JPWO2007105738A1 - Amorphous metal composite, method for producing the same, and article thereby - Google Patents

Amorphous metal composite, method for producing the same, and article thereby Download PDF

Info

Publication number
JPWO2007105738A1
JPWO2007105738A1 JP2008505171A JP2008505171A JPWO2007105738A1 JP WO2007105738 A1 JPWO2007105738 A1 JP WO2007105738A1 JP 2008505171 A JP2008505171 A JP 2008505171A JP 2008505171 A JP2008505171 A JP 2008505171A JP WO2007105738 A1 JPWO2007105738 A1 JP WO2007105738A1
Authority
JP
Japan
Prior art keywords
amorphous metal
metal composite
composite material
base material
amorphous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008505171A
Other languages
Japanese (ja)
Other versions
JP4900617B2 (en
Inventor
丸山 典夫
典夫 丸山
仁 川喜多
仁 川喜多
廣本 祥子
祥子 廣本
山本 玲子
玲子 山本
黒田 聖治
聖治 黒田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Priority to JP2008505171A priority Critical patent/JP4900617B2/en
Publication of JPWO2007105738A1 publication Critical patent/JPWO2007105738A1/en
Application granted granted Critical
Publication of JP4900617B2 publication Critical patent/JP4900617B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/06Metallic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/02Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers
    • B22F7/04Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers with one or more layers not made from powder, e.g. made from solid metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/011Layered products comprising a layer of metal all layers being exclusively metallic all layers being formed of iron alloys or steels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/013Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of a metal other than iron or aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C45/00Amorphous alloys
    • C22C45/02Amorphous alloys with iron as the major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C45/00Amorphous alloys
    • C22C45/10Amorphous alloys with molybdenum, tungsten, niobium, tantalum, titanium, or zirconium or Hf as the major constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy

Abstract

基材表面に非晶質金属が積層一体化されてなる非晶質金属複合材であって、予め非晶質金属と同様な弾性域に調整された基材の表面に非晶質金属による層が一体的に設けられてなることを特徴とすることによって、剥離を抑制することができるので、基材本来の機械強度に非晶質金属による機械強度を加重することができ、非晶質金属の厚さを調整することで、非晶質金属複合材の機械強度やヤング率等の力学的特性を制御することができる、さらに、溶射による積層型の非晶質金属複合材であり、複雑な形状の物品であっても容易に形成することもできる。Amorphous metal composite material in which amorphous metal is laminated and integrated on the surface of the substrate, and the layer made of amorphous metal on the surface of the substrate that has been adjusted in advance to the same elastic region as the amorphous metal Is provided integrally, so that peeling can be suppressed, so that the mechanical strength of the amorphous metal can be applied to the original mechanical strength of the base material. By adjusting the thickness, mechanical properties such as mechanical strength and Young's modulus of amorphous metal composites can be controlled, and it is a multilayered amorphous metal composite by thermal spraying. Even an article having a simple shape can be easily formed.

Description

本発明は、非晶質金属複合材とその製造方法およびそれによる物品に関するものである。より詳しくは、インプラント用ボーンプレート等の医療用物品、ゴルフクラブヘッド等のスポーツ用品、あるいは航空機材、自動車、建設等の各種の産業用物品のための材料として有用な、新しい非晶質金属複合材とその製造方法およびそれによる物品に関するものである。   The present invention relates to an amorphous metal composite, a method for producing the same, and an article thereby. More specifically, a new amorphous metal composite useful as a material for medical articles such as bone plates for implants, sports equipment such as golf club heads, or various industrial articles such as aircraft materials, automobiles, and construction. The present invention relates to a material, a manufacturing method thereof, and an article thereby.

従来各種の化学組成からなる非晶質(アモルファス)金属が知られている。これら非晶質金属は、高機械強度、低ヤング率(しなやか)、高耐食性、高耐摩耗性、高透磁率等の優れた特性を有するものが知られており、これらの特性を生かした応用についての検討が進められている。   Conventionally, amorphous metals having various chemical compositions are known. These amorphous metals are known to have excellent properties such as high mechanical strength, low Young's modulus (suppleness), high corrosion resistance, high wear resistance, and high magnetic permeability, and applications utilizing these properties. Considerations are being made.

非晶質金属の有する高機械強度や低ヤング率といった力学的特性を応用することを目的として、非晶質金属の組織を結晶質金属に分散させて複合化させることにより実現することが試みられている(分散型)。例えば、高圧鋳造法、双ロール法、単ロール法等による合金材の製造によって、鋳造品においては表面層に、薄帯においては片面層に非晶質金属相を生成させることが提案されている(特許文献1、2)。また、非晶質金属の粒子と結晶質金属やセラミックスの粒子との混合粉末を用いて圧縮成形して複合材とすることも提案されている(特許文献3、4)。   In order to apply the mechanical properties of amorphous metal such as high mechanical strength and low Young's modulus, it is attempted to realize it by dispersing the structure of amorphous metal in crystalline metal and combining it. (Distributed). For example, it has been proposed to produce an amorphous metal phase in a surface layer in a cast product and in a single-sided layer in a thin strip by manufacturing an alloy material by a high pressure casting method, a twin roll method, a single roll method, or the like. (Patent Documents 1 and 2). It has also been proposed that a composite material be formed by compression molding using a mixed powder of amorphous metal particles and crystalline metal or ceramic particles (Patent Documents 3 and 4).

しかしながら、上記従来の分散型の複合材の場合、非晶質金属の形成、そして複合材の製造に係わる製造方法の制御が大変に難しいという欠点を有し、このため複雑な形状の物品を作製することは困難であるという問題点を有していた。   However, the conventional dispersion-type composite material has the disadvantage that it is very difficult to control the production method related to the formation of amorphous metal and the production of the composite material. It had the problem that it was difficult to do.

一方、非晶質金属の有する高耐食性を活用することを目的として、基材表面に非晶質金属を積層させ複合化することにより実現することが試みられている(積層型)。例えば、基材表面に非晶質金属を溶射することによって耐食性皮膜を形成することも提案されている(特許文献5)。   On the other hand, for the purpose of utilizing the high corrosion resistance of amorphous metal, attempts have been made to realize it by laminating and compositing amorphous metal on the surface of a base material (laminated type). For example, it has also been proposed to form a corrosion-resistant film by spraying an amorphous metal on the substrate surface (Patent Document 5).

しかしながら、上記従来の積層型の複合材は、界面の強度が弱いため、基材に歪みが生じると非晶質金属の皮膜は容易に剥離してしまうため、耐食性には寄与するものではあるが、機械強度やヤング率等の力学的特性を制御するという目的の場合は、実用的ではないというのが技術常識であった。
特開平5−70880号公報 特開平5−70877号公報 特開2003−221657号公報 特開2002−775号公報 特開2005−126795号公報
However, since the conventional laminated composite material has weak interface strength, the amorphous metal film easily peels off when the substrate is distorted, which contributes to corrosion resistance. In the case of the purpose of controlling mechanical properties such as mechanical strength and Young's modulus, it has been common technical knowledge that it is not practical.
Japanese Patent Laid-Open No. 5-70880 JP-A-5-70877 JP 2003-221657 A JP 2002-775 A Japanese Patent Application Laid-Open No. 2005-126795

本発明は、以上のとおりの背景から、従来の問題点を解消し、基材と一体化された複合材として、材料設計、製造方法、複雑な形状の物品形成が容易であり、機械強度やヤング率等の力学的特性まで制御可能とする非晶質金属複合材とその製造方法およびそれによる物品を提供することを課題としている。   From the background as described above, the present invention eliminates the conventional problems, and as a composite material integrated with a base material, it is easy to design a material, a manufacturing method, and an article having a complicated shape. It is an object of the present invention to provide an amorphous metal composite that can control even mechanical properties such as Young's modulus, a method for producing the same, and an article thereby.

本発明は、上記の課題を解決するものとして、以下のことを特徴としている。   The present invention is characterized by the following in order to solve the above problems.

第1:基材表面に非晶質金属が積層一体化されてなる非晶質金属複合材であって、予め非晶質金属と同様な弾性域に調整された基材の表面に非晶質金属による層が一体的に設けられてなることを特徴とする非晶質金属複合材。   First: An amorphous metal composite material in which amorphous metal is laminated and integrated on the surface of the base material, and is amorphous on the surface of the base material adjusted in advance to the same elastic region as the amorphous metal. An amorphous metal composite comprising a metal layer integrally provided.

第2:基材と非晶質金属層との界面が相互に入り込みあっていることを特徴とする非晶質金属複合材。   Second: An amorphous metal composite characterized in that the interface between the substrate and the amorphous metal layer is interpenetrated.

第3:基材が金属、セラミック、プラスチック、またはこれら2種以上の固結体のうちのいずれかであることを特徴とする非晶質金属複合材。   Third: Amorphous metal composite characterized in that the base material is one of metal, ceramic, plastic, or a solidified body of two or more of these.

第4:基材の非晶質金属により被覆される箇所の体積に対し、積層一体化される非晶質金属の体積率が10%以上であることを特徴とする非晶質金属複合材。   Fourth: The amorphous metal composite material, wherein the volume ratio of the laminated amorphous metal is 10% or more with respect to the volume of the portion covered with the amorphous metal of the substrate.

第5:基材のヤング率を非晶質金属と同様になるように調整した後、その基材に対し非晶質金属の粒子を加熱して超音速で吹き付け衝突させて非晶質金属層を形成することを特徴とする非晶質金属複合材の製造方法。   Fifth: After adjusting the Young's modulus of the base material to be the same as that of the amorphous metal, the amorphous metal layer was heated by colliding the amorphous metal particles against the base material and spraying them at supersonic speed. Forming an amorphous metal composite material.

第6:使用する非晶質金属の種類とその層厚さを所望する力学的特性に合わせて調整することを特徴とする非晶質金属複合材の製造方法。   Sixth: A method for producing an amorphous metal composite, characterized in that the type of amorphous metal used and the layer thickness thereof are adjusted in accordance with desired mechanical properties.

第7:非晶質金属複合材の強度およびヤング率の少くともいずれかが最適化されていることを特徴とする非晶質金属複合材物品。   Seventh: An amorphous metal composite article characterized in that at least one of the strength and Young's modulus of the amorphous metal composite is optimized.

以上のとおりの本発明の非晶質金属複合材よれば、基材と非晶質金属とが引っ張り圧縮等の応力を与えられたとしても、同様な歪みを生じ、剥離を抑制することができるので、基材本来の機械強度に非晶質金属による機械強度を加重することができる。さらに、非晶質金属の厚さを調整することで、非晶質金属複合材の機械強度やヤング率等の力学的特性を制御することができる。   According to the amorphous metal composite material of the present invention as described above, even if the base material and the amorphous metal are subjected to stress such as tensile compression, the same distortion is generated and peeling can be suppressed. Therefore, the mechanical strength due to the amorphous metal can be applied to the original mechanical strength of the base material. Furthermore, by adjusting the thickness of the amorphous metal, the mechanical properties such as mechanical strength and Young's modulus of the amorphous metal composite can be controlled.

さらに、溶射による積層型の非晶質金属複合材であり、複雑な形状の物品であっても容易に形成することもできる。   Furthermore, it is a laminated amorphous metal composite material by thermal spraying, and even an article having a complicated shape can be easily formed.

図1は、HVOF溶射法の概要図である。FIG. 1 is a schematic diagram of the HVOF spraying method. 図2は、改良型HVOF溶射法の概要図である。FIG. 2 is a schematic diagram of the improved HVOF thermal spraying method. 図3は、改良型HVOF溶射法によって積層一体化した複合材の断面写真である。FIG. 3 is a cross-sectional photograph of a composite material laminated and integrated by an improved HVOF thermal spraying method. 図4は、積層材である非晶質金属とその粉末原料の場合のXRDパターン図である。FIG. 4 is an XRD pattern diagram in the case of an amorphous metal that is a laminated material and its powder raw material. 図5は、実施例1および実施例2における引張り試験前の工程図(a)−(c)と引張り試験の概略図(d)である。FIG. 5 is a process diagram (a) to (c) before the tensile test in Example 1 and Example 2 and a schematic diagram (d) of the tensile test. 図6は、実施例1における非晶質金属複合材の引張り試験による体積率とヤング率の関係図である。FIG. 6 is a graph showing the relationship between the volume ratio and the Young's modulus of the amorphous metal composite material in Example 1 by a tensile test. 図7は、予備加工を行った後の基材そのものの引張り試験結果および実施例2における非晶質金属複合材(体積率(基材/複合材)が0.765の複合材)の引張り試験結果であり、(a)は予備加工を行った後の基材そのもののロードセルによる荷重−変位曲線、(b)は予備加工を行った後の基材そのもののロードセル、ひずみゲージによる歪み−応力曲線であり、(c)は、実施例2の非晶質金属複合材のロードセルによる荷重−変位曲線、(d)は、実施例2の非晶質金属複合材のロードセル、ひずみゲージによる歪み−応力曲線である。なお、予備加工を行わない基材(ステンレス鋼316L)については次のような材質であることも確認してある。FIG. 7 shows the tensile test result of the base material itself after the preliminary processing and the tensile test of the amorphous metal composite material (composite material having a volume ratio (base material / composite material) of 0.765) in Example 2. It is a result, (a) is the load-displacement curve by the load cell of the base material itself after preliminary processing, (b) is the load cell of the base material itself after preliminary processing, and the strain-stress curve by a strain gauge. (C) is a load-displacement curve by the load cell of the amorphous metal composite material of Example 2, and (d) is a strain-stress by the load cell of the amorphous metal composite material of Example 2, a strain gauge. It is a curve. In addition, it has also confirmed that the base material (stainless steel 316L) which does not perform preliminary processing is the following materials. 図8は、実施例2における非晶質金属複合材の引張り試験による体積率とヤング率の関係図である。FIG. 8 is a graph showing the relationship between the volume ratio and the Young's modulus of the amorphous metal composite material in Example 2 by a tensile test.

従来は上記のように、特許文献5等の被覆型の非晶質金属複合材は、基材からの非晶質金属の剥離が生じてしまうという技術常識であり、実際に特許文献5においては、形成された皮膜は、薄膜50μm、さらには100μm強程度のものしか考慮されていないし、この程度のものしか試みられていない。このため、当業者においては、積層された非晶質金属によって非晶質金属複合材の機械強度やヤング率等の力学的特性にまで影響することなど予想だにし得なかった。   Conventionally, as described above, the coating-type amorphous metal composite material of Patent Document 5 or the like is a technical common sense that the amorphous metal is peeled off from the base material. Only a film having a thickness of about 50 μm or even a little over 100 μm is considered, and only a film of this level has been tried. For this reason, those skilled in the art could not expect that the laminated amorphous metal would affect the mechanical properties of the amorphous metal composite such as the mechanical strength and Young's modulus.

以下、本発明の実施の形態について説明する。   Embodiments of the present invention will be described below.

本発明者らは、鋭意検討を行った結果、被覆型の非晶質金属複合材の欠点である剥離の問題を検討し、引張りによる破壊過程は、まず基材の断面減少によって皮膜が剥離し、皮膜が破壊され、その後基材が破壊されることに注目した。そして、基材表面に非晶質金属が積層一体化されてなる非晶質金属複合材であって、予め非晶質金属と同様な弾性域に調整された基材の表面に非晶質金属による層が一体的に設けられてなることによって、基材の断面減少を抑制し、剥離の問題が解決され、非晶質金属の有する力学的特性を応用可能できることを見出した。さらに、非晶質金属の種類あるいは厚さを調節するという簡便な方法によって、非晶質金属複合材の機械強度やヤング率等の力学的特性を精密に制御可能であることをも見出し、本発明に至った。   As a result of intensive studies, the present inventors examined the problem of delamination, which is a drawback of coated amorphous metal composites. In the fracture process due to tension, the film was first delaminated by reducing the cross-section of the substrate. It was noted that the film was destroyed and then the substrate was destroyed. An amorphous metal composite material in which amorphous metal is laminated and integrated on the surface of the base material, and the amorphous metal is formed on the surface of the base material that has been adjusted in advance to an elastic region similar to that of the amorphous metal. It has been found that by providing the layer according to (1) integrally, the reduction in the cross section of the substrate is suppressed, the problem of peeling is solved, and the mechanical properties of the amorphous metal can be applied. Furthermore, we found that mechanical properties such as mechanical strength and Young's modulus of amorphous metal composites can be precisely controlled by a simple method of adjusting the type or thickness of amorphous metal. Invented.

本発明の非晶質金属複合材の基材については、たとえばステンレス鋼やチタンあるいはチタン合金をはじめとする各種の金属であってよく、これら金属は、結晶質、非晶質、あるいは微結晶析出等の金属であってよい。あるいは、酸化物系もしくは非酸化物系のセラミックスでも、さらにはプラスチックスでもよい。もちろん、FRPやFRMのようなこれらの複合物であってもよい。これらの基材に応じて、非晶質金属の積層一体化による複合特性はたとえば次の表1のようなものとして実現される。   The base material of the amorphous metal composite of the present invention may be various metals including, for example, stainless steel, titanium, or a titanium alloy, and these metals are crystalline, amorphous, or microcrystalline precipitates. Or a metal such as Alternatively, oxide-based or non-oxide-based ceramics or plastics may be used. Of course, these composites such as FRP and FRM may be used. Depending on these substrates, the composite characteristics by the lamination and integration of amorphous metals are realized as shown in Table 1 below, for example.

そして、本発明においては、これらの複合特性のうち、機械強度やヤング率が複合化で制御される。   In the present invention, among these composite characteristics, mechanical strength and Young's modulus are controlled by composite.

一方、本発明の積層材としての非晶質金属としては、これまでに知られている各種の化学組成のものであってよく、たとえばFe−Cr−Mo系、Zr−Cu−Ni系、Zr−Ni−Al系等の各種のものが、本発明の複合材の用途や、必要とされる力学的特性、さらには耐食性、耐摩耗性等の表面改質特性を考慮して選択される。また、これらは、積層一体化のための方法に対応して、粉末、板状、塊状体、あるいは溶融物としての利用のしやすさ等をも考慮して選択されてよい。   On the other hand, the amorphous metal as the laminated material of the present invention may have various chemical compositions known so far, such as Fe—Cr—Mo, Zr—Cu—Ni, Zr, and the like. Various types such as -Ni-Al are selected in consideration of the use of the composite material of the present invention, required mechanical properties, and surface modification properties such as corrosion resistance and wear resistance. These may be selected in consideration of the ease of use as a powder, a plate, a block, a melt, or the like corresponding to the method for stacking integration.

そして、本発明の非晶質金属複合材においては、基材に対して積層一体化されている非晶質金属には、積層一体化のプロセス、すなわち製造時において不可避的に析出する結晶相が含まれていてよい。   In the amorphous metal composite of the present invention, the amorphous metal laminated and integrated with the substrate has a crystal phase that inevitably precipitates during the process of lamination and integration, that is, during production. May be included.

この不可避的な結晶相を含むものとして本発明の積層一体化されている「非晶質金属」が定義される。   The “amorphous metal” that is laminated and integrated according to the present invention is defined as including the inevitable crystal phase.

本発明の積層一体化の特徴は、従来の複合化方法のように鋳造にともなう表面層のアモルファス化のような局在化変質や、あるいは混合粉末の均一分散圧縮成形とも本質的に相違している。本発明では、固体状の、すなわち特有の形状を有している成形固体としての基材に対して、非晶質金属が積層されることを必須としている。   The characteristics of the laminated integration of the present invention are essentially different from localized alteration such as amorphization of the surface layer accompanying casting as in the conventional composite method, or uniform dispersion compression molding of mixed powder. Yes. In the present invention, it is essential that an amorphous metal is laminated on a solid base material, that is, a molded solid body having a specific shape.

そしてまた、本発明の積層一体化は、アモルファス金属の溶射皮膜形成の従来の手段とも本質的に相違している。本発明においては、50μm、あるいは300μm程度までの薄膜としての皮膜形成ではなく、基材の力学的特性そのものを変更制御するだけの厚み、体積をもっての積層一体化である点で、従来の皮膜形成とは技術思想が異っているのである。   Moreover, the laminated integration of the present invention is essentially different from the conventional means for forming a sprayed coating of amorphous metal. In the present invention, the conventional film formation is not a film formation as a thin film of up to about 50 μm or 300 μm, but a layered integration with a thickness and volume that only changes and controls the mechanical properties of the base material itself. The technical idea is different.

積層一体化のための手段としては、基材に対しての溶射、接合、粉末焼結、鋳造等の各種の手段のいずれかであってよい。たとえば簡便な溶射の方法としては、HVOF溶射、改良型HVOF溶射、雰囲気制御プラズマ溶射等を例示することができる。   The means for stacking and integration may be any of various means such as thermal spraying, bonding, powder sintering, and casting on the base material. For example, as a simple thermal spraying method, HVOF thermal spraying, improved HVOF thermal spraying, atmosphere control plasma thermal spraying and the like can be exemplified.

これらの溶射法による場合には、基材との界面の密着性に優れているとともに、たとえば次の表2のような特徴と利点も実現されることになる。   In the case of these thermal spraying methods, the adhesiveness at the interface with the base material is excellent, and for example, the characteristics and advantages shown in the following Table 2 are realized.

このような特徴や利点のある溶射法についてさらに説明すると、高速フレーム溶射(HVOF)法(たとえば文献:Journal of ThermalSpray Technology, Vol. 8(3), Sep. 1999, 351 - 356 参照)は、図1に例示したように、多量・高圧の助燃性ガス(酸素ガス)と可燃性気体・液体(水素、プロパン、灯油など)の燃焼により生成した燃焼ジェットに目的とする粉末粒子を投入し、〜3000℃〜800m/s程度に加熱・加速した後に、基材に連続的に衝突させ、主として粒子の塑性変形を利用して堆積させるプロセスである。このプロセスにより、温度が低く、ピーニングの効果があわせて得られることから、化学組成や相転移といった熱的劣化を抑制した高品質であり、なおかつ緻密性・密着性が高い皮膜を作製できる。   The thermal spraying method having such features and advantages will be further described. The high-speed flame spraying (HVOF) method (for example, see Journal of Thermal Spray Technology, Vol. 8 (3), Sep. 1999, 351-356) is shown in FIG. As illustrated in 1, the target powder particles are put into a combustion jet generated by the combustion of a large amount of high-pressure auxiliary combustible gas (oxygen gas) and combustible gas / liquid (hydrogen, propane, kerosene, etc.) In this process, after heating and accelerating to about 3000 ° C. to 800 m / s, the substrate is continuously collided with the substrate and mainly deposited by using plastic deformation of particles. By this process, since the temperature is low and the effect of peening can be obtained together, it is possible to produce a high quality film with high thermal density such as chemical composition and phase transition, and high density and adhesion.

また、改良型HVOF溶射法(たとえば文献:Proceedings of International Thermal Spray Conference 2005, CD-ROM, in Basel, Switzerland, May 2005. 「Dense Titanium Coatings by Modified HVOF Spraying」, J. Kawakita 他, 参照)は、HVOF溶射法における課題の一つである高速と最適加熱を両立したジェットを実現したものである。HVOF溶射法では、粒子の温度と速度の関係は反比例であり、結果として皮膚の緻密性と熱的劣化は相反するものであったことから、図2に例示したように燃焼炎に冷却用の気体(窒素ガス)を加えて、その温度を最適に制御した後で粉末を投入することで、800m/s以上の粒子速度を維持したまま、粒子加熱温度を500℃程度まで下げることに成功したものである。このプロセスにより、熱的劣化の起こりやすい材料(例えば酸化しやすいチタン)についても緻密に積層することが可能となっている。   Also, the improved HVOF spraying method (see, for example, Proceedings of International Thermal Spray Conference 2005, CD-ROM, in Basel, Switzerland, May 2005. “Dense Titanium Coatings by Modified HVOF Spraying”, J. Kawakita et al.) A jet that achieves both high speed and optimum heating, which is one of the problems in the HVOF spraying method, is realized. In the HVOF thermal spraying method, the relationship between the temperature and velocity of the particles is inversely proportional, and as a result, the denseness of the skin and the thermal deterioration are contradictory, and as shown in FIG. By adding a gas (nitrogen gas) and controlling the temperature optimally, the powder was charged, and the particle heating temperature was successfully reduced to about 500 ° C. while maintaining a particle velocity of 800 m / s or higher. Is. This process makes it possible to densely stack a material that easily undergoes thermal degradation (for example, titanium that easily oxidizes).

HVOF溶射法においては、たとえば後述の実施例1に示したFe−10Cr−10Mo−8P−2Cの非晶質金属を積層する場合、この非晶質金属の粒径25〜63μmの範囲の粉末を用い、ステンレス鋼316L、炭素鋼SS400、ニッケル基合金 Hastelloy C296、純チタン、耐火セラミックス等の基材に対し、次の表3の条件を採用することができる。   In the HVOF thermal spraying method, for example, when an amorphous metal of Fe-10Cr-10Mo-8P-2C shown in Example 1 described later is laminated, a powder having a particle diameter of 25 to 63 μm of the amorphous metal is used. The following conditions in Table 3 can be used for the base materials such as stainless steel 316L, carbon steel SS400, nickel base alloy Hastelloy C296, pure titanium, refractory ceramics.

また、改良型HVOF溶射法も有効である。   An improved HVOF spraying method is also effective.

たとえば、図3は、本発明において炭素鋼の表面に改良型HVOF溶射法によってZr−12.3Cu−7.6Ni−3.5Alの組成の非晶質金属を積層一体化した場合の断面写真を示している。炭素鋼表面(基材)上に非晶質金属が積層されていることが明瞭に把握される。   For example, FIG. 3 is a cross-sectional photograph of a case where an amorphous metal having a composition of Zr-12.3Cu-7.6Ni-3.5Al is laminated and integrated on the surface of carbon steel in the present invention by an improved HVOF spraying method. Show. It is clearly understood that an amorphous metal is laminated on the carbon steel surface (base material).

この改良型HVOF法の場合においては、たとえば、原料粉末であるZr−12.3Cu−7.6Ni−3.5Alの組成の非晶質金属の粒径を25〜53μmの範囲とし、炭素鋼SS400、ステンレス鋼316L、純チタン等の金属基材に対して、以下表4のような条件を採用することができる。   In the case of this improved HVOF method, for example, the raw material powder Zr-12.3Cu-7.6Ni-3.5Al has a composition of amorphous metal having a particle size in the range of 25 to 53 μm, and carbon steel SS400. The conditions shown in Table 4 below can be adopted for metal base materials such as stainless steel 316L and pure titanium.

なお、同じ組成のZr非晶質金属の25〜53μmの粒径の原料粉末を用いて減圧プラズマ溶射により炭素鋼SS400等に対して積層する場合には、たとえば次の表5のような操作条件が考慮される。   In addition, when laminating | stacking with respect to carbon steel SS400 etc. by low pressure plasma spraying using the raw material powder of the particle size of 25-53 micrometers of Zr amorphous metal of the same composition, for example, operation conditions like following Table 5 Is considered.

本発明における積層一体化による力学的特性の制御は、たとえば、積層された非晶質金属の複合材全体に占める非晶質金属の体積率を調節することにより可能とされる。この体積率については、力学的特性の制御として数%のレベルから可能とされるが、顕著な範囲としては5%以上、さらには10%以上で、95%以下、さらには90%以下程度の範囲を実際的な目安とすることが好適に考慮される。   In the present invention, control of mechanical properties by lamination integration is made possible by adjusting, for example, the volume ratio of amorphous metal in the entire laminated amorphous metal composite. This volume ratio can be controlled from a few percent level as a mechanical property control, but the remarkable range is 5% or more, further 10% or more, 95% or less, and further about 90% or less. It is preferred to consider the range as a practical guide.

この体積率によって、基材そのものの力学的特性値から非晶質金属そのものの力学的特性値まで、ほぼ直線的に変化させることも可能となる。   By this volume ratio, it is possible to change almost linearly from the mechanical characteristic value of the base material itself to the mechanical characteristic value of the amorphous metal itself.

そして、この体積率による力学的特性のコントロールについては、当然にも、非晶質金属の種類、組成にともなう耐食性、耐摩耗性、比重等も考慮されることになる。   As a matter of course, the control of the mechanical characteristics by the volume ratio also takes into consideration the corrosion resistance, wear resistance, specific gravity, etc. associated with the type and composition of the amorphous metal.

本発明の複合材によれば、基材と非晶質金属との複合化特性を生かして、たとえば、インプラント用ボーンプレート等の医療用物品、ゴルフクラブヘッド等のスポーツ用品、あるいは航空機材、自動車、建設等の各種の産業用物品が構成される。その際には、たとえば、複合材の強度およびヤング率の少くともいずれかが最適化されている非晶質金属複合材物品が実現されることになる。   According to the composite material of the present invention, taking advantage of the composite property of the base material and the amorphous metal, for example, medical articles such as bone plates for implants, sports equipment such as golf club heads, aircraft materials, automobiles, etc. Various industrial articles such as construction are constructed. In that case, for example, an amorphous metal composite material in which at least one of the strength and Young's modulus of the composite material is optimized is realized.

そこで以下に実施例を示し、さらに詳しく説明する。もちろん以下の例によって発明が限定されることはない。   Therefore, an example will be shown below and will be described in more detail. Of course, the invention is not limited by the following examples.

<実施例1>
ステンレス鋼316Lを基材として、あらかじめ基材と非晶質金属とが同程度の弾性域となるような加工を行った後、HVOF溶射法により、その表面に、Fe−10Cr−10Mo−8P−2Cの組成の鉄系非晶質金属を、種々の体積率(基材/複合材)となるように溶射して積層一体化し、引っ張り試験を行って、体積率とヤング率の関係を検討した。なお、製造した皮膜が非晶質金属であることをXRDによってあらかじめ確認した。図4は、実施例1における被覆された非晶質金属が原料粉末と同じ非晶質であることを示しているXRDパターンである。
<Example 1>
After processing the stainless steel 316L as a base material so that the base material and the amorphous metal have the same elastic range in advance, Fe-10Cr-10Mo-8P- is formed on the surface by HVOF spraying. 2C iron-based amorphous metal was thermally sprayed to have various volume ratios (base materials / composites), laminated and integrated, and a tensile test was conducted to examine the relationship between the volume ratio and Young's modulus. . In addition, it was confirmed beforehand by XRD that the produced film was an amorphous metal. FIG. 4 is an XRD pattern showing that the coated amorphous metal in Example 1 is the same amorphous as the raw material powder.

<実施例2>
実施例1とは別の非晶質金属を用いた場合のヤング率と体積率との関係を検討した。実施例1と同様の手順でステンレス鋼316Lを基材として、あらかじめ基材と非晶質金属とが同程度の弾性域となるような加工を行った後、HVOF溶射法により、その表面に、Zr−12.3Cu−7.6Ni−3.5Alの組成の非晶質金属を、種々の体積率となるように溶射して積層一体化し、引っ張り試験を行って、体積率とヤング率の関係を検討した。なお、XRDによって実施例2においても被覆された非晶質金属が原料粉末と同じ非晶質であることを確認した。以下、実施例1と実施例2の手順について詳しく説明する。
<Example 2>
The relationship between Young's modulus and volume ratio when an amorphous metal different from that in Example 1 was used was examined. After processing the stainless steel 316L as a base material in the same procedure as in Example 1 so that the base material and the amorphous metal are in the same elastic range in advance, the surface is subjected to HVOF spraying, Amorphous metal having a composition of Zr-12.3Cu-7.6Ni-3.5Al is thermally sprayed to have various volume ratios, laminated and integrated, and a tensile test is performed. Relationship between volume ratio and Young's modulus It was investigated. It was confirmed by XRD that the amorphous metal coated in Example 2 was the same amorphous as the raw material powder. Hereinafter, the procedure of Example 1 and Example 2 will be described in detail.

図5は、実施例1および実施例2における引張り試験前の工程図(a)−(c)と引張り試験の概略図(d)である。まず、図5(a)のような形状の引っ張り試験用の基材(matrix)を作製した。そして、(b)のようにUTS(Ultimate Tensile Strength、極限引張り強さ)の85%予荷重で変形させる予備加工を行った。その後、サンドブラストで基材を研磨した後、(c)のようにHVOF溶射法により非晶質金属を溶射して、さらにエメリー研磨紙600番で軸方向に研磨した。これを引っ張り試験用の試験片として、(d)のように、ひずみゲージを2枚取付けた後、オートグラフ(島津製作所製)を用いて、10kN、クロスヘッド速度1mm/minで測定を行った。   FIG. 5 is a process diagram (a) to (c) before the tensile test in Example 1 and Example 2 and a schematic diagram (d) of the tensile test. First, a base material for a tensile test having a shape as shown in FIG. Then, as shown in (b), preliminary processing was performed to deform with 85% preload of UTS (Ultimate Tensile Strength). Thereafter, the substrate was polished with sand blasting, and then an amorphous metal was sprayed by HVOF spraying as shown in (c) and further polished in the axial direction with emery polishing paper No. 600. As a test piece for a tensile test, two strain gauges were attached as shown in (d), and then measured using an autograph (manufactured by Shimadzu Corporation) at 10 kN and a crosshead speed of 1 mm / min. .

図6は、実施例1における非晶質金属複合材の引張り試験による体積率とヤング率の関係図である。この図6においては、体積率1の場合は、基材であるステンレス鋼316Lそのもののヤング率を示し、体積率0の場合は、非晶質金属そのもののヤング率を示している。なお、体積率は、研磨によって皮膜の厚さが均等に形成されていることから、引張り試験の軸方向に対する非晶質金属複合体の垂直断面の面積を測定することによって算出されたものである。   FIG. 6 is a graph showing the relationship between the volume ratio and the Young's modulus of the amorphous metal composite material in Example 1 by a tensile test. In FIG. 6, when the volume ratio is 1, the Young's modulus of the stainless steel 316L as a base material is shown, and when the volume ratio is 0, the Young's modulus of the amorphous metal itself is shown. The volume ratio is calculated by measuring the area of the vertical cross section of the amorphous metal composite with respect to the axial direction of the tensile test because the film thickness is uniformly formed by polishing. .

図6より、体積率によってヤング率を制御可能であることがわかる。さらに、体積率とヤング率の関係は直線関係を有し、力学的特性を正確に制御可能であることがわかる。   6 that the Young's modulus can be controlled by the volume ratio. Furthermore, it can be seen that the relationship between the volume fraction and the Young's modulus is linear, and the mechanical properties can be accurately controlled.

図7は、予備加工を行った後の基材そのものの引張り試験結果および実施例2における非晶質金属複合材(体積率(基材/複合材)が0.765の複合材)の引張り試験結果であり、(a)は予備加工を行った後の基材そのもののロードセルによる荷重−変位曲線、(b)は予備加工を行った後の基材そのもののひずみゲージによる歪み−応力曲線であり、(c)は、実施例2の非晶質金属複合材のロードセルによる荷重−変位曲線、(d)は、実施例2の非晶質金属複合材のひずみゲージによる歪み−応力曲線である。なお、予備加工を行わない基材(ステンレス鋼316L)については次のような材質であることも確認してある。材質;0.2%PS(Proof Stress 、耐力) 293MPa、UTS 586MPa、均一伸び 58%、全伸び 85%、絞り 77%。   FIG. 7 shows the tensile test result of the base material itself after the preliminary processing and the tensile test of the amorphous metal composite material (composite material having a volume ratio (base material / composite material) of 0.765) in Example 2. It is a result, (a) is the load-displacement curve by the load cell of the base material itself after preliminary processing, (b) is the strain-stress curve by the strain gauge of the base material itself after preliminary processing. (C) is the load-displacement curve by the load cell of the amorphous metal composite material of Example 2, (d) is the strain-stress curve by the strain gauge of the amorphous metal composite material of Example 2. In addition, it has also confirmed that the base material (stainless steel 316L) which does not perform preliminary processing is the following materials. Material: 0.2% PS (Proof Stress, proof stress) 293 MPa, UTS 586 MPa, uniform elongation 58%, total elongation 85%, aperture 77%.

図7(a)より、UTSの85%の負荷をかけると0.2%PSが293MPaから520MPaまで上昇(弾性域が上昇)していることがわかる。このことによって非晶質金属と基材の弾性域が同程度となり、荷重負荷の初期段階で、基材の塑性変形を遅らせ、つまりは基材の断面減少を防ぐことができ、非晶質金属の皮膜の剥離を防ぐことが可能となるのである。そして(b)、(d)の歪み−応力曲線から、非晶質金属複合材とすることによって低ヤング率とすることができることが確認され、被覆型の非晶質金属複合体においても非晶質金属の力学的特性を応用することが可能であることが確認された。   From FIG. 7A, it can be seen that 0.2% PS increases from 293 MPa to 520 MPa (elastic range increases) when a load of 85% of UTS is applied. As a result, the elastic range of the amorphous metal and the base material is approximately the same, and the plastic deformation of the base material can be delayed at the initial stage of load application, that is, the cross section of the base material can be prevented from being reduced. It is possible to prevent peeling of the film. From the strain-stress curves of (b) and (d), it was confirmed that a low Young's modulus can be obtained by using an amorphous metal composite, and even in a coated amorphous metal composite, it is amorphous. It was confirmed that it was possible to apply the mechanical properties of the solid metal.

また、図8は、実施例2における非晶質金属複合材の引張り試験による体積率とヤング率の関係図である。この図8においては、体積率1の場合は、基材であるステンレス鋼316Lそのもののヤング率を示し、体積率0の場合は、非晶質金属そのもののヤング率を示している。表6にも体積率とヤング率との関係をまとめた。なお、体積率は、実施例1と同様、非晶質金属複合体の垂直断面の面積を測定することによって算出されたものである。   FIG. 8 is a graph showing the relationship between the volume ratio and the Young's modulus of the amorphous metal composite material according to the second embodiment. In FIG. 8, when the volume ratio is 1, the Young's modulus of the stainless steel 316L as a base material is shown, and when the volume ratio is 0, the Young's modulus of the amorphous metal itself is shown. Table 6 also summarizes the relationship between volume fraction and Young's modulus. The volume ratio was calculated by measuring the area of the vertical cross section of the amorphous metal composite as in Example 1.

図8、表6より、体積率によってヤング率を制御可能であることがわかる。さらに、体積率とヤング率の関係は直線関係を有し、力学的特性を正確に制御可能であることがわかる。また、図6と比較してわかるように、非晶質金属の種類によっても力学的特性は制御可能であることも確認された。   FIG. 8 and Table 6 show that the Young's modulus can be controlled by the volume ratio. Furthermore, it can be seen that the relationship between the volume fraction and the Young's modulus is linear, and the mechanical properties can be accurately controlled. Further, as can be seen from comparison with FIG. 6, it was confirmed that the mechanical characteristics could be controlled by the kind of amorphous metal.

Claims (7)

基材表面に非晶質金属が積層一体化されてなる非晶質金属複合材であって、予め非晶質金属と同様な弾性域に調整された基材の表面に非晶質金属による層が一体的に設けられてなることを特徴とする非晶質金属複合材。   Amorphous metal composite material in which amorphous metal is laminated and integrated on the surface of the substrate, and the layer made of amorphous metal on the surface of the substrate that has been adjusted in advance to the same elastic region as the amorphous metal An amorphous metal composite material characterized in that is provided integrally. 請求項1に記載の非晶質金属複合材であって、基材と非晶質金属層との界面が相互に入り込みあっていることを特徴とする非晶質金属複合材。   The amorphous metal composite material according to claim 1, wherein an interface between the base material and the amorphous metal layer enters each other. 請求項1又は2に記載の非晶質金属複合材において、基材が金属、セラミック、プラスチック、またはこれら2種以上の固結体のうちのいずれかであることを特徴とする非晶質金属複合材。   3. The amorphous metal composite material according to claim 1, wherein the base material is any one of metal, ceramic, plastic, or a solidified body of two or more of these. Composite material. 請求項1から3のいずれかに記載の非晶質金属複合材において、基材の非晶質金属により被覆される箇所の体積に対し、積層一体化される非晶質金属の体積率が10%以上であることを特徴とする非晶質金属複合材。   The amorphous metal composite material according to any one of claims 1 to 3, wherein the volume ratio of the amorphous metal laminated and integrated is 10 with respect to the volume of the portion covered with the amorphous metal of the base material. % Or more of an amorphous metal composite material. 請求項1から4のいずれかに記載の非晶質金属複合材の製造方法であって、基材のヤング率を非晶質金属と同様になるように調整した後、その基材に対し非晶質金属の粒子を加熱して超音速で吹き付け衝突させて非晶質金属層を形成することを特徴とする非晶質金属複合材の製造方法。   The method for producing an amorphous metal composite according to any one of claims 1 to 4, wherein after adjusting the Young's modulus of the base material to be the same as that of the amorphous metal, A method for producing an amorphous metal composite, comprising heating an amorphous metal particle to cause collision by spraying at a supersonic speed to form an amorphous metal layer. 請求項5に記載の非晶質金属複合材の製造方法であって、使用する非晶質金属の種類とその層厚さを所望する力学的特性に合わせて調整することを特徴とする非晶質金属複合材の製造方法。   6. The method for producing an amorphous metal composite according to claim 5, wherein the kind of amorphous metal used and the layer thickness thereof are adjusted in accordance with desired mechanical properties. For producing a solid metal composite. 請求項1から4に記載の非晶質金属複合材を構成材として用いた物品であって、非晶質金属複合材の強度およびヤング率の少くともいずれかが最適化されていることを特徴とする非晶質金属複合材物品。   5. An article using the amorphous metal composite material according to claim 1 as a constituent material, wherein at least one of the strength and Young's modulus of the amorphous metal composite material is optimized. Amorphous metal composite article.
JP2008505171A 2006-03-13 2007-03-13 Amorphous metal composite, method for producing the same, and article thereby Expired - Fee Related JP4900617B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008505171A JP4900617B2 (en) 2006-03-13 2007-03-13 Amorphous metal composite, method for producing the same, and article thereby

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006068070 2006-03-13
JP2006068070 2006-03-13
JP2008505171A JP4900617B2 (en) 2006-03-13 2007-03-13 Amorphous metal composite, method for producing the same, and article thereby
PCT/JP2007/055003 WO2007105738A1 (en) 2006-03-13 2007-03-13 Amorphous-metal composite material, process for producing the same, and article obtained by the same

Publications (2)

Publication Number Publication Date
JPWO2007105738A1 true JPWO2007105738A1 (en) 2009-07-30
JP4900617B2 JP4900617B2 (en) 2012-03-21

Family

ID=38509557

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008505171A Expired - Fee Related JP4900617B2 (en) 2006-03-13 2007-03-13 Amorphous metal composite, method for producing the same, and article thereby

Country Status (2)

Country Link
JP (1) JP4900617B2 (en)
WO (1) WO2007105738A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103911563B (en) 2012-12-31 2017-06-06 比亚迪股份有限公司 Zirconium-base amorphous alloy and preparation method thereof
KR20160092357A (en) 2015-01-27 2016-08-04 삼성전자주식회사 Amorphous and nano nitride composite thin film, method for forming the same and electronic divice with the same
US20180029241A1 (en) * 2016-07-29 2018-02-01 Liquidmetal Coatings, Llc Method of forming cutting tools with amorphous alloys on an edge thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4025046B2 (en) * 1997-04-16 2007-12-19 Sriスポーツ株式会社 Golf club head
JP2001269427A (en) * 2000-03-24 2001-10-02 Sumitomo Rubber Ind Ltd Metal bat
JP4201552B2 (en) * 2002-08-30 2008-12-24 三井化学株式会社 Amorphous alloy ribbon with resin layer formed and method for producing the same
JP2005126795A (en) * 2003-10-27 2005-05-19 Takao Kurahashi Method for forming amorphous film
JP2006159108A (en) * 2004-12-08 2006-06-22 Topy Ind Ltd Composite layered product, gas separation membrane using the same, and production method thereof

Also Published As

Publication number Publication date
JP4900617B2 (en) 2012-03-21
WO2007105738A1 (en) 2007-09-20

Similar Documents

Publication Publication Date Title
Cheng et al. Tribological properties of nano/ultrafine-grained FeCoCrNiMnAlx high-entropy alloys over a wide range of temperatures
Rajabi et al. Development and application of tool wear: A review of the characterization of TiC-based cermets with different binders
CN109763125B (en) High-entropy alloy coating resistant to high-temperature abrasion and preparation process and application thereof
CN100503843C (en) Hard metallic materials, hard metallic coatings, methods of processing metallic materials and methods of producing metallic coatings
US11731178B2 (en) Rolled (FeCoNiCrRn/Al)-2024Al composite panel and fabrication method thereof
JP5013364B2 (en) Cermet film forming method and cermet coating member obtained thereby
WO2013042635A1 (en) Laminate and laminate manufacturing method
KR101543895B1 (en) Method for forming functional coating layer on zinc galvanized steel sheet by cold spraying and zinc galvanized steel sheet having functional coating layer
JP2009197294A (en) Manufacturing method of layered product
US7311873B2 (en) Process of direct powder rolling of blended titanium alloys, titanium matrix composites, and titanium aluminides
JP4900617B2 (en) Amorphous metal composite, method for producing the same, and article thereby
US9115421B2 (en) Method for nitriding surface of aluminum or aluminum alloy by cold spray method
JP5548948B2 (en) Composite material in which a metal glass sprayed coating layer is formed on a thin metal substrate and method for producing the same
CN114457303A (en) Carbon steel thermal barrier ceramic coating and preparation method thereof
JP5305385B2 (en) Deformation processing method of metallic glass composite material
JP4751260B2 (en) Continuous casting mold and manufacturing method thereof
WO2013179773A1 (en) Molybdenum heat-resistant alloy, friction stir welding tool, and manufacturing method
US20130260166A1 (en) Coated Titanium Alloy Surfaces
Kurdi et al. Deformation of cold sprayed Ni-Sn coating under micro-pillar compression
US20130260172A1 (en) Coated titanium alloy surfaces
KR102010306B1 (en) Aluminum-Titanium Different Functionally Graded Composite Materials and Manufacturing method thereof
CN102644048B (en) Preparing process for bionic molybdenum silicide gradient laminate compositing nanometer coatings
CN114406282B (en) High-plasticity cold spray titanium deposit based on particle interface oxygen element distribution regulation and control and preparation method thereof
Koutsomichalis et al. Tensile and bend behaviour of nanostructured HVOF and flame sprayed stellite coatings
KR101543891B1 (en) Coating Method For Nano-structured Metallic Thin Films Using Supersonic Vacuum-Flow Deposition

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20091203

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110913

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111213

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111220

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150113

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150113

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees