された固形物とすることを特徴とする感染性医療廃棄物の処理方法およびそのための装置に関するものであり、装置はコンパクトではあるが、減容するためには特殊な装置が必要であった。   For example, a volume reduction method and apparatus for infectious medical waste using hot water has been proposed (see, for example, Patent Document 2). Patent Document 2 includes infectious medical waste (A) and water (B) made of a hydrophilic resin that is insoluble in water of 50 ° C. or less, and the weight ratio of (A) / (B) is 70/30. Treatment of infectious medical waste, characterized in that a mixture of ~ 20/80 is treated at a temperature of 70-150 ° C to reduce the infectious medical waste (A) to a reduced volume solid The present invention relates to a method and an apparatus therefor, and the apparatus is compact, but a special apparatus is necessary to reduce the volume.

特開2003−336155号公報JP 2003-336155 A 特開2003−073498号公報JP 2003-073498 A

本発明の目的は、通気性とフィルター性(または捕集性)とを両立できる積層布帛を提供することにある。
本発明の別の目的は、通気性を損なうことなく一体化可能な積層布帛を提供することにある。
本発明のさらに別の目的は、負荷をかけた後であっても、フィルター性を維持できる積層布帛を提供することにある。
本発明のさらに別の目的は、特殊な装置を必要とせずに、低コストで容易に減容化させることが可能な積層布帛およびそれからなる防護材を提供することである。
An object of the present invention is to provide a laminated fabric that can achieve both air permeability and filterability (or collection).
Another object of the present invention is to provide a laminated fabric that can be integrated without impairing air permeability.
Still another object of the present invention is to provide a laminated fabric that can maintain filterability even after being loaded.
Still another object of the present invention is to provide a laminated fabric and a protective material comprising the same, which can be easily reduced in volume at a low cost without requiring a special device.

本発明者等は上記課題を達成すべく鋭意検討を行った結果、保持層に対して、伸縮性不織布を防護層として張り合わせて積層布帛とすることにより、通気度とフィルター性とを両立できること、さらに積層布帛に負荷をかけてもフィルター性を維持できることを見出した。
さらに、保持層として、少なくとも一層を60℃以上の温水に浸漬することで5〜90%収縮する繊維からなる減容性保持層(A層)を用いることにより特殊な装置を必要とせずに、低コストで容易に減容化させることが可能な積層布帛およびそれからなる防護材が得られることを見出した。
As a result of diligent studies to achieve the above-mentioned problems, the present inventors can achieve both air permeability and filterability by laminating a stretchable nonwoven fabric as a protective layer to the holding layer to form a laminated fabric. Further, it has been found that filter properties can be maintained even when a load is applied to the laminated fabric.
Furthermore, without using a special device by using a volume-reducing holding layer (A layer) consisting of fibers that shrink by 5 to 90% by immersing at least one layer in warm water of 60 ° C. or higher as the holding layer, It has been found that a laminated fabric that can be easily reduced in volume at a low cost and a protective material comprising the same are obtained.

すなわち本発明は、保持層に防護層が貼り合わされてなる積層布帛であって、前記防護層が、極細繊維で形成されている伸縮性不織布を含むとともに、前記積層布帛の通気度が2cc/cm/sec以上であり、且つ1μm石英粉塵の捕集効率が90%以上である積層布帛である。That is, the present invention is a laminated fabric in which a protective layer is bonded to a holding layer, wherein the protective layer includes an elastic nonwoven fabric formed of ultrafine fibers, and the air permeability of the laminated fabric is 2 cc / cm. 2 / sec or more, and a laminated fabric in which the collection efficiency of 1 μm quartz dust is 90% or more.

前記極細繊維が、熱可塑性エラストマーで構成されていてもよく、例えば、耐熱性熱可塑性エラストマーであってもよい。このような熱可塑性エラストマーは、例えば、SEPS、SEBS、ウレタン系熱可塑性エラストマー、ポリエステル系熱可塑性エラストマー、およびポリアミド系熱可塑性エラストマーから選択される少なくとも一種の熱可塑性エラストマーであってもよい。防護層を構成する伸縮性不織布は、例えば、引張破断伸度が30%以上であってもよい。前記伸縮性不織布において、極細繊維は、特に、繊維径10〜1000nmのナノファイバーであり、前記ナノファイバーが目付0.01〜10g/mで不織布を形成しているのが好ましい。The ultrafine fibers may be composed of a thermoplastic elastomer, for example, a heat resistant thermoplastic elastomer. Such a thermoplastic elastomer may be, for example, at least one thermoplastic elastomer selected from SEPS, SEBS, urethane-based thermoplastic elastomer, polyester-based thermoplastic elastomer, and polyamide-based thermoplastic elastomer. The stretchable nonwoven fabric constituting the protective layer may have a tensile elongation at break of 30% or more, for example. In the elastic nonwoven fabric, the ultrafine fibers are in particular nanofibers having a fiber diameter of 10 to 1000 nm, preferably wherein the nanofibers to form a nonwoven fabric having a basis weight 0.01 to 10 g / m 2.

一方、保持層では、保持層を構成する繊維の少なくとも一部が減容性繊維であってもよい。例えば、このような減容性繊維は、ポリビニルアルコール系繊維で構成されていてもよい。すなわち、本発明は、温水により減容する積層布帛を含み、例えば、そのような減容性積層布帛は、60℃以上の温水に浸漬することで5〜90%収縮してもよい。   On the other hand, in the holding layer, at least a part of the fibers constituting the holding layer may be a volume-reducing fiber. For example, such a volume-reducing fiber may be composed of a polyvinyl alcohol fiber. That is, the present invention includes a laminated fabric that is reduced in volume by warm water. For example, such a volume-reduced laminated fabric may shrink by 5 to 90% by being immersed in warm water at 60 ° C. or higher.

さらに、本発明の積層布帛は、防護層を介して、さらに耐水層を保持層の反対側に備えていてもよい。この場合、積層布帛の耐水圧は、300〜1500mmHO程度であってもよい。Furthermore, the laminated fabric of the present invention may further include a water-resistant layer on the opposite side of the holding layer via a protective layer. In this case, the water pressure resistance of the laminated fabric may be about 300 to 1500 mmH 2 O.

また、本発明は、前記積層布帛からなる防護材、特に防護衣類を包含する。また、積層布帛が減容性を有する場合、本発明は、そのような減容性積層布帛を容器に入れて、前記積層布帛に対して60℃以上の温水を供給することにより積層布帛を減容化する方法をも包含する。   Moreover, this invention includes the protective material which consists of the said laminated fabric, especially protective clothing. In the case where the laminated fabric has a volume-reducing property, the present invention reduces the laminated fabric by placing such a volume-reduced laminated fabric in a container and supplying warm water of 60 ° C. or higher to the laminated fabric. It also includes methods of containing.

本発明の積層布帛は、保持層と特定の防護層とで構成することにより、フィルター性と通気性とを両立できる。特に防護層が伸縮性を有するため、その他の層への追従性に優れ、積層布帛全体としての通気性を損なうことなく、積層布帛の一体性を向上することができるだけでなく、一定の負荷をかけた後であっても、積層布帛のフィルター性を維持できる。
特に、防護層として、ナノファイバー不織布を用いた場合、高度の通気性およびフィルター性を実現することができる。
また、保持層として減容性素材を用いた場合、本発明の積層布帛は、使用後温水を用いて簡便に減容化させて輸送や廃棄を行うことができるため、輸送費や廃棄コストを削減することができる。
The laminated fabric of the present invention can achieve both filterability and air permeability by being constituted by a holding layer and a specific protective layer. In particular, since the protective layer has stretchability, it has excellent followability to other layers, and can not only improve the integrity of the laminated fabric without impairing the air permeability of the entire laminated fabric, but also has a constant load. Even after being applied, the filter properties of the laminated fabric can be maintained.
In particular, when a nanofiber nonwoven fabric is used as the protective layer, a high degree of air permeability and filterability can be realized.
In addition, when a volume-reducing material is used as the retaining layer, the laminated fabric of the present invention can be easily reduced in volume using hot water after use and transported or discarded. Can be reduced.

この発明は、添付の図面を参考にした以下の好適な実施例の説明から、より明瞭に理解されるであろう。しかしながら、実施例および図面は単なる図示および説明のためのものであり、この発明の範囲を定めるために利用されるべきものではない。この発明の範囲は添付の請求の範囲によって定まる。また、図面は必ずしも一定の縮尺で示されておらず、本発明の原理を示す上で誇張したものになっている。また、添付図面において、複数の図面における同一の部品番号は、同一部分を示す。   The invention will be more clearly understood from the following description of a preferred embodiment with reference to the accompanying drawings. However, the examples and figures are for illustration and description only and should not be used to define the scope of the invention. The scope of the invention is defined by the appended claims. Also, the drawings are not necessarily drawn to scale, but are exaggerated in illustrating the principles of the invention. In the accompanying drawings, the same part number in the plurality of drawings indicates the same part.

本発明の積層布帛の好ましい形態の一例である、ナノファイバーを積層させた防護層を製造する装置を示す模式図である。It is a schematic diagram which shows the apparatus which manufactures the protective layer which laminated | stacked the nanofiber which is an example of the preferable form of the laminated fabric of this invention. 本発明の積層布帛(積層体)の構造の一例を示す断面図である。It is sectional drawing which shows an example of the structure of the laminated fabric (laminated body) of this invention.

本発明の積層布帛は、保持層に防護層が貼り合わされてなる積層布帛であって、前記防護層が、極細繊維で形成されている伸縮性不織布を含むとともに、前記積層布帛の通気度が2cc/cm/sec以上であり、且つ1μm石英粉塵の捕集効率が90%以上である。The laminated fabric of the present invention is a laminated fabric in which a protective layer is bonded to a holding layer, and the protective layer includes a stretchable nonwoven fabric formed of ultrafine fibers, and the air permeability of the laminated fabric is 2 cc. / Cm 2 / sec or more, and the collection efficiency of 1 μm quartz dust is 90% or more.

[保持層]
保持層は、前記防護層を保持するために設けられ、積層布帛全体で特定の通気度を確保できる限り特に限定されず、織編物であっても不織布であってもよい。
保持層は、用途に応じて、動物繊維や植物繊維などの天然繊維および各種合成繊維のいずれから形成してもよい。これらの繊維は、単独でまたは組み合わせて用いてもよい。
合成繊維としては、ポリビニルアルコール系繊維、エチレン−ビニルアルコール系繊維、ポリアミド系繊維(例えば、ナイロン6、ナイロン66、ナイロン46、ナイロン610、ナイロン11、ナイロン12などの脂肪族ポリアミド系繊維、脂環族ポリアミド系繊維、アラミドなどの芳香族ポリアミド系繊維、芳香族ジカルボン酸と脂肪族アルキレンジアミンからなる半芳香族ポリアミド系繊維)、ポリオレフィン系繊維(例えば、ポリエチレン系繊維、ポリプロピレン系繊維、ポリプロピレンーポリエチレン複合繊維)、ポリエステル系繊維(例えば、ポリエチレンテレフタレート系繊維)、アクリル系繊維(例えば、ポリアクリロニトリル系繊維、ポリメタクリル酸メチル系繊維など)、ポリウレタン系繊維、セルロース系繊維(例えば、レーヨン繊維、アセテート繊維)、ハロゲン含有樹脂(例えば、塩化ビニル系繊維、塩化ビニリデン系樹脂、フッ化ビニル系繊維、ポリフッ化ビニリデン、ポリフッ化ビニリデン−ヘキサフルオロプロピレン共重合体)、ポリイミド系繊維、ポリベンズイミダゾール系繊維、ポリアリレート系繊維、ポリフェニレンサルファイド系繊維などが例示できる。
これらの繊維のうち、ポリビニルアルコール系繊維、エチレン−ビニルアルコール系繊維、ポリアミド系繊維、およびポリエステル系繊維などが好ましい。
[Retaining layer]
The holding layer is provided to hold the protective layer, and is not particularly limited as long as a specific air permeability can be secured over the entire laminated fabric, and may be a woven or knitted fabric or a non-woven fabric.
The holding layer may be formed from any of natural fibers such as animal fibers and plant fibers and various synthetic fibers depending on the application. These fibers may be used alone or in combination.
Synthetic fibers include polyvinyl alcohol fibers, ethylene-vinyl alcohol fibers, polyamide fibers (for example, aliphatic polyamide fibers such as nylon 6, nylon 66, nylon 46, nylon 610, nylon 11, and nylon 12, and alicyclic rings). Aromatic polyamide fiber, aromatic polyamide fiber such as aramid, semi-aromatic polyamide fiber made of aromatic dicarboxylic acid and aliphatic alkylene diamine), polyolefin fiber (eg, polyethylene fiber, polypropylene fiber, polypropylene-polyethylene) Composite fiber), polyester fiber (for example, polyethylene terephthalate fiber), acrylic fiber (for example, polyacrylonitrile fiber, polymethyl methacrylate fiber, etc.), polyurethane fiber, and cellulose fiber (for example, , Rayon fiber, acetate fiber), halogen-containing resin (for example, vinyl chloride fiber, vinylidene chloride resin, vinyl fluoride fiber, polyvinylidene fluoride, polyvinylidene fluoride-hexafluoropropylene copolymer), polyimide fiber, Examples thereof include polybenzimidazole fiber, polyarylate fiber, and polyphenylene sulfide fiber.
Of these fibers, polyvinyl alcohol fibers, ethylene-vinyl alcohol fibers, polyamide fibers, and polyester fibers are preferable.

保持層を形成する繊維の繊度は、積層布帛に求められる風合いなどに応じて自由に設定でき、例えば、0.1〜1000dtex程度、好ましくは1〜400dtex程度であってもよい。また、保持層が織物である場合、経糸および緯糸の繊度は、同一であっても、異なっていてもよいが、経糸の繊度/緯糸の繊度=10/1〜1/10程度、好ましくは5/1〜1/5程度であってもよい。   The fineness of the fibers forming the holding layer can be freely set according to the texture required for the laminated fabric, and may be, for example, about 0.1 to 1000 dtex, preferably about 1 to 400 dtex. When the holding layer is a woven fabric, the fineness of the warp and the weft may be the same or different, but the fineness of the warp / the fineness of the weft is about 10/1 to 1/10, preferably 5 / 1 to 1/5 may be sufficient.

保持層の目付けは、保持層の形態などに応じて自由に設定でき、本発明で規定する通気度および捕集性を確保する限り特に限定されないが、例えば、5〜100g/m程度、好ましくは10〜90g/m程度であってもよい。The basis weight of the holding layer can be freely set according to the form of the holding layer and is not particularly limited as long as the air permeability and the trapping property defined in the present invention are ensured. For example, about 5 to 100 g / m 2 , preferably May be about 10 to 90 g / m 2 .

保持層の形態は織布、不織布、編布あるいは合成紙等が挙げられ、積層布帛全体として、所定の通気性および捕集性を有する限り特に限定されない。織布、不織布、編布あるいは合成紙は、公知または慣用の手法で形成することができる。
これらの保持層の形態のうち、捕集性および通気性の観点から、保持層が不織布であることが好ましい。
Examples of the shape of the holding layer include woven fabric, non-woven fabric, knitted fabric, and synthetic paper, and are not particularly limited as long as the entire laminated fabric has predetermined air permeability and collection property. The woven fabric, non-woven fabric, knitted fabric or synthetic paper can be formed by a known or conventional technique.
Among these forms of the holding layer, the holding layer is preferably a nonwoven fabric from the viewpoint of trapping property and air permeability.

不織布にて保持層を製造する際の製造方法は特に制限されず、スパンボンド法、メルトブローン法、スパンレース法、サーマルボンド法、ケミカルボンド法、エアレイド法、ニードルパンチ法等、いずれにも適応できる。   The production method for producing the retaining layer with a nonwoven fabric is not particularly limited, and can be applied to any of the spunbond method, meltblown method, spunlace method, thermal bond method, chemical bond method, airlaid method, needle punch method, etc. .

(減容性保持層)
さらに、本発明では、減容性の観点から、保持層が60℃以上の温水に浸漬することで5〜90%収縮する繊維からなる減容性保持層(A層)であってもよい。すなわち、50℃以下の作業環境において使用する際、汗等の水分では収縮することなく粉塵、感染性病原体やウィルスに対する防護機能を発揮し、廃棄時に60℃以上の温水に浸漬することで、布帛を構成している繊維の一部が収縮し、布帛全体が減容するものである。
このような特徴を有する場合、60℃以上の温水に浸漬することで5〜90%収縮する繊維を用いてなる層(A層)に、50℃以下の水中で収縮しない層(B層)が貼り合わされてなる積層体とすることにより、後述するが、得られる防護用布帛およびそれからなる防護衣類は減容性に優れるものとなる。
(Volume reduction retention layer)
Further, in the present invention, from the viewpoint of volume reduction, the volume reduction holding layer (A layer) may be composed of fibers that shrink by 5 to 90% when immersed in warm water of 60 ° C. or higher. That is, when used in a working environment of 50 ° C. or lower, the fabric exhibits a protective function against dust, infectious pathogens and viruses without contracting with moisture such as sweat, and is immersed in warm water of 60 ° C. or higher at the time of disposal. A part of the fibers constituting the fabric shrinks, and the entire fabric is reduced in volume.
When it has such a feature, a layer (B layer) that does not shrink in water of 50 ° C. or less is used in a layer (A layer) made of fibers that shrink by 5 to 90% when immersed in warm water of 60 ° C. or more. Although it is mentioned later by using the laminated body bonded together, the protective fabric obtained and the protective clothing made thereof are excellent in volume reduction.

本発明において、防護衣類用布帛全体を減容させるためには、保持層を構成する繊維の少なくとも一部が、温水に浸漬することで収縮する減容性繊維であってもよい。
このような減容性繊維としては親水性の繊維が好ましく、より具体的には水溶性合成高分子が好ましく、特にPVA系繊維であることが好ましい。PVA系繊維は生分解性を有するため、埋設時の環境への影響という点からも優れている。
In the present invention, in order to reduce the volume of the entire protective clothing fabric, at least a part of the fibers constituting the holding layer may be a volume-reducing fiber that shrinks when immersed in warm water.
Such a volume-reducing fiber is preferably a hydrophilic fiber, more specifically a water-soluble synthetic polymer, and particularly preferably a PVA fiber. Since the PVA fiber is biodegradable, it is excellent from the viewpoint of influence on the environment at the time of embedding.

本発明のA層に好適に用いられるPVA系繊維を構成するビニルアルコール系ポリマーは特に限定されないが、実用的な機械的性能の点から、粘度平均重合度1000以上、特に1500以上とするのが好ましく、紡糸性、コストの面から5000以下とするのが好ましい。また同じ理由からケン化度が50モル%以上であるのが好ましく、より好ましくは65モル%以上、さらに好ましくは80モル%以上である。
ビニルアルコール系ポリマーには他のモノマーが共重合されていてもよく、共重合成分としては例えばエチレン、酢酸ビニル、イタコン酸、ビニルアミン、アクリルアミド、ピバリン酸ビニル、無水マレイン酸、スルホン酸含有ビニル化合物などが挙げられる。
実用的な機械的性能の点からはビニルアルコールユニットを全構成ユニットの70モル%以上含有するポリマーとするのが好ましい。また、本発明の効果を損なわない範囲であれば、繊維にビニルアルコール系ポリマー以外のポリマーや他の添加剤を含んでいてもかまわない。繊維性能等の点からはビニルアルコール系ポリマーの含有量を30質量%/繊維とするのが好ましく、特に50質量%/繊維とするのが好ましい。
The vinyl alcohol polymer constituting the PVA fiber suitably used for the A layer of the present invention is not particularly limited, but from the viewpoint of practical mechanical performance, the viscosity average polymerization degree is 1000 or more, particularly 1500 or more. Preferably, it is 5000 or less from the viewpoint of spinnability and cost. For the same reason, the saponification degree is preferably 50 mol% or more, more preferably 65 mol% or more, and further preferably 80 mol% or more.
Other monomers may be copolymerized with the vinyl alcohol polymer, and examples of copolymer components include ethylene, vinyl acetate, itaconic acid, vinylamine, acrylamide, vinyl pivalate, maleic anhydride, and sulfonic acid-containing vinyl compounds. Is mentioned.
From the viewpoint of practical mechanical performance, it is preferable to use a polymer containing 70 mol% or more of vinyl alcohol units in all the constituent units. Moreover, as long as the effect of the present invention is not impaired, the fiber may contain a polymer other than the vinyl alcohol polymer and other additives. From the viewpoint of fiber performance and the like, the content of the vinyl alcohol polymer is preferably 30% by mass / fiber, and particularly preferably 50% by mass / fiber.

次に本発明のA層に好適に用いられるPVA系繊維の製造方法について説明する。水溶性のPVA系ポリマーを水あるいは有機溶剤に溶解した紡糸原液を用いて後述する方法にて繊維を製造することにより、機械的特性に優れた繊維を効率的に得ることができる。もちろん、本発明の効果を損なわない範囲であれば、紡糸原液中に添加剤や他のポリマーが含まれていてもかまわない。紡糸原液を構成する溶媒としては、例えば水、ジメチルスルホキシド(DMSO)、ジメチルアセトアミド、ジメチルホルムアミド、N−メチルピロリドンなどの極性溶媒、グリセリン、エチレングリコールなどの多価アルコール類、およびこれら溶媒とロダン塩、塩化リチウム、塩化カルシウム、塩化亜鉛などの膨潤性金属塩の混合物、さらにはこれら溶媒どうしの混合物、あるいはこれら溶媒と水との混合物などが挙げられるが、この中では水やDMSOが低温溶解性、低毒性、低腐食性などの点で最も好適である。   Next, the manufacturing method of the PVA type fiber used suitably for A layer of this invention is demonstrated. By producing a fiber by a method described later using a spinning stock solution in which a water-soluble PVA polymer is dissolved in water or an organic solvent, a fiber having excellent mechanical properties can be efficiently obtained. Of course, additives and other polymers may be contained in the spinning dope so long as the effects of the present invention are not impaired. Examples of the solvent constituting the spinning dope include water, polar solvents such as dimethyl sulfoxide (DMSO), dimethylacetamide, dimethylformamide, and N-methylpyrrolidone, polyhydric alcohols such as glycerin and ethylene glycol, and these solvents and rhodan salts. Swellable metal salts such as lithium chloride, calcium chloride, and zinc chloride, and also a mixture of these solvents, or a mixture of these solvents and water. Among them, water and DMSO are soluble at low temperatures. It is most preferable in terms of low toxicity and low corrosiveness.

紡糸原液中のポリマー濃度は組成、重合度、溶媒によって異なるが、8〜40質量%の範囲であることが好ましい。紡糸原液の吐出時の液温は、紡糸原液がゲル化したり、分解・着色しない範囲であり、具体的には50〜150℃の範囲とすることが好ましい。
かかる紡糸原液をノズルから吐出して湿式紡糸、乾式紡糸、あるいは乾湿式紡糸を行えばよく、PVAポリマーに対して固化能を有する固化液に吐出すればよい。特に多ホールから紡糸原液を吐出する場合には、吐出時の繊維同士の膠着を防止する点から乾湿式紡糸法よりも湿式紡糸法の方が好ましい。なお、湿式紡糸法とは、紡糸口金から直接固化浴に紡糸原液を吐出する方法のことであり、一方乾湿式紡糸法とは、紡糸口金から一旦、空気や不活性ガス中に紡糸原液を吐出し、それから固化浴に導入する方法のことである。
The polymer concentration in the spinning dope varies depending on the composition, degree of polymerization, and solvent, but is preferably in the range of 8 to 40% by mass. The liquid temperature at the time of discharging the spinning dope is a range in which the spinning dope does not gel, decompose, or color, and is preferably in the range of 50 to 150 ° C.
Such spinning dope may be discharged from a nozzle to perform wet spinning, dry spinning, or dry / wet spinning, and may be discharged to a solidified solution having a solidifying ability for a PVA polymer. In particular, when the spinning solution is discharged from multiple holes, the wet spinning method is more preferable than the dry and wet spinning method from the viewpoint of preventing sticking of fibers during discharging. The wet spinning method is a method in which the spinning stock solution is discharged directly from the spinneret into the solidification bath, while the dry and wet spinning method is a method in which the spinning stock solution is discharged from the spinneret into air or inert gas once. And then into the solidification bath.

用いる固化液は、原液溶媒が有機溶媒の場合と水の場合では異なる。有機溶媒を用いた原液の場合は、得られる繊維強度等の点から固化液と原液溶媒からなる混合液が好ましく、固化液としてはメタノール、エタノールなどのアルコール類や、アセトン、メチルエチルケトンなどのケトン類などのPVA系ポリマーに対して固化能を有する有機溶媒、特にメタノールとDMSOからなる有機溶媒が好ましく、工程性および溶剤回収の点でそれらの混合比率は55/45〜80/20であることがより好ましい。また固化液の温度は30℃以下が好ましく、特に均一な冷却ゲル化のためには20℃以下、さらには15℃以下であるのが好ましい。一方、紡糸原液が水溶液の場合には、固化液を構成する固化溶媒としては、芒硝、塩化ナトリウム、炭酸ソーダなどの、PVA系ポリマーに対して固化能を有する無機塩類の水溶液が好適に挙げられる。該固化液は当然酸性、アルカリ性であってもかまわない。   The solidification solution used differs depending on whether the stock solution is an organic solvent or water. In the case of an undiluted solution using an organic solvent, a mixed solution consisting of a solidified solution and a undiluted solvent is preferable from the viewpoint of fiber strength and the like obtained. As the solidified solution, alcohols such as methanol and ethanol, and ketones such as acetone and methyl ethyl ketone. An organic solvent having a solidifying ability with respect to a PVA polymer such as methanol, particularly an organic solvent composed of methanol and DMSO is preferable, and the mixing ratio thereof is 55/45 to 80/20 in terms of processability and solvent recovery. More preferred. The temperature of the solidified liquid is preferably 30 ° C. or lower, and particularly preferably 20 ° C. or lower, more preferably 15 ° C. or lower for uniform cooling gelation. On the other hand, when the spinning dope is an aqueous solution, examples of the solidification solvent constituting the solidification solution include aqueous solutions of inorganic salts having solidification ability with respect to the PVA polymer, such as sodium sulfate, sodium chloride, and sodium carbonate. . Naturally, the solidified liquid may be acidic or alkaline.

次に固化された糸篠から紡糸原液の溶媒を抽出除去する。抽出の際に糸篠を湿延伸することが、乾燥時の繊維間膠着を抑制するうえでも、さらに得られる繊維の強度を高めるうえでも好ましい。湿延伸倍率としては1.5〜6倍であることが好ましい。抽出は、通常は複数の抽出浴を通すことにより行われる。抽出浴としては、固化液単独あるいは固化液と原液溶媒の混合液が用いられ、また抽出浴の温度は0〜80℃の範囲が採用される。   Next, the solvent of the spinning dope is extracted and removed from the solidified shinoshino. It is preferable to wet-draw the shinoshino during extraction in order to suppress inter-fiber sticking during drying and to further increase the strength of the resulting fiber. The wet draw ratio is preferably 1.5 to 6 times. Extraction is usually performed by passing through a plurality of extraction baths. As the extraction bath, a solidified solution alone or a mixed solution of a solidified solution and a stock solvent is used, and the temperature of the extraction bath is in the range of 0 to 80 ° C.

次いで糸篠を乾燥してPVA系繊維を製造する。このとき、必要に応じて油剤などを付与して乾燥すればよい。乾燥温度は210℃以下とするのが好ましく、特に乾燥初期の段階では160℃以下の低温で乾燥し、乾燥後半は高温で乾燥する多段乾燥が好ましい。さらに乾熱延伸および必要に応じて乾熱収縮を施し、PVA分子鎖を配向・結晶化させ、繊維の強度を高めるのが好ましい。これは繊維の強度が低すぎると、例えば不織布等の構造体に加工する場合、工程通過性が著しく悪化することが容易に予想されるためである。繊維の機械的性能を高めるためには、120〜280℃の温度条件下で乾熱延伸を行うのが好ましい。   Next, the thread Shino is dried to produce a PVA fiber. At this time, if necessary, an oil agent or the like may be applied and dried. The drying temperature is preferably 210 ° C. or lower. In particular, multistage drying in which drying is performed at a low temperature of 160 ° C. or lower in the initial stage of drying and drying at a high temperature in the latter half of the drying is preferable. Further, it is preferable to perform dry heat stretching and, if necessary, dry heat shrinkage to orient and crystallize the PVA molecular chain to increase the strength of the fiber. This is because if the strength of the fiber is too low, for example, when it is processed into a structure such as a nonwoven fabric, it is easily expected that the process passability will be significantly deteriorated. In order to improve the mechanical performance of the fiber, it is preferable to perform dry heat drawing under a temperature condition of 120 to 280 ° C.

上記した製造方法にて得られるPVA系繊維の繊度は特に限定されず、例えば0.1〜1000dtex、好ましくは1〜400dtexの繊維が広く使用できる。繊維の繊度はノズル径や延伸倍率により適宜調整すればよい。また繊維長についても特に制限なく、使用目的に応じて任意に選択することができる。   The fineness of the PVA fibers obtained by the above-described production method is not particularly limited, and for example, fibers of 0.1 to 1000 dtex, preferably 1 to 400 dtex can be widely used. What is necessary is just to adjust the fineness of a fiber suitably with a nozzle diameter or a draw ratio. The fiber length is not particularly limited and can be arbitrarily selected according to the purpose of use.

なお、60℃以上の温水中で5〜90%収縮する繊維は、A層の全体でなく一部として使用してもよい。60℃以上の温水中で5〜90%収縮する繊維をA層の一部として使用する場合、A層全体を60℃の温水中で5〜90%収縮する繊維で作製する場合よりも収縮率は低下するが、素材や構成比を選択することで積層体全体を5〜90%収縮させることができる。   In addition, you may use the fiber which shrink | contracts 5 to 90% in 60 degreeC or more warm water as a part instead of the whole A layer. When a fiber that shrinks 5 to 90% in warm water at 60 ° C. or higher is used as a part of the A layer, the shrinkage rate is higher than when the entire A layer is made of fiber that shrinks 5 to 90% in warm water at 60 ° C. However, the entire laminate can be shrunk by 5 to 90% by selecting materials and composition ratios.

[防護層]
防護層は、微粒子捕集性等の観点から極細繊維で形成されている伸縮性不織布を含む。前記伸縮性不織布は、通気性を確保する観点から、積層布帛においてフィルム化せず、実質的に不織布としての繊維形状を保持している。そのため、1μm石英粉塵の捕集効率が90%以上と高いフィルター性能を保持しながら、通気度が2cc/cm/secと高い通気性を両立することができる。また、防護層が伸縮性を有するため、保持層や後述する耐水層との追従性が良好であり、例えば、防護服として着用した際、伸縮などによる一定の負荷が積層布帛にかけられたとしても、防護層が破断しにくいため、積層布帛全体のフィルター性能の低下を抑制することができる。
[Protective layer]
The protective layer includes a stretchable nonwoven fabric formed of ultrafine fibers from the viewpoint of particulate collection properties and the like. From the viewpoint of ensuring breathability, the stretchable nonwoven fabric is not formed into a film in the laminated fabric and substantially retains the fiber shape as the nonwoven fabric. Therefore, the air permeability can be as high as 2 cc / cm 2 / sec while maintaining a high filter performance with a collection efficiency of 1 μm quartz dust of 90% or more. In addition, since the protective layer has stretchability, the followability with the holding layer and the water resistant layer described later is good. For example, even when a certain load due to expansion and contraction is applied to the laminated fabric when worn as protective clothing, Since the protective layer is not easily broken, it is possible to suppress a decrease in the filter performance of the entire laminated fabric.

極細繊維は、不織布に伸縮性を付与できる限り特に限定されないが、通常、弾性および繊維形成性の観点から、熱可塑性エラストマーを用いることが多い。
熱可塑性エラストマーとしては、スチレン系熱可塑性エラストマー、ウレタン系熱可塑性エラストマー、オレフィン系熱可塑性エラストマー、塩化ビニル系熱可塑性エラストマー、ポリエステル系熱可塑性エラストマー、ポリアミド系熱可塑性エラストマーなどが例示できる。これらの熱可塑性エラストマーは、単独でまたは組み合わせて用いてもよい。また、前記エラストマーは、保持層の項で記載した合成繊維を構成する樹脂(例えば、オレフィン系樹脂など)などをブレンドしたポリマーブレンド型熱可塑性エラストマーであってもよい。さらに、必要に応じて、前記エラストマーに対して、有機若しくは無機粉体を1種類以上混合して用いてもよい。
The ultrafine fiber is not particularly limited as long as it can impart stretchability to the nonwoven fabric, but usually, a thermoplastic elastomer is often used from the viewpoints of elasticity and fiber formation.
Examples of the thermoplastic elastomer include a styrene thermoplastic elastomer, a urethane thermoplastic elastomer, an olefin thermoplastic elastomer, a vinyl chloride thermoplastic elastomer, a polyester thermoplastic elastomer, and a polyamide thermoplastic elastomer. These thermoplastic elastomers may be used alone or in combination. Further, the elastomer may be a polymer blend type thermoplastic elastomer blended with a resin (for example, olefin resin) constituting the synthetic fiber described in the section of the holding layer. Furthermore, if necessary, one or more organic or inorganic powders may be mixed with the elastomer.

ウレタン系熱可塑性エラストマーは、低分子グリコールとジイソシアネート類とで構成されるハードセグメント、および高分子ジオールとジイソシアネートとで構成されるソフトセグメントから構成される。
前記低分子グリコールとしては、例えば、エチレングリコール、1,4−ブタンジオール、1,6−ヘキサンジオールなどのC1−10ジオールなどが挙げられ、前記高分子ジオールとしては、ポリ(1,4−ブチレンアジペート)、ポリ(1,6−ヘキサンアジペート)、ポリカプロラクトン、ポリエチレングリコール、ポリプロレングリコール、ポリオキシテトラメチレングリコールなどが挙げられ、ジイソシアネートとしては、例えばトリレンジイソシアネート、4,4−ジフェニルメタンジイソシアネート、ヘキサメチレンジイソシアネート、イソホロンジイソシアネートなどが挙げられる。
The urethane-based thermoplastic elastomer is composed of a hard segment composed of a low molecular glycol and a diisocyanate, and a soft segment composed of a polymer diol and a diisocyanate.
Examples of the low molecular glycol include C 1-10 diols such as ethylene glycol, 1,4-butanediol, and 1,6-hexanediol, and the high molecular diol includes poly (1,4- Butylene adipate), poly (1,6-hexane adipate), polycaprolactone, polyethylene glycol, polyprolene glycol, polyoxytetramethylene glycol and the like. Examples of the diisocyanate include tolylene diisocyanate, 4,4-diphenylmethane diisocyanate, Examples include hexamethylene diisocyanate and isophorone diisocyanate.

スチレン系熱可塑性エラストマーとしては、SBS(スチレン/ブタジエン/スチレンブロック共重合体)、SIS(スチレン/イソプレン/スチレンブロック共重合体)、SEBS(スチレン/エチレン/ブタジエン/スチレンブロック共重合体)、SEPS(スチレン/エチレン/プロピレン/スチレンブロック共重合体)などが挙げられる。   Styrenic thermoplastic elastomers include SBS (styrene / butadiene / styrene block copolymer), SIS (styrene / isoprene / styrene block copolymer), SEBS (styrene / ethylene / butadiene / styrene block copolymer), SEPS. (Styrene / ethylene / propylene / styrene block copolymer) and the like.

オレフィン系熱可塑性エラストマーは、ポリエチレンまたはポリプロピレンをハードセグメントをとし、SEBSやエチレン/プロピレン共重合体をソフトセグメントとして構成される。   The olefinic thermoplastic elastomer is composed of polyethylene or polypropylene as a hard segment and SEBS or an ethylene / propylene copolymer as a soft segment.

塩化ビニル系熱可塑性エラストマーは、結晶ポリ塩化ビニルをハードセグメントとし、非晶ポリ塩化ビニルやアクリロニトリルをソフトセグメントとして構成される。   The vinyl chloride thermoplastic elastomer is composed of crystalline polyvinyl chloride as a hard segment and amorphous polyvinyl chloride or acrylonitrile as a soft segment.

ポリエステル系熱可塑性エラストマーは、飽和ポリエステルをハードセグメントとし、脂肪族ポリエーテルまたは脂肪族ポリエステルをソフトセグメントとして構成される。   The polyester-based thermoplastic elastomer is composed of a saturated polyester as a hard segment and an aliphatic polyether or aliphatic polyester as a soft segment.

ポリアミド系熱可塑性エラストマーは、ポリアミドをハードセグメントとし、非晶性でガラス転移温度の低いポリエーテルやポリエステルをソフトセグメントとして構成される。   The polyamide-based thermoplastic elastomer is composed of polyamide as a hard segment and amorphous or low polyether or polyester having a low glass transition temperature as a soft segment.

これらの熱可塑性エラストマーのうち、耐熱性の観点から、SEPS、SEBS、ウレタン系熱可塑性エラストマー、ポリエステル系熱可塑性エラストマー、およびポリアミド系熱可塑性エラストマーが好ましい。   Among these thermoplastic elastomers, SEPS, SEBS, urethane-based thermoplastic elastomer, polyester-based thermoplastic elastomer, and polyamide-based thermoplastic elastomer are preferable from the viewpoint of heat resistance.

このような耐熱性伸縮性不織布では、防護層と保持層とを熱圧着により一体化して積層布帛する場合であっても、伸縮性不織布が実質的にフィルム化することないため、積層布帛に対して所定の通気性を確保することができる。   In such a heat-resistant elastic nonwoven fabric, even when the protective layer and the holding layer are integrated by thermocompression bonding to form a laminated fabric, the elastic nonwoven fabric does not substantially form a film. Predetermined air permeability can be ensured.

なお、保護層が、温水で収縮する減容性保持層(A層)である場合、防護層を50℃以下の水中で収縮しない層(B層)とし、両者を貼り合せて積層体とすることで、60℃以上の温水により収縮する減容性積層布帛とてもよい。   When the protective layer is a volume-reducing holding layer (A layer) that shrinks with warm water, the protective layer is a layer that does not shrink in water of 50 ° C. or less (B layer), and the two are bonded to form a laminate. Therefore, the volume-reduced laminated fabric that shrinks with hot water of 60 ° C. or higher is very good.

この場合、B層は、素材、目付、厚み等特に制限はなく、防護対象物にあわせて任意に選択可能であるが、50℃以下の作業環境において使用する際、汗等の水分で実質的に収縮しない程度の耐水性を有するのが好ましい。   In this case, the layer B is not particularly limited in terms of material, basis weight, thickness, etc., and can be arbitrarily selected according to the object to be protected. It is preferable to have water resistance that does not shrink.

伸縮性不織布を構成する極細繊維の平均繊維径は、通気性とフィルター性とを両立する観点から、例えば、10μm以下(例えば、10nm〜8μm程度)であるのが好ましく、5μm以下であるのがより好ましい。このような極細繊維は、メルトブローン法などの公知の方法で作製することができる。   The average fiber diameter of the ultrafine fibers constituting the stretchable nonwoven fabric is, for example, preferably 10 μm or less (for example, about 10 nm to 8 μm), preferably 5 μm or less, from the viewpoint of achieving both air permeability and filter properties. More preferred. Such ultrafine fibers can be produced by a known method such as a melt blown method.

特に、通気性および防護性を向上させる観点から、極細繊維は、平均繊維直径が10〜1000nm(好ましくは15〜800nm程度、さらに好ましくは25〜600nm程度)のナノファイバーであってもよい。
上記したような防護性と通気度のバランスの点では、如何に圧力損失が少なくかつ有害な微粒子等を捕捉できるかがポイントであるが、ナノファイバーは、Slip Flow効果でろ過における圧損が低く、通気性が高いことが特徴で、防護性と通気性を両立させるものとして好適である〔川口武行、「ナノファイバーテクノロジーを用いた高度産業発掘戦略」(本宮達也監修)、第10章、p373〕。
尚、本発明における繊維径とは、5000倍で撮影した繊維集合体の電子顕微鏡写真から得られる繊維の横断面における直径を意味し、無作為に50本抽出してその繊維径を測定した平均値である。
In particular, from the viewpoint of improving air permeability and protective properties, the ultrafine fibers may be nanofibers having an average fiber diameter of 10 to 1000 nm (preferably about 15 to 800 nm, more preferably about 25 to 600 nm).
In terms of the balance between protection and air permeability as described above, the point is how little pressure loss is possible and harmful particulates can be captured, but nanofibers have low pressure loss in filtration due to the Slip Flow effect, It is characterized by high air permeability, and is suitable for achieving both protection and air permeability [Takeyuki Kawaguchi, “Advanced industrial excavation strategy using nanofiber technology” (supervised by Tatsuya Motomiya), Chapter 10, p373 ].
In addition, the fiber diameter in this invention means the diameter in the cross section of the fiber obtained from the electron micrograph of the fiber aggregate image | photographed by 5000 time, The random which extracted 50 fibers randomly and measured the fiber diameter Value.

伸縮性不織布の目付けは、本発明で規定する通気性および捕集性を充足する限り特に制限されないが、極細繊維の平均繊維径の大小により、不織布の目付け量は変化してもよい。   The basis weight of the stretchable nonwoven fabric is not particularly limited as long as the air permeability and the trapping property defined in the present invention are satisfied, but the basis weight of the nonwoven fabric may vary depending on the average fiber diameter of the ultrafine fibers.

例えば、極細繊維の平均繊維径が1μmを超える場合、不織布の目付けは1〜20g/m程度が好ましく、5〜15g/m程度がより好ましい。For example, if more than an average fiber diameter of 1μm of ultrafine fibers, nonwoven basis weight is preferably about from 1 to 20 g / m 2, about 5 to 15 g / m 2 is more preferable.

また、例えば、極細繊維の平均繊維径が1μm以下である場合、不織布の目付けは0.01〜10g/m程度が好ましく、より好ましくは、0.03〜8g/m程度であり、更には0.05〜6g/m程度が好ましい。For example, when the average fiber diameter of the ultrafine fibers is 1μm or less, nonwoven fabric of basis weight is preferably about 0.01 to 10 g / m 2, more preferably from about 0.03~8g / m 2, further Is preferably about 0.05 to 6 g / m 2 .

平均繊維径に応じた目付の量が多すぎると、アスベスト等人体に有害な微細粉塵の通過を防護する性能は向上するものの、前記した通気度が2cc/cm/secを下回る場合がある。特に、ナノファイバーの場合、ナノファイバーの比率が増える分コストアップに繋がり好ましくない。一方で目付の量が少なすぎると、通気性は良好なるも、保持層全体に均一に分布するのが困難であり、その結果1μm石英粉塵の捕集効率が90%を下回る場合があるため好ましくない。When the amount of basis weight according to the average fiber diameter is too large, the performance of protecting passage of fine dust harmful to the human body such as asbestos is improved, but the above-mentioned air permeability may be less than 2 cc / cm 2 / sec. In particular, in the case of nanofibers, the increase in the ratio of nanofibers leads to an increase in cost, which is not preferable. On the other hand, if the amount of basis weight is too small, air permeability is good, but it is difficult to uniformly distribute the entire holding layer, and as a result, the collection efficiency of 1 μm quartz dust may be less than 90%, which is preferable. Absent.

防護層は、伸縮性不織布で構成されるため、非伸縮性不織布よりも引張破断伸度を向上できる。例えば、伸縮性不織布の引張破断伸度は、幅15mmの短冊状試験片をJIS P8113に準拠して測定した場合、例えば、30%以上(例えば、30〜200%程度)、好ましくは35〜180%程度であってもよい。   Since the protective layer is composed of a stretchable nonwoven fabric, the tensile breaking elongation can be improved as compared with the non-stretchable nonwoven fabric. For example, the tensile breaking elongation of the stretchable nonwoven fabric is, for example, 30% or more (for example, about 30 to 200%), preferably 35 to 180 when a strip-shaped test piece having a width of 15 mm is measured according to JIS P8113. % May be sufficient.

伸縮性不織布は、極細繊維を用いて、前記保持層の項で記載した不織布の製造方法で作製することができる。また、特に極細繊維がナノファイバーである場合、ナノファイバーで形成された不織布は、以下のような方法を用いて製造してもよい。   The stretchable nonwoven fabric can be produced by using the ultrafine fibers by the nonwoven fabric manufacturing method described in the section of the holding layer. In particular, when the ultrafine fiber is a nanofiber, the nonwoven fabric formed of the nanofiber may be manufactured using the following method.

まず、上記ナノファイバーは、例えば、以下の方法を用いて製造してもよい。ポリマー原液としては、ポリマーを溶解させることのできる溶媒に溶解させた溶解液、或いは加熱により溶融した溶融原液等いずれも好適に選定できる。次に、これら紡糸原液を用いて静電紡糸法によりナノファイバーを前記B層に積層乃至は複合する。静電紡糸の方法としては、紡糸原液を供給できる導電性部材に高電圧を印加することで、接地した対極側にナノファイバーを堆積させる方法が挙げられる。この方法により、原液供給部から吐出された紡糸原液が帯電***され、ついで電場により液滴の一点からファイバーが連続的に引き出され、分割された繊維が多数拡散し、原液供給部より数cm〜数十cm離れた設置された捕集ベルトあるいはシートに堆積する。堆積と共に微膠着して繊維間の移動を防止し、さらに新たな微細繊維が逐次堆積することで緻密なシートが得られる。   First, you may manufacture the said nanofiber using the following methods, for example. As the polymer stock solution, either a solution dissolved in a solvent capable of dissolving the polymer or a melt stock solution melted by heating can be suitably selected. Next, nanofibers are laminated or combined with the B layer by electrostatic spinning using these spinning stock solutions. Examples of the electrostatic spinning method include a method of depositing nanofibers on the grounded counter electrode side by applying a high voltage to a conductive member capable of supplying a spinning solution. By this method, the spinning stock solution discharged from the stock solution supply unit is charged and split, and then the fiber is continuously drawn out from one point of the droplet by the electric field, and a large number of divided fibers are diffused. It accumulates on a collection belt or sheet installed several tens of centimeters away. A fine sheet is obtained by finely adhering with the deposition to prevent the movement between the fibers, and further, the new fine fibers are sequentially deposited.

すなわち、図1において、ポリマーを溶解した紡糸原液は、定量ポンプ1により計量送液され、分配整流ブロック2により均一な圧力と液量となるように分配され口金部3に送られる。口金部3には中空針状の1ホール毎に突出させた口金4が取り付けられ、電気絶縁部5によって電気が口金部3全体に洩れるのを防止している。導電材料で作られた突出した口金4は無端コンベアからなる形成シート引き取り装置7の進行方向に直角方向に多数並列に垂直下向きに取り付けられ、直流高電圧発生電源の一方の出力端子を該突出した口金4に取り付け、各突出口金4は導線により印加を可能にしている。形成シート引き取り装置7の無端コンベアにはアースをとった導電性部材8が取り付けられ、印加された電位が中和できるようになっている。口金部3より突出口金4に圧送された紡糸原液は帯電***され、次いで電場により液滴の1点からファイバーが連続的に引き出され分割された繊維が多数拡散し、形成シート引き取り装置7に取り付けられた導電性部材上に堆積し、微膠着が進み、シートと引き取り装置により移動され、その移動と共に次の突出口金の微細繊維の堆積を受け、次々と堆積を繰り返しながら緻密かつ均一なシート状物が形成される。   That is, in FIG. 1, the spinning stock solution in which the polymer is dissolved is metered by the metering pump 1, distributed by the distribution rectifying block 2 so that the pressure and liquid amount are uniform, and sent to the base unit 3. A base 4 that protrudes for each hole in the shape of a hollow needle is attached to the base 3, and electricity is prevented from leaking to the entire base 3 by an electrical insulating part 5. A plurality of protruding caps 4 made of a conductive material are vertically and vertically attached in parallel to the direction of travel of the forming sheet take-up device 7 formed of an endless conveyor, and protruded from one output terminal of a DC high voltage generating power source. Attached to the cap 4, each protruding cap 4 can be applied by a conducting wire. The endless conveyer of the forming sheet take-up device 7 is provided with a grounded conductive member 8 so that the applied potential can be neutralized. The spinning stock solution pumped from the base 3 to the protruding base 4 is charged and split, then the fiber is continuously drawn from one point of the droplet by the electric field, and a large number of the divided fibers are diffused and attached to the forming sheet take-up device 7 Accumulated on the conductive member, fine adhesion progresses, is moved by the sheet and the take-up device, and with the movement, the fine fibers of the next protruding cap are deposited, and the dense and uniform sheet shape is repeatedly deposited one after another Things are formed.

[積層布帛]
積層布帛は、保持層に防護層が貼り合わされて構成される。保持層と防護層とを貼り合わせて積層体とする方法は、特に制限されない。例えば、不織布を用いる場合にはサーマルボンド、ケミカルボンド、ニードルパンチ、水流絡合等、いずれの方法も好適に適応できる。また、スパンボンド、メルトブロー、エレクトロスピニング等の方法により保持層に防護層をコーティングすることも何ら問題なく好適に用いることができる。
[Laminated fabric]
The laminated fabric is configured by attaching a protective layer to a holding layer. The method for laminating the holding layer and the protective layer is not particularly limited. For example, when a non-woven fabric is used, any method such as thermal bonding, chemical bonding, needle punching, hydroentangling, etc. can be suitably applied. In addition, coating the protective layer with a protective layer by a method such as spunbonding, meltblowing, electrospinning, etc. can be suitably used without any problem.

また、保持層と防護層との間に親和性がない場合には、層間に両成分に対して親和性がある接着層(例えば、バインダーによる接着や熱融着による接着のための層)を挿入してもよい。例えば、熱融着性接着層を設ける場合、伸縮性不織布(防護層)を形成する繊維の軟化点(T)と、熱融着性接着層の軟化点(T)との関係は、T<Tであってもよく、好ましくはT+5≦T程度、より好ましくはT+10≦T程度であってもよい。In addition, when there is no affinity between the holding layer and the protective layer, an adhesive layer having an affinity for both components between the layers (for example, a layer for adhesion by binder or adhesion by thermal fusion) is used. It may be inserted. For example, when providing a heat-fusible adhesive layer, the relationship between the softening point (T B ) of the fiber forming the stretchable nonwoven fabric (protective layer) and the softening point (T H ) of the heat-fusible adhesive layer is: T H <T B may be sufficient, preferably about T H + 5 ≦ T B , more preferably about T H + 10 ≦ T B.

また、本発明では、積層布帛の耐水性を向上させるため、防護層を中間層として、保持層の反対側に耐水層をさらに積層してもよい。耐水層を積層することにより、たとえ高湿度下や、水分が付着しやすい環境下で積層布帛を使用しても、水分の付着によって生じる防護層の通気性および捕集性の低下を保護することができる。   In the present invention, in order to improve the water resistance of the laminated fabric, a protective layer may be used as an intermediate layer and a water resistant layer may be further laminated on the opposite side of the holding layer. By laminating a water-resistant layer, even if a laminated fabric is used under high humidity or in an environment where moisture easily adheres, the deterioration of the breathability and collection ability of the protective layer caused by the adhesion of moisture is protected. Can do.

例えば、耐水層として、透湿防水性不織布を用いてもよい。透湿防水性不織布は、保護層の項で記載した各種繊維で形成した不織布に対して、撥水性または防水性コーティングを行うことにより形成することもできるが、防護層の通気性を確保する観点から、疎水性繊維で形成されることが好ましい。疎水性繊維としては、例えば、保護層の項で記載したポリオレフィン系繊維、ポリエステル系繊維を挙げることができ、ポリオレフィン系繊維が好ましい。耐水層の積層方法としては、保持層と防護層との積層方法に記載した方法のいずれかを用いることができる。耐水層の目付は、耐水性を付与する観点から、例えば、5〜50g/m程度、好ましくは10〜45g/m程度であってもよい。For example, a moisture permeable waterproof nonwoven fabric may be used as the water resistant layer. The moisture-permeable and waterproof nonwoven fabric can be formed by applying a water-repellent or waterproof coating to the nonwoven fabric formed with various fibers described in the section of the protective layer, but the viewpoint of ensuring the breathability of the protective layer Therefore, it is preferably formed of hydrophobic fibers. Examples of the hydrophobic fibers include polyolefin fibers and polyester fibers described in the section of the protective layer, and polyolefin fibers are preferable. As a method for laminating the water resistant layer, any of the methods described in the method for laminating the holding layer and the protective layer can be used. From the viewpoint of imparting water resistance, the basis weight of the water-resistant layer may be, for example, about 5 to 50 g / m 2 , preferably about 10 to 45 g / m 2 .

また、積層布帛において、保持層、防護層、(及び必要に応じて設けられる耐水層)の総目付は、保持層および/または防護層の特性に応じて自由に設定してもよく、例えば、30〜100g/m程度、好ましくは40〜90g/m程度であってもよい。
特に、保持層が減容性を有する場合、積層布帛全体を収縮させる観点から、保持層の厚みに対する防護層(及び必要に応じて設けられる耐水層)の厚みは、保持層の厚みの2倍以下、好ましくは1.5倍以下程度であってもよい。
In the laminated fabric, the total weight of the holding layer, the protective layer, and (and the water resistant layer provided as necessary) may be freely set according to the characteristics of the holding layer and / or the protective layer. 30 to 100 g / m 2 approximately, preferably about 40~90g / m 2.
In particular, when the holding layer has a volume reduction property, the thickness of the protective layer (and the water resistant layer provided as necessary) with respect to the thickness of the holding layer is twice the thickness of the holding layer from the viewpoint of shrinking the entire laminated fabric. Hereinafter, it may be preferably about 1.5 times or less.

なお、必要に応じて、保持層の一部にフィルムを貼り合わせて使用してもよい。この場合も、繊維とフィルムの貼り合わせ方法は特に限定されるものではなく、バインダーによる接着や熱融着による接着を適用できる。
また、必要に応じて、前記得られたシート状物が各種用途に適合するように、各種後処理を実施することができる。例えば、緻密化するためのカレンダー処理や親水処理、撥水処理、界面活性剤付着処理等を実施することができる。
In addition, you may stick and use a film for a part of holding | maintenance layer as needed. Also in this case, the method for bonding the fiber and the film is not particularly limited, and adhesion by a binder or adhesion by heat fusion can be applied.
Moreover, various post-processing can be implemented as needed so that the said obtained sheet-like material may suit various uses. For example, a calendar process for densification, a hydrophilic process, a water repellent process, a surfactant adhesion process, and the like can be performed.

また、本発明の防護衣類用布帛は、エレクトレット加工されていることがさらに好ましい。エレクトレットとは、外部に電界が存在しなくとも半永久的に電気分極を保持し、周囲に対して電界を形成する物質をいい、ポリプロピレン等の帯電しやすい素材で得られる。   The protective clothing fabric of the present invention is more preferably electret processed. An electret is a substance that retains electric polarization semi-permanently without an external electric field and forms an electric field with respect to the surroundings, and is obtained from a material that is easily charged, such as polypropylene.

エレクトレット加工することで、静電気力による捕集機能が付加されるため、通気度は変化しないまま微粒子の捕集効率が飛躍的に高めることができるからである。エレクトレット加工方法については、熱エレクトレット、エレクトロエレクトレット、フォトエレクトレット、ラジオエレクトレット、マグネットエレクトレット、メカノエレクトレットと多岐に渡る方式があるが、特に制限なく、どれも好適に使用できる。   This is because by performing electret processing, a collection function by electrostatic force is added, so that the collection efficiency of fine particles can be dramatically increased without changing the air permeability. As for the electret processing method, there are various methods such as a thermal electret, an electro electret, a photo electret, a radio electret, a magnet electret, and a mechano electret, and any method can be suitably used without any particular limitation.

このように得られる積層布帛は、防護の点からは1μm石英粉塵の捕集効率が90%以上であることが好ましく、より好ましくは93%以上、更に好ましくは96%以上である。   From the viewpoint of protection, the laminated fabric thus obtained preferably has a collection efficiency of 1 μm quartz dust of 90% or more, more preferably 93% or more, and still more preferably 96% or more.

人体に有害な粉塵、感染性病原体、ウィルスは様々な粒径を有しているが、代表的な有害粉塵であるアスベストは、長さが数μmから数十μmの繊維の集合体からなっていること、また感染性病原体を成すバクテリアや菌類の多くは2〜3μmであること、さらにはウィルス単独では0.01〜0.1μmであるが、実際の感染経路は患者からの咳等による飛沫感染の場合が多く、このような飛沫はほとんどが2μm以上であることなどから、1μm石英粉塵の捕集効率が90%以上捕集されれば、実質的にこれらの粉塵、感染性病原体、ウィルス等からほとんど完全に防護できると考えられる。
一方、1μm石英粉塵の捕集効率が90%未満であると前記したような防護性の面で好ましくない。
Dust, infectious pathogens, and viruses that are harmful to the human body have various particle sizes, but asbestos, a typical harmful dust, consists of an assembly of fibers that are several to tens of μm in length. In addition, most of the bacteria and fungi that make up infectious pathogens are 2 to 3 μm. Furthermore, the virus alone is 0.01 to 0.1 μm. In many cases, such droplets are mostly 2 μm or more. Therefore, if the collection efficiency of 1 μm quartz dust is 90% or more, these dusts, infectious agents, viruses It is thought that it can be almost completely protected from such as.
On the other hand, if the collection efficiency of 1 μm quartz dust is less than 90%, it is not preferable in terms of the protective properties as described above.

本発明の積層布帛は、人体への快適性を確保するから通気度が2cc/cm/sec以上である。通気度が2cc/cm/secを下回ると蒸れやすくなり好ましくない。好ましくは3cc/cm/sec以上、更に好ましくは3.5cc/cm/sec以上10cc/cm/sec以下である。前記1μm石英粉塵の捕集効率と通気度の関係は一般に防護性を向上させると通気性が低下し、蒸れ性が悪くなり、結果として使用特性すなわち着心地の低下をもたらすため、防護性と通気性が上記した性能の範囲で両立されていることが好ましい。The laminated fabric of the present invention has air permeability of 2 cc / cm 2 / sec or more because it ensures comfort to the human body. If the air permeability is less than 2 cc / cm 2 / sec, it tends to be stuffy, which is not preferable. Preferably they are 3 cc / cm < 2 > / sec or more, More preferably, it is 3.5 cc / cm < 2 > / sec or more and 10 cc / cm < 2 > / sec or less. The relationship between the trapping efficiency of 1 μm quartz dust and the air permeability generally improves the protective properties, and if the protective properties are improved, the breathability decreases and the stuffiness deteriorates. It is preferable that the properties are compatible within the above-described performance range.

本発明では、防護層として伸縮性不織布を用いるため、防護層と、他の層、すなわち保持層または防護層との追随性が良好である。したがって、一定の負荷をかけた後であっても、積層布帛全体の一体性を保つことが可能であり、フィルター性能の低下を防止することができる。本発明の積層布帛では、例えば、JIS L1096 B.23.1 A法に準拠して5回洗濯し、乾燥した積層布帛の1μm石英粉塵の捕集効率が90%以上(好ましくは93%以上、さらに好ましくは95%以上)であってもよい。   In the present invention, since a stretchable nonwoven fabric is used as the protective layer, the followability between the protective layer and other layers, that is, the holding layer or the protective layer is good. Therefore, even after a certain load is applied, it is possible to maintain the integrity of the entire laminated fabric, and it is possible to prevent a decrease in filter performance. In the laminated fabric of the present invention, for example, JIS L1096 B.I. 23.1 The collection efficiency of 1 μm quartz dust of a laminated fabric that has been washed five times according to the A method and dried may be 90% or more (preferably 93% or more, more preferably 95% or more).

積層布帛が耐水性を有する場合、積層布帛では、例えば、JIS L1092に準拠して測定した低水圧法による耐水圧が300〜1500mmHO程度、400〜1000mmHO程度であってもよい。耐水圧が低すぎると、防護層を水分から保護する役割を果たしにくくなり、耐水圧が高すぎると、積層布帛全体の通気性が所定の値を満たさなくなる虞がある。If the laminated fabric has a water resistance, a laminated fabric, for example, water pressure resistance due to the low water pressure method was measured according to JIS L1092 is 300~1500mmH 2 O about may be 400~1000mmH 2 O about. If the water pressure resistance is too low, it will be difficult to protect the protective layer from moisture. If the water pressure resistance is too high, the air permeability of the entire laminated fabric may not satisfy a predetermined value.

また、積層布帛が減容性を有する場合、減容性積層布帛は、60℃以上(例えば、60℃以上70℃未満)の温水中で5〜90%程度収縮してもよく、廃棄スペースの点からは10〜92%程度、更には20〜94%程度収縮することが好ましい。特に、収縮性を高める観点からは、70℃以上(例えば、70℃以上80℃未満)の温水中で、積層布帛は30〜95%、好ましくは40〜90%程度収縮してもよい。
尚、ここでいう収縮率とは、後述する[温水中での布帛の収縮率 %]に関する方法にて算出したものを示す。
In addition, when the laminated fabric has a volume-reducing property, the volume-reduced laminated fabric may shrink by about 5 to 90% in warm water of 60 ° C. or higher (for example, 60 ° C. or higher and lower than 70 ° C.). From the point of view, it is preferable to shrink about 10 to 92%, more preferably about 20 to 94%. In particular, from the viewpoint of enhancing the shrinkability, the laminated fabric may shrink by about 30 to 95%, preferably about 40 to 90% in warm water of 70 ° C or higher (for example, 70 ° C or higher and lower than 80 ° C).
The shrinkage referred to here is calculated by a method relating to [shrinkage percentage% of fabric in warm water] described later.

[減容性積層布帛の減容化方法]
本発明の積層布帛が減容性を有する場合、特殊な装置を必要とせずに低コストで容易に減容化することができる。
[Volume reduction method of volume-reduced laminated fabric]
When the laminated fabric of the present invention has a volume reduction capability, the volume can be easily reduced at a low cost without requiring a special apparatus.

例えば、減容性積層布帛(および該布帛から構成される防護材)を各種容器(例えば、プラスチック容器、ポリ袋)に入れ、前記積層布帛に対して60℃以上の温水を供給することにより、積層布帛の減容化を図ることができる。温水の供給方法としては、特に限定されず、容器に予め温水を注いでもよいし、密閉容器に水を注いだ後、その水を加熱することにより所定の温度としてもよい。   For example, by putting a volume-reduced laminated fabric (and a protective material composed of the fabric) into various containers (for example, plastic containers, plastic bags), and supplying warm water of 60 ° C. or higher to the laminated fabric, The volume of the laminated fabric can be reduced. The method for supplying warm water is not particularly limited, and warm water may be poured into the container in advance, or the water may be heated to a predetermined temperature after being poured into the sealed container.

例えば、加熱方法は、容器内の水温が60℃以上になるように加熱できればどんな方法でもよく、容器外部から熱風を与える方法、容器自体を熱水に浸漬する方法、あるいは電子レンジ等の誘電加熱装置で容器内部の水を加熱する方法など、好適に行える。   For example, the heating method may be any method as long as the water temperature in the container can be 60 ° C. or higher. A method of supplying hot air from the outside of the container, a method of immersing the container itself in hot water, or a dielectric heating such as a microwave oven. A method of heating the water inside the container with an apparatus can be suitably performed.

積層布帛に対する温水の割合は、積層布帛を減容できる限り特に限定されないが、たとえば、積層布帛100質量部に対して、温水200質量部以上(例えば250〜500質量部程度)、好ましくは温水300質量部以上(例えば350〜450質量部程度)であってもよい。   The ratio of the hot water to the laminated fabric is not particularly limited as long as the volume of the laminated fabric can be reduced. For example, the hot water is 200 parts by mass or more (for example, about 250 to 500 parts by mass), preferably the hot water 300 with respect to 100 parts by mass of the laminated fabric. It may be greater than or equal to part by mass (for example, about 350 to 450 parts by mass).

減容化する容器として、ポリ袋を用いた場合、積層布帛100質量部に対して200質量部以上の水と同時にポリ袋に入れた後密閉し、袋外部から加熱、乃至は電子レンジ等の誘電加熱装置で袋内部から加熱を施すことで、防護衣類を減容化させることができる。ここでいうポリ袋とは、水が漏れ出さないような防水性、防湿性が確保されており、使用温度で溶融・分解しないものであれば特に限定されず使用できる。   When a plastic bag is used as a container for volume reduction, it is sealed after being put in a plastic bag simultaneously with 200 parts by mass or more of water with respect to 100 parts by mass of the laminated fabric, and heated from the outside of the bag, or a microwave oven, etc. By applying heat from the inside of the bag with a dielectric heating device, the volume of the protective clothing can be reduced. The term “polybag” used herein is not particularly limited as long as it is waterproof and moisture-proof so that water does not leak out, and does not melt or decompose at the use temperature.

なお、密閉方法としても特に制限はなく、袋自身で縛り上げる方法や、止め具を利用して袋の開口部を閉塞する方法、またヒートシール等、好適に行える。   In addition, there is no restriction | limiting in particular as a sealing method, The method which ties up with a bag itself, the method of obstruct | occluding the opening part of a bag using a stopper, and heat sealing etc. can be performed suitably.

減容性積層布帛を使用した防護衣類は、使用後減容化させて輸送や廃棄を行うことができるため、輸送費や廃棄コストを削減することができる。   Since the protective clothing using the volume-reduced laminated fabric can be reduced in volume after use and transported or discarded, the transportation cost and the disposal cost can be reduced.

以下に本発明を実施例および比較例にてさらに詳しく説明するが、本発明はこれらに何等限定されるものではない。   The present invention will be described in more detail with reference to the following examples and comparative examples, but the present invention is not limited to these examples.

[温水中での布帛の収縮率 %]
布帛を10cm×10cm切り出し、これをフリーな状態で温水中に2分間浸漬する。浸漬後、布帛を取り出して軽く液切りし、布帛のタテ方向(X)、ヨコ方向(Y)の寸法(cm)を測定し、収縮率を下記式により算出する。
収縮率(%)={[(10−X)/10]+[(10−Y)/10]}/2×100
[The shrinkage of fabric in warm water%]
The fabric is cut out 10 cm × 10 cm, and immersed in warm water for 2 minutes in a free state. After soaking, the fabric is taken out and lightly drained, the dimensions (cm) in the vertical direction (X) and the horizontal direction (Y) of the fabric are measured, and the shrinkage is calculated by the following formula.
Shrinkage rate (%) = {[(10−X) / 10] + [(10−Y) / 10]} / 2 × 100

[粉塵捕集効率 %]
JIS T8151 防塵マスク試験法に準拠し、柴田科学製「マスクテスターAP−6310FP型」で粉塵捕集効率を測定した。粉塵は1μm石英粉塵を使用し、測定風速8.6cm/分の条件にて測定した。
また、JIS L1096 B.23.1A法に準拠して5回洗濯した後に、乾燥させたサンプルについても、前記と同様にして粉塵捕集効率を測定した。
[Dust collection efficiency%]
In accordance with JIS T8151 dust mask test method, dust collection efficiency was measured with “Mask Tester AP-6310FP type” manufactured by Shibata Kagaku. As the dust, 1 μm quartz dust was used, and the measurement was performed under a measurement wind speed of 8.6 cm / min.
In addition, JIS L1096 B.I. The dust collection efficiency was measured in the same manner as described above for the sample that had been washed five times in accordance with the 23.1A method and then dried.

[通気度 cc/cm/秒]
フラジール通気度試験機(東洋精機製作所製)にて測定した。
[Air permeability cc / cm 2 / sec]
It was measured with a Frazier permeability tester (manufactured by Toyo Seiki Seisakusho).

[防護層の引張破断伸度 %]
幅1.5cmの短冊状試験片について、JIS P8113試験法に準拠して測定を行った。
[Tensile rupture elongation% of protective layer]
Measurement was performed on a strip-shaped test piece having a width of 1.5 cm in accordance with the JIS P8113 test method.

[引張強力 N/5cm]
幅5cmの短冊状試験片について、JIS L1906試験法に準拠して測定を行った。
[Tensile strength N / 5cm]
A strip-shaped test piece having a width of 5 cm was measured according to the JIS L1906 test method.

[実施例1]
(1)ポリマー重合度1750、ケン化度98.5モル%、単糸繊度2.2dtex、繊維長51mm、強度5cN/dtexの捲縮を付与したPVA繊維(株式会社クラレ製「WN7」;60℃温水中での収縮率6%、70℃温水中の収縮率65%、溶解温度75℃)を用い、該繊維が100質量部からなる目付35g/mのランダムウェブを作製した。
(2)さらに、ポリマー重合度1750、ケン化度98.5モル%のPVAからなる10%水溶液を用意し、市販の泡立て機で泡立てたフォームを作製し、このフォームを前記(1)で得られたウェブ上にのせ、マングルで搾液することでPVA樹脂をウェブに均一に付与せしめた後、乾燥により不織布化する、所謂フォームボンド処理により不織布を作製した。このようにして得られた不織布を保持層とした。なお該保持層の収縮率は60℃温水中で15%、70℃温水中で70%であった。
(3)一方、防護層および耐水層は以下のとおり作製した。
セプトン(株式会社クラレ製「SEPTON2002」)とポリプロピレン(日本ポリ
ケム社製「ノバテックPP」)とをそれぞれ60/40(質量比)の比率で溶融混練してメルトブロー法で積層した目付10g/mのセプトン/ポリプロピレンブレンド不織布を防護層として作製した。
また、ポリプロピレン(日本ポリケム社製「ノバテックPP」)をメルトブロー法で作製した目付20g/mの不織布を耐水層として作製した。
(4)次いで、前記保持層と防護層と耐水層とを、この順に重ね合わせ、重ね合わせたものをカレンダー処理(カレンダー条件;温度130℃、接圧0.1MPa、処理速度5m/分)にて貼り合わせ、図2に示す断面構造を有する積層体を製造した。なお、図2において、Aは保持層を示し、Bは防護層を示し、Cは耐水層を示している。
(5)上記(4)の方法により製造した積層体からなる布帛の性能を表1に示す。このようにして得られた布帛は目付65g/m、引張強力120N/5cm×100N/5cm(MD方向×CD方向)、通気度2.1cc/cm/秒、1μm石英粉塵捕集効率97.3%、5回洗濯後の1μm石英粉塵捕集効率97.1%であり、積層布帛として通気性とフィルター性とを兼備するだけでなく、一体性に優れ、洗濯という負荷をかけた後であってもフィルター性を維持していた。そのため、この積層布帛は、防護衣類用布帛として十分な性能を備えているものであった。また、該布帛を60℃の温水に浸漬したところ12%収縮し、70℃温水中では61%収縮した。
[Example 1]
(1) PVA fiber having a polymer polymerization degree of 1750, a saponification degree of 98.5 mol%, a single yarn fineness of 2.2 dtex, a fiber length of 51 mm, and a strength of 5 cN / dtex (“WN7” manufactured by Kuraray Co., Ltd .; 60 A random web having a basis weight of 35 g / m 2 having 100 parts by mass of the fiber was prepared using a shrinkage ratio of 6% in warm water at 65 ° C, a shrinkage ratio of 65% in warm water at 70 ° C, and a melting temperature of 75 ° C.
(2) Further, a 10% aqueous solution composed of PVA having a polymer polymerization degree of 1750 and a saponification degree of 98.5 mol% was prepared, and a foamed foam was prepared with a commercially available foaming machine. This foam was obtained in the above (1). A non-woven fabric was produced by a so-called foam bonding process in which the PVA resin was uniformly applied to the web by placing on the resulting web and squeezing with a mangle, and then forming a non-woven fabric by drying. The nonwoven fabric thus obtained was used as a holding layer. The shrinkage ratio of the retaining layer was 15% in 60 ° C. warm water and 70% in 70 ° C. warm water.
(3) On the other hand, the protective layer and the water resistant layer were produced as follows.
Septon (“SEPTON 2002” manufactured by Kuraray Co., Ltd.) and polypropylene (“Novatech PP” manufactured by Nippon Polychem Co., Ltd.) were each melted and kneaded at a ratio of 60/40 (mass ratio) and laminated by the melt blow method with a basis weight of 10 g / m 2 . A septon / polypropylene blend nonwoven was prepared as a protective layer.
Moreover, the nonwoven fabric of 20 g / m < 2 > of fabric weights which produced the polypropylene ("Novatec PP" by Nippon Polychem Co., Ltd.) with the melt blow method was produced as a water-resistant layer.
(4) Next, the holding layer, the protective layer, and the water-resistant layer are superposed in this order, and the superposed layer is subjected to calendar treatment (calendar conditions; temperature 130 ° C., contact pressure 0.1 MPa, treatment speed 5 m / min). The laminated body which has a cross-sectional structure shown in FIG. 2 was manufactured. In FIG. 2, A indicates a retaining layer, B indicates a protective layer, and C indicates a water resistant layer.
(5) Table 1 shows the performance of the fabric made of the laminate produced by the method (4). The fabric thus obtained has a basis weight of 65 g / m 2 , tensile strength of 120 N / 5 cm × 100 N / 5 cm (MD direction × CD direction), air permeability 2.1 cc / cm 2 / sec, 1 μm quartz dust collection efficiency 97 .3%, 1μm quartz dust collection efficiency after washing 5 times, 97.1%, not only has both breathability and filterability as a laminated fabric, but also has excellent unity, after applying a load of washing Even so, the filter property was maintained. Therefore, the laminated fabric has sufficient performance as a protective clothing fabric. Further, when the fabric was immersed in warm water at 60 ° C., it shrank 12%, and in 70 ° C. warm water it contracted 61%.

[実施例2]
(1)ポリマー重合度1750、ケン化度98.5モル%、単糸繊度2.2dtex、繊維長51mm、強度5cN/dtexの捲縮を付与したPVA繊維(株式会社クラレ製「WN7」)を用い、該繊維が100質量部からなる目付35g/mのランダムウェブを作製後、エンボス処理を施してエンボス不織布を得た。エンボス条件は、接着面積率12%、温度180℃、線圧40kgf/cm、処理速度15m/分であった。この不織布を保持層とした。
(2)一方、防護層および耐水層は以下のとおり作製した。
ポリウレタン(株式会社クラレ製「クラミロン1190−000」)を10質量%となるようにジメチルホルムアミド(DMF)に投入後、90℃で攪拌溶解し、完全溶解したものを常温まで冷却して紡糸原液を得た。得られた紡糸原液を用い、図1の紡糸装置にて静電紡糸を行った。口金4として内径が0.9mmのニードルを使用した。また、口金4と形成シート引き取り装置7との間距離は12cmとした。なお、形成シート引き取り装置7には、実施例1と同じポリプロピレン(日本ポリケム社製「ノバテックPP」)をメルトブロー法で作製した目付20g/mのポリプロピレン不織布(耐水層)を予め巻きつけておいた。
次いで、コンベア速度0.1m/分の下、原液を所定の供給量で口金から押し出し、口金に25kV印加電圧を与えて、形成シート引き取り装置7に巻きつけた耐水層上にポリウレタンナノファイバーを1.0g/m積層させた。
(3)上記(1)の保持層と、上記(2)の防護層および耐水層とを、防護層が中間層となるように重ね合わせ、実施例1と同様の方法にてカレンダー処理を行ない、積層体を製造した。
(4)この積層体からなる布帛は、表1に示すとおり目付56g/m、引張強力64N/5cm×54N/5cm(MD方向×CD方向)、通気度5.7cc/cm/秒、1μm石英粉塵捕集効率99.9%、5回洗濯後の1μm石英粉塵捕集効率99.8%であり、積層布帛として通気性とフィルター性とを兼備するだけでなく、一体性に優れ、洗濯という負荷をかけた後であってもフィルター性を維持していた。そのため、この積層布帛は、防護衣類用布帛として十分な性能を備えているものであった。また、該布帛を60℃の温水に浸漬したところ11%収縮し、70℃温水中では58%収縮した。
[Example 2]
(1) A PVA fiber (“WN7” manufactured by Kuraray Co., Ltd.) imparted with a crimp of a polymer polymerization degree of 1750, a saponification degree of 98.5 mol%, a single yarn fineness of 2.2 dtex, a fiber length of 51 mm, and a strength of 5 cN / dtex. After using and producing a random web with a basis weight of 35 g / m 2 comprising 100 parts by mass of the fiber, an embossed nonwoven fabric was obtained by embossing. The embossing conditions were a bonding area ratio of 12%, a temperature of 180 ° C., a linear pressure of 40 kgf / cm, and a processing speed of 15 m / min. This nonwoven fabric was used as a holding layer.
(2) On the other hand, the protective layer and the water resistant layer were prepared as follows.
Polyurethane (“Kuraray 1190-000” manufactured by Kuraray Co., Ltd.) was added to dimethylformamide (DMF) so as to be 10% by mass, stirred and dissolved at 90 ° C., and completely dissolved, cooled to room temperature, and the spinning dope Obtained. Using the obtained spinning dope, electrostatic spinning was performed with the spinning device of FIG. A needle having an inner diameter of 0.9 mm was used as the base 4. The distance between the die 4 and the formed sheet take-up device 7 was 12 cm. In addition, a polypropylene nonwoven fabric (water resistant layer) having a basis weight of 20 g / m 2 prepared by melt blowing the same polypropylene as in Example 1 (“NOVATEC PP” manufactured by Nippon Polychem Co., Ltd.) is wound around the forming sheet take-up device 7 in advance. It was.
Next, under a conveyor speed of 0.1 m / min, the stock solution is extruded from the base at a predetermined supply rate, and a voltage of 25 kV is applied to the base to apply polyurethane nanofibers 1 on the water-resistant layer wound around the forming sheet take-up device 7. 0.0 g / m 2 was laminated.
(3) The holding layer of (1) above and the protective layer and water-resistant layer of (2) above are overlaid so that the protective layer is an intermediate layer, and calendering is performed in the same manner as in Example 1. A laminate was produced.
(4) As shown in Table 1, the fabric made of this laminate has a basis weight of 56 g / m 2 , tensile strength of 64 N / 5 cm × 54 N / 5 cm (MD direction × CD direction), air permeability of 5.7 cc / cm 2 / second, 1μm quartz dust collection efficiency of 99.9%, 1μm quartz dust collection efficiency after washing 5 times 99.8%, and not only has air permeability and filter property as a laminated fabric, but also has excellent unity, Even after the load of washing was applied, the filter property was maintained. Therefore, the laminated fabric has sufficient performance as a protective clothing fabric. Further, when the fabric was immersed in warm water at 60 ° C., it contracted 11%, and in 70 ° C. warm water, it contracted 58%.

[実施例3]
(1)ポリマー重合度1750、ケン化度98.5モル%、単糸繊度2.2dtex、繊維長51mm、強度5cN/dtexの捲縮を付与したPVA繊維(株式会社クラレ製「WN7」;60℃温水中での収縮率6%、70℃温水中の収縮率65%、溶解温度75℃)を用い、該繊維が100質量部からなる目付35g/mのランダムウェブを作製した。
(2)さらに、ポリマー重合度1750、ケン化度98.5モル%のPVAからなる10%水溶液を用意し、市販の泡立て機で泡立てたフォームを作製し、このフォームを前記(1)で得られたウェブ上にのせ、マングルで搾液することでPVA樹脂をウェブに均一に付与せしめた後、乾燥により不織布化する、所謂フォームボンド処理により不織布を作製した。このようにして得られた不織布を保持層とした。なお該保持層の収縮率は60℃温水中で15%、70℃温水中で70%であった。
(3)耐水層としては、実施例1と同じポリプロピレン(日本ポリケム社製「ノバテックPP」)をメルトブロー法で作製した目付20g/mのポリプロピレン不織布(耐水層)を作製した。
(4)次いで、上記保持層を、コンベア速度50m/分で移動させつつ、ホットメルト樹脂(日本エヌエスシー(株)製「インスタントロックMP801」;軟化点 約140℃)を、ノズル温度190℃、ホットエア温度205℃で、塗布量が2g/mとなるように保持層に均一に塗布し、その後、一旦冷却した後に引き取りロールにより巻き取った。また、上記耐水層についても、保持層と同様にして、前記ホットメルト樹脂を塗布量が2g/mで塗布した。
(5)一方、防護層を以下のとおり作製した。
セプトン(株式会社クラレ製「SEPTON2002」;軟化点 約150℃)を10質量%となるようにDMFに投入後、90℃で攪拌溶解し、完全溶解したものを常温まで冷却して紡糸原液を得た。得られた紡糸原液を用い、図1の紡糸装置にて静電紡糸を行った。口金4として内径が0.9mmのニードルを使用した。また、口金4と形成シート引き取り装置7との間距離は10cmとした。なお、形成シート引き取り装置7には、前記(4)で得たホットメルト樹脂を塗布した保持層を、ファイバーの吹付け面がホットメルト樹脂側となるように巻きつけた。
次いで、コンベア速度0.1m/分、原液を所定の供給量で口金から押し出し、口金に20kV印加電圧を与えて、該不織布層上にセプトンナノファイバーを1.0g/m積層させた。
(6)さらに、セプトンナノファイバー層を積層した保持層と、前記(4)のホットメルト樹脂を塗布した耐水層とを、耐水層のホットメルト樹脂側と、セプトンナノファイバー層とが接するように重ね合わせ、次いで、カレンダー処理(カレンダー条件;温度140℃、接圧0.1MPa、処理速度5m/s)にて貼り合わせ、積層体を製造した。この積層体からなる布帛は、表1に示すとおり目付60g/m、引張強力93N/5cm×49N/5cm(MD方向×CD方向)、通気度8.1cc/cm/秒、1μm石英粉塵捕集効率99.7%、5回洗濯後の1μm石英粉塵捕集効率99.7%であり、積層布帛として通気性とフィルター性とを兼備するだけでなく、一体性に優れ、洗濯という負荷をかけた後であってもフィルター性を維持していた。そのため、この積層布帛は、防護衣類用布帛として十分な性能を備えているものであった。また、該布帛を60℃の温水に浸漬したところ12%収縮、70℃温水中では64%収縮した。
[Example 3]
(1) PVA fiber having a polymer polymerization degree of 1750, a saponification degree of 98.5 mol%, a single yarn fineness of 2.2 dtex, a fiber length of 51 mm, and a strength of 5 cN / dtex (“WN7” manufactured by Kuraray Co., Ltd .; 60 A random web having a basis weight of 35 g / m 2 having 100 parts by mass of the fiber was prepared using a shrinkage ratio of 6% in warm water at 65 ° C, a shrinkage ratio of 65% in warm water at 70 ° C, and a melting temperature of 75 ° C.
(2) Further, a 10% aqueous solution composed of PVA having a polymer polymerization degree of 1750 and a saponification degree of 98.5 mol% was prepared, and a foamed foam was prepared with a commercially available foaming machine. This foam was obtained in the above (1). A non-woven fabric was produced by a so-called foam bonding process in which the PVA resin was uniformly applied to the web by placing on the resulting web and squeezing with a mangle, and then forming a non-woven fabric by drying. The nonwoven fabric thus obtained was used as a holding layer. The shrinkage ratio of the retaining layer was 15% in 60 ° C. warm water and 70% in 70 ° C. warm water.
(3) As the water-resistant layer, a polypropylene nonwoven fabric (water-resistant layer) having a basis weight of 20 g / m 2 prepared by melt blowing the same polypropylene as in Example 1 (“NOVATEC PP” manufactured by Nippon Polychem Co., Ltd.) was produced.
(4) Next, while moving the holding layer at a conveyor speed of 50 m / min, a hot melt resin (“Instant Lock MP801” manufactured by Nippon SC Co., Ltd .; softening point of about 140 ° C.) was applied at a nozzle temperature of 190 ° C. The coating was uniformly applied to the holding layer at a hot air temperature of 205 ° C. so that the coating amount was 2 g / m 2, and then cooled once and wound up by a take-up roll. As for the above water resistant layer, in the same manner as the holding layer, the coating amount of the hot melt resin was applied in 2 g / m 2.
(5) On the other hand, the protective layer was produced as follows.
Septon (“SEPTON 2002” manufactured by Kuraray Co., Ltd .; softening point: about 150 ° C.) was added to DMF so as to be 10% by mass, stirred and dissolved at 90 ° C., and completely dissolved, cooled to room temperature to obtain a spinning dope. It was. Using the obtained spinning dope, electrostatic spinning was performed with the spinning device of FIG. A needle having an inner diameter of 0.9 mm was used as the base 4. The distance between the base 4 and the formed sheet take-up device 7 was 10 cm. In addition, the holding layer which apply | coated the hot-melt resin obtained by said (4) was wound around the formation sheet taking-up apparatus 7 so that the blowing surface of a fiber might turn into a hot-melt resin side.
Next, the stock solution was extruded from the die at a conveyor speed of 0.1 m / min and a predetermined supply amount, a 20 kV applied voltage was applied to the die, and 1.0 g / m 2 of Septon nanofibers were laminated on the nonwoven fabric layer.
(6) Further, the holding layer in which the septon nanofiber layer is laminated and the water resistant layer coated with the hot melt resin of (4) are arranged so that the hot melt resin side of the water resistant layer and the septon nanofiber layer are in contact with each other. The laminate was then laminated by calendaring (calendar conditions; temperature 140 ° C., contact pressure 0.1 MPa, treatment speed 5 m / s) to produce a laminate. As shown in Table 1, the fabric made of this laminate has a basis weight of 60 g / m 2 , tensile strength of 93 N / 5 cm × 49 N / 5 cm (MD direction × CD direction), air permeability 8.1 cc / cm 2 / sec, 1 μm quartz dust. The collection efficiency is 99.7%, and the 1 μm quartz dust collection efficiency after washing 5 times is 99.7%. In addition to having both breathability and filterability as a laminated fabric, it has excellent unity and a load of washing Even after application, the filter property was maintained. Therefore, the laminated fabric has sufficient performance as a protective clothing fabric. When the fabric was immersed in warm water at 60 ° C., it contracted 12%, and in 70 ° C. warm water, it contracted 64%.

[実施例4]
(1)目付30g/mのナイロンスパンボンド不織布(旭化成(株)製「エクーレN01030」)を保持層とした。
(2)実施例1と同じポリプロピレン(日本ポリケム社製「ノバテックPP」)をメルトブロー法で作製した目付20g/mのポリプロピレン不織布を耐水層とした。
(3)次いで、上記保持層を、コンベアのライン速度50m/分で移動させつつ、溶融ホットメルト樹脂(日本エヌエスシー(株)製「インスタントロックMP801」)を、ノズル温度190℃、ホットエア温度205℃において、塗布量が2g/mとなるように均一に塗布し、その後、一旦冷却した後に引き取りロールにより巻き取った。また、上記耐水層についても、保持層と同様にして、ホットメルト樹脂を塗布した。
(4)一方、防護層を以下のとおり作製した。
ポリウレタン(株式会社クラレ製「クラミロン1190−000」)を10質量%となるようにジメチルホルムアミド(DMF)に投入後、90℃で攪拌溶解し、完全溶解したものを常温まで冷却して紡糸原液を得た。得られた紡糸原液を用い、図1の紡糸装置にて静電紡糸を行った。口金4として内径が0.9mmのニードルを使用した。また、口金4と形成シート引き取り装置7との間距離は12cmとした。なお、形成シート引き取り装置7には、前記(3)で得たホットメルト樹脂を塗布した保持層を、ファイバーの吹付け面がホットメルト樹脂側となるようにして巻きつけた。
次いで、コンベア速度0.1m/分、原液を所定の供給量で口金から押し出し、口金に25kV印加電圧を与えて、該不織布層上にポリウレタンナノファイバーを1.0g/m積層させた。
(5)さらに、ポリウレタンナノファイバー層を積層した保持層と、前記(3)のホットメルト樹脂を塗布した耐水層とを、耐水層のホットメルト樹脂側と、ポリウレタンナノファイバー層とが接するように重ね合わせ、次いで、カレンダー処理(カレンダー条件;温度140℃、接圧0.1MPa、処理速度5m/s)にて貼り合わせ、積層体を製造した。この積層体からなる布帛は、表1に示すとおり目付55g/m、引張強力105N/5cm×71N/5cm(MD方向×CD方向)、通気度8.4cc/cm/秒、1μm石英粉塵捕集効率99.9%、5回洗濯後の1μm石英粉塵捕集効率99.8%であり、積層布帛として通気性とフィルター性とを兼備するだけでなく、一体性に優れ、洗濯という負荷をかけた後であってもフィルター性を維持していた。そのため、この積層布帛は、防護衣類用布帛として十分な性能を備えているものであった。
[Example 4]
(1) A nylon spunbond nonwoven fabric (“Ecule N01030” manufactured by Asahi Kasei Co., Ltd.) having a basis weight of 30 g / m 2 was used as a holding layer.
(2) A polypropylene nonwoven fabric having a weight per unit area of 20 g / m 2 prepared by melt blowing the same polypropylene as in Example 1 (“Novatec PP” manufactured by Nippon Polychem Co., Ltd.) was used as the water resistant layer.
(3) Next, while moving the holding layer at a conveyor line speed of 50 m / min, a molten hot melt resin (“Instant Lock MP801” manufactured by Nippon SC Co., Ltd.) was applied at a nozzle temperature of 190 ° C. and a hot air temperature of 205 The coating was uniformly applied at 2 ° C. at a temperature of 2 g / m 2, and after cooling, it was wound up by a take-up roll. Also, the water resistant layer was coated with a hot melt resin in the same manner as the holding layer.
(4) On the other hand, the protective layer was produced as follows.
Polyurethane (“Kuraray 1190-000” manufactured by Kuraray Co., Ltd.) was added to dimethylformamide (DMF) so as to be 10% by mass, stirred and dissolved at 90 ° C., and completely dissolved, cooled to room temperature, and the spinning dope Obtained. Using the obtained spinning dope, electrostatic spinning was performed with the spinning device of FIG. A needle having an inner diameter of 0.9 mm was used as the base 4. The distance between the die 4 and the formed sheet take-up device 7 was 12 cm. Note that the holding layer coated with the hot melt resin obtained in (3) was wound around the forming sheet take-up device 7 so that the spray surface of the fiber was on the hot melt resin side.
Subsequently, the stock solution was extruded from the die at a conveyor speed of 0.1 m / min and a predetermined supply amount, a voltage of 25 kV was applied to the die, and 1.0 g / m 2 of polyurethane nanofibers were laminated on the nonwoven fabric layer.
(5) Further, the holding layer in which the polyurethane nanofiber layer is laminated and the water resistant layer coated with the hot melt resin of (3) are arranged so that the hot melt resin side of the water resistant layer and the polyurethane nanofiber layer are in contact with each other. The laminate was then laminated by calendaring (calendar conditions; temperature 140 ° C., contact pressure 0.1 MPa, treatment speed 5 m / s) to produce a laminate. As shown in Table 1, the fabric comprising this laminate has a basis weight of 55 g / m 2 , tensile strength of 105 N / 5 cm × 71 N / 5 cm (MD direction × CD direction), air permeability of 8.4 cc / cm 2 / sec, 1 μm quartz dust. The collection efficiency is 99.9%, and the 1 μm quartz dust collection efficiency after washing 5 times is 99.8%. As a laminated fabric, it has not only air permeability and filterability, but also excellent integration and load of washing Even after application, the filter property was maintained. Therefore, the laminated fabric has sufficient performance as a protective clothing fabric.

[実施例5]
実施例3の保持層で使用したフォームボンド処理したPVA不織布に代えて、目付30g/mのポリエチレンテレフタレートスパンボンド不織布(旭化成(株)製「エクーレE01030」)を保持層として使用する以外は、実施例3と同様にして布帛を作製した。表1に示すように該布帛は、目付55g/m、引張強力124N/5cm×77N/5cm(MD方向×CD方向)、通気度9.1cc/cm/秒、1μm石英粉塵捕集効率99.6%、5回洗濯後の1μm石英粉塵捕集効率99.5%であり、積層布帛として通気性とフィルター性とを兼備するだけでなく、一体性に優れ、洗濯という負荷をかけた後であってもフィルター性を維持していた。
[Example 5]
Instead of using the foam bonded PVA nonwoven fabric used in the retaining layer of Example 3, a polyethylene terephthalate spunbonded nonwoven fabric having a basis weight of 30 g / m 2 (“Ecule E01030” manufactured by Asahi Kasei Co., Ltd.) was used as the retaining layer. A fabric was produced in the same manner as in Example 3. As shown in Table 1, the fabric has a basis weight of 55 g / m 2 , tensile strength of 124 N / 5 cm × 77 N / 5 cm (MD direction × CD direction), air permeability of 9.1 cc / cm 2 / sec, 1 μm quartz dust collection efficiency. 99.6%, 1μm quartz dust collection efficiency after washing 5 times, 99.5%, not only has air permeability and filterability as a laminated fabric, but also has excellent unity and load of washing The filter properties were maintained even afterwards.

[比較例1]
実施例4の(3)で得た、ホットメルト樹脂を塗布したナイロン不織布(保持層)およびポリプロピレン不織布(耐水層)を、防護層を介することなく、それぞれのホットメルト樹脂側を直接重ね合わせた後、実施例4と同様にカレンダー処理して貼り合わせ、布帛を作製した。表1に示すように該布帛は、目付54g/m、引張強力101N/5cm×70N/5cm(MD方向×CD方向)、通気度21cc/cm/秒、1μm石英粉塵捕集効率33.1%、5回洗濯後の1μm石英粉塵捕集効率32.8%であり、フィルター性に劣っていた。
[Comparative Example 1]
The nylon non-woven fabric (holding layer) and polypropylene non-woven fabric (water resistant layer) coated with the hot-melt resin obtained in (3) of Example 4 were directly superposed on each hot-melt resin side without a protective layer. Thereafter, calendaring was performed in the same manner as in Example 4 to produce a fabric. As shown in Table 1, the fabric has a basis weight of 54 g / m 2 , tensile strength of 101 N / 5 cm × 70 N / 5 cm (MD direction × CD direction), air permeability of 21 cc / cm 2 / sec, 1 μm quartz dust collection efficiency. The 1 μm quartz dust collection efficiency after washing 1% and 5 times was 32.8%, and the filter properties were inferior.

[比較例2]
(1)目付30g/mのナイロンスパンボンド不織布(旭化成(株)製「エクーレN01030」)を保持層とした。
(2)実施例1と同じポリプロピレン(日本ポリケム社製「ノバテックPP」)をメルトブロー法で作製した目付20g/mの不織布(耐水層)を耐水層とした。
(3)次いで、上記保持層を、コンベアのライン速度50m/分で移動させつつ、溶融ホットメルト樹脂(日本エヌエスシー(株)製「インスタントロックMP801」)を、ノズル温度190℃、ホットエア温度205℃において、塗布量が2g/mとなるように均一に塗布し、その後、一旦冷却した後に引き取りロールにより巻き取った。また、上記耐水層についても、保持層と同様にして、ホットメルト樹脂を塗布した。
(4)一方、防護層を以下のとおり作製した。
ポリアクリロニトリル(シグマアルドリッチジャパン(株)製、重量平均分子量15万)を11質量%となるようにジメチルホルムアミド(DMF)に投入後、90℃で攪拌溶解し、完全溶解したものを常温まで冷却して紡糸原液を得た。得られた紡糸原液を用い、図1の紡糸装置にて静電紡糸を行った。口金4として内径が0.9mmのニードルを使用した。また、口金4と形成シート引き取り装置7との間距離は10cmとした。なお、形成シート引き取り装置7には、前記(3)で得たホットメルト樹脂を塗布した保持層を、ファイバーの吹付け面がホットメルト樹脂側となるようにして巻きつけた。
次いで、コンベア速度0.1m/分、原液を所定の供給量で口金から押し出し、口金に18kV印加電圧を与えて、該不織布層上にポリアクリロニトリルナノファイバーを1.0g/m積層させた。
(5)さらに、ポリアクリロニトリルナノファイバー層を積層した保持層と、前記(3)のホットメルト樹脂を塗布した耐水層とを、耐水層のホットメルト樹脂側と、アクリロニトリルナノファイバー層とが接するように重ね合わせ、次いで、カレンダー処理(カレンダー条件;温度140℃、接圧0.1MPa、処理速度5m/s)にて貼り合わせ、積層体を製造した。この積層体からなる布帛は、表1に示すとおり目付55g/m、引張強力104N/5cm×70N/5cm(MD方向×CD方向)、通気度7.5cc/cm/秒、1μm石英粉塵捕集効率99.6%、5回洗濯後の1μm石英粉塵捕集効率84.1%であり、洗濯後、不織布としての一体性を失いフィルター性を維持できなかった。
[Comparative Example 2]
(1) A nylon spunbond nonwoven fabric (“Ecule N01030” manufactured by Asahi Kasei Co., Ltd.) having a basis weight of 30 g / m 2 was used as a holding layer.
(2) A nonwoven fabric (water resistant layer) having a basis weight of 20 g / m 2 prepared by melt blowing the same polypropylene as in Example 1 (“Novatec PP” manufactured by Nippon Polychem Co., Ltd.) was used as the water resistant layer.
(3) Next, while moving the holding layer at a conveyor line speed of 50 m / min, a molten hot melt resin (“Instant Lock MP801” manufactured by Nippon SC Co., Ltd.) was applied at a nozzle temperature of 190 ° C. and a hot air temperature of 205 The coating was uniformly applied at 2 ° C. at a temperature of 2 g / m 2, and after cooling, it was wound up by a take-up roll. Also, the water resistant layer was coated with a hot melt resin in the same manner as the holding layer.
(4) On the other hand, the protective layer was produced as follows.
Polyacrylonitrile (manufactured by Sigma-Aldrich Japan Co., Ltd., weight average molecular weight 150,000) is added to dimethylformamide (DMF) so as to be 11% by mass, and then stirred and dissolved at 90 ° C. As a result, a spinning dope was obtained. Using the obtained spinning dope, electrostatic spinning was performed with the spinning device of FIG. A needle having an inner diameter of 0.9 mm was used as the base 4. The distance between the base 4 and the formed sheet take-up device 7 was 10 cm. Note that the holding layer coated with the hot melt resin obtained in (3) was wound around the forming sheet take-up device 7 so that the spray surface of the fiber was on the hot melt resin side.
Next, the stock solution was extruded from the die at a conveyor speed of 0.1 m / min and a predetermined supply amount, and an applied voltage of 18 kV was applied to the die so that 1.0 g / m 2 of polyacrylonitrile nanofibers were laminated on the nonwoven fabric layer.
(5) Further, the holding layer in which the polyacrylonitrile nanofiber layer is laminated, and the water resistant layer coated with the hot melt resin of (3), so that the hot melt resin side of the water resistant layer is in contact with the acrylonitrile nanofiber layer. And then bonded together by calendar treatment (calendar conditions; temperature 140 ° C., contact pressure 0.1 MPa, treatment speed 5 m / s) to produce a laminate. As shown in Table 1, the fabric made of this laminate has a basis weight of 55 g / m 2 , tensile strength of 104 N / 5 cm × 70 N / 5 cm (MD direction × CD direction), air permeability 7.5 cc / cm 2 / sec, 1 μm quartz dust The collection efficiency was 99.6% and the 1 μm quartz dust collection efficiency after washing 5 times was 84.1%. After washing, the integrity as a nonwoven fabric was lost and the filterability could not be maintained.

[比較例3]
対照として、従来防護用基材として用いられているデュポン社製「タイベックソフト」
(目付41g/m)の性能を評価したところ、表1に示すとおり引張強力80N/5cm×94N/5cm(MD方向×CD方向)であり、1μm石英粉塵の捕集効率は98.5%と高いものであったが、通気度は0.4cc/cm/秒と非常に低く、また60℃及び70℃の温水中では全く収縮しないものであった。
[Comparative Example 3]
As a control, “Tyvek Soft” made by DuPont, which has been used as a base material for protection in the past
When the performance of (weight per unit area 41 g / m 2 ) was evaluated, as shown in Table 1, the tensile strength was 80 N / 5 cm × 94 N / 5 cm (MD direction × CD direction), and the collection efficiency of 1 μm quartz dust was 98.5%. Although the air permeability was as high as 0.4 cc / cm 2 / sec, it did not shrink at all at 60 ° C. and 70 ° C. hot water.

Figure 2008111294
Figure 2008111294

本発明の積層布帛は、人体に有害な粉塵、感染性病原体、ウィルス等の有害物質や、様々な大気中浮遊物質から人体を防護する防護材として好適に使用することができる。このような防護材は、防護衣類(例えば、防護服、マスク、手袋、帽子等)だけでなく、前記有害物質が付着する環境下で用いられ、有害物質の2次感染から人体を防護する目的で用いられるシーツ、プロテクター、フィルターなどを含む。
さらに、積層布帛が減容性を有する場合、積層布帛(または防護材)を使用後、減容化させて輸送や廃棄を行うことができるため、輸送費や廃棄コストを削減することができる。
The laminated fabric of the present invention can be suitably used as a protective material that protects the human body from harmful substances such as dust harmful to the human body, infectious pathogens, viruses, and various airborne substances. Such a protective material is used not only in protective clothing (for example, protective clothing, masks, gloves, hats, etc.), but also in an environment where the harmful substances adhere, and is intended to protect the human body from secondary infection of harmful substances. Includes sheets, protectors, filters, etc.
Further, when the laminated fabric has a volume reduction capability, it is possible to reduce the volume after transportation of the laminated fabric (or protective material) and then transport and discard, so that the transportation cost and the disposal cost can be reduced.

Claims (12)

保持層に防護層が貼り合わされてなる積層布帛であって、前記防護層が、極細繊維で形成されている伸縮性不織布を含むとともに、前記積層布帛の通気度が2cc/cm/sec以上であり、且つ1μm石英粉塵の捕集効率が90%以上である積層布帛。A laminated fabric in which a protective layer is bonded to a holding layer, wherein the protective layer includes an elastic nonwoven fabric formed of ultrafine fibers, and the air permeability of the laminated fabric is 2 cc / cm 2 / sec or more. A laminated fabric having a collection efficiency of 1 μm quartz dust of 90% or more. 前記極細繊維が、熱可塑性エラストマーで構成されている請求項1に記載の積層布帛。   The laminated fabric according to claim 1, wherein the ultrafine fibers are made of a thermoplastic elastomer. 前記熱可塑性エラストマーが、SEPS、SEBS、ウレタン系熱可塑性エラストマー、ポリエステル系熱可塑性エラストマー、およびポリアミド系熱可塑性エラストマーから選択される少なくとも一種の熱可塑性エラストマーで構成される請求項2に記載の積層布帛。   The laminated fabric according to claim 2, wherein the thermoplastic elastomer is composed of at least one thermoplastic elastomer selected from SEPS, SEBS, urethane-based thermoplastic elastomer, polyester-based thermoplastic elastomer, and polyamide-based thermoplastic elastomer. . 伸縮性不織布の引張破断伸度が30%以上である請求項1に記載の積層布帛。   The laminated fabric according to claim 1, wherein the stretchable nonwoven fabric has a tensile elongation at break of 30% or more. 前記伸縮性不織布において、前記極細繊維が繊維径10〜1000nmのナノファイバーであり、前記ナノファイバーが目付0.01〜10g/mで不織布を形成している請求項1に記載の積層布帛。In the elastic nonwoven fabric, the microfine fibers are nanofibers having a fiber diameter of 10 to 1000 nm, laminated fabric according to claim 1, wherein the nanofibers to form a nonwoven fabric having a basis weight 0.01 to 10 g / m 2. 保持層を構成する繊維の少なくとも一部が減容性繊維である請求項1に記載の積層布帛。   The laminated fabric according to claim 1, wherein at least a part of the fibers constituting the holding layer is a volume-reducing fiber. 前記減容性繊維が、ポリビニルアルコール系繊維で構成される請求項6に記載の積層布帛。   The laminated fabric according to claim 6, wherein the volume-reducing fiber is composed of a polyvinyl alcohol fiber. 防護層を介して、さらに耐水層を保持層の反対側に備える請求項1に記載の積層布帛。   The laminated fabric according to claim 1, further comprising a water-resistant layer on the opposite side of the holding layer via the protective layer. 耐水圧が300〜1500mmHOである請求項8に記載の積層布帛。Laminated fabric according to claim 8 water pressure is 300~1500mmH 2 O. 60℃以上の温水に浸漬することで5〜90%収縮することを特徴とする請求項1記載の積層布帛。   The laminated fabric according to claim 1, wherein the laminate fabric shrinks by 5 to 90% when immersed in warm water of 60 ° C or higher. 少なくとも一部が請求項1に記載の積層布帛からなる防護材。   A protective material comprising at least a part of the laminated fabric according to claim 1. 請求項1に記載の積層布帛を密閉容器に入れ、前記積層布帛に対して60℃以上の温水を供給することにより積層布帛を減容化する方法。   A method for reducing the volume of a laminated fabric by placing the laminated fabric according to claim 1 in an airtight container and supplying warm water of 60 ° C. or higher to the laminated fabric.
JP2009503900A 2007-03-15 2008-03-06 Laminated fabric Pending JPWO2008111294A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007066496 2007-03-15
JP2007066496 2007-03-15
PCT/JP2008/000465 WO2008111294A1 (en) 2007-03-15 2008-03-06 Laminated fabric

Publications (1)

Publication Number Publication Date
JPWO2008111294A1 true JPWO2008111294A1 (en) 2010-06-24

Family

ID=39759238

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009503900A Pending JPWO2008111294A1 (en) 2007-03-15 2008-03-06 Laminated fabric

Country Status (6)

Country Link
US (1) US20100024136A1 (en)
JP (1) JPWO2008111294A1 (en)
KR (1) KR20100015543A (en)
CN (1) CN101636263A (en)
TW (1) TW200911318A (en)
WO (1) WO2008111294A1 (en)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009056727A (en) * 2007-08-31 2009-03-19 Shimizu Corp Sheet material for protection
US9682512B2 (en) 2009-02-06 2017-06-20 Nike, Inc. Methods of joining textiles and other elements incorporating a thermoplastic polymer material
US8906275B2 (en) 2012-05-29 2014-12-09 Nike, Inc. Textured elements incorporating non-woven textile materials and methods for manufacturing the textured elements
US20100199406A1 (en) 2009-02-06 2010-08-12 Nike, Inc. Thermoplastic Non-Woven Textile Elements
CN102470302B (en) * 2009-07-08 2015-03-11 Jnc株式会社 Air filter material using multilayer electret nonwoven fabric
TWI414345B (en) * 2010-01-04 2013-11-11 Taiwan Textile Res Inst A nanofiber-containing membrane, a composite membrane, a process for producing them and their use
EP2720862B1 (en) 2011-06-17 2016-08-24 Fiberweb, Inc. Vapor permeable, substantially water impermeable multilayer article
US9827755B2 (en) 2011-06-23 2017-11-28 Fiberweb, Llc Vapor-permeable, substantially water-impermeable multilayer article
WO2012178027A2 (en) 2011-06-23 2012-12-27 Fiberweb, Inc. Vapor-permeable, substantially water-impermeable multilayer article
EP2723567A4 (en) 2011-06-24 2014-12-24 Fiberweb Inc Vapor-permeable, substantially water-impermeable multilayer article
CN102343694A (en) * 2011-09-30 2012-02-08 江苏喜登博服饰有限公司 Fabric capable of promoting sleep
CN102415627A (en) * 2011-09-30 2012-04-18 苏州凯威达制衣有限责任公司 Radiation-proof ventilated shell fabric
US20130255103A1 (en) 2012-04-03 2013-10-03 Nike, Inc. Apparel And Other Products Incorporating A Thermoplastic Polymer Material
TWM446021U (en) * 2012-07-18 2013-02-01 K J Filtration Technologies Ltd Air filter structure
JP6047977B2 (en) * 2012-07-26 2016-12-21 東洋紡株式会社 Protective sheet
CN107073303B (en) * 2014-09-30 2020-01-03 花王株式会社 Sanitary mask
WO2016052401A1 (en) * 2014-09-30 2016-04-07 花王株式会社 Hygienic mask
CN104525002A (en) * 2014-12-24 2015-04-22 上海诺仕泰建材科技有限公司 Composite film with dust, haze and water prevention and air permeability functions and preparation method thereof
JP6729557B2 (en) * 2015-03-26 2020-07-22 東レ株式会社 Filter material for air filter
CN105196626A (en) * 2015-10-26 2015-12-30 太仓市毅飞化纤织造有限公司 Antibacterial compound non-woven cloth
CN105500849A (en) * 2015-12-15 2016-04-20 常熟市一心无纺制品有限公司 Ultra-soft fluffy non-woven fabric
JP6754929B2 (en) * 2016-06-15 2020-09-16 富山県 Manufacturing method of composite base cloth
JP7048033B2 (en) * 2019-05-24 2022-04-05 日清紡テキスタイル株式会社 futon
CN111945240B (en) * 2020-07-06 2022-10-04 浙江宸唯环保科技股份有限公司 Electret material for high-molecular melt-blown fibers and detection method thereof
CN112107046A (en) * 2020-10-30 2020-12-22 湖南大学 Mask based on electrostatic adsorption filtration and preparation method thereof
CN113116006A (en) * 2021-04-21 2021-07-16 张争 Fish tail garment manufacturing method and fish tail garment manufactured by same

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4748838B2 (en) * 2000-09-20 2011-08-17 旭化成せんい株式会社 Thermal adhesive composite sheet
JP2003073498A (en) * 2001-09-06 2003-03-12 Kuraray Co Ltd Disposal method of infectious medical waste and apparatus therefor
US7061161B2 (en) * 2002-02-15 2006-06-13 Siemens Technology-To-Business Center Llc Small piezoelectric air pumps with unobstructed airflow
JP3790496B2 (en) * 2002-05-20 2006-06-28 株式会社クラレ Composite nonwoven fabric for protective clothing and method for producing the same
KR20050085868A (en) * 2002-12-24 2005-08-29 마이크로텍 메디칼 홀딩스, 인코포레이티드 Polyvinyl alcohol filter media
JP4048443B2 (en) * 2005-08-01 2008-02-20 東洋紡績株式会社 Protective materials and protective clothing

Also Published As

Publication number Publication date
CN101636263A (en) 2010-01-27
KR20100015543A (en) 2010-02-12
TW200911318A (en) 2009-03-16
WO2008111294A1 (en) 2008-09-18
US20100024136A1 (en) 2010-02-04

Similar Documents

Publication Publication Date Title
JPWO2008111294A1 (en) Laminated fabric
JP4880934B2 (en) Laminate and filter media
TWI653142B (en) Sterilization packaging materials
JP5710979B2 (en) Breathable water resistant clothing
US20110232653A1 (en) Antimicrobial, dustproof fabric and mask
KR101724038B1 (en) Laminated Fabric Material for Virus Barrier and Manufacturing Method Threreof, Medical Protective Clothing Made Therewith
JP2008188791A (en) Antibacterial and dustproof cloth
KR20160062027A (en) Fibrous laminate containing ultrafine fibers and filter comprising same
JP6730677B2 (en) Laminated nonwoven sheet
JP2007503330A (en) Fully elastic nonwoven film composite
WO2004082930A1 (en) Nonwoven polyester fabric with high resistance to water pressure
JP2003166173A (en) Fiber sheet and protective working clothes
JP2013034941A (en) Oil proof filter
KR101628205B1 (en) Wound dressing materials having transfer function in one way direction and manufacturing method thereof
JP2011503379A (en) Dustproof clothing
JP6396771B2 (en) Method for producing ultrafine fiber nonwoven fabric
JP2012161524A (en) Mask
JP2017137595A (en) Fiber web and method for forming the same, and laminated sheet and method for producing the same
CN114987006A (en) Laminated fabric structure and method of making same
JP2013208327A (en) Mask
CN111051591B (en) Waterproof and breathable sheet and manufacturing method thereof
JP3157107U (en) Disposable protective clothing
JP2934271B2 (en) Adhesive material
JPH07138866A (en) Ultrafine conjugate fiber sheet and its production
JP3190510U (en) Composite sheet