JPWO2005120244A1 - Method for producing soy protein hydrolyzate - Google Patents

Method for producing soy protein hydrolyzate Download PDF

Info

Publication number
JPWO2005120244A1
JPWO2005120244A1 JP2006514515A JP2006514515A JPWO2005120244A1 JP WO2005120244 A1 JPWO2005120244 A1 JP WO2005120244A1 JP 2006514515 A JP2006514515 A JP 2006514515A JP 2006514515 A JP2006514515 A JP 2006514515A JP WO2005120244 A1 JPWO2005120244 A1 JP WO2005120244A1
Authority
JP
Japan
Prior art keywords
protein
soy protein
extraction
extract
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006514515A
Other languages
Japanese (ja)
Inventor
佐藤 亮太郎
亮太郎 佐藤
新旗 劉
新旗 劉
釘宮 渉
渉 釘宮
俊宏 中森
俊宏 中森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Oil Co Ltd
Original Assignee
Fuji Oil Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Oil Co Ltd filed Critical Fuji Oil Co Ltd
Publication of JPWO2005120244A1 publication Critical patent/JPWO2005120244A1/en
Pending legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23JPROTEIN COMPOSITIONS FOR FOODSTUFFS; WORKING-UP PROTEINS FOR FOODSTUFFS; PHOSPHATIDE COMPOSITIONS FOR FOODSTUFFS
    • A23J3/00Working-up of proteins for foodstuffs
    • A23J3/14Vegetable proteins
    • A23J3/16Vegetable proteins from soybean
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23JPROTEIN COMPOSITIONS FOR FOODSTUFFS; WORKING-UP PROTEINS FOR FOODSTUFFS; PHOSPHATIDE COMPOSITIONS FOR FOODSTUFFS
    • A23J3/00Working-up of proteins for foodstuffs
    • A23J3/30Working-up of proteins for foodstuffs by hydrolysis
    • A23J3/32Working-up of proteins for foodstuffs by hydrolysis using chemical agents
    • A23J3/34Working-up of proteins for foodstuffs by hydrolysis using chemical agents using enzymes
    • A23J3/346Working-up of proteins for foodstuffs by hydrolysis using chemical agents using enzymes of vegetable proteins
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2002/00Food compositions, function of food ingredients or processes for food or foodstuffs

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Nutrition Science (AREA)
  • Biochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Beans For Foods Or Fodder (AREA)

Abstract

本発明は、不快な臭いや苦味、舌への張り付き感等の悪風味の低減された、風味良好な大豆蛋白加水分解物を提供することを課題とする。従来の大豆蛋白加水分解物は、脱脂大豆から豆乳を抽出し、これを酸性で等電点沈殿(酸沈殿)させホエー成分を除いて酸沈カードを得て、これを酵素反応により加水分解して製造されており、蛋白は加水分解の前に酸沈殿の工程を経るが、この様な酸沈工程を経ない大豆蛋白を基質とすることで、不快な臭いや苦味、舌への張り付き感が大幅に低減された大豆蛋白加水分解物を提供できる。It is an object of the present invention to provide a soy protein hydrolyzate having a good taste and a reduced bad taste such as an unpleasant odor and bitterness, and a feeling of sticking to the tongue. Conventional soy protein hydrolyzate extracts soy milk from defatted soybeans, acidally precipitates them with an isoelectric point (acid precipitation), removes whey components to obtain acid-precipitated curd, and hydrolyzes this by enzymatic reaction. Protein undergoes an acid precipitation process before hydrolysis, but by using soy protein that does not undergo such an acid precipitation process as a substrate, unpleasant odors, bitterness, and stickiness to the tongue Can provide a soy protein hydrolyzate with significantly reduced.

Description

本発明は、風味良好な大豆蛋白加水分解物の製造法に関し、特に大豆蛋白の酸沈殿(等電点沈殿)の工程を経ないで大豆蛋白加水分解物を製造する方法に関する。   The present invention relates to a method for producing a soy protein hydrolyzate having a good flavor, and more particularly, to a method for producing a soy protein hydrolyzate without going through the acid precipitation (isoelectric point precipitation) step of soybean protein.

大豆の蛋白加水分解物は、植物性の蛋白源であり、また疲労回復や未分解の蛋白と比較して消化吸収性が高い等の栄養生理効果から、近年注目されている素材である。しかしながら、大豆蛋白加水分解物は、その独特の不快味、臭味があり、様々な飲食品に加工し摂取する場合の改善すべき課題であった。   Soy protein hydrolyzate is a vegetable protein source, and is a material that has been attracting attention in recent years because of its nutritional and physiological effects such as recovery from fatigue and higher digestibility and absorption than undegraded protein. However, soy protein hydrolyzate has its unique unpleasant taste and odor and has been a problem to be improved when processed into various foods and drinks.

こうした不快味である、苦味、舌への張り付き感や不快臭を低減させるため、従来から多くの検討がなされてきた。活性炭を用いる方法(特許文献1、2)イオン交換樹脂を用いる方法、合成吸着剤を用いる方法(特許文献3、4、5、6)等が開示されている。しかしながらこれらの方法は、工程が煩雑であったり、樹脂等(活性炭、吸着剤を含む)の洗浄に多量の水を必要とする等、生産コストも上昇し課題を残すものであった。   In order to reduce such an unpleasant taste, bitterness, feeling of sticking to the tongue, and unpleasant odor, many studies have been made conventionally. A method using activated carbon (Patent Documents 1 and 2), a method using an ion exchange resin, a method using a synthetic adsorbent (Patent Documents 3, 4, 5, 6) and the like are disclosed. However, these methods have complicated processes and require a large amount of water for washing resin and the like (including activated carbon and adsorbent), resulting in increased production costs and problems.

(参考文献)
特公昭56−52543 特開平3−272694 特開平4−190797 特開平4−341193 特開平4−45750 特開平7−264993 WO2004/013170 特開2001−238693 WO2004/017751
(References)
JP-B 56-52543 JP-A-3-272694 JP-A-4-190797 JP-A-4-341193 JP-A-4-45750 JP 7-264993 A WO2004 / 013170 JP2001-238893 WO2004 / 017751

本発明は不快な臭いや苦味、舌への張り付き感等の悪風味の低減された、風味良好な大豆蛋白加水分解物を提供することを課題とする。   An object of the present invention is to provide a soy protein hydrolyzate having a good taste with reduced bad flavor such as unpleasant odor, bitterness, and stickiness to the tongue.

従来、大豆蛋白加水分解物は、脱脂大豆から豆乳を抽出し、これを酸性で等電点沈殿(酸沈殿)させホエー成分を除いて酸沈カードを得て、これを酵素反応により加水分解して製造されている。即ちオカラから抽出された蛋白は、加水分解の前に酸沈殿の工程を経る。本発明者らは前記課題に対して鋭意検討を行った結果、この様な酸沈工程を経ない大豆蛋白を基質とした大豆蛋白加水分解物は、酸沈工程を経た大豆蛋白を基質とした場合に比べて、不快な臭いや苦味、舌への張り付き感が大幅に低減されることを見出し、本発明を完成させるに至った。   Conventionally, soy protein hydrolyzate is obtained by extracting soy milk from defatted soybean, and isolating the acid with an acidic isoelectric point (acid precipitation) to remove the whey component to obtain an acid-precipitated curd, which is hydrolyzed by enzymatic reaction. Manufactured. That is, the protein extracted from okara undergoes an acid precipitation step before hydrolysis. As a result of intensive studies on the above problems, the present inventors have determined that the soy protein hydrolyzate using soy protein that has not undergone the acid precipitation step as a substrate is the soy protein that has undergone the acid precipitation step. As compared with the case, it has been found that unpleasant odor, bitterness and feeling of sticking to the tongue are greatly reduced, and the present invention has been completed.

すなわち本発明は、
1.濃縮大豆蛋白から蛋白を抽出し、得られた大豆蛋白抽出液を酸沈殿工程を経ることなく加水分解する大豆蛋白加水分解物の製造法、
2.加水分解する前の大豆蛋白抽出液を加熱殺菌する前記1.記載の大豆蛋白加水分解物の製造法、
3.蛋白の抽出が向流抽出法である前記1.記載の大豆蛋白加水分解物の製造法。
4.濃縮大豆蛋白から、向流抽出法により蛋白を抽出し加水分解して得られる大豆蛋白加水分解物、
5.乾燥固形分あたりの粗蛋白質量が80重量%以上である前記4.記載の大豆蛋白加水分解物、を提供するものである。
That is, the present invention
1. A method for producing a soy protein hydrolyzate, wherein protein is extracted from concentrated soy protein, and the resulting soy protein extract is hydrolyzed without going through an acid precipitation step;
2. 1. The above-mentioned 1. sterilization by heating the soybean protein extract before hydrolysis. A method for producing the soy protein hydrolyzate according to claim 1,
3. 1. The protein extraction is a countercurrent extraction method. The manufacturing method of the soybean protein hydrolyzate of description.
4). Soy protein hydrolyzate obtained by extracting and hydrolyzing protein from concentrated soy protein by countercurrent extraction method,
5. 3. The crude protein mass per dry solid content is 80% by weight or more. The described soybean protein hydrolyzate is provided.

本発明は、不快な臭いや苦味、舌への張り付き感等の悪風味の低減された、風味良好な大豆蛋白加水分解物を提供するものである。また、一旦酸沈殿により蛋白を不溶化させた後、再びpH調整を行い可溶化させるという、従来の煩雑な濃縮工程を経ない大豆蛋白分解物の製造法を提供するものである。   The present invention provides a soy protein hydrolyzate having a good taste and a reduced bad taste such as an unpleasant odor and bitterness, and a feeling of sticking to the tongue. The present invention also provides a method for producing a soy protein hydrolyzate that does not go through the conventional complicated concentration step, in which the protein is once insolubilized by acid precipitation and then adjusted again by pH adjustment.

本発明における脱脂大豆は、一般に入手可能なヘキサン等の溶剤で脱脂された脱脂大豆を用いればよく、中でもNSI(窒素可溶指数)が60以上、特にNSIが80以上の低変性脱脂大豆を用いることが、蛋白の抽出が容易で好ましい。濃縮大豆蛋白は、原料大豆とりわけ脱脂大豆を酸性の水性媒体またはアルコールにより洗浄し、固液分離を行いホエー成分を除去して得られる。これを乾燥させたものも酸コンセントレートやアルコールコンセントレートとして市販されており、本発明においてはこれに加水したものを出発原料としても良い。   The defatted soybeans in the present invention may be defatted soybeans defatted with a generally available solvent such as hexane. Among them, low denatured defatted soybeans having an NSI (nitrogen solubility index) of 60 or more, particularly an NSI of 80 or more are used. It is preferable because protein extraction is easy. Concentrated soybean protein is obtained by washing raw soybeans, especially defatted soybeans, with an acidic aqueous medium or alcohol, and performing solid-liquid separation to remove whey components. What dried this is also marketed as an acid concentrate or alcohol concentrate, In this invention, what was added to this is good also as a starting material.

酸洗浄は、大豆アルブミンを主成分とするホエー成分は溶出するが、大豆グロブリンを主成分とする蛋白質成分、所謂貯蔵蛋白質が溶出しないpH域で行えば良く、pH4.0〜5.0、好ましくはpHが4.2〜4.8であれば、ホエーへの大豆グロブリンの溶出がほとんどないため大豆グロブリンを主成分とする蛋白成分の収率が良い。上記酸性にするのに用いられる酸の種類は特に制限されず、リン酸,塩酸,硫酸等の無機酸や、クエン酸,リンゴ酸,乳酸等の有機酸などを例示でき、これらを1種単独又は2種以上を混合して使用することもできる。   The acid washing may be carried out in a pH range where a whey component mainly composed of soy albumin is eluted but a protein component mainly composed of soy globulin, that is, so-called storage protein is not eluted, and is preferably pH 4.0 to 5.0. If the pH is 4.2 to 4.8, there is almost no elution of soy globulin into the whey, so the yield of the protein component consisting mainly of soy globulin is good. The type of acid used to make the acid is not particularly limited, and examples thereof include inorganic acids such as phosphoric acid, hydrochloric acid, and sulfuric acid, and organic acids such as citric acid, malic acid, and lactic acid. Or 2 or more types can also be mixed and used.

酸洗浄は、脱脂大豆を上記酸性の水性媒体中に浸漬または攪拌し接触させれば良い。この洗浄により固形分あたりの粗蛋白量を高めることができる。固形分あたりの粗蛋白量が高いほど、下記で述べる抽出工程で得られる抽出液の蛋白の濃度を高くできるため、固形分あたりの粗蛋白量を65%以上、特に70%以上とすることが好ましい。酸洗浄の方法は特に限定されず、従来公知の方法を用いることができる。洗浄回数も特に限定されず、多段洗浄を行うことができる。中でも酸洗浄を並行して複数の系で行い、系間で脱脂大豆と酸洗浄液を相対的に互いに反対方向に移動させることにより接触させ、固液分離する多段洗浄方法(向流洗浄法)が好ましい。向流洗浄法によれば、より少ない洗浄液量で洗浄することが可能となる上に、蛋白の濃縮効率も高くなり、洗浄による固形分あたりの粗蛋白含量を高めることが容易である。向流洗浄法による洗浄回数は2乃至3回が好ましい。   The acid washing may be performed by immersing or stirring the defatted soybean in the acidic aqueous medium. This washing can increase the amount of crude protein per solid content. The higher the amount of crude protein per solid content, the higher the concentration of protein in the extract obtained in the extraction step described below. Therefore, the amount of crude protein per solid content should be 65% or more, particularly 70% or more. preferable. The acid washing method is not particularly limited, and a conventionally known method can be used. The number of washings is not particularly limited, and multi-stage washing can be performed. In particular, there is a multi-stage washing method (countercurrent washing method) in which acid washing is performed in parallel in a plurality of systems, and the defatted soybean and the acid washing solution are moved relative to each other in the opposite directions to bring them into contact with each other for solid-liquid separation preferable. According to the countercurrent cleaning method, it is possible to perform cleaning with a smaller amount of cleaning liquid, and the protein concentration efficiency is increased, so that it is easy to increase the crude protein content per solid content by the cleaning. The number of times of washing by the countercurrent washing method is preferably 2 to 3 times.

洗浄温度は蛋白が変性しない温度領域であればよく、好ましくは10〜60℃、より好ましくは20〜50℃、さらに好ましくは40〜50℃であり、洗浄時間は5〜60分、好ましくは10〜30分を例示できる。この酸洗浄処理により、ホエー蛋白とともに可溶化した糖類,塩類,色素類等も分離・除去することができる。   The washing temperature may be in a temperature range in which the protein is not denatured, preferably 10 to 60 ° C, more preferably 20 to 50 ° C, still more preferably 40 to 50 ° C, and the washing time is 5 to 60 minutes, preferably 10 -30 minutes can be illustrated. By this acid washing treatment, saccharides, salts, pigments and the like solubilized together with whey protein can be separated and removed.

酸洗浄に続く固液分離の方法も特に限定されず、従来公知の分離装置を用いれば良い。遠心分離機により遠心分離したり、或いは又フィルタープレスやスクリュープレス等により分離しても良い。酸洗浄の際に乳化剤を添加するとスラリーの流動性が良くなり、固液の分離性が向上し、分離が容易になる。乳化剤の種類は特に制限されないが、HLB2〜7のグリセリン脂肪酸エステルを好適に例示することができ、その濃度は低変性脱脂大豆に対して0.001〜0.1重量%とすることが好ましい。   The method of solid-liquid separation following the acid cleaning is not particularly limited, and a conventionally known separation device may be used. You may centrifuge with a centrifuge, or you may isolate | separate with a filter press, a screw press, etc. again. When an emulsifier is added during the acid washing, the fluidity of the slurry is improved, the solid-liquid separation is improved, and the separation is facilitated. Although the kind in particular of an emulsifier is not restrict | limited, The glycerol fatty acid ester of HLB2-7 can be illustrated suitably, It is preferable that the density | concentration shall be 0.001-0.1 weight% with respect to low modified | denatured defatted soybean.

このようにして不溶性画分を分離して得られた濃縮大豆蛋白から、蛋白を抽出する。抽出は、濃縮大豆蛋白から水に蛋白を溶出し、抽出残渣であるオカラ成分と分離する。抽出は中性〜アルカリ性で行えばよいが、pHは6.5〜8.5が好ましく、pH7.0〜8.0がより好ましい。pHの調整は、水酸化ナトリウム、水酸化カリウム等のアルカリ金属やアルカリ土類金属の水酸化物、炭酸塩、重炭酸塩を用いることができる。水は、濃縮大豆蛋白からの蛋白の抽出を妨げない限り、他の成分を含むことができ、例えば水にアルコールを添加した液(含水アルコール)、水に塩類を添加した液等であっても良い。   Protein is extracted from the concentrated soybean protein obtained by separating the insoluble fraction in this manner. In the extraction, the protein is eluted from the concentrated soy protein in water and separated from the okara component that is the extraction residue. Extraction may be performed in a neutral to alkaline manner, but the pH is preferably 6.5 to 8.5, more preferably 7.0 to 8.0. The pH can be adjusted using alkali metal or alkaline earth metal hydroxides such as sodium hydroxide and potassium hydroxide, carbonates and bicarbonates. Water can contain other components as long as it does not interfere with protein extraction from concentrated soy protein, for example, a solution in which alcohol is added to water (hydrous alcohol), a solution in which salts are added to water, etc. good.

抽出温度は10〜70℃が好ましく、40〜65℃がより好ましく、45〜65℃が更に好ましい。抽出温度が高すぎると大豆蛋白が熱変性し、抽出温度が低くすぎると、粘度が上昇して、抽出液と抽出残渣の分離性が低下し、蛋白の抽出率も下がる。特に抽出時における微生物の増殖が問題となる場合には50℃以上で抽出することにより増殖を抑制でき好ましい。また、抽出時間は抽出スケール,攪拌条件等によっても異なるが、通常10〜120分が好ましく、20〜40分であればより好ましい。   The extraction temperature is preferably 10 to 70 ° C, more preferably 40 to 65 ° C, still more preferably 45 to 65 ° C. If the extraction temperature is too high, the soy protein is thermally denatured. If the extraction temperature is too low, the viscosity increases, the separation between the extract and the extraction residue decreases, and the protein extraction rate also decreases. In particular, when the growth of microorganisms at the time of extraction becomes a problem, it is preferable to extract at 50 ° C. or higher because the growth can be suppressed. Moreover, although extraction time changes with extraction scales, stirring conditions, etc., 10 to 120 minutes are preferable normally and 20 to 40 minutes are more preferable.

本発明における抽出の方法は特に問わず、例えば一つの系で濃縮大豆蛋白を水に分散させ攪拌等により蛋白の抽出を行い、蛋白抽出液と抽出残渣であるオカラ成分を分離すれば良い。これを複数回繰り返して、オカラ成分に残留している蛋白をさらに抽出してもよい。しかしながら、抽出工程を一つの系で複数回繰り返すだけでは、抽出液中の蛋白濃度を高くすることはできない。蛋白抽出液の蛋白濃度を高めるために最も一般に用いられる方法は、該抽出液を酸性にし、蛋白を等電点沈殿させる所謂酸沈殿により、蛋白分を分離濃縮する方法である。
しかし、本発明は抽出した蛋白を酸沈殿の工程を経ないことを特徴とし、そのことにより本発明の効果を奏することができる。次に述べる向流抽出法によれば、容易に抽出液中の蛋白濃度を高くすることができ、濃縮工程を特に必要としない。従って蛋白濃度を高くする必要がある場合は、向流抽出法によればよい。
The extraction method in the present invention is not particularly limited. For example, the concentrated soybean protein is dispersed in water in one system, and the protein is extracted by stirring or the like to separate the protein extract from the okara component as the extraction residue. This may be repeated a plurality of times to further extract the protein remaining in the okara component. However, the protein concentration in the extract cannot be increased only by repeating the extraction step multiple times in one system. The most commonly used method for increasing the protein concentration of a protein extract is to separate and concentrate the protein by so-called acid precipitation in which the extract is acidified and the protein is isoelectrically precipitated.
However, the present invention is characterized in that the extracted protein is not subjected to an acid precipitation step, and thereby the effects of the present invention can be achieved. According to the countercurrent extraction method described below, the protein concentration in the extract can be easily increased, and a concentration step is not particularly required. Therefore, when it is necessary to increase the protein concentration, the countercurrent extraction method may be used.

向流抽出法は、複数の系で平行して抽出を行い、これらの系間で抽出物を被抽出物を相対的に互いに反対方向に移動させることにより接触させる多段抽出法をいい、したがって、向流抽出法には、被抽出物を移動することなく、抽出媒体のみを移動させ、順次被抽出物に接触させる多段抽出法も含まれる。尚、ここで抽出媒体とは抽出のために新たに加えた水又は既に抽出に用いられ蛋白を含む抽出液を云い、被抽出物とは上記濃縮大豆蛋白又は既に一回以上抽出を受けた抽出残渣を指す。向流抽出法については、特許文献7に公開されている。かかる向流抽出法の好ましい態様として、抽出媒体と被抽出物との濃度差が常に一定に保たれた状態で抽出が行われる向流抽出法、例えば、最も蛋白濃度が高い新しい濃縮大豆蛋白に、既に抽出処理に使用した最も固形分濃度が高い抽出液を接触させ、また、新しく導入された水を、既に抽出処理を受け最も蛋白濃度が低い抽出残渣と接触させる方法を挙げることができる。   The countercurrent extraction method refers to a multistage extraction method in which extraction is performed in parallel in a plurality of systems, and the extract is brought into contact by moving the extraction object in a direction opposite to each other between these systems. The countercurrent extraction method also includes a multi-stage extraction method in which only the extraction medium is moved and sequentially contacted with the extract without moving the extract. Here, the extraction medium means water newly added for extraction or an extract containing protein already used for extraction, and the extract is the above-described concentrated soybean protein or extracted that has already been extracted once or more. Refers to residue. The countercurrent extraction method is disclosed in Patent Document 7. As a preferred embodiment of such a countercurrent extraction method, a countercurrent extraction method in which extraction is performed in a state in which the concentration difference between the extraction medium and the extract is always kept constant, for example, a new concentrated soybean protein with the highest protein concentration. Examples include a method in which the extract solution having the highest solid content used in the extraction treatment is brought into contact, and the newly introduced water is already subjected to the extraction treatment and brought into contact with the extraction residue having the lowest protein concentration.

向流抽出に用いる水の量は特に制限はないが、濃縮大豆蛋白の固形分当たりで7重量倍以下、好ましくは2〜6重量倍、特に3〜4重量倍であるのが好ましい。これは、初発抽出時の液量ではなく定常抽出時の総液量である。   The amount of water used for countercurrent extraction is not particularly limited, but is preferably 7 times or less, preferably 2 to 6 times, particularly 3 to 4 times by weight based on the solid content of the concentrated soybean protein. This is not the amount of liquid at the time of initial extraction but the total amount of liquid at the time of steady extraction.

向流抽出法における抽出回数は2回以上であれば良いが、2乃至3回程度が好ましく、特に3回が好ましい。この3回の抽出を行う3段向流抽出法によると、抽出残渣中に残存する蛋白を減少でき蛋白の回収率を向上させることができる。   The number of extractions in the countercurrent extraction method may be 2 or more, but is preferably about 2 to 3 times, and particularly preferably 3 times. According to the three-stage countercurrent extraction method in which extraction is performed three times, the protein remaining in the extraction residue can be reduced and the protein recovery rate can be improved.

また、向流抽出法として、pH勾配向流抽出法、連続向流抽出法及びpH勾配連続向流抽出法を採用することもできる。ここでpH勾配向流抽出法とは、前記向流抽出法において、移動する毎に水性媒体のpHを順次高くして、あるいは順次低くして大豆原料に接触させる多段抽出法をいい、例えば、3段向流抽出法においては、第2抽出段階では第1抽出段階よりもpHを上げ(下げ)、第3抽出段階では第2抽出段階よりもpHを上げる(下げる)3段抽出法を例示することができる。上記連続向流抽出法とは、前記向流抽出法において、多段抽出工程を連続的に行う抽出法をいる。上記pH勾配連続向流抽出法とは、前記pH勾配向流抽出法において、多段抽出工程を連続的に行う抽出法をいう。これらの向流抽出法によると、より低コストで歩留まりの向上を図ることができる。   Further, as the countercurrent extraction method, a pH gradient countercurrent extraction method, a continuous countercurrent extraction method, and a pH gradient continuous countercurrent extraction method can be employed. Here, the pH gradient countercurrent extraction method refers to a multistage extraction method in which, in the countercurrent extraction method, the pH of the aqueous medium is sequentially increased or decreased every time it is moved, and contacted with the soybean raw material. The three-stage countercurrent extraction method illustrates a three-stage extraction method in which the second extraction stage raises (lowers) the pH compared to the first extraction stage, and the third extraction stage raises (lowers) the pH more than the second extraction stage. can do. The continuous countercurrent extraction method is an extraction method in which a multistage extraction step is continuously performed in the countercurrent extraction method. The pH gradient continuous countercurrent extraction method is an extraction method in which a multistage extraction step is continuously performed in the pH gradient countercurrent extraction method. According to these countercurrent extraction methods, the yield can be improved at a lower cost.

抽出でのpH調整に使用するアルカリは、食用であれば特に制限なく用いることができ、例えば水酸化ナトリウムを使用できる他、栄養的側面を考慮して水酸化カリウムを用いてもよい。   The alkali used for pH adjustment in the extraction can be used without particular limitation as long as it is edible. For example, sodium hydroxide can be used, and potassium hydroxide may be used in consideration of nutritional aspects.

大豆蛋白抽出液は、抽出に続く後述の酵素反応の前に殺菌に供することも出来る。酵素反応の際、その条件にもよるがしばしば雑菌等が繁殖し、分解物の風味を損なう場合もある。酵素反応の前に殺菌を行うことで、より風味良好なものにできる。かかる殺菌工程に用いられる殺菌装置としては、通常の殺菌装置であれば特に制限されず、例えばスチームインジェクション方式の連続式直接加熱殺菌装置を好適に例示することができる。殺菌条件としては、100〜160℃、好ましくは105〜145℃の温度での3秒から3分間の加熱殺菌を具体的に例示することができる。   The soy protein extract can be subjected to sterilization before the enzymatic reaction described below following extraction. Depending on the conditions of the enzyme reaction, various germs often grow and the flavor of the degradation product may be impaired. By performing sterilization before the enzyme reaction, the flavor can be improved. The sterilization apparatus used in the sterilization process is not particularly limited as long as it is a normal sterilization apparatus, and for example, a steam injection type continuous direct heating sterilization apparatus can be preferably exemplified. Specific examples of sterilization conditions include heat sterilization at a temperature of 100 to 160 ° C., preferably 105 to 145 ° C. for 3 seconds to 3 minutes.

以上のようにのようにして濃縮大豆蛋白から蛋白を抽出し、得られた大豆蛋白抽出液の固形分あたりの粗蛋白質量は80重量%以上が好ましく、85%以上がより好ましい。かかる濃度は例えばホエーを分離しない豆乳の粗蛋白質量が約50重量%であることから、かなりの高濃度であり、高蛋白質の加水分解物を得ることが出来る。   As described above, the protein is extracted from the concentrated soybean protein, and the amount of crude protein per solid content of the obtained soybean protein extract is preferably 80% by weight or more, more preferably 85% or more. Such a concentration is, for example, about 50% by weight of crude protein in soy milk that does not separate whey, so that it is a considerably high concentration, and a high protein hydrolyzate can be obtained.

得られた大豆蛋白抽出液は、続いて蛋白分解酵素(プロテアーゼ)による加水分解反応に供す。酵素反応の際の大豆蛋白溶液の蛋白濃度は、1重量%〜30重量%、好ましくは5〜15重量%、より好ましくは8〜12重量%が適当である。蛋白濃度は、抽出pH,抽出温度,抽出時間,抽出液量,抽出回数等の抽出条件を適宜選択することで、この範囲に調整することができる。濃度が低すぎても酵素分解に支障はないが、生産性が悪く、大豆蛋白加水分解物の製造コストを上昇させる要因となる。また、大豆蛋白溶液の濃度が高すぎると十分反応を進めるのに多量の酵素量を必要とし、これも好ましくない。   The obtained soybean protein extract is subsequently subjected to a hydrolysis reaction with a protease (protease). The protein concentration of the soy protein solution during the enzyme reaction is 1 to 30% by weight, preferably 5 to 15% by weight, more preferably 8 to 12% by weight. The protein concentration can be adjusted to this range by appropriately selecting extraction conditions such as extraction pH, extraction temperature, extraction time, amount of extraction liquid, and number of extractions. Even if the concentration is too low, there is no hindrance to the enzymatic degradation, but the productivity is poor, and this increases the production cost of soybean protein hydrolyzate. On the other hand, if the concentration of the soy protein solution is too high, a large amount of enzyme is required to sufficiently proceed the reaction, which is also not preferable.

加水分解した溶液のpH調整のためのアルカリは、特に種類は制限されないが、水酸化ナトリウムを使用できる他、栄養的側面を考慮して水酸化カリウムを用いてもよい。また、酸も特に種類に限定なく使用でき、リン酸、塩酸、硫酸等の無機酸や、クエン酸、リンゴ酸、乳酸等の有機酸などを例示でき、これらを1種単独又は2種以上を混合して使用することが出来るが、風味上クエン酸などの有機酸を用いるのが好ましい   The alkali for adjusting the pH of the hydrolyzed solution is not particularly limited, but sodium hydroxide can be used, and potassium hydroxide may be used in consideration of nutritional aspects. Also, the acid can be used without any particular limitation, and examples thereof include inorganic acids such as phosphoric acid, hydrochloric acid, and sulfuric acid, and organic acids such as citric acid, malic acid, and lactic acid. These can be used alone or in combination of two or more. Can be used as a mixture, but it is preferable to use an organic acid such as citric acid for flavor.

蛋白の加水分解に用いる酵素は、エキソプロテアーゼ又はエンドプロテアーゼを単独又は併用することができ、動物起源、植物起源あるいは微生物起源は問わない。具体的には、セリンプロテアーゼ(動物由来のトリプシン、キモトリプシン、微生物由来のズブチリシン、カルボキシペプチダーゼ等)、チオールプロテアーゼ(植物由来のパパイン、フィシン、ブロメライン等)、カルボキシプロテアーゼ(動物由来のペプシン等)を用いることができる。更に具体的には、エンドプロテアーゼを含有する酵素としては、バチルス・リケホルミス由来の「アルカラーゼ」(Novozymes Japan Ltd.製)やバチルス・ズブチルス由来の「プロチンA」(大和化成株式会社製)、「プロテアーゼS」(アマノエンザイム株式会社製)、「ビオプラーゼSP-15FG」(ナガセケムテックス株式会社製)、「プロチンAC−10」(大和化成株式会社製)等が、エキソおよびエンドプロテアーゼを含有する蛋白分解酵素としてアスペルギルス・オリゼ起源の「プロテアーゼM」、「プロテアーゼA」(アマノエンザイム株式会社製)やストレプトマイセス・グリセウス起源の「アクチナーゼ」(科研製薬株式会社製)、等が例示できる。   The exoprotease or endoprotease can be used alone or in combination as the enzyme used for protein hydrolysis, regardless of animal origin, plant origin or microbial origin. Specifically, serine proteases (animal-derived trypsin, chymotrypsin, microbial-derived subtilisin, carboxypeptidase, etc.), thiol proteases (plant-derived papain, ficin, bromelain, etc.), carboxyproteases (animal-derived pepsin, etc.) are used. be able to. More specifically, the enzyme containing endoprotease includes “Alcalase” derived from Bacillus liqueholmis (Novozymes Japan Ltd.), “Protin A” derived from Bacillus subtilis (manufactured by Daiwa Kasei Co., Ltd.), “Protease” S "(manufactured by Amano Enzyme Co., Ltd.)," Biolase SP-15FG "(manufactured by Nagase ChemteX Corporation)," Protin AC-10 "(manufactured by Yamato Kasei Co., Ltd.), etc. Examples of the enzyme include “Protease M”, “Protease A” (manufactured by Amano Enzyme Co., Ltd.) derived from Aspergillus oryzae, “Actinase” (produced by Kaken Pharmaceutical Co., Ltd.) derived from Streptomyces griseus, and the like.

本発明の加水分解条件は用いる蛋白加水分解酵素の種類により異なる。各蛋白分解酵素の作用pH域、作用温度域で、目標とする分解率となるよう添加量、時間を決めれば良い。塩分制限食(例えば経管栄養食等)の用途の観点からは、pHが5〜10、好ましくはpH6〜9であれば中和による塩の生成を軽減できて好ましい。また、pHが8〜9のアルカリ性領域で5分以上、好ましくは20〜90分保持した後酵素を作用させると短時間の分解反応で効率良く高分解物を得ることができる。   The hydrolysis conditions of the present invention vary depending on the type of protein hydrolase used. What is necessary is just to determine an addition amount and time so that it may become the target decomposition rate in the effect | action pH range and action temperature range of each proteolytic enzyme. From the viewpoint of the use of a salt-restricted diet (for example, tube feeding diet), a pH of 5 to 10, preferably pH 6 to 9, is preferable because it can reduce salt formation due to neutralization. Further, when the enzyme is allowed to act after maintaining the pH in the alkaline region of 8-9 for 5 minutes or more, preferably 20-90 minutes, a highly decomposed product can be efficiently obtained in a short decomposition reaction.

加水分解の程度は、蛋白成分の15%トリクロロ酢酸可溶率でいう大豆蛋白分解率で、20〜98%程度、より通常には50〜90%程度になるまで行われる。蛋白分解酵素を作用させる時間は、使用する蛋白分解酵素の活性や量によって異なるが、通常5分〜24時間程度、好ましくは30分〜9時間程度、より好ましくは1時間〜4時間程度とすることが出来る。酵素分解時間が長すぎると腐敗を招きやすい。   The degree of hydrolysis is about 20 to 98%, more usually about 50 to 90% of soybean protein degradation rate, which is 15% trichloroacetic acid solubility of protein components. The time for which the protease is allowed to act varies depending on the activity and amount of the protease used, but is usually about 5 minutes to 24 hours, preferably about 30 minutes to 9 hours, more preferably about 1 hour to 4 hours. I can do it. If the enzymatic degradation time is too long, it tends to cause spoilage.

必要であれば加水分解された大豆蛋白の溶液に微量に存在する不溶物が経時的にオリとして析出したり、沈殿するのを防止するために、それらの分離工程を付加してもよい。不溶物の分離手段は、フィルタープレス、膜分離など濾過手段によってもよいが、最も通常には遠心分離が採用され、特に連続的な処理が可能な遠心分離機や液体サイクロンなどを利用することが出来る。   If necessary, a separation step may be added to prevent the insoluble matter present in a trace amount in the hydrolyzed soy protein solution from precipitating or precipitating over time. The insoluble matter separation means may be a filtration means such as a filter press or membrane separation, but most usually, centrifugal separation is adopted, and a centrifugal separator or a liquid cyclone capable of continuous processing can be used. I can do it.

酵素反応後のpHは反応条件により異なるが、通常pH3〜8の範囲にあるが、不溶物の分離を行う場合、好ましくはpH4〜6.2、より好ましくはpH4.5〜5.5とするのが適当である。未分解物を含む不溶物は大豆蛋白の等電点付近で凝集しやすくなる傾向にあるため、このpH域であれば上記不溶物の凝集性を高め、分離の際の分離性を高めることができる。この操作はいわゆる酸沈殿であるが、これにより酸沈殿した蛋白は分離工程で除かれるため、ここで酸沈工程が入ることは特に問題ではない。また、分解液中にカルシウムやマグネシウムなどの塩化物、硫酸塩などの塩類や水酸化物といったアルカリ土類金属化合物又はポリアクリル酸Na、アルギン酸、キチンキトサン等の蛋白凝集剤を加えても、上記不溶物の凝集性を高め分離性を高めることが出来る。また、特許文献8に公開されている加熱処理の工程を行っても良く、この工程によっても上記不溶物の凝集性を高め分離性を高めることが可能となる。   Although the pH after the enzyme reaction varies depending on the reaction conditions, it is usually in the range of pH 3 to 8, but when separating insoluble matter, it is preferably pH 4 to 6.2, more preferably pH 4.5 to 5.5. Is appropriate. Since insoluble materials including undegraded products tend to aggregate near the isoelectric point of soybean protein, this pH range can increase the aggregation properties of the insoluble materials and increase the separability during separation. it can. Although this operation is so-called acid precipitation, the acid-precipitated protein is thereby removed in the separation step, and therefore it is not particularly a problem that the acid precipitation step is performed here. In addition, even when a protein aggregating agent such as sodium chloride, alginic acid, chitin chitosan or the like is added to the decomposition solution, alkaline earth metal compounds such as chlorides such as calcium and magnesium, salts such as sulfates and hydroxides, and hydroxides, It is possible to increase the cohesiveness of insoluble matter and improve the separation property. In addition, a heat treatment step disclosed in Patent Document 8 may be performed, and also by this step, it is possible to increase the cohesiveness of the insoluble matter and improve the separability.

必要であれば加水分解物のフィチン酸を低減させることができる。フィチン酸の低減化はフィターゼを用いてフィチン酸を分解することが好ましく、酵素を用いた加水分解とフィターゼを用いたフィチン酸分解の工程を含んでいればその順番はどのように組み合わせても良い。使用するフィターゼ種や反応条件は特許文献9に公開されている条件で行えばよい。フィチン酸を低減することによりカルシウムなどの微量金属の吸収を促進することができる。   If necessary, the hydrolyzate phytic acid can be reduced. Phytic acid is preferably reduced by using phytase to decompose phytic acid, and the order of hydrolysis may be combined in any way as long as it includes hydrolysis using enzyme and phytate decomposition using phytase. . The phytase species and reaction conditions to be used may be the conditions disclosed in Patent Document 9. By reducing phytic acid, absorption of trace metals such as calcium can be promoted.

酵素反応の後は酵素を失括させる。酵素は、加熱処理(通常70℃〜150℃で30分乃至数秒)等で失括させることができる。加水分解反応に続く加熱殺菌工程は、酵素失括を兼ねることができる。   Enzyme is lost after the enzymatic reaction. The enzyme can be removed by heat treatment (usually 70 ° C. to 150 ° C. for 30 minutes to several seconds). The heat sterilization process following the hydrolysis reaction can also serve as enzyme decapitation.

以上のようにして得られた大豆蛋白加水分解物溶液は、用途によりそのまま或いは濃縮して用いることも出来るが、殺菌・乾燥工程に供することも出来る。かかる殺菌・乾燥工程に用いられる殺菌装置としては、通常の殺菌装置であれば特に制限されず、例えばスチームインジェクション方式の連続式直接加熱殺菌装置が好適に用いることができる。殺菌条件の具体例は、100〜160℃、好ましくは105〜145℃の温度で、3秒から3分間程度である。また、乾燥方法としては、従来公知の乾燥方法であれば特に制限されないが、凍結乾燥、噴霧乾燥、減圧乾燥等を好適に例示することができる。また、殺菌や乾燥に先立ち、乳化成分、安定化成分、栄養成分、甘味成分等の各種配合成分を添加しておくこともできる。   The soybean protein hydrolyzate solution obtained as described above can be used as it is or after being concentrated depending on the use, but can also be subjected to a sterilization / drying step. The sterilization apparatus used in the sterilization / drying process is not particularly limited as long as it is a normal sterilization apparatus. For example, a steam injection type continuous direct heating sterilization apparatus can be suitably used. Specific examples of the sterilization conditions are 100 to 160 ° C., preferably 105 to 145 ° C., for about 3 seconds to 3 minutes. Moreover, as a drying method, if it is a conventionally well-known drying method, it will not restrict | limit in particular, Freeze drying, spray drying, reduced pressure drying etc. can be illustrated suitably. Prior to sterilization and drying, various blending components such as an emulsifying component, a stabilizing component, a nutritional component, and a sweetening component can be added.

以下に本発明で用いた分析法を記す。
・TCA可溶率
蛋白が1.0重量%になるように水に分散させ十分撹拌した溶液に対し、全蛋白に対する15%トリクロロ酢酸(TCA)可溶性蛋白の割合をケルダール法、ローリー法等の蛋白定量法により測定したものである。
The analysis method used in the present invention is described below.
-TCA solubility rate The ratio of 15% trichloroacetic acid (TCA) soluble protein to the total protein is determined by the Kjeldahl method, the Raleigh method, etc. with respect to a solution that is sufficiently stirred and dispersed in water so that the protein is 1.0% by weight. It is measured by a quantitative method.

以下、実施例により本発明をより具体的に説明するが、本発明の技術的範囲はこれらの例示に限定されるものではない。なお、実施例中の%は特に断りの無い限りは重量%を表す。   EXAMPLES Hereinafter, although an Example demonstrates this invention more concretely, the technical scope of this invention is not limited to these illustrations. In the examples, “%” represents “% by weight” unless otherwise specified.

(実施例1)
乳化剤として脂肪酸モノグリセリド(太陽化学社製「サンソフトO−30V」 HLB=2.8)0.6gを分散させた45℃の温水12kg中へ、NSI90の低変性脱脂大豆フレーク2kgを徐々に加えた。塩酸でpH4.2に調整しながら10分間緩やかに攪拌・洗浄した後、溶出されたホエー成分を遠心分離機で分離・除去し(1500G、10分)、濃縮大豆蛋白4kgを得た。この濃縮大豆蛋白4kgに、45℃の温水12kgを加えた。10分間緩やかに攪拌・洗浄した後、溶出されたホエー成分を遠心分離機で分離除去し(1500G、10分)、ホエー12kg、水分含量が63%、固形分あたりの粗蛋白量が72%の濃縮大豆蛋白4kgを得た。これを1kgずつに4つに分けてA1、A2、A3、A4とし、続く3段向流抽出に供した。
(Example 1)
2 kg of NSI90 low-denatured defatted soybean flakes were gradually added to 12 kg of 45 ° C. warm water in which 0.6 g of fatty acid monoglyceride (“Sunsoft O-30V” HLB = 2.8 manufactured by Taiyo Kagaku Co., Ltd.) was dispersed as an emulsifier. . After gently stirring and washing for 10 minutes while adjusting the pH to 4.2 with hydrochloric acid, the eluted whey components were separated and removed with a centrifuge (1500 G, 10 minutes) to obtain 4 kg of concentrated soy protein. 12 kg of warm water at 45 ° C. was added to 4 kg of this concentrated soybean protein. After gently stirring and washing for 10 minutes, the eluted whey components are separated and removed with a centrifuge (1500 G, 10 minutes), 12 kg whey, 63% moisture content, 72% crude protein per solid content 4 kg of concentrated soy protein was obtained. This was divided into 4 parts per 1 kg to make A1, A2, A3, and A4, which were subjected to subsequent three-stage countercurrent extraction.

3段向流抽出は、pH勾配3段向流抽出によった。抽出はすべて60℃で、固液分離は1500Gで10分の遠心分離により実施し、抽出液のpH調整は20%水酸化ナトリウム溶液を用いて行った。   Three-stage countercurrent extraction was based on pH gradient three-stage countercurrent extraction. All extractions were performed at 60 ° C., solid-liquid separation was performed by centrifugation at 1500 G for 10 minutes, and pH adjustment of the extract was performed using 20% sodium hydroxide solution.

前述の濃縮大豆蛋白1kg(A1)に水2.0kgを添加し、pH7.0に調整して30分間攪拌し、遠心分離して抽出残渣R−1と抽出液E−1(固形分8.0%)2.0kgとを得た。この抽出残渣R−1に水2kgを添加し、15分間攪拌し、遠心分離して抽出残渣R−2と抽出液E−2(固形分2.5%)2.0kgとを得た。   2.0 kg of water is added to 1 kg (A1) of the above-described concentrated soybean protein, adjusted to pH 7.0, stirred for 30 minutes, centrifuged and extracted residue R-1 and extract E-1 (solid content 8. 0%) 2.0 kg. 2 kg of water was added to this extraction residue R-1, stirred for 15 minutes, and centrifuged to obtain extraction residue R-2 and 2.0 kg of extract E-2 (solid content 2.5%).

次に、濃縮大豆蛋白1kg(A2)に抽出液E−1を2kg添加し、pH7.0に調整して30分間攪拌し、遠心分離して抽出残渣R−3と抽出液E−3(固形分13.5%)2.0kgとを得た。この抽出残渣R−3に抽出液E−2を2kg添加し、30分間攪拌し、遠心分離して抽出残渣R−4と抽出液E−4(固形分6.0%)2.2kgとを得た。さらに、抽出残渣R−4に水1.5kgを添加し、15分間攪拌し、遠心分離して抽出残渣R−5と抽出液E−5(固形分2.0%)1.6kgとを得た。   Next, 2 kg of extract E-1 is added to 1 kg of concentrated soybean protein (A2), adjusted to pH 7.0, stirred for 30 minutes, centrifuged and extracted residue R-3 and extract E-3 (solid) Min 13.5%) 2.0 kg. Add 2 kg of the extract E-2 to the extraction residue R-3, stir for 30 minutes, and centrifuge to obtain 2.2 kg of the extract residue R-4 and the extract E-4 (solid content 6.0%). Obtained. Further, 1.5 kg of water was added to the extraction residue R-4, stirred for 15 minutes, and centrifuged to obtain the extraction residue R-5 and 1.6 kg of the extract E-5 (solid content 2.0%). It was.

また、濃縮大豆蛋白1kg(A3)に抽出液E−4を2.2kg添加し、pH7.0に調整して30分間攪拌し、遠心分離して抽出残渣R−6と抽出液E−6(固形分12.0%)2.2kgとを得た。この抽出残渣R−6に抽出液E−5を1.6kg加え、30分間攪拌し、遠心分離して抽出残渣R−7と抽出液E−7(固形分6.0%)1.7kgとを得た。さらに、抽出残渣R−7に水1.5kgを添加し、15分間攪拌し、遠心分離して抽出残渣R−8と抽出液E−8(固形分2.0%)1.6kgとを得た。   Further, 2.2 kg of extract E-4 was added to 1 kg (A3) of concentrated soybean protein, adjusted to pH 7.0, stirred for 30 minutes, centrifuged and extracted residue R-6 and extract E-6 ( Solid content 12.0%) and 2.2 kg. 1.6 kg of the extract E-5 was added to the extraction residue R-6, stirred for 30 minutes, and centrifuged to obtain 1.7 kg of the extract residue R-7 and the extract E-7 (solid content 6.0%). Got. Further, 1.5 kg of water was added to the extraction residue R-7, stirred for 15 minutes, and centrifuged to obtain the extraction residue R-8 and 1.6 kg of the extract E-8 (solid content 2.0%). It was.

さらに、濃縮大豆蛋白1kg(A4)に抽出液E−7を1.7kg添加し、pH7.0に調整して30分間攪拌し、遠心分離して抽出残渣R−9と抽出液E−9(固形分12.5%)2.0kgとを得た。この抽出残渣R−9に抽出液E−8を1.6kg添加し、15分間攪拌し、遠心分離して抽出残渣R−10と抽出液E−10(固形分5.0%)1.7kgとを得た。   Furthermore, 1.7 kg of extract E-7 was added to 1 kg (A4) of concentrated soybean protein, adjusted to pH 7.0, stirred for 30 minutes, centrifuged, and extracted residue R-9 and extract E-9 ( 2.0 kg of solid content 12.5%). 1.6 kg of the extract E-8 was added to the extraction residue R-9, stirred for 15 minutes, and centrifuged to extract 1.7 kg of the extract residue R-10 and the extract E-10 (solid content 5.0%). And got.

上記のようにして得られた抽出液のうち、固形分が10%以上となる抽出液E−3、E−6及びE−9を混合した後固形分を9%に調整し、pHを7.0に調整し、スチームインジェクション方式の連続式直接加熱殺菌装置を使用し140℃10秒で殺菌し、大豆蛋白抽出液を得た。この乾燥固形あたりの粗蛋白質量は、86.7%であった。   Among the extracts obtained as described above, the extracts E-3, E-6, and E-9 having a solid content of 10% or more were mixed, the solid content was adjusted to 9%, and the pH was 7 Was adjusted to 0.0 and sterilized at 140 ° C. for 10 seconds using a steam injection type continuous direct heat sterilizer to obtain a soybean protein extract. The amount of crude protein per dry solid was 86.7%.

上記のようにして得られた酸沈工程を経ない大豆蛋白抽出液にE/S比1.8%の割合で蛋白分解酵素として「ビオプラーゼSP-15FG」(ナガセケムテックス株式会社製)を添加して50℃4時間加水分解させた(15%TCA可溶率、65%)。酵素反応後の大豆蛋白加水分解溶液にクエン酸を添加しpHを4.5に調整した後、遠心分離(1500G、15分)して未分解物を含む不溶物を分離除去した。得られた遠心上清液はスチームインジェクション方式の連続式直接加熱殺菌装置を使用し140℃で10秒加熱殺菌後凍結乾燥によって水分を除いた。   "Biolase SP-15FG" (manufactured by Nagase ChemteX Corporation) was added as a proteolytic enzyme to the soybean protein extract obtained as described above at an E / S ratio of 1.8%. And then hydrolyzed at 50 ° C. for 4 hours (15% TCA solubility, 65%). Citric acid was added to the soy protein hydrolyzed solution after the enzymatic reaction to adjust the pH to 4.5, and then centrifuged (1500 G, 15 minutes) to separate and remove insoluble materials including undegraded products. The obtained centrifugal supernatant was sterilized by heating at 140 ° C. for 10 seconds using a steam injection type continuous direct heat sterilization apparatus, and then water was removed by freeze drying.

(実施例2)
実施例1で調製した大豆蛋白抽出液にE/S比0.05%の割合で蛋白分解酵素として「アルカラーゼ」(Novozymes Japan Ltd.製)を添加して50℃4時間加水分解した(15%TCA可溶率、30%)。酵素反応後の大豆蛋白加水分解溶液をスチームインジェクション方式の連続式直接加熱殺菌装置を使用し140℃10秒で酵素を失活させた後スプレードライヤーで噴霧乾燥した。
(Example 2)
“Alcalase” (manufactured by Novozymes Japan Ltd.) was added to the soybean protein extract prepared in Example 1 as a proteolytic enzyme at an E / S ratio of 0.05% and hydrolyzed at 50 ° C. for 4 hours (15% TCA solubility, 30%). After the enzyme reaction, the soybean protein hydrolyzed solution was spray-dried with a spray dryer after inactivating the enzyme at 140 ° C. for 10 seconds using a steam injection type continuous direct heat sterilizer.

(実施例3)
実施例1で調製した大豆蛋白抽出液を噴霧乾燥して水分5%の粉末状分離大豆蛋白を調製した後、pH8.8の8%溶液を調製した。調製した溶液を55℃で20分保持した後に、蛋白分解酵素としてE/S比2%の割合で「ビオプラーゼSP-15FG」(ナガセケムテックス株式会社製)を添加して55℃3時間加水分解させた(15%TCA可溶率、85%)。酵素反応後の大豆蛋白加水分解溶液にクエン酸を添加しpHを4.5に調整した後、遠心分離(1500G、15分)して未分解物を含む不溶物を分離除去した。得られた遠心上清液はスチームインジェクション方式の連続式直接加熱殺菌装置を使用し140℃で10秒殺菌後凍結乾燥によって水分を除いた。
(Example 3)
The soybean protein extract prepared in Example 1 was spray-dried to prepare a powdered separated soybean protein having a moisture content of 5%, and then an 8% solution of pH 8.8 was prepared. After maintaining the prepared solution at 55 ° C. for 20 minutes, “Biolase SP-15FG” (manufactured by Nagase ChemteX Corporation) is added as a proteolytic enzyme at a ratio of E / S ratio of 2% and hydrolyzed at 55 ° C. for 3 hours. (15% TCA solubility, 85%). Citric acid was added to the soy protein hydrolyzed solution after the enzymatic reaction to adjust the pH to 4.5, and then centrifuged (1500 G, 15 minutes) to separate and remove insoluble materials including undegraded products. The obtained centrifugal supernatant was sterilized at 140 ° C. for 10 seconds using a steam injection type continuous direct heat sterilizer and then lyophilized to remove moisture.

(比較例1)
低変性脱脂大豆フレーク(NSI90)2kgに12倍量の40℃温水を加え、水酸化ナトリウム溶液でpH7.0に調整した。この大豆分散液をホモミキサー(特殊機化工業社製)を用い、5000rpmで1時間攪拌して蛋白を抽出し、遠心分離機(1500G、10分)でオカラ成分を除去して脱脂豆乳を得た。この脱脂豆乳に塩酸を加えてpH4.5に調整し、蛋白カードを沈殿させて遠心分離機にて回収した。この蛋白カードに加水、攪拌してカードスラリー(DM9.0%)を調製し、水酸化ナトリウム溶液でpH8.8に調整した。得られた大豆蛋白溶液にE/S比1.8%の割合で蛋白分解酵素として「ビオプラーゼSP-15FG」(ナガセケムテックス株式会社製)を添加して50℃4時間加水分解させた(15%TCA可溶率、60%)。酵素反応後の大豆蛋白加水分解溶液にクエン酸を添加しpHを4.5に調整した後、遠心分離して(1500G、15分)未分解物を含む不溶物を分離除去した。得られた遠心上清液はスチームインジェクション方式の連続式直接加熱殺菌装置を使用し140℃で10秒殺菌後凍結乾燥によって水分を除いた。
(Comparative Example 1)
12 kg of 40 ° C. warm water was added to 2 kg of low-denatured defatted soybean flakes (NSI 90), and the pH was adjusted to 7.0 with a sodium hydroxide solution. This soybean dispersion is stirred at 5000 rpm for 1 hour using a homomixer (made by Tokushu Kika Kogyo Co., Ltd.) to extract protein, and the okara components are removed with a centrifuge (1500 G, 10 minutes) to obtain skimmed soymilk. It was. Hydrochloric acid was added to the defatted soymilk to adjust the pH to 4.5, the protein curd was precipitated and collected with a centrifuge. The protein curd was hydrated and stirred to prepare a curd slurry (DM 9.0%), which was adjusted to pH 8.8 with a sodium hydroxide solution. “Biolase SP-15FG” (manufactured by Nagase ChemteX Corp.) was added as a proteolytic enzyme at an E / S ratio of 1.8% to the obtained soy protein solution and hydrolyzed at 50 ° C. for 4 hours (15 % TCA solubility, 60%). Citric acid was added to the soy protein hydrolyzed solution after the enzyme reaction to adjust the pH to 4.5, and then centrifuged (1500 G, 15 minutes) to separate and remove insoluble materials including undegraded products. The obtained centrifugal supernatant was sterilized at 140 ° C. for 10 seconds using a steam injection type continuous direct heat sterilizer and then lyophilized to remove moisture.

(比較例2)
分離大豆蛋白(不二製油株式会社製、「ニューフジプロR」)をpH7.0の9%溶液とし、蛋白分解酵素として「アルカラーゼ」(Novozymes Japan Ltd.製)をE/S比0.05%の割合で添加して50℃4時間加水分解した(15%TCA可溶率、30%)。酵素反応後の大豆蛋白加水分解溶液をスチームインジェクション方式の連続式直接加熱殺菌装置を使用し140℃10秒で酵素を失活させた後スプレードライヤーで噴霧乾燥した。
(Comparative Example 2)
Separated soy protein (Fuji Oil Co., Ltd., “New Fujipro R”) is made into a 9% solution at pH 7.0, and “Alcalase” (manufactured by Novozymes Japan Ltd.) as the protease is 0.05% E / S ratio And then hydrolyzed at 50 ° C. for 4 hours (15% TCA solubility, 30%). After the enzyme reaction, the soybean protein hydrolyzed solution was spray-dried with a spray dryer after inactivating the enzyme at 140 ° C. for 10 seconds using a steam injection type continuous direct heat sterilizer.

(比較例3)
分離大豆蛋白(不二製油株式会社製、「ニューフジプロR」)の8%溶液を調製した後、pHを8.8に調整した。調製した溶液を55℃で20分保持した後に、蛋白分解酵素として「ビオプラーゼSP-15FG」(ナガセケムテックス株式会社製)をE/S比2.0%の割合で添加して55℃3時間加水分解させた(15%TCA可溶率、82%)。酵素反応後の大豆蛋白加水分解溶液にクエン酸を添加しpHを4.5に調整した後、遠心分離(1500G、15分)して未分解物を含む不溶物を分離除去した。得られた遠心上清液はスチームインジェクション方式の連続式直接加熱殺菌装置を使用し140℃で10秒殺菌後凍結乾燥により水分を除いた。
(Comparative Example 3)
After preparing an 8% solution of separated soy protein (Fuji Oil Co., Ltd., “New Fuji Pro R”), the pH was adjusted to 8.8. After maintaining the prepared solution at 55 ° C. for 20 minutes, “Biolase SP-15FG” (manufactured by Nagase ChemteX Corp.) as a proteolytic enzyme was added at a ratio of 2.0% E / S ratio and 55 ° C. for 3 hours. Hydrolyzed (15% TCA solubility, 82%). Citric acid was added to the soy protein hydrolyzed solution after the enzymatic reaction to adjust the pH to 4.5, and then centrifuged (1500 G, 15 minutes) to separate and remove insoluble materials including undegraded products. The obtained supernatant was sterilized at 140 ° C. for 10 seconds using a steam injection type continuous direct heat sterilizer, and then water was removed by freeze drying.

<風味の評価>
実施例1,2,3と比較例1,2,3で調製した乾燥粉末を5%溶液となるよう水で溶解して風味を比較したところ実施例で調製したものは比較例と比べて不快な臭いや苦味、舌への張り付き感等の悪風味が低減されており、非常に良好な風味であった。
<Evaluation of flavor>
When the dry powders prepared in Examples 1, 2, and 3 and Comparative Examples 1, 2, and 3 were dissolved in water to form a 5% solution and the flavors were compared, those prepared in the examples were uncomfortable compared to the comparative examples. The odor and bitterness and the bad taste such as sticking to the tongue were reduced, and the taste was very good.

Claims (5)

濃縮大豆蛋白から蛋白を抽出し、得られた大豆蛋白抽出液を酸沈殿工程を経ることなく加水分解する大豆蛋白加水分解物の製造法。 A method for producing a soy protein hydrolyzate, wherein protein is extracted from concentrated soy protein, and the resulting soy protein extract is hydrolyzed without going through an acid precipitation step. 加水分解する前の大豆蛋白抽出液を加熱殺菌する請求項1に記載の大豆蛋白加水分解物の製造法。 The method for producing a soy protein hydrolyzate according to claim 1, wherein the soybean protein extract before hydrolysis is sterilized by heating. 蛋白の抽出が向流抽出法による請求項1に記載の大豆蛋白加水分解物の製造法。 The method for producing a soy protein hydrolyzate according to claim 1, wherein the protein is extracted by a countercurrent extraction method. 濃縮大豆蛋白から、向流抽出法により蛋白を抽出し加水分解してなる大豆蛋白加水分解物。 A soy protein hydrolyzate obtained by extracting and hydrolyzing protein from concentrated soy protein by a countercurrent extraction method. 乾燥固形分あたりの粗蛋白質量が80重量%以上である請求項4記載の大豆蛋白加水分解物。
The soybean protein hydrolyzate according to claim 4, wherein the crude protein mass per dry solid content is 80% by weight or more.
JP2006514515A 2004-06-07 2005-06-07 Method for producing soy protein hydrolyzate Pending JPWO2005120244A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004168667 2004-06-07
JP2004168667 2004-06-07
PCT/JP2005/010413 WO2005120244A1 (en) 2004-06-07 2005-06-07 Method of producing soybean protein hydrolysate

Publications (1)

Publication Number Publication Date
JPWO2005120244A1 true JPWO2005120244A1 (en) 2008-04-03

Family

ID=35502743

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006514515A Pending JPWO2005120244A1 (en) 2004-06-07 2005-06-07 Method for producing soy protein hydrolyzate

Country Status (2)

Country Link
JP (1) JPWO2005120244A1 (en)
WO (1) WO2005120244A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4844240B2 (en) * 2006-05-31 2011-12-28 不二製油株式会社 Method for producing soy protein
JP2008022826A (en) * 2006-07-25 2008-02-07 Fuji Oil Co Ltd Method for producing soybean protein hydrolysate
JP2010248134A (en) * 2009-04-16 2010-11-04 Rheology Kino Shokuhin Kenkyusho:Kk Peptide composition
CN105567774B (en) 2016-01-22 2019-09-10 杏辉天力(杭州)药业有限公司 A kind of oligomeric Gly-His-Lys of walnut and its preparation method and application
WO2020226167A1 (en) * 2019-05-08 2020-11-12 不二製油グループ本社株式会社 Carrier for adsorbing volatile components
EP3928632A1 (en) * 2020-06-26 2021-12-29 Improve Production of non-precipitated plant protein isolates
CN112940842A (en) * 2021-03-19 2021-06-11 东北农业大学 Method for preparing low-bitter-taste soybean powder and high-quality soybean oil by two-step enzymolysis
CN113575751A (en) * 2021-07-16 2021-11-02 苏陀科技(深圳)有限公司 Processing method of low-odor soybean protein isolate

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55156554A (en) * 1979-05-25 1980-12-05 Nisshin Oil Mills Ltd:The Preparation of soybean protein
DE60332024D1 (en) * 2002-08-05 2010-05-20 Fuji Oil Co Ltd PROCESS FOR THE PREPARATION OF SOY PROTEIN

Also Published As

Publication number Publication date
WO2005120244A1 (en) 2005-12-22

Similar Documents

Publication Publication Date Title
JP5125514B2 (en) Method for producing soy peptide mixture
Sun Enzymatic hydrolysis of soy proteins and the hydrolysates utilisation
Kristinsson et al. Fish protein hydrolysates: production, biochemical, and functional properties
US6221423B1 (en) Short-chained peptide material
JPWO2005120244A1 (en) Method for producing soy protein hydrolyzate
CA1198072A (en) Process for the preparation of protein hydrolysates
JPWO2008136326A1 (en) Method for producing acidic soluble soy protein
JP4844240B2 (en) Method for producing soy protein
JPS62171645A (en) Method for regulating taste and flavor of protein hydrolysate
Tsumura Improvement of the physicochemical properties of soybean proteins by enzymatic hydrolysis
JPWO2006080426A1 (en) Method for producing soy protein
JP4985023B2 (en) Soy protein hydrolyzate and method for producing the same
US20060193930A1 (en) Process for the preparation of protein hydrolysate from legumes
JP2001046851A (en) Emulsifier composition and acidic oil-in-water type emulsion using the same
JP3158849B2 (en) Method for producing soy peptide mixture
JP2000516635A (en) Method for obtaining highly hydrolyzed vegetable peptone and use thereof
ZA200306957B (en) Process for preparation of protein hydrolysate from soy flour.
CN1240300C (en) Process for preparation of protein-hydrolysate from soy flour
WO2002078461A1 (en) A process for the preparation of a high protein hydrolysate
JP5365515B2 (en) Method for producing a protein degradation product containing a high content of branched chain amino acids
JP2003333997A (en) Method for production of hydrolysate of soy protein
JPH0362382B2 (en)
JP2649361B2 (en) Blood cell-derived water-soluble protein hydrolyzate that does not exhibit bitterness and raw odor
JPH07227217A (en) Highly water-soluble soybean protein
JP3405144B2 (en) Method for producing soy protein hydrolyzate