JPWO2006101159A1 - 信号処理装置および信号処理方法 - Google Patents

信号処理装置および信号処理方法 Download PDF

Info

Publication number
JPWO2006101159A1
JPWO2006101159A1 JP2007509320A JP2007509320A JPWO2006101159A1 JP WO2006101159 A1 JPWO2006101159 A1 JP WO2006101159A1 JP 2007509320 A JP2007509320 A JP 2007509320A JP 2007509320 A JP2007509320 A JP 2007509320A JP WO2006101159 A1 JPWO2006101159 A1 JP WO2006101159A1
Authority
JP
Japan
Prior art keywords
equalizer
signal
post
circuit
filter coefficient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007509320A
Other languages
English (en)
Inventor
佐藤 洋一
洋一 佐藤
崇 鎌田
崇 鎌田
正俊 佐藤
正俊 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electric Power Co Inc
Original Assignee
Tokyo Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Inc filed Critical Tokyo Electric Power Co Inc
Publication of JPWO2006101159A1 publication Critical patent/JPWO2006101159A1/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B3/00Line transmission systems
    • H04B3/02Details
    • H04B3/04Control of transmission; Equalising
    • H04B3/14Control of transmission; Equalising characterised by the equalising network used
    • H04B3/142Control of transmission; Equalising characterised by the equalising network used using echo-equalisers, e.g. transversal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B3/00Line transmission systems
    • H04B3/02Details
    • H04B3/04Control of transmission; Equalising
    • H04B3/06Control of transmission; Equalising by the transmitted signal

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)

Abstract

構成が簡単で調整のための計算量が少なく、かつ高精度で収束可能な等化処理を行う信号処理装置および信号処理方法を提供する。等化器は、信号時間位置より前の部分を等化する第1のプレ等化器40と信号時間位置より後の部分を等化する第1のポスト等化器41とを縦続接続した第1の等化器、第2のポスト等化器42と第2のプレ等化器43とを縦続接続した第2の等化器、第1のポスト等化器41および第2のプレ等化器43のフィルタ係数をそれぞれ独立して調整する調整回路48、調整されたフィルタ係数を第2のポスト等化器42および第1のプレ等化器40にも設定する設定手段とを備える。回路構成が簡単であり、IC化した場合の回路規模や消費電力を小さくできる。また、調整のための計算量が少なく、高速かつ高精度に収束可能である。

Description

本発明は、信号処理装置および信号処理方法に関するものであり、特に、構成が簡単で調整のための計算量が少なく、かつ高速、高精度で収束可能な等化処理を行う信号処理装置および信号処理方法に関するものである。
従来、高速のベースバンドデジタルデータ伝送装置にはPAM信号方式が採用されており、伝送路の高域における大きな損失を補償するために、各種の等化器やプレエンファシス回路等の採用が提案されている。等化器としては、例えばトランスバーサル型(FIR)フィルタを使用した周知の等化器がある。
図7は、従来の等化器の構成例を示すブロック図である。シフトレジスタ100に入力された入力信号Yは遅延され、乗算器101、102によってレジスタ103に設定されたフィルタ係数と乗算され、加算器104によって加算されて出力される。また、出力信号から参照信号が減算され、調整アルゴリズム演算回路106に入力されてフィルタ係数が調整される。
調整アルゴリズムとしては、周知の確率的勾配法(LMS)あるいはカルマンフィルター法が採用されている。下記の特許文献1には、トランスバーサル型フィルタを用いた等化器をカルマンフィルタ法およびLMS法を切り替えて調整する構成が開示されている。
また、最近、金属線を用いたベースバンドデータ伝送としてTHP(Tomlinson Harashima Precoding)方式が注目されている。このTHP方式は、プレエンファシス方式を改良したものであり、伝送路を擬似するFIRフィルタを使用したプリエンファシス回路の途中にモジュロ演算回路を挿入して、送信信号の振幅を所定の範囲内に抑圧する方式である。下記非特許文献1には、THP方式の波形調整技術が開示されている。
特開2001−196978号公報 「Matched-Transmission Technique for Channels With IntersymbolInterference」IEEETRANSACTIONS ON COMMUNICATIONS,VOL.COM-20,NO.4 AUGUST 1972 774〜780ページ
例えば1Gbpsというような高速のデジタルデータ伝送を行う場合には、等化器も短時間のシンボル区間に対応して調整する必要がある。従って、調整アルゴリズムも計算量が少ないものでないと計算が間に合わなくなる。ところが、カルマンフィルタ法は計算が複雑であり、計算量が多いので計算が間に合わないという問題点があり、また微細な成分の収束速度が遅いという問題点もあった。
一方LMS法は計算量は比較的少ないが収束速度が遅く、伝送路の周波数特性が広い帯域にわたって大きく落ち込んでいると収束に膨大な時間がかかるか、あるいは収束しない場合もあるという問題点があった。
また、上記したTHP方式を採用する場合には、THPのプリコーダの特性も含めた伝送路の特性を等化する必要があるため、PN(擬似ノイズ)符号を用いた従来のトレーニング方式をそのままでは採用できないという問題点があった。本発明は、上記した従来技術の課題を解決し、構成が簡単で調整のための計算量が少なく、かつ高速、高精度で収束可能な等化処理を行う信号処理装置および信号処理方法を提供することを目的とする。
本発明の信号処理装置は、信号時間位置より前の部分を等化する第1のプレ等化器手段と、信号時間位置より後の部分を等化する第1のポスト等化器手段とを縦続接続した第1の等化器手段と、信号時間位置より後の部分を等化する第2のポスト等化器手段と信号時間位置より前の部分を等化する第2のプレ等化器手段とを縦続接続した第2の等化器手段と、前記第1のポスト等化器手段のフィルタ係数を調整する第1の調整手段と、前記第2のプレ等化器手段のフィルタ係数を調整する第2の調整手段と、前記第1の調整手段により調整されたフィルタ係数を前記第2のポスト等化器手段にも設定する第1の設定手段と、前記第2の調整手段により調整されたフィルタ係数を前記第1のプレ等化器手段にも設定する第2の設定手段とを備えたことを主要な特徴とする。ここで、信号時間位置は一意的に決まるものであり、その意味は下記の非特許文献2に説明されている。
佐藤洋一著「線形等化理論」、丸善出版1990年、第2章逆システム、2.3節、50頁〜57頁
また、前記した信号処理装置において、前記第1のプレ等化器手段、第1のポスト等化器手段、第2のポスト等化器手段、第2のプレ等化器手段はそれぞれFIRフィルタ回路からなる点にも特徴がある。
また、前記した信号処理装置において、前記第1および第2の調整手段は、それぞれ確率的勾配法を使用してフィルタ係数を調整する点にも特徴がある。
また、前記した信号処理装置において、更に、PN信号をTHPプリコーダに通した送信トレーニング信号と同期した参照信号を生成する参照信号生成手段と、前記第1の等化器手段の出力信号と前記参照信号との差分を算出して前記第1の調整手段に出力する第1の誤差信号生成手段と、前記第2の等化器手段の出力信号と前記参照信号との差分を算出して前記第2の調整手段に出力する第2の誤差信号生成手段と、を備えた点にも特徴がある。
本発明の信号処理方法は、信号時間位置より前の部分を等化する第1のプレ等化器手段と、信号時間位置より後の部分を等化する第1のポスト等化器手段とを縦続接続した第1の等化器手段において、前記第1のポスト等化器手段のフィルタ係数を調整する第1のステップと、前記第1のステップと同時に並行して、信号時間位置より後の部分を等化する第2のポスト等化器手段と信号時間位置より前の部分を等化する第2のプレ等化器手段とを縦続接続した第2の等化器手段において、前記第2のプレ等化器手段のフィルタ係数を調整する第2のステップと、前記第1の調整手段により調整されたフィルタ係数を前記第2のポスト等化器手段にも設定すると共に、前記第2の調整手段により調整されたフィルタ係数を前記第1のプレ等化器手段にも設定する第3のステップとを繰り返すことを主要な特徴とする。
本発明の信号処理装置および信号処理方法は上記のような構成によって、回路構成が簡単であり、IC化した場合の回路規模や消費電力を小さくできるという効果がある。また、フィルタ係数の調整のための計算量が少なく、高速な調整が可能であるという効果もある。更に等化器が高速かつ高精度で収束することが可能であるという効果もある。また、伝送路の周波数特性の補償を送信側のTHPプレコーディング手段と受信側の等化器手段とによって分担させることにより、THPのループの安定性が増す、THPプリコーダの段数を少なくすることができるなどの効果もある。
図1は本発明の伝送装置全体の構成を示すブロック図である。 図2はイコライザ回路34および受信側トレーニング制御回路38の一部の構成を示すブロック図である。 図3はイコライザ回路34の構成を示すブロック図である。 図4はU,V等化アルゴリズム演算回路48の構成例を示すブロック図である。 図5はTHPプリコーダ14の構成を示すブロック図である。 図6はトレーニング処理の内容を示すフローチャートである。 図7は従来の等化器の構成例を示すブロック図である。
符号の説明
10…送信回路
11…符号変換器
12…PN信号発生回路
13…スイッチ
14…THPプリコーダ
15…D/A変換器
16…アンプ
17…送信側トレーニング制御回路
20…ハイブリッド回路
21…伝送ケーブル
30…受信回路
31…可変利得アンプ
32…A/D変換器
33…シンボル同期回路
34…イコライザ回路
35…レベル判定回路
36…モジュロ演算器
37…符号逆変換回路
38…受信側トレーニング制御回路
本発明の等化器は、ツイストペアケーブルに代表される平衡ケーブルや同軸ケーブルを使用した数Gbps以上の超高速デジタルデータ伝送装置(LAN)に使用することを前提として開発されたものであり、以下の実施例おいては、THP方式と組み合わせた例について説明するが、本発明の等化器はこれに限らず、任意の信号の伝送装置に適用可能である。
図1は、本発明の伝送装置全体の構成を示すブロック図である。この実施例は伝送ケーブル21の両端に接続された同じ構成の全二重データ送受信装置からなっている。なお、例えば10ギガイーサネット(登録商標)においては図1の伝送装置を4組使用する。
送信回路10は、符号変換器11、PN信号発生回路12、スイッチ13、16、THPプリコーダ14、周期信号発生回路15、D/A変換器(DAC)17、アンプ18、送信側トレーニング制御回路19からなる。符号変換器11は、送信データを所定ビット毎に区切り、そのビット列の値と対応して、複数の信号レベル(電圧値)の1つを出力する。
図5は、THPプリコーダ14の構成を示すブロック図である。(a)は機能ブロック図である。THPプリコーダ14は、加算器90、シンボルの多値数を法とするモジュロ演算器91、FIRフィルタ92からなる。FIRフィルタ92には予め伝送路の平均的なインパルス応答に相当するフィルタ係数が設定される。FIRフィルタ92はモジュロ演算回路91の出力を入力して処理し、加算器90へ出力する。加算器90は入力信号からFIRフィルタ92の出力を減算して出力する。
図5(b)は、THPプリコーダ14のより具体的な回路構成を示す図である。加算器93は、加算器90の機能とFIRフィルタ92の加算器の機能を兼ねている。FIRフィルタ92の構成要素である複数の遅延回路94は信号を1信号(シンボル)区間だけ遅延させるためのレジスタであり、乗算器95は伝送路のインパルス応答の係数(-a1〜-an)を乗算する。なお、FIRフィルタの段数は例えば16〜64である。
図1に戻って、THPプリコーダ14の出力はDAC17によってアナログ信号に変換され、アンプ18によって増幅され、ハイブリッド回路20を介して送信される。送信側トレーニング制御回路19は、例えばスイッチ13、16、PN信号発生回路12、THPプリコーダ14、周期信号発生回路15を制御し、後述するトレーニング処理を実行する。
次に、受信回路について説明する。受信回路30は、可変利得アンプ31、A/D変換器(ADC)32、シンボル同期回路33、イコライザ回路34、レベル判定回路35、モジュロ演算器36、符号逆変換回路37、受信側トレーニング制御回路38、AGC回路39等からなる。
可変利得アンプ32は、AGC回路39の制御により、所定の信号レベルになるように受信信号を増幅する。シンボル同期回路33は受信信号からシンボル同期信号(クロック)を再生し、ADC32はシンボル同期信号に基づき受信信号をA/D変換する。本発明によるイコライザ回路(等化器)34は後述する構成によってTHPプリコーダ14を含めた伝送路の周波数特性を等化する。従って、この実施例においては、イコライザ回路34はTHPプリコーダ14に設定された伝送路特性を示すフィルタ係数と実際の伝送路の周波数特性との差を等化することになる。なお、シンボル同期には周知の多くの方法があるが概略次のようである。まず初期トレーニングにおいて周期データを送信して予めシンボル同期を確立し、引き続き、PN系列送信以降では追随制御を実行する。追随制御はアイの開口度を参照する手段や等化器の係数を参照する手段があるが、いずれも制御方向を明確に得られる方法は存在しない。本発明の等化に拠れば、サンプリング位相の制御方向が明確に得ることができ、高速な位相制御が可能になる。
レベル判定回路35は受信信号が多値信号のどの領域内にあるかを判定する回路であり、入力信号レベルが多値信号の所定の範囲内にある時にその範囲と対応する多値デジタル情報を出力する。モジュロ演算器36は、THPプリコーダ14内のモジュロ演算器91と同一の特性を有するモジュロ演算回路である。符号逆変換器37は、モジュロ演算器36の出力を元のビット情報に逆変換する。受信側トレーニング制御回路38は、後述するようにトレーニング信号を使用してイコライザ回路34のフィルタ係数を調整する。
図2は、イコライザ回路34および受信側トレーニング制御回路38の一部の構成を示すブロック図である。イコライザ回路34は4つのFIRフィルタ回路40〜43からなる。信号時間位置より前の部分を等化する2つのプレ等化器U(z-1)40、43と、信号時間位置より後の部分を等化する2つのポスト等化器V(z-1)41、42はそれぞれ同じ機能を果たし、プレ等化器U(z-1)40とポスト等化器V(z-1)41の組、およびポスト等化器V(z-1)42とプレ等化器U(z-1)43の組がそれぞれ1つの等化器を構成している。各等化器40〜43のフィルタ係数はU,V等化アルゴリズム演算回路48によって調整される。
プレ等化器U(z-1)43の出力およびポスト等化器V(z-1)41の出力はそれぞれレベル判定回路35、35’および2つの加算器45、45’、46、46’の一方に入力される。加算器45、45’の他方は、シフト回路56から出力される受信側で生成されたトレーニング用の参照信号が入力される。加算器45、45’からはそれぞれトレーニング時の誤差信号が出力される。
加算器46、46’の他方は、レベル判定回路から出力される受信レベル信号が入力され、加算器46、46’からはそれぞれデータ伝送時の誤差信号が出力される。スイッチ47、47’はデータ先頭判定回路からの制御に基づき、トレーニング時には加算器45、45’の出力Aを、データ伝送時には加算器46、46’の出力BをそれぞれU,V等化アルゴリズム演算回路48に出力する。
PN信号先頭判定回路50は受信デジタル信号からPN信号の先頭を検出し、PN信号発生回路51に起動をかける。PN信号発生回路51は送信側のPN信号発生回路12と同じ信号を発生する。加算器54、モジュロ演算回路Mod(L)52、FIRフィルタP(z-1)53は送信側のプリコーダ14と同一構成の受信側のTHPプリコーダであり、FIRフィルタP(z-1)53には送信側と同一のフィルタ係数が設定されている。
シフト判定回路55は、受信信号の信号時間位置と受信側で発生させたTHPの信号時間位置との同期を正確に取るための回路であり、受信信号の信号時間位置と受信側THPの信号時間位置とのずれが何クロックあるかを判定し、モジュロ演算回路52の入力信号をシフトしていくシフト回路56のシフト数(遅延量)を制御し、イコライザ回路34において所定量遅延された信号との同期を取る。なお、シフト判定回路55の機能は例えばDSPにより実行される。アイ開口度判定回路57は参照信号の停止を検出してスイッチ47、47’を切り換える。
図3は、イコライザ回路34の構成を示すブロック図である。2つのプレ等化器U(z-1)40、43は信号よりも時間的に前の部分を等化し、2つのポスト等化器V(z-1)41、42は信号よりも時間的に後の部分を等化するようにフィルタ係数が設定される。プレ等化器U(z-1)40とポスト等化器V(z-1)41の組、およびポスト等化器V(z-1)42とプレ等化器U(z-1)43の組がそれぞれ1つの等化器を構成しており、プレ等化器とポスト等化器の処理順序を入れ替えても出力は同一となる。
各等化器回路は同じ構成の周知のFIRフィルタ回路からなる。例えばプレ等化器U(z-1)40は、入力信号をクロック信号に基づいて1段づつシフトしていくシフトレジスタ60、フィルタ係数が設定されるレジスタ(U)64、シフトレジスタ60の各段の出力とレジスタ(U)64から出力されるフィルタ係数とを乗算する複数の乗算器61、62、各乗算器の出力を加算する加算器63からなる。
図4は、U,V等化アルゴリズム演算回路48の構成例を示すブロック図である。アルゴリズムとしては確率的勾配法を用いる。図7による従来の確率的勾配法を式で表すと下記のようになる。Wkは複数のフィルタ係数値からなるフィルタ係数行列である。εは係数、YKはフィルタの入力信号行列、ZKはフィルタの出力信号値、akは参照信号値である。この演算を繰り返すことにより、フィルタ係数を更新していく。
k+1=Wk−ε・Yk(Zk−ak
本発明においては、プレ等化器U(z-1)43およびポスト等化器V(z-1)41をこの確率的勾配法を使用してそれぞれ独立して更新し、更新結果をプレ等化器U(z-1)40およびポスト等化器V(z-1)42のフィルタ係数としても使用する。プレ等化器U(z-1)43およびポスト等化器V(z-1)41のフィルタ係数更新処理を式で表すと下記のようになる。
k+1=Vk−ε・Pk(Zk−ak-N/2
k+1=Uk−ε・Qk(Z'k−ak-N/2
k、Ukは複数のフィルタ係数値からなるフィルタ係数行列である。εは係数、PK、QKはそれぞれのフィルタの入力信号行列、ZK、Z'Kはそれぞれのフィルタの出力信号値、ak-N/2は出力信号と対応する時間位置の参照信号値である。この演算を繰り返すことにより、フィルタ係数Vk、Ukを更新していく。
図4は、上記の演算をハードウェアによって実行する例である。加算器45は、ポスト等化器V(z-1)41の出力Zkから参照信号を減算した信号(Zk−ak-N/2)を出力する。乗算器81はこの信号に係数値εを乗算し、この出力値ε・(Zk−ak-N/2)は複数の乗算器79、80に入力される。複数の乗算器79、80は乗算器80の出力値とシフトレジスタ82に入力されているプレ等化器U(z-1)40の出力Pkとを乗算し、信号ε・Pk(Zk−ak-N/2)を出力する。
複数の加算器77、78は、Vレジスタ76のそれぞれのフィルタ係数値から複数の乗算器79、80の出力信号を減算した値を再びVレジスタ76にラッチし、フィルタ係数を更新する。Uレジスタ70についても、同様の演算を行い、フィルタ係数を更新する。Vレジスタ76の値は、2つのポスト等化器V(z-1)41、42に設定され、Uレジスタ70の値は2つのプレ等化器U(z-1)40、43に設定される。
この等化器がトランスバーサル等化器よりも高速に収束できる理由は以下のように説明できる。プリ等化器Uとポスト等化器Vの収束が少し進むと、(チャンネル+U)と(チャンネル+V)の高域部分の等化が進み、これらの高域スペクトルが少し持ち上がる。この結果、等化器Vの受信信号(チャンネル+Uの出力)と等化器Vの受信信号(チャンネル+Vの出力)の相関行列の小さな固有値が少し大きくなる。この結果、等化器UとVの収束が少し加速される。この効果が、前置部分の等化器UとVに反映され、高域スペクトルを持ち上げる。このようにして、相乗効果が発揮され、収束がどんどん加速される。
なお、フィルタ係数の更新周期はシンボル区間(クロック周期)よりも長くてもかまわないので、DSPを使用したソフトウェア処理で確率的勾配法を実行してフィルタ係数を更新してもよい。
図6は、トレーニング処理の内容を示すフローチャートである。なお、この実施例においては、THPプリコーダ14およびイコライザ回路内のフィルタ回路53には予め伝送路の平均的なインパルス応答に相当するフィルタ係数が設定されているものとする。トレーニングにおいて従来のトランスバーサル型等化器と異なる点は、トレーニング時におけるPN信号を挿入するタイミング(参照信号のタイミング)が一意的な点である。従って、この挿入タイミングを推定するアルゴリズムが追加されている。
送信回路は、S10においてはスイッチ16を周期信号発生回路15側に切り換えて周期信号を送出し、S11においては、所定の時間が経過するまで待つ。受信回路は、S30においては信号電力を検出するまで待ち、S31においてはAGC回路39のAGC動作を開始すると共にシンボル同期回路33のシンボル同期処理を開始する。
送信回路は、S12において周期信号を停止し、S13においてはスイッチ13をPN信号発生回路12側に切り換えてPN信号をTHPプリコーダ14を介して送出する。送信回路は、S14においては、PN信号を送出しながら所定の時間が経過するまで待ち、S15においては、データ伝送を開始する。
受信回路は、S32においては、PN信号先頭判定回路50によって周期信号の停止を検出し、S33においてはローカルのPN信号発生回路51を起動してPN信号の発生を開始する。S34においては、PN信号の同期処理(前記したシフト判定回路55の処理)を行い、受信信号との正確な同期を取る。基本原理はミニマックス等化(zero-forcing equalization) に基づくものであり、アルゴリズムの結果のみを記すと以下のようになる。
・ステップ(1)参照信号と受信信号の相関をとり、相関が最も大きいタイミングを求める。このタイミングをt=0と記す。
・ステップ(2) まずこのタイミングで等化処理を開始し、U(z-1)の逆システム1/U(z-1)とV(z-1)の逆システム1/V(z-1)のインパルス応答を計算し、それらが発散するか収束するかを判定する。
・ステップ(3)もし両者とも収束した場合、t=0が正しいタイミングとして判定する。もし、そうでなければ、順次、t= -3, -2 ,-1 , 1, 2, 3 でステップ(2)の判定を実行し、両者とも収束するタイミングを見つける。
このアルゴリズムによって両者とも収束するタイミングが必ず見つかり、それ以外のタイミングでは1/U(z-1)あるいは 1/V(z-1)のどちらかが発散する。また、等化アルゴリズムがスタートして早い段階で、この判定が可能である。
1/U(z-1)
および 1/V(z-1) の二つのインパルス応答をそれぞれ、
u0,u1, u2, u3, ・・・・
v0,v1, v2, v3, ・・・・
とする。このとき、たとえば2次モーメント
Mu=u1 2+22u2 2+32u3 2+
Mv=v1 2+22v2 2+32v3 2+
を観測する。もし、Mu>Mvならば、サンプリング位相は最適時刻から前方に、Mu<Mvならば最適時刻から後方にずれていることが分かる。したがって、サンプリング位相の制御方向を検出することができ、Mu=Mvとなるようにサンプリング位相を最適調整することができる。
受信回路は、S34の判定を受けて、S35で等化器の強制トレーニング処理を実行する。S36においては、図2のPN系列発生回路51の出力を監視し、送信PN系列の終了時刻を計算する。終了時刻より早い時点が予め定められており、その時点まではS35を続行するが、その時点以降はS37の仮判定適応等化処理を実行する。
以上、実施例を開示したが、本発明には以下に示すような変形例も考えられる。実施例においては、イコライザ回路をA/D変換器の後においてデジタル処理する構成を開示したが、本発明の等化器をAD変換の直前にアナログ回路で置くことも可能である。この場合にもデジタルかアナログかの差はあるが回路構成は同一となる。
THPプリコーダ14に設定するインパルス応答係数は固定である例を開示したが、送信側からテスト信号を送出し、受信側の回路から返送されてきたTHPプリコーダ14に設定するインパルス応答係数を取得して、THPプリコーダ14に設定するようにしてもよい。

Claims (5)

  1. 信号時間位置より前の部分を等化する第1のプレ等化器手段と、信号時間位置より後の部分を等化する第1のポスト等化器手段とを縦続接続した第1の等化器手段と、
    信号時間位置より後の部分を等化する第2のポスト等化器手段と信号時間位置より前の部分を等化する第2のプレ等化器手段とを縦続接続した第2の等化器手段と、
    前記第1のポスト等化器手段のフィルタ係数を調整する第1の調整手段と、
    前記第2のプレ等化器手段のフィルタ係数を調整する第2の調整手段と、
    前記第1の調整手段により調整されたフィルタ係数を前記第2のポスト等化器手段にも設定する第1の設定手段と、
    前記第2の調整手段により調整されたフィルタ係数を前記第1のプレ等化器手段にも設定する第2の設定手段と
    を備えたことを特徴とする信号処理装置。
  2. 前記第1のプレ等化器手段、第1のポスト等化器手段、第2のポスト等化器手段、第2のプレ等化器手段はそれぞれFIRフィルタ回路からなることを特徴とする請求項1に記載の信号処理装置。
  3. 前記第1および第2の調整手段は、それぞれ確率的勾配法を使用してフィルタ係数を調整することを特徴とする請求項1に記載の信号処理装置。
  4. 更に、PN信号をTHPプリコーダに通した送信トレーニング信号と同期した参照信号を生成する参照信号生成手段と、
    前記第1の等化器手段の出力信号と前記参照信号との差分を算出して前記第1の調整手段に出力する第1の誤差信号生成手段と、
    前記第2の等化器手段の出力信号と前記参照信号との差分を算出して前記第2の調整手段に出力する第2の誤差信号生成手段と、
    を備えたことを特徴とする請求項1に記載の信号処理装置。
  5. 信号時間位置より前の部分を等化する第1のプレ等化器手段と、信号時間位置より後の部分を等化する第1のポスト等化器手段とを縦続接続した第1の等化器手段において、前記第1のポスト等化器手段のフィルタ係数を調整する第1のステップと、
    前記第1のステップと同時に並行して、信号時間位置より後の部分を等化する第2のポスト等化器手段と信号時間位置より前の部分を等化する第2のプレ等化器手段とを縦続接続した第2の等化器手段において、前記第2のプレ等化器手段のフィルタ係数を調整する第2のステップと、
    前記第1の調整手段により調整されたフィルタ係数を前記第2のポスト等化器手段にも設定すると共に、前記第2の調整手段により調整されたフィルタ係数を前記第1のプレ等化器手段にも設定する第3のステップと
    を繰り返すことを特徴とする信号処理方法。

JP2007509320A 2005-03-24 2006-03-23 信号処理装置および信号処理方法 Pending JPWO2006101159A1 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005085393 2005-03-24
JP2005085393 2005-03-24
PCT/JP2006/305806 WO2006101159A1 (ja) 2005-03-24 2006-03-23 信号処理装置および信号処理方法

Publications (1)

Publication Number Publication Date
JPWO2006101159A1 true JPWO2006101159A1 (ja) 2008-09-04

Family

ID=37023816

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007509320A Pending JPWO2006101159A1 (ja) 2005-03-24 2006-03-23 信号処理装置および信号処理方法

Country Status (2)

Country Link
JP (1) JPWO2006101159A1 (ja)
WO (1) WO2006101159A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100135432A1 (en) * 2007-04-20 2010-06-03 Kenichi Miyoshi Wireless Transmission Apparatus, Wireless Reception Apparatus and Block Construction Method
US8175201B2 (en) * 2007-12-21 2012-05-08 Lsi Corporation Systems and methods for adaptive equalization in recording channels
JP5244381B2 (ja) * 2007-12-26 2013-07-24 株式会社東芝 無線通信装置、無線通信方法および通信プログラム
JP5640238B2 (ja) 2008-02-28 2014-12-17 株式会社通信放送国際研究所 特異点信号処理システムおよびそのプログラム

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07274042A (ja) * 1994-01-05 1995-10-20 Samsung Electron Co Ltd ビデオ搬送波と直交位相関係にある搬送波を変調する信号に於けるゴーストを抑圧する装置
JPH088795A (ja) * 1994-06-15 1996-01-12 Internatl Business Mach Corp <Ibm> 等化装置及び方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07274042A (ja) * 1994-01-05 1995-10-20 Samsung Electron Co Ltd ビデオ搬送波と直交位相関係にある搬送波を変調する信号に於けるゴーストを抑圧する装置
JPH088795A (ja) * 1994-06-15 1996-01-12 Internatl Business Mach Corp <Ibm> 等化装置及び方法

Also Published As

Publication number Publication date
WO2006101159A1 (ja) 2006-09-28

Similar Documents

Publication Publication Date Title
US7023912B2 (en) Hybrid adaptive equalizer for optical communications systems
KR100708482B1 (ko) 채널 등화기 및 채널 등화 방법
US10742458B2 (en) Equalizer circuit and control method of equalizer circuit
US7203233B2 (en) Adaptive coefficient signal generator for adaptive signal equalizers with fractionally-spaced feedback
US8467440B2 (en) Compensated phase detector for generating one or more clock signals using DFE detected data in a receiver
US9215107B1 (en) Dual loop clock and data recovery
US8582635B2 (en) Sparse and reconfigurable floating tap feed forward equalization
US10523471B2 (en) Look ahead based method and apparatus for equalizing pulse amplitude modulation electronic signals
US20170005841A1 (en) Equalizer
KR20050084186A (ko) 판정 피드 포워드 등화기 시스템 및 방법
JP2015510366A (ja) 波長分散処理の装置及び方法
US8446941B2 (en) Equalizer employing adaptive algorithm for high speed data transmissions and equalization method thereof
JP4668988B2 (ja) 電力および面積面で効率良い適応等化処理
TW202044806A (zh) 等化電路
IE49633B1 (en) Method of compensating phase noise at the receiver end of a data transmission system
US20060245486A1 (en) Method for robust and stable convergence of blind LMS based adaptation of coefficients for a continuous time FFE-DFE
JPWO2006101159A1 (ja) 信号処理装置および信号処理方法
GB2429382A (en) Distortion compensation equalizer
EP0527190B1 (en) A method of equalization in a receiver of signals having passed a transmission channel
US9288086B2 (en) Decision-feedback analyzer and methods for operating the same
KR100650670B1 (ko) 적응형 아날로그 등화기 및 이를 갖는 디지털 신호 수신기
GB2048020A (en) Method of reducing phase noise at the receiver end of a data transmission system
JP5447381B2 (ja) 信号波形歪み補償器、及び信号波形歪み補償方法
JP7055268B2 (ja) 適応等化器、適応等化方法及び光通信システム
CN107005307A (zh) 一种设置均衡装置的方法及均衡装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101026

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110301