JPWO2005026180A1 - Method for producing trialkoxyhalosilane and method for producing alkoxy(dialkylamino)silane, and catalyst for polymerization or copolymerization of α-olefin used for polymerization or copolymerization of α-olefin, catalyst component thereof and catalyst thereof Method for polymerizing α-olefin - Google Patents

Method for producing trialkoxyhalosilane and method for producing alkoxy(dialkylamino)silane, and catalyst for polymerization or copolymerization of α-olefin used for polymerization or copolymerization of α-olefin, catalyst component thereof and catalyst thereof Method for polymerizing α-olefin Download PDF

Info

Publication number
JPWO2005026180A1
JPWO2005026180A1 JP2005513855A JP2005513855A JPWO2005026180A1 JP WO2005026180 A1 JPWO2005026180 A1 JP WO2005026180A1 JP 2005513855 A JP2005513855 A JP 2005513855A JP 2005513855 A JP2005513855 A JP 2005513855A JP WO2005026180 A1 JPWO2005026180 A1 JP WO2005026180A1
Authority
JP
Japan
Prior art keywords
carbon atoms
catalyst
hydrocarbon group
chemical formula
represented
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005513855A
Other languages
Japanese (ja)
Other versions
JP3861923B2 (en
Inventor
元造 吉清
元造 吉清
田中 康裕
康裕 田中
利一 町田
利一 町田
佐藤 博
博 佐藤
黒田 信行
信行 黒田
光正 津川
光正 津川
早苗 畠中
早苗 畠中
幹夫 藤本
幹夫 藤本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Publication of JPWO2005026180A1 publication Critical patent/JPWO2005026180A1/en
Application granted granted Critical
Publication of JP3861923B2 publication Critical patent/JP3861923B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/04Esters of silicic acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/025Silicon compounds without C-silicon linkages
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/58Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with silicon, germanium, tin, lead, antimony, bismuth or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65904Component covered by group C08F4/64 containing a transition metal-carbon bond in combination with another component of C08F4/64

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Abstract

化37で示されるで示されるテトラハロシランと化38で示されるテトラアルコキシシランとを該テトラアルコキシシランと同じアルコキシ基からなるアルコール存在下で反応させて化39で示されるトリアルコキシハロシランを得るトリアルコキシハロシランの製造方法であって、前記テトラハロシラン及び前記テトラアルコキシシランのSi総量に対して前記アルコールが5〜50mol%であることを特徴とする。(但し、Xはハロゲンである。)(但し、R1は炭素数1〜6の炭化水素基である。)(但し、Xはハロゲン、R1は炭素数1〜6の炭化水素基である。)A tetrahalosilane represented by Chemical formula 37 is reacted with a tetraalkoxysilane represented by Chemical formula 38 in the presence of an alcohol having the same alkoxy group as the tetraalkoxysilane to obtain a trialkoxyhalosilane represented by Chemical formula 39. A method for producing a trialkoxyhalosilane, characterized in that the alcohol is 5 to 50 mol% with respect to the total Si amount of the tetrahalosilane and the tetraalkoxysilane. (However, X is halogen.) (However, R1 is a C1-C6 hydrocarbon group.) (However, X is a halogen and R1 is a C1-C6 hydrocarbon group.)

Description

本発明は、トリアルコキシハロシランの新規な製造方法及びアルコキシ(ジアルキルアミノ)シランの新規な製造方法、並びにα−オレフィンの重合又は共重合に用いられるα−オレフィンの重合又は共重合用触媒、その触媒成分及びその触媒を用いたα−オレフィンの重合方法に関するものである。  The present invention relates to a novel method for producing trialkoxyhalosilane and a novel method for producing alkoxy(dialkylamino)silane, and a catalyst for polymerization or copolymerization of α-olefin used for polymerization or copolymerization of α-olefin, The present invention relates to a catalyst component and a method for polymerizing an α-olefin using the catalyst.

アルコキシ(ジアルキルアミノ)シランは、アミノ基の導入にアルコキシシランにグリニヤール試薬を反応させる方法以外に、アルコキシハロシランを原料として製造する方法が知られている。  Alkoxy(dialkylamino)silanes are known to be produced using an alkoxyhalosilane as a raw material, in addition to a method of reacting an alkoxysilane with a Grignard reagent to introduce an amino group.

上記のアルコキシハロシランの製造方法としては、従来、非特許文献1(J.Am.Chem.Soc.,68巻,70ページ,1946年)並びに非特許文献2(Khimiya i Industriya,6号,248ページ,1983年)において、テトラクロロシランとアルコールを反応させて製造する方法が開示されている。  As a method for producing the above-mentioned alkoxyhalosilane, conventionally, Non-Patent Document 1 (J. Am. Chem. Soc., Volume 68, page 70, 1946) and Non-Patent Document 2 (Khimiya i Industria, No. 6, 248) have been used. (Page, 1983), a method of reacting tetrachlorosilane with alcohol is disclosed.

しかしながら、非特許文献1において、テトラクロロシランとアリルアルコールを用いる実験例では、トリアリルオキシクロロシランを主生成物として得ようとする実験条件において、テトラクロロシランとアリルアルコールを1:2.5のモル比で反応させることが示されている。その収率は53%でありより高い収率が望まれるのは言うまでもない。その他の種類のアルコキシクロロシラン、例えばクロロトリメトキシシラン、クロロトリエトキシシラン、ジクロロジエトキシシランやトリクロロエトキシシランについては、沸点などの物性値の記載があることから、合成可能であることは推定されるが、収率に関しては何ら記載されていない。  However, in Non-Patent Document 1, in an experimental example using tetrachlorosilane and allyl alcohol, tetrachlorosilane and allyl alcohol are mixed at a molar ratio of 1:2.5 under experimental conditions in which triallyloxychlorosilane is obtained as a main product. It has been shown to react with. Needless to say, the yield is 53%, and a higher yield is desired. Other types of alkoxychlorosilanes, such as chlorotrimethoxysilane, chlorotriethoxysilane, dichlorodiethoxysilane and trichloroethoxysilane, are presumed to be synthesizable because of the descriptions of physical properties such as boiling points. However, nothing is said about the yield.

また、非特許文献2においては、実験条件など詳細は不明であるが、ケミカルアブストラクト番号100:34098に記載の論文要旨によれば、アルコキシハロシランとしてクロロエトキシシラン類のうち、エトキシ基を1つ導入したトリクロロエトキシシランは90%、2つ導入したジクロロジエトキシシランは95%の収率で得られるが、3つ導入したクロロトリエトキシシランでは80%と低収率になることが示されている。さらに記載の反応条件は反応温度が100℃から145℃であり、より低温であることが望まれる。  Further, in Non-Patent Document 2, details such as experimental conditions are unknown, but according to the abstract of the article described in Chemical Abstract No. 100:34098, one ethoxy group is selected from among chloroethoxysilanes as alkoxyhalosilane. It was shown that 90% of the introduced trichloroethoxysilane and 95% of the dichlorodiethoxysilane introduced were obtained with a yield of 95%, but the yield of the chlorotriethoxysilane introduced with three was as low as 80%. There is. Further, the reaction conditions described are such that the reaction temperature is 100° C. to 145° C., and it is desired that the temperature is lower.

一方、特許文献1(特開平5−310751号公報)においては、テトラクロロシランとテトラアルコキシシランを反応させてアルコキシハロシランを製造する方法が提案されている。ここで、酸を触媒として用いることが示されているが、高沸点の酸は、生成物の蒸留分離精製の際に分離不良、または共存下で加熱することに伴う収量低下を引き起こす要因となる。またルイス酸の例として示されている四塩化チタン、塩化アルミ、弗化ホウ素などは、大気中の水分に敏感なので、一般に取扱いが困難である。一方、ハロゲン化水素は、常温常圧下ガスであり、容易に反応系から除去可能である。当該文献にも反応系への直接導入やHOによる系中発生例が示されている。しかし、一般にガス状のハロゲン化水素の取扱いには注意が必要で設備上もコストがかかってしまう。HOによる系中発生は、安全かつ低コストと考えられるが、HOを導入した分、ハロゲン化シランが消費されて、目的のハロゲン化アルコキシシランとは、異なるSi−O結合を有する化合物へと変換されるので、Si基準の収率を低下させてしまう問題がある。また、触媒量は、多い方が反応時間を短縮させる効果による製造コストダウンが望めるが、上記法によれば、多量のHOの導入が必要となり、これは収率低下を必然的に招いてしまう欠点がある。また、特許文献1の実施例の収率は高々60から75%で、より高い収率で得られる方法が望まれている。On the other hand, Patent Document 1 (JP-A-5-310751) proposes a method of producing an alkoxyhalosilane by reacting tetrachlorosilane and tetraalkoxysilane. Here, it has been shown to use an acid as a catalyst, but a high-boiling acid causes poor separation during the distillation separation purification of the product, or causes a decrease in yield due to heating in the coexistence. .. Further, titanium tetrachloride, aluminum chloride, boron fluoride and the like, which are shown as examples of Lewis acids, are generally difficult to handle because they are sensitive to moisture in the atmosphere. On the other hand, hydrogen halide is a gas under normal temperature and normal pressure and can be easily removed from the reaction system. The literature also shows examples of direct introduction into the reaction system and generation in the system by H 2 O. However, handling of gaseous hydrogen halide generally requires caution and requires high facility costs. Generation in the system by H 2 O is considered to be safe and low in cost, but the amount of H 2 O introduced consumes the halogenated silane and has a Si—O bond different from the intended halogenated alkoxysilane. Since it is converted into a compound, there is a problem that the yield based on Si is reduced. Further, a larger amount of the catalyst is expected to reduce the production cost due to the effect of shortening the reaction time, but according to the above method, it is necessary to introduce a large amount of H 2 O, which inevitably leads to a decrease in yield. There is a drawback that Further, the yield of the Example of Patent Document 1 is at most 60 to 75%, and a method capable of obtaining a higher yield is desired.

さらに、クロロトリエトキシシランについては、非特許文献3(Zhurnal Obshchei Khimii,65巻,1142ページ,1995年)において、0.02〜1.0wt%のエタノール存在下でテトラクロロシランとテトラアルコキシシランを40℃の加温条件下反応させて、ClSi(OEt)が原料組成中のClを基準にすると最高90%の収率で得られることが開示されている。しかしながら前項までに例示した収率と同様に、コスト計算上より重要である原料組成中のSiを基準にすると82%であり、より高い収率が望まれていることに変わりは無い。また、加温することなく実施できることが望ましいFurther, regarding chlorotriethoxysilane, in Non-Patent Document 3 (Zhurnal Obshchei Khimii, Vol. 65, 1142, 1995), tetrachlorosilane and tetraalkoxysilane were added in the presence of 0.02-1.0 wt% of ethanol. It is disclosed that ClSi(OEt) 3 can be obtained in a yield of up to 90% based on Cl in the raw material composition by reacting at a heating temperature of °C. However, similar to the yields exemplified up to the previous section, it is 82% based on Si in the raw material composition, which is more important in cost calculation, and there is no change that a higher yield is desired. Also, it is desirable to be able to carry out without heating.

また、非特許文献4(Trudy Instituta−Moskovskii Khimiko−Tekhnokogcheskii Institut imeni D.I.Mendeleeva(1972),No.70 140−2)には、ClSi(OEt)とEtNHとを反応させてEtNSi(OEt)が得られることが報告されている。
しかしながら、一旦ClSi(OEt)を単離精製することは少なからず物質損失を引き起こし、さらには精製工程が増加するので好ましくない。
Further, in Non-Patent Document 4 (Trudy Institute-Moskovskii Khimiko-Tekhnokogcheskii Institute Imeni D.I. Mendeleeva (1972), No. 70 140-2), ClSi(Et 2 ) and NH 3 EET were reacted with ClSi(OEt) 3. It has been reported that 2 NSi(OEt) 3 is obtained.
However, isolating and purifying ClSi(OEt) 3 once causes a considerable amount of substance loss, and further increases the number of purification steps, which is not preferable.

一方、近年、α−オレフィンを重合するために、マグネシウム、チタン、ハロゲン元素、及び電子供与体を必須とする固体触媒成分、周期率表1〜3族金属の有機金属化合物、及び電子供与体からなる高活性担持型触媒系が、特開昭57−63310号公報(特許文献2)、特開昭57−63311号公報(特許文献3)、特開昭58−83016号公報(特許文献4)、特開昭59−58010号公報(特許文献5)、特開昭60−44507号公報(特許文献6)などに数多く提案されている。更に、特開昭62−11705号公報(特許文献7)、特開昭63−223008号公報(特許文献8)、特開昭63−259807号公報(特許文献9)、特開平2−84404号公報(特許文献10)、特開平4−202505号公報(特許文献11)、特開平4−370103号公報(特許文献12)などには、電子供与体として特定の有機ケイ素化合物を用いることを特徴とする重合触媒が開示されている。例えば、特開平2−84404号公報(特許文献13)ではシクロペンチルアルキルジメトキシシランやジシクロペンチルジメトキシシランを電子供与体として用いる方法が開示されているが、この様なケイ素化合物を用いた触媒系では水素レスポンスが必ずしも良くない。また、特開昭63−223008号公報(特許文献14)では水素レスポンスが良好な電子供与体として、ジn−プロピルジメトキシシランを用いた触媒系が開示されているが、特に立体規則性面において満足しうるものではなく、α−オレフィン重合体の剛性が高くならないという問題があった。  On the other hand, in recent years, in order to polymerize α-olefins, magnesium, titanium, a halogen element, and a solid catalyst component that requires an electron donor, an organometallic compound of a metal of Group 1 to 3 of the periodic table, and an electron donor are used. The following highly active supported catalyst systems are disclosed in JP-A-57-63310 (Patent Document 2), JP-A-57-63311 (Patent Document 3), and JP-A-58-83016 (Patent Document 4). , Japanese Patent Laid-Open No. 59-58010 (Patent Document 5) and Japanese Patent Laid-Open No. 60-44507 (Patent Document 6). Further, JP-A-62-111705 (Patent Document 7), JP-A-63-223008 (Patent Document 8), JP-A-63-259807 (Patent Document 9), and JP-A-2-84404. Japanese Unexamined Patent Application Publication No. H10(1998)-242, Japanese Patent Application Laid-Open No. 4-202505 (Patent Document 11), Japanese Patent Application Laid-Open No. 4-370103 (Patent Document 12), and the like use a specific organosilicon compound as an electron donor. Is disclosed. For example, Japanese Patent Application Laid-Open No. 2-84404 (Patent Document 13) discloses a method using cyclopentylalkyldimethoxysilane or dicyclopentyldimethoxysilane as an electron donor, but hydrogen is used in a catalyst system using such a silicon compound. The response is not always good. Further, Japanese Patent Application Laid-Open No. 63-223008 (Patent Document 14) discloses a catalyst system using di-n-propyldimethoxysilane as an electron donor having a good hydrogen response, but particularly in terms of stereoregularity. It is not satisfactory, and there is a problem that the rigidity of the α-olefin polymer does not increase.

特開平9−40714号公報(特許文献15)には脂肪族アミノ置換基有するアルコキシシラン化合物が提案されいる。また、特開平8−3215号公報(特許文献16)、特開平8−100019号公報(特許文献17)、特開平8−157519号公報(特許文献18)には、触媒成分として脂肪族アミノ置換基を1個有するアルコキシシランを用いたα−オレフィンの製造法が提案されているが、特に水素レスポンスの面において必ずしも満足できる性能ではなかった。また、特開平8−143620号公報(特許文献19)には、電子供与体として脂肪族アミノ置換基を2個有するジアルコキシシランを用いたα−オレフィンの製造法が提案されているが、重合活性面、立体規則性面において必ずしも満足できる性能ではなかった。  JP-A-9-40714 (Patent Document 15) proposes an alkoxysilane compound having an aliphatic amino substituent. Further, in JP-A-8-3215 (Patent Document 16), JP-A-8-100019 (Patent Document 17), and JP-A-8-157519 (Patent Document 18), aliphatic amino substitution as a catalyst component is described. A method for producing an α-olefin using an alkoxysilane having one group has been proposed, but the performance was not necessarily satisfactory particularly in terms of hydrogen response. Further, JP-A-8-143620 (Patent Document 19) proposes a method for producing an α-olefin using a dialkoxysilane having two aliphatic amino substituents as an electron donor. The performance was not always satisfactory in terms of active surface and stereoregularity.

特開平8−120021号公報(特許文献20)、特開平8−143621号公報(特許文献21)、特開平8−231663号公報(特許文献22)には環状アミノシラン化合物を用いる方法が開示されているが、これらの具体的に記載されている化合物を触媒成分として使用した場合、立体規則性は高いものの、水素レスポンス面においては必ずしも充分に満足できるものではなかった。  JP-A-8-120021 (Patent Document 20), JP-A-8-143621 (Patent Document 21), and JP-A-8-231663 (Patent Document 22) disclose a method using a cyclic aminosilane compound. However, when these specifically described compounds were used as catalyst components, the stereoregularity was high, but the hydrogen response was not always sufficiently satisfactory.

前記の電子供与体を用いた担持型触媒系は、性能的に重合活性、立体規則性、水素レスポンスのバランス面において、必ずしも充分に満足できるものではなく、より一層の改良が求められていた。  The above-mentioned supported catalyst system using an electron donor is not always sufficiently satisfactory in terms of the balance of polymerization activity, stereoregularity, and hydrogen response, and further improvement has been required.

近年、自動車材料、家電材料を中心とした射出成形分野では、製品の薄肉化、軽量化を目的として、高溶融流動性、且つ、高剛性、高耐熱性のα−オレフィン重合体のニーズが高まっている。そのようなα−オレフィン重合体を製造するには、重合時に水素レスポンスの高い触媒を用いることが重要である。具体的には、α−オレフィン重合体の分子量を調整するために連鎖移動剤として水素を重合系に共存させることが一般的に行われている。特に、α−オレフィン重合体の溶融流動性を高めるためには、水素により、分子量を低下させる必要がある。α−オレフィン重合体の溶融流動性の指標としては、一般的にメルトフローレイトが用いられており、α−オレフィン重合体の分子量が低くなるとメルトフローレイトが高くなるという関係がある。水素レスポンスが低いとは、α−オレフィン重合体のメルトフローレイトを高めるために重合系内に多量の水素を必要とすることであり、水素レスポンスが高いとは同じメルトフローレイトのα−オレフィン重合体を得る場合に水素レスポンスが低い場合ほどの水素量を必要としない。従って、水素レスポンスが低いと、過剰の量の水素を重合系に導入してα−オレフィン重合体のメルトフローレイトを高めなければならず、生産プロセスにおいて、安全上、耐圧限界のある重合装置では水素分圧が高くなる関係で、重合温度を下げざるを得ず、生産速度ならびに品質に悪影響を及ぼすという問題がある。  In recent years, in the injection molding field centering on automobile materials and home electric appliances materials, there is an increasing need for α-olefin polymers having high melt fluidity, high rigidity and high heat resistance for the purpose of making products thinner and lighter. ing. In order to produce such an α-olefin polymer, it is important to use a catalyst having a high hydrogen response during the polymerization. Specifically, in order to adjust the molecular weight of the α-olefin polymer, hydrogen is generally made to coexist as a chain transfer agent in the polymerization system. In particular, in order to enhance the melt fluidity of the α-olefin polymer, it is necessary to reduce the molecular weight with hydrogen. Melt flow rate is generally used as an index of the melt fluidity of the α-olefin polymer, and there is a relationship that the melt flow rate increases as the molecular weight of the α-olefin polymer decreases. A low hydrogen response means that a large amount of hydrogen is required in the polymerization system in order to increase the melt flow rate of the α-olefin polymer, and a high hydrogen response means that the α-olefin weight of the same melt flow rate is high. It does not require the same amount of hydrogen as when the hydrogen response is low to obtain coalescence. Therefore, if the hydrogen response is low, it is necessary to introduce an excessive amount of hydrogen into the polymerization system to enhance the melt flow rate of the α-olefin polymer, and in a production process, in a polymerization apparatus having a pressure limit in terms of safety. Due to the high hydrogen partial pressure, there is a problem that the polymerization temperature must be lowered and the production rate and quality are adversely affected.

また、上記に示した有機ケイ素化合物は、一般にグリニャール試薬などの有機金属化合物を用いて合成されるため、原料試薬が高価である。従って、この方法により合成された有機ケイ素化合物を用いてα−オレフィン重合体を製造することにより、必然的にα−オレフィン重合体自身が高価になり、製造コスト面においても問題がある。  In addition, since the organosilicon compound shown above is generally synthesized using an organometallic compound such as a Grignard reagent, the raw material reagent is expensive. Therefore, when the α-olefin polymer is produced by using the organosilicon compound synthesized by this method, the α-olefin polymer itself is inevitably expensive and there is a problem in terms of production cost.

特開平5−310751号公報JP-A-5-310751 特開昭57−63310号公報JP-A-57-63310 特開昭57−63311号公報JP-A-57-63311 特開昭58−83016号公報JP-A-58-83016 特開昭59−58010号公報Japanese Patent Laid-Open No. 59-58010 特開昭60−44507号公報JP-A-60-44507 特開昭62−11705号公報JP 62-11705 A 特開昭63−223008号公報JP-A-63-223008 特開昭63−259807号公報JP-A-63-259807 特開平2−84404号公報JP-A-2-84404 特開平4−202505号公報JP-A-4-202505 特開平4−370103号公報JP-A-4-370103 特開平2−84404号公報JP-A-2-84404 特開昭63−223008号公報JP-A-63-223008 特開平9−40714号公報Japanese Unexamined Patent Publication No. 9-40714 特開平8−3215号公報JP-A-8-3215 特開平8−100019号公報JP, 8-100019, A 特開平8−157519号公報JP-A-8-157519 特開平8−143620号公報JP-A-8-143620 特開平8−120021号公報JP-A-8-120021 特開平8−143621号公報JP-A-8-143621 特開平8−231663号公報JP, 8-231663, A J.Am.Chem.Soc.,68巻,70ページ,1946年J. Am. Chem. Soc. , 68, 70, 1946 Khimiya i Industriya,6号,248ページ,1983年Khimiya i Industry, No. 6, 248 pages, 1983. (Zhurnal Obshchei Khimii,65巻,1142ページ,1995年)(Zhurnal Obshchei Khimii, 65, 1142 pages, 1995) Trudy Instituta−Moskovskii Khimiko−Tekhnokogcheskii Institut imeni D.I.Mendeleeva(1972),No.70 140−2Truly Institute-Moskovsky Khimiko-Tekhnokogcheskii Institute Im. I. Mendeleeva (1972), No. 70 140-2

本発明は、上記した従来のアルコキシハロシランの製造方法の問題点を解決し、トリアルコキシハロシランの新規な製造方法を提供することを第1の目的とする。  It is a first object of the present invention to solve the above problems of the conventional method for producing an alkoxyhalosilane and to provide a novel method for producing a trialkoxyhalosilane.

本発明は、上記した従来のアルコキシ(ジアルキルアミノ)シランの製造方法の問題点を解決し、トリアルコキシ(ジアルキルアミノ)シランの新規な製造方法を提供することを第2の目的とする。  A second object of the present invention is to solve the problems of the conventional method for producing an alkoxy(dialkylamino)silane described above and to provide a novel method for producing a trialkoxy(dialkylamino)silane.

また、本発明は、上記の従来のα−オレフィン重合の問題点を解決し、水素レスポンスが高く、重合活性が高く、立体規則性が高く、溶融流動性が良好で、製造コストの低いα−オレフィン重合体あるいは共重合体を提供することを第3の目的とする。  Further, the present invention solves the above-mentioned problems of conventional α-olefin polymerization, and has a high hydrogen response, a high polymerization activity, a high stereoregularity, a good melt fluidity, and a low production cost α-. A third object is to provide an olefin polymer or copolymer.

上記第1の目的を達成するため、本発明に係る第1のトリアルコキシハロシランの製造方法は、化19で示されるで示されるテトラハロシランと化20で示されるテトラアルコキシシランとを該テトラアルコキシシランと同じアルコキシ基からなるアルコール混合下で反応させて化21で示されるトリアルコキシハロシランを得るトリアルコキシハロシランの製造方法であって、前記テトラハロシラン及び前記テトラアルコキシシランのSi総量に対して前記アルコールが5〜50mol%であることを特徴とする。  In order to achieve the above-mentioned first object, the first method for producing a trialkoxyhalosilane according to the present invention is characterized in that the tetrahalosilane represented by the chemical formula 19 and the tetraalkoxysilane represented by the chemical formula 20 are used. A method for producing a trialkoxyhalosilane, which is obtained by reacting an alkoxysilane with an alcohol having the same alkoxy group to obtain a trialkoxyhalosilane represented by Chemical formula 21, wherein the total amount of Si in the tetrahalosilane and the tetraalkoxysilane is On the other hand, the alcohol content is 5 to 50 mol %.

Figure 2005026180
(但し、Xはハロゲンである。)
Figure 2005026180
(However, X is halogen.)

Figure 2005026180
(但し、Rは炭素数1〜6の炭化水素基である。)
Figure 2005026180
(However, R 1 is a hydrocarbon group having 1 to 6 carbon atoms.)

Figure 2005026180
(但し、Xはハロゲン、Rは炭素数1〜6の炭化水素基である。)
Figure 2005026180
(However, X is halogen and R 1 is a hydrocarbon group having 1 to 6 carbon atoms.)

また、上記第1の目的を達成するため、本発明に係る第2のトリアルコキシハロシランの製造方法は、化22で示されるテトラハロシランと化23で示されるアルコールとを40℃以下の温度に制御して反応させて化24で示されるトリアルコキシハロシランを得ることを特徴とする。  Further, in order to achieve the above first object, the second method for producing a trialkoxyhalosilane according to the present invention comprises: The reaction is performed under controlled conditions to obtain a trialkoxyhalosilane represented by Chemical formula 24.

Figure 2005026180
(但し、Xはハロゲンである。)
Figure 2005026180
(However, X is halogen.)

Figure 2005026180
(但し、Rは炭素数1〜6の炭化水素基である。)
Figure 2005026180
(However, R 1 is a hydrocarbon group having 1 to 6 carbon atoms.)

Figure 2005026180
(但し、Xはハロゲンであり、Rは炭素数1〜6の炭化水素基である。)
Figure 2005026180
(However, X is halogen, and R 1 is a hydrocarbon group having 1 to 6 carbon atoms.)

さらに、上記第2の目的を達成するため、本発明に係るトリアルコキシ(ジアルキルアミノ)シランの製造方法は、前記第1又は第2のトリアルコキシハロシランの製造方法を第一工程とし、その後、第一工程により得られたトリアルコキシハロシランに化25で示されるジアルキルアミンを反応させて化26で示されるトリアルコキシ(ジアルキルアミノ)シランを得る第二工程と、を備えたことを特徴とする。  Furthermore, in order to achieve the above-mentioned second object, the method for producing a trialkoxy(dialkylamino)silane according to the present invention comprises the first or second trialkoxyhalosilane producing method as a first step, and thereafter, A second step of reacting the trialkoxyhalosilane obtained by the first step with a dialkylamine represented by Chemical formula 25 to obtain a trialkoxy(dialkylamino)silane represented by Chemical formula 26. ..

Figure 2005026180
(但し、Rは炭素数1〜12の炭化水素基、Rは炭素数1〜12の炭化水素基である。)
Figure 2005026180
(However, R 2 is a hydrocarbon group having 1 to 12 carbon atoms, and R 3 is a hydrocarbon group having 1 to 12 carbon atoms.)

Figure 2005026180
(但し、Rは炭素数1〜6の炭化水素基、Rは炭素数1〜12の炭化水素基、Rは炭素数1〜12の炭化水素基である。)
Figure 2005026180
(However, R 1 is a hydrocarbon group having 1 to 6 carbon atoms, R 2 is a hydrocarbon group having 1 to 12 carbon atoms, and R 3 is a hydrocarbon group having 1 to 12 carbon atoms.)

また、上記第3の目的を達成するため、本発明に係る第1のα−オレフィンの重合又は共重合用触媒の触媒成分は、化27及び化28で示されるシラン化合物の混合物からなる。  To achieve the third object, the catalyst component of the first catalyst for polymerization or copolymerization of α-olefin according to the present invention is a mixture of the silane compounds shown in Chemical formulas 27 and 28.

Figure 2005026180
(但し、Rは炭素数1〜6の炭化水素基、Rは炭素数1〜12の炭化水素基、水素一つと炭素数1〜12の炭化水素基一つがN原子上に結合したアミノ基又は炭素数1〜12の炭化水素基二つ(二つの炭化水素基は同一又は異なっても良い。)がN原子上に結合したアミノ基である。)
Figure 2005026180
(However, R 1 is a hydrocarbon group having 1 to 6 carbon atoms, R 2 is a hydrocarbon group having 1 to 12 carbon atoms, an amino group in which one hydrogen atom and one hydrocarbon group having 1 to 12 carbon atoms are bonded to the N atom. A group or two hydrocarbon groups having 1 to 12 carbon atoms (two hydrocarbon groups may be the same or different) are amino groups bonded on the N atom.

Figure 2005026180
(但し、Rは炭素数1〜6のアルコキシ基、炭素数1〜12の炭化水素基、水素一つと炭素数1〜12の炭化水素基一つがN原子上に結合したアミノ基、炭素数1〜12の炭化水素基二つ(二つの炭化水素基は同一又は異なっても良い。)がN原子上に結合したアミノ基であり、Rは同一であって異なっても良い。但し、化27と化28は同一化合物でない。)
Figure 2005026180
(However, R 3 is an alkoxy group having 1 to 6 carbon atoms, a hydrocarbon group having 1 to 12 carbon atoms, an amino group in which one hydrogen atom and one hydrocarbon group having 1 to 12 carbon atoms are bonded to an N atom, and the number of carbon atoms. Two hydrocarbon groups 1 to 12 (two hydrocarbon groups may be the same or different) are amino groups bonded on the N atom, and R 3 may be the same or different. Chemical formula 27 and chemical formula 28 are not the same compound.)

また、上記第3の目的を達成するため、本発明に係る第2のα−オレフィンの重合又は共重合用触媒の触媒成分は、化29及び化30で示されるシラン化合物の混合物からなる。  In order to achieve the third object, the catalyst component of the second catalyst for polymerizing or copolymerizing α-olefin according to the present invention comprises a mixture of silane compounds represented by Chemical formulas 29 and 30.

Figure 2005026180
(但し、Rは炭素数1〜6の炭化水素基を示し、Rは炭素数1〜12の炭化水素基又は水素を示し、Rは炭素数1〜12の炭化水素基を示す。)
Figure 2005026180
(However, R 1 represents a hydrocarbon group having 1 to 6 carbon atoms, R 4 represents a hydrocarbon group having 1 to 12 carbon atoms or hydrogen, and R 5 represents a hydrocarbon group having 1 to 12 carbon atoms. )

Figure 2005026180
(但し、Rは炭素数1〜12の炭化水素基又は炭素数1〜6のアルコキシ基であり、Rは同一であっても異なっても良く、Rは炭素数1〜12の炭化水素基を示し、Rは炭素数1〜12の炭化水素基である。nは1〜2又は4である。)
Figure 2005026180
(However, R 6 is a hydrocarbon group having 1 to 12 carbon atoms or an alkoxy group having 1 to 6 carbon atoms, R 6 may be the same or different, and R 7 is a hydrocarbon group having 1 to 12 carbon atoms. Represents a hydrogen group, R 8 is a hydrocarbon group having 1 to 12 carbon atoms, and n is 1 to 2 or 4.)

また、上記第3の目的を達成するため、本発明に係る第3のα−オレフィンの重合又は共重合用触媒の触媒成分は、化35で示されるトリアルコキシハロシランと化36で示されるジアルキルアミンとの反応混合物からなる。  In order to achieve the third object, the catalyst component of the third catalyst for polymerization or copolymerization of α-olefin according to the present invention is a trialkoxyhalosilane represented by Chemical formula 35 and a dialkyl represented by Chemical formula 36. It consists of a reaction mixture with an amine.

Figure 2005026180
(但し、Xはハロゲンであり、Rは炭素数1〜4の炭化水素基である。)
Figure 2005026180
(However, X is halogen, and R 1 is a hydrocarbon group having 1 to 4 carbon atoms.)

Figure 2005026180
(但し、Rは炭素数1〜12の炭化水素基、Rは炭素数1〜12の炭化水素基である。)
Figure 2005026180
(However, R 2 is a hydrocarbon group having 1 to 12 carbon atoms, and R 3 is a hydrocarbon group having 1 to 12 carbon atoms.)

本発明に係るトリアルコキシハロシランの製造方法によれば、トリアルコキシハロシランを高収率で提供することができる。  According to the method for producing trialkoxyhalosilane according to the present invention, trialkoxyhalosilane can be provided in high yield.

本発明に係るトリアルコキシ(ジアルキルアミノ)シランの製造方法によれば、トリアルコキシ(ジアルキルアミノ)シランを高収率で提供することができる。  According to the method for producing trialkoxy(dialkylamino)silane according to the present invention, trialkoxy(dialkylamino)silane can be provided in a high yield.

また、本発明における触媒成分は、水素レスポンスが高く、重合活性が高く、立体規則性が高く、且つ、溶融流動性の良いα−オレフィン重合体を安価に製造することができる。特に、従来の触媒系に比べて、水素レスポンスが大幅に改良されたことにより、生産性を犠牲にすることなく、高剛性、且つ、溶融流動性の良いα−オレフィン重合体を得ることができる。また、本発明の触媒系を用いることにより、ブロック率が10〜50wt%のエチレン−プロピレンブロック共重合体や、リアクターメイドTPOの製造も可能である。本発明の触媒成分である有機ケイ素化合物は、従来の高価な有機金属化合物を用いず、また、その触媒成分の合成時における蒸留精製工程が簡略化できるため、製造コストの低い有機ケイ素化合物を合成できる。即ち、本発明の触媒成分を用いれば、α−オレフィン重合体を安価に製造することができる。  Further, the catalyst component in the present invention can inexpensively produce an α-olefin polymer having high hydrogen response, high polymerization activity, high stereoregularity, and good melt fluidity. In particular, the hydrogen response is greatly improved as compared with the conventional catalyst system, so that an α-olefin polymer having high rigidity and good melt fluidity can be obtained without sacrificing productivity. .. Further, by using the catalyst system of the present invention, it is possible to produce an ethylene-propylene block copolymer having a block rate of 10 to 50 wt% and a reactor-made TPO. The organosilicon compound which is the catalyst component of the present invention does not use a conventional expensive organometallic compound, and since the distillation purification step during the synthesis of the catalyst component can be simplified, an organosilicon compound having a low production cost can be synthesized. it can. That is, by using the catalyst component of the present invention, an α-olefin polymer can be produced at low cost.

[図1]本発明の触媒成分の調製過程及び重合方法を示すフロ−チャ−トである。
[図2]ジエチルアミンのマススペクトルである。
[図3]テトラエトキシシランのマススペクトルである。
[図4]ジエチルアミノジエトキシメトキシシランのマススペクトルである。
[図5]ジエチルアミノトリエトキシシランのマススペクトルである。
[図6]ビス(ジエチルアミノ)ジエトキシシランのマススペクトルである。
[図7]ヘキサエトキシジシロキサンのマススペクトルである。
FIG. 1 is a flow chart showing the preparation process and polymerization method of the catalyst component of the present invention.
FIG. 2 is a mass spectrum of diethylamine.
FIG. 3 is a mass spectrum of tetraethoxysilane.
FIG. 4 is a mass spectrum of diethylaminodiethoxymethoxysilane.
FIG. 5 is a mass spectrum of diethylaminotriethoxysilane.
FIG. 6 is a mass spectrum of bis(diethylamino)diethoxysilane.
FIG. 7 is a mass spectrum of hexaethoxydisiloxane.

第1のトリアルコキシハロシランの製造方法
本発明の第1のトリアルコキシハロシランの製造方法で用いられる化19で示されるテトラハロシランとしては、テトラフルオロシラン、テトラククロロシラン、テトラブロモシランなどが挙げられる。中でも、テトラクロロシランが好ましい。
First method for producing trialkoxyhalosilane As the tetrahalosilane represented by Chemical formula 19 used in the first method for producing trialkoxyhalosilane of the present invention, tetrafluorosilane, tetrachlorochlorosilane, tetrabromosilane, etc. may be mentioned. Can be mentioned. Of these, tetrachlorosilane is preferable.

化20で示されるテトラアルコキシシランにおいて、R1は、炭素数1〜6、好ましくは2〜6、より好ましくは2〜4の炭化水素基である。化20で示されるテトラアルコキシシランとしては、テトラメトキシシラン、テトラエトキシシラン、テトラ−n−プロポキシシラン、テトラ−iso−プロポキシシラン、テトラ−n−ブトキシシラン、テトラ−tert−ブトキシシランなどが挙げられる。中でも、テトラエトキシシランが好ましい。  In the tetraalkoxysilane represented by Chemical formula 20, R1 is a hydrocarbon group having 1 to 6 carbon atoms, preferably 2 to 6 carbon atoms, and more preferably 2 to 4 carbon atoms. Examples of the tetraalkoxysilane represented by Chemical Formula 20 include tetramethoxysilane, tetraethoxysilane, tetra-n-propoxysilane, tetra-iso-propoxysilane, tetra-n-butoxysilane, and tetra-tert-butoxysilane. .. Of these, tetraethoxysilane is preferable.

第1のトリアルコキシハロシランの製造方法は、溶媒を用いなくても進行するが、原料および反応生成物と反応しないような溶媒を用いて行うこともできる。溶媒を用いる場合、溶媒としては、n−ヘキサン、n−ヘプタン、トルエン、ジエチルエーテルなどが挙げられる。  The method for producing the first trialkoxyhalosilane proceeds without using a solvent, but can be performed using a solvent that does not react with the raw material and the reaction product. When a solvent is used, examples of the solvent include n-hexane, n-heptane, toluene, diethyl ether and the like.

第1のトリアルコキシハロシランの製造方法の反応系に用いるアルコールは、化19で示されるテトラハロシランと化20で示されるテトラアルコキシシランの反応系中でテトラハロシランと反応して数1に従いハロゲン化水素を発生する。  The alcohol used in the reaction system of the first method for producing a trialkoxyhalosilane is the tetrahalosilane represented by Chemical formula 19 and the tetraalkoxysilane represented by Chemical formula 20, which reacts with tetrahalosilane according to Formula 1. Generates hydrogen halide.

Figure 2005026180
Figure 2005026180

ここで、化19で示されるテトラハロシラン、化20で示されるテトラアルコキシシラン及びアルコールからなる反応系初期混合物は、数1においてn=4とした反応式に基き、用いたアルコールの0.25倍モル量分が減少したテトラハロシラン、0.25倍モル量分が増加したテトラアルコキシシラン及びアルコールと等モル量分のハロゲン化水素の混合物として形式的に表現できる。この反応混合物は、X(4−m)Si(OR)(m=0−4)から成る平衡混合物に変換される。発生したハロゲン化水素はこれらX(4−m)Si(OR)(m=0−4)の相互変換に対し優れた触媒作用を示し、この作用を利用すると反応時間短縮の効果が得られるので、反応系中にとどめておくことが極めて望ましい。すなわち、本発明に係る第1のトリアルコキシハロシランの製造方法は、酸触媒の存在下で行うことが好ましく、この酸触媒が、反応により副生するハロゲン化水素であることが好ましい。Here, the initial mixture of the reaction system consisting of the tetrahalosilane represented by Chemical formula 19, the tetraalkoxysilane represented by Chemical formula 20, and the alcohol is based on the reaction formula in which n=4 in Formula 1, and 0.25 of the alcohol used. It can be formally expressed as a mixture of tetrahalosilane reduced in double molar amount, tetraalkoxysilane increased in 0.25-fold molar amount and alcohol and equimolar amount of hydrogen halide. The reaction mixture is converted to an equilibrium mixture consisting of X (4-m) Si(OR) m (m=0-4). The generated hydrogen halide exhibits an excellent catalytic action for the interconversion of these X (4-m) Si(OR) m (m=0-4), and by utilizing this action, the effect of shortening the reaction time can be obtained. Therefore, it is extremely desirable to keep it in the reaction system. That is, the first method for producing trialkoxyhalosilane according to the present invention is preferably carried out in the presence of an acid catalyst, and the acid catalyst is preferably hydrogen halide produced as a by-product of the reaction.

化19で示されるテトラハロシランと化20で示されるテトラアルコキシシランのモル比は、前項で示した形式的な化学変換後において、1:2.6〜1:3.8が好ましく、1:3.0〜1:3.4がより好ましく、特に1:3よりも多いこと、すなわちテトラアルコキシシランの使用モル量がテトラハロシランの使用モル量の3倍よりも多いことが好ましい。  The molar ratio of the tetrahalosilane represented by Chemical formula 19 to the tetraalkoxysilane represented by Chemical formula 20 is preferably 1:2.6 to 1:3.8 after the formal chemical conversion shown in the preceding paragraph, and 1: It is more preferably from 3.0 to 1:3.4, particularly preferably more than 1:3, that is, the molar amount of tetraalkoxysilane used is more than three times the molar amount of tetrahalosilane used.

反応に使用するアルコールの量は、化19で示されるで示されるテトラハロシラン及び化20で示されるテトラアルコキシシランのSi総量に対して、好ましくは5〜50mol%であり、さらに好ましくは10〜30mol%である。これより使用量が少ないと反応が遅く、これより多いと収率が低下する。  The amount of alcohol used in the reaction is preferably 5 to 50 mol %, and more preferably 10 to 50 mol% based on the total amount of Si in the tetrahalosilane represented by Chemical formula 19 and the tetraalkoxysilane represented by Chemical formula 20. It is 30 mol%. If the amount used is less than this, the reaction is slow, and if it is more than this, the yield decreases.

第1のトリアルコキシハロシランの製造方法において、反応温度は、−20〜80℃が好ましく、0〜50℃がより好ましい。これより低い温度では反応が遅く、これより高い温度では生成したハロゲン化水素の溶解度が下がるため好ましくない。反応時間は、0.05〜6.0hrが好ましい。
第2のトリアルコキシハロシランの製造方法
In the first method for producing trialkoxyhalosilane, the reaction temperature is preferably −20 to 80° C., more preferably 0 to 50° C. If the temperature is lower than this, the reaction is slow, and if the temperature is higher than this, the solubility of the produced hydrogen halide decreases, which is not preferable. The reaction time is preferably 0.05 to 6.0 hr.
Second method for producing trialkoxyhalosilane

本発明の第2のトリアルコキシハロシランの製造方法で用いられる化22で示されるテトラハロシランとしては、テトラフルオロシラン、テトラククロロシラン、テトラブロモシランなどが挙げられる。中でも、テトラクロロシランが好ましい。  Examples of the tetrahalosilane represented by Chemical formula 22 used in the second method for producing trialkoxyhalosilane of the present invention include tetrafluorosilane, tetrachlorosilane, and tetrabromosilane. Of these, tetrachlorosilane is preferable.

化23で示されるアルコールにおいて、R1は、炭素数1〜6、好ましくは2〜6、より好ましくは2〜4の炭化水素基である。化23で示されるアルコールとしては、メタノール、エタノール、1−プロパノール、2−プロパノール、1−ブタノールなどが挙げられる。中でも、エタノールが好ましい。  In the alcohol represented by Chemical formula 23, R1 is a hydrocarbon group having 1 to 6 carbon atoms, preferably 2 to 6 carbon atoms, and more preferably 2 to 4 carbon atoms. Examples of the alcohol represented by Chemical formula 23 include methanol, ethanol, 1-propanol, 2-propanol, 1-butanol and the like. Of these, ethanol is preferable.

化22で示されるテトラハロシランと化23で示されるアルコールの反応は、溶媒を用いなくても進行するが、原料および反応生成物と反応しないような溶媒を用いて行うこともできる。溶媒を用いる場合、溶媒としては、n−ヘキサン、n−ヘプタン、トルエン、ジエチルエーテルなどが挙げられる。  The reaction between the tetrahalosilane represented by Chemical formula 22 and the alcohol represented by Chemical formula 23 proceeds without using a solvent, but it can also be carried out using a solvent that does not react with the raw materials and reaction products. When a solvent is used, examples of the solvent include n-hexane, n-heptane, toluene, diethyl ether and the like.

ここで、化22で示されるテトラハロシランと化23で示されるアルコールとの反応は発熱反応であり、上記数1に従ってハロゲン化水素が発生する。この反応により原料の化22で示されるテトラハロシランは、X(4−m)Si(OR)(m=0−4)から成る平衡混合物に変換される。発生したハロゲン化水素はこれらX(4−m)Si(OR)(m=0−4)の相互変換に対し優れた触媒作用を示し、この作用を利用すると反応時間短縮の効果が得られるので、反応系中にとどめておくことが極めて望ましい。すなわち、本発明に係る第2のトリアルコキシハロシランの製造方法は、酸触媒の存在下で行うことが好ましく、この酸触媒が、反応により副生するハロゲン化水素であることが好ましい。Here, the reaction between the tetrahalosilane represented by Chemical formula 22 and the alcohol represented by Chemical formula 23 is an exothermic reaction, and hydrogen halide is generated according to the above mathematical formula 1. By this reaction, the tetrahalosilane represented by the chemical formula 22, which is a raw material, is converted into an equilibrium mixture composed of X (4-m) Si(OR) m (m=0-4). The generated hydrogen halide exhibits an excellent catalytic action for the interconversion of these X (4-m) Si(OR) m (m=0-4), and by utilizing this action, the effect of shortening the reaction time can be obtained. Therefore, it is extremely desirable to keep it in the reaction system. That is, the second method for producing trialkoxyhalosilane according to the present invention is preferably carried out in the presence of an acid catalyst, and this acid catalyst is preferably hydrogen halide produced as a by-product of the reaction.

一方,ハロゲン化水素の反応物への溶解は吸熱反応である。混合方法や反応容器を種々検討することにより、特殊な冷却装置を用いず、反応に伴なう吸発熱を制御して、これまでにない、低温かつ短時間で反応を進行させる条件を見出すに至った。すなわち、本願発明のハロゲン化水素は、反応加速作用および自己冷却作用を有する。  On the other hand, the dissolution of hydrogen halide in the reaction product is an endothermic reaction. By investigating various mixing methods and reaction vessels, we can control the endothermic and exothermic reactions associated with the reaction without using a special cooling device, and find conditions that allow the reaction to proceed at a low temperature and in a short time never seen before. I arrived. That is, the hydrogen halide of the present invention has a reaction acceleration action and a self-cooling action.

反応温度は、−50〜40℃が好ましく、−20〜30℃が特殊な冷却設備を必要しない観点からより最も好ましい。すなわち、第2のトリアルコキシハロシランの製造方法においては、特殊な冷却設備を用いずに反応温度の制御を行うことが好ましい。−20℃までの冷却はハロゲン化水素の溶解に伴なう吸熱を効果的に利用すると自己冷却により達成され、即ち外部からの冷却を必要としない。これはコスト的に非常に好ましい。また溶解による吸熱を効果的に利用すると言う事はおのずとハロゲン化水素の溶解量も増加し、触媒作用による反応時間短縮効果が高く発揮される。一方40℃以上では反応溶液からの脱ハロゲン化水素が顕著になり、反応時間短縮効果が無くなる。脱ハロゲン化水素を抑制するには反応容器を耐圧構造とし密閉可能にすれば解決できるが、相応の余分のコストがかかる上に安全対策上のコストも生じるため好ましくない。  The reaction temperature is preferably −50 to 40° C., and most preferably −20 to 30° C. from the viewpoint of not requiring special cooling equipment. That is, in the second method for producing trialkoxyhalosilane, it is preferable to control the reaction temperature without using special cooling equipment. Cooling to −20° C. is achieved by self-cooling when the endotherm associated with the dissolution of hydrogen halide is effectively used, that is, no external cooling is required. This is very favorable in terms of cost. Further, the effective utilization of the endotherm due to the dissolution naturally increases the dissolved amount of hydrogen halide, and the effect of shortening the reaction time by the catalytic action is highly exerted. On the other hand, at 40° C. or higher, dehydrohalogenation from the reaction solution becomes remarkable, and the effect of shortening the reaction time is lost. In order to suppress dehydrohalogenation, it is possible to solve the problem by making the reaction vessel a pressure resistant structure so that it can be hermetically sealed, but it is not preferable because it causes a corresponding extra cost and a cost for safety measures.

反応時間は通常0.25〜72hrでテトラハロシランおよびアルコールおよび溶媒の種類と量、および反応温度などによって制御でき、0.25〜3hrとするのが好ましい。また、場合によれば、−20〜5℃で0.25〜24hr反応した後、10〜30℃で0.25〜72hr反応することが好ましい。  The reaction time is usually 0.25 to 72 hr, which can be controlled by the types and amounts of the tetrahalosilane, the alcohol and the solvent, the reaction temperature and the like, and is preferably 0.25 to 3 hr. In some cases, it is preferable that the reaction is performed at -20 to 5°C for 0.25 to 24 hours and then at 10 to 30°C for 0.25 to 72 hours.

化22で示されるテトラハロシランと化23で示されるアルコールのモル比合は、1:2.6〜1:3.3が好ましく、1:2.8〜1:3.1がより好ましい。  The molar ratio of the tetrahalosilane represented by Chemical formula 22 to the alcohol represented by Chemical formula 23 is preferably 1:2.6 to 1:3.3, and more preferably 1:2.8 to 1:3.1.

トリアルコキシ(ジアルキルアミノ)シランの製造方法
本発明に係るトリアルコキシ(ジアルキルアミノ)シランの製造方法において、前記第一工程で得られた反応混合物を単離精製すること無く、化25で示されるジアルキルアミンと反応させることが好ましい。
Method for producing trialkoxy(dialkylamino)silane In the method for producing trialkoxy(dialkylamino)silane according to the present invention, the dialkyl represented by Chemical formula 25 is obtained without isolating and purifying the reaction mixture obtained in the first step. Preference is given to reacting with amines.

本発明に係るトリアルコキシ(ジアルキルアミノ)シランの製造方法において、化25で示されるジアルキルアミンとしては、ジメチルアミン、ジエチルアミン、ジブチルアミン、メチルエチルアミンなどが挙げられる。中でも、ジエチルアミンが好ましい。  In the method for producing trialkoxy(dialkylamino)silane according to the present invention, examples of the dialkylamine represented by Chemical formula 25 include dimethylamine, diethylamine, dibutylamine, methylethylamine and the like. Of these, diethylamine is preferable.

化25で示されるジアルキルアミンにおいて、R及びRは炭素数1〜12、好ましくは1〜4の炭化水素基である。本発明に係るトリアルコキシ(ジアルキルアミノ)シランの製造方法の第二工程においては、化25で示されるジアルキルアミンが安価であれば、反応により生成するハロゲン化水素の捕捉も兼ねて大過剰の化25で示されるジアルキルアミンを用いる方法が簡便で好ましい。過剰の化25で示されるジアルキルアミンを用いない場合には、反応により生成するハロゲン化水素の捕捉を目的としてトリエチルアミン、N−エチル−ジイソプロピルアミンなどの3級アミンやピリジンを混合することができる。反応温度は、−20〜200℃が好ましく、0〜120℃がより好ましく、さらには10〜80℃が、加温または冷却設備を必要としない観点からも最も好ましい。反応温度において沸点以上の場合には窒素、アルゴンなどの不活性ガスにより加圧して行っても良い。反応時間は0.25〜120hrとすることができ、0.25〜3hrが好ましい。In the dialkylamine represented by Chemical formula 25, R 2 and R 3 are hydrocarbon groups having 1 to 12 carbon atoms, preferably 1 to 4 carbon atoms. In the second step of the method for producing a trialkoxy(dialkylamino)silane according to the present invention, if the dialkylamine represented by Chemical formula 25 is inexpensive, a large excess of it can be obtained also by capturing hydrogen halide produced by the reaction. The method using a dialkylamine represented by 25 is simple and preferable. When the excess dialkylamine represented by Chemical formula 25 is not used, a tertiary amine such as triethylamine or N-ethyl-diisopropylamine, or pyridine can be mixed for the purpose of capturing the hydrogen halide generated by the reaction. The reaction temperature is preferably −20 to 200° C., more preferably 0 to 120° C., and further preferably 10 to 80° C. from the viewpoint of not requiring heating or cooling equipment. When the reaction temperature is higher than the boiling point, the reaction may be performed by pressurizing with an inert gas such as nitrogen or argon. The reaction time can be 0.25 to 120 hr, preferably 0.25 to 3 hr.

第1及び第2のα−オレフィンの重合又は共重合用触媒の触媒成分
本発明に係る第1のα−オレフィンの重合又は共重合用触媒の触媒成分において、化27のRは炭素数1〜6、好ましくは2〜6の炭化水素基であり、炭素数1〜6の不飽和あるいは飽和脂肪族炭化水素基などが挙げられる。具体例としてはメチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、t−ブチル基、s−ブチル基などが挙げられる。特に好ましくはエチル基である。
Catalyst component of catalyst for polymerization or copolymerization of first and second α-olefins In the catalyst component of catalyst for polymerization or copolymerization of the first α-olefin according to the present invention, R 1 of Chemical formula 27 has 1 carbon atoms. To 6, preferably 2 to 6 hydrocarbon groups, and examples thereof include unsaturated or saturated aliphatic hydrocarbon groups having 1 to 6 carbon atoms. Specific examples thereof include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a t-butyl group and an s-butyl group. Particularly preferred is an ethyl group.

化27においてRは、炭素数1〜12の炭化水素基、水素一つと炭素数1〜12の炭化水素基一つがN原子上に結合したアミノ基又は炭素数1〜12の炭化水素基二つ(二つの炭化水素基は同一又は異なっても良い。)がN原子上に結合したアミノ基である。具体例としては、メチル基、エチル基、プロピル基、メチルアミノ基、ジメチルアミノ基、メチルエチルアミノ基、ジエチルアミノ基、エチルn−プロピルアミノ基、エチルイソプロピルアミノ基、メチルn−プロピルアミノ基、メチルイソプロピルアミノ基、1,2,3,4−テトラヒドロキノリル基、1,2,3,4−テトラヒドロイソキノリル基、パーヒドロキノリル基、パーヒドロイソキノリル基などが挙げられる。特に好ましくはジエチルアミノ基である。In Chemical Formula 27, R 2 is a hydrocarbon group having 1 to 12 carbon atoms, an amino group in which one hydrogen atom and one hydrocarbon group having 1 to 12 carbon atoms are bonded to the N atom, or a hydrocarbon group having 1 to 12 carbon atoms. One (two hydrocarbon groups may be the same or different) is an amino group bonded on the N atom. Specific examples include a methyl group, an ethyl group, a propyl group, a methylamino group, a dimethylamino group, a methylethylamino group, a diethylamino group, an ethyl n-propylamino group, an ethylisopropylamino group, a methyl n-propylamino group, and a methyl group. Examples thereof include an isopropylamino group, a 1,2,3,4-tetrahydroquinolyl group, a 1,2,3,4-tetrahydroisoquinolyl group, a perhydroquinolyl group and a perhydroisoquinolyl group. Particularly preferred is a diethylamino group.

本発明に係る第1及び第2のα−オレフィンの重合又は共重合用触媒の触媒成分において、化27又は33で表わされる有機ケイ素化合物成分としては、ジメチルアミノトリエトキシシラン、ジエチルアミノトリエトキシシラン、ジエチルアミノトリメトキシシラン、ジエチルアミノトリn−プロポキシシラン、ジn−プロピルアミノトリエトキシシラン、メチルn−プロピルアミノトリエトキシシラン、t−ブチルアミノトリエトキシシラン、エチルn−プロピルアミノトリエトキシシラン、エチルインプロピルアミノトリエトキシシラン、及びメチルエチルアミノトリエトキシシランなどが挙げられる。好ましくは、ジエチルアミノトリエトキシシラン、ジエチルアミノトリメトキシシランが挙げられる。これらの有機ケイ素化合物は単独で用いても良いし、2種類以上併用しても良い。  In the catalyst component of the catalyst for polymerizing or copolymerizing the first and second α-olefins according to the present invention, the organosilicon compound component represented by Chemical formula 27 or 33 is dimethylaminotriethoxysilane, diethylaminotriethoxysilane, Diethylaminotrimethoxysilane, diethylaminotrin-propoxysilane, di-n-propylaminotriethoxysilane, methyl n-propylaminotriethoxysilane, t-butylaminotriethoxysilane, ethyl n-propylaminotriethoxysilane, ethylinpropyl Examples thereof include aminotriethoxysilane and methylethylaminotriethoxysilane. Preferred are diethylaminotriethoxysilane and diethylaminotrimethoxysilane. These organosilicon compounds may be used alone or in combination of two or more.

また、化28又は34で表わされる有機ケイ素化合物成分としては、ビス(ジメチルアミノ)ジエトキシシラン、ビス(ジエチルアミノ)ジエトキシシラン、ビス(ジエチルアミノ)ジメトキシシラン、ビス(ジエチルアミノ)ジn−プロポキシシラン、ビス(ジn−プロピルアミノ)ジエトキシシラン、ビス(メチルn−プロピルアミノ)ジエトキシシラン、ビス(t−ブチルアミノ)ジエトキシシラン、ビス(エチルn−プロピルアミノ)ジエトキシシラン、ビス(エチルイソプロピルアミノ)ジエトキシシラン、ビス(メチルエチルアミノ)ジエトキシシランなどのビスアミノシラン、テトラメトキシシラン、テトラエトキシシラン、テトラn−プロポキシシラン、テトライソプロポキシシラン、テトラn−ブトキシシラン、テトライソブトキシシラン、テトラs−ブトキシシラン、テトラt−ブトキシシランなどのテトラアルコキシシラン、エチルトリメトキシシラン、メチルジエトキシメトキシシラン、エチルジメトキシエトキシシラン、メチルトリエトキシシラン、ジメトキシジエトキシシラン、エチルジエトキシメトキシシラン、トリエトキシメトキシシラン、エチルトリエトキシシラン、ジエチルアミノジエトキシメトキシシランが挙げられ、これらの有機ケイ素化合物は単独で用いても良いし、2種類以上併用しても良い。  Examples of the organosilicon compound component represented by Chemical formula 28 or 34 include bis(dimethylamino)diethoxysilane, bis(diethylamino)diethoxysilane, bis(diethylamino)dimethoxysilane, bis(diethylamino)di-n-propoxysilane, Bis(din-propylamino)diethoxysilane, bis(methyl n-propylamino)diethoxysilane, bis(t-butylamino)diethoxysilane, bis(ethyl n-propylamino)diethoxysilane, bis(ethyl Isopropylamino)diethoxysilane, bisaminosilane such as bis(methylethylamino)diethoxysilane, tetramethoxysilane, tetraethoxysilane, tetra n-propoxysilane, tetraisopropoxysilane, tetra n-butoxysilane, tetraisobutoxysilane , Tetras-butoxysilane, tetra-alkoxysilane such as tetra-t-butoxysilane, ethyltrimethoxysilane, methyldiethoxymethoxysilane, ethyldimethoxyethoxysilane, methyltriethoxysilane, dimethoxydiethoxysilane, ethyldiethoxymethoxysilane, Examples thereof include triethoxymethoxysilane, ethyltriethoxysilane, and diethylaminodiethoxymethoxysilane. These organosilicon compounds may be used alone or in combination of two or more.

本発明に係る第1及び第2のα−オレフィンの重合又は共重合用触媒の触媒成分において、前記化27乃至34で示されるシラン化合物は、化31で示されるテトラハロシランと化32で示されるテトラアルコキシシランとを反応させて化33で示されるトリアルコキシハロシランとした後化34で示されるジアルキルアミンを反応させることによって合成することができ、この合成の化31で示されるテトラハロシランと化32で示されるテトラアルコキシシランの反応は、酸触媒の存在下で行なわれることが好ましい。  In the catalyst component of the catalyst for polymerizing or copolymerizing the first and second α-olefins according to the present invention, the silane compound represented by Chemical formulas 27 to 34 is a tetrahalosilane represented by Chemical formula 31 and a silane compound represented by Chemical formula 32. Can be synthesized by reacting a tetraalkoxysilane represented by Chemical formula 33 to a trialkoxyhalosilane represented by Chemical formula 33, and reacting with a dialkylamine represented by Chemical formula 34. It is preferable that the reaction of the tetraalkoxysilane represented by Chemical formula 32 is carried out in the presence of an acid catalyst.

Figure 2005026180
(但し、Xはハロゲンである。)
Figure 2005026180
(However, X is halogen.)

Figure 2005026180
(但し、Rは炭素数1〜6、好ましくは2〜6の炭化水素基である。)
Figure 2005026180
(However, R 1 is a hydrocarbon group having 1 to 6 carbon atoms, preferably 2 to 6 carbon atoms.)

Figure 2005026180
(但し、Xはハロゲン、Rは炭素数1〜6、好ましくは2〜6の炭化水素基である。)
Figure 2005026180
(However, X is halogen and R 1 is a hydrocarbon group having 1 to 6 carbon atoms, preferably 2 to 6 carbon atoms.)

Figure 2005026180
(但し、Rは炭素数1〜12の炭化水素基であり、Rは炭素数1〜12の炭化水素基である。)
Figure 2005026180
(However, R 2 is a hydrocarbon group having 1 to 12 carbon atoms, and R 3 is a hydrocarbon group having 1 to 12 carbon atoms.)

本発明に係る第1及び第2のα−オレフィンの重合又は共重合用触媒の触媒成分であるジエチルアミノトリエトキシシランは、例えば、酸触媒の存在下でテトラクロロシランとテトラエトキシシランを1:3のモル比で反応させて、クロロトリエトキシシランとした後、引き続いて、ジエチルアミンとクロロトリエトキシシランを当量反応させて合成することができる。この時、同時にビス(ジエチルアミノ)ジエトキシシラン及びトリス(ジエチルアミノ)エトキシシラン、ヘキサエトキシジシロキサンが副生することもある。  The diethylaminotriethoxysilane, which is the catalyst component of the catalyst for polymerizing or copolymerizing the first and second α-olefins according to the present invention, is, for example, tetrachlorosilane and tetraethoxysilane of 1:3 in the presence of an acid catalyst. The reaction can be carried out in a molar ratio to give chlorotriethoxysilane, and subsequently, an equivalent reaction of diethylamine and chlorotriethoxysilane can be carried out to synthesize. At this time, bis(diethylamino)diethoxysilane, tris(diethylamino)ethoxysilane, and hexaethoxydisiloxane may be by-produced at the same time.

第3のα−オレフィンの重合又は共重合用触媒の触媒成分
本発明に係る第3のα−オレフィンの重合又は共重合用触媒の触媒成分において、化35で示されるトリアルコキシハロシランと化36で示されるジアルキルアミンとの反応混合物成分は、単離精製することなく用いることができる。例えば、XSi(ORとRNHとの反応混合物をろ過せずに、副生成物であるRNH−HClを含有させたまま重合に用いることができる。また、XSi(ORとRNHは、重合槽内に添加され混合された反応物を、(C)成分として用いてもよい。
Catalyst component of third α-olefin polymerization or copolymerization catalyst In the catalyst component of the third α-olefin polymerization or copolymerization catalyst according to the present invention, a trialkoxyhalosilane represented by Chemical formula 35 is used. The reaction mixture component with a dialkylamine represented by can be used without isolation and purification. For example, the reaction mixture of XSi(OR 1 ) 3 and R 2 R 3 NH can be used for polymerization without containing the by-product R 2 R 3 NH—HCl without filtering. Further, XSi(OR 1 ) 3 and R 2 R 3 NH may be used as the component (C), which is a reaction product added and mixed in the polymerization tank.

化35で示されるトリアルコキシハロシランにおいて、Rは炭素数1〜6、好ましくは2〜6の炭化水素基であり、炭素数1〜6の不飽和あるいは飽和脂肪族炭化水素基などが挙げられる。具体例としてはメチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、t−ブチル基、s−ブチル基などが挙げられる。特に好ましくはエチル基である。In the trialkoxyhalosilane represented by Chemical formula 35, R 1 is a hydrocarbon group having 1 to 6 carbon atoms, preferably 2 to 6 carbon atoms, and examples thereof include unsaturated or saturated aliphatic hydrocarbon groups having 1 to 6 carbon atoms. Be done. Specific examples thereof include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a t-butyl group and an s-butyl group. Particularly preferred is an ethyl group.

化35で示されるトリアルコキシハロシランにおいて、Xは、ハロゲンであり、クロルが好ましい。化35で示されるトリアルコキシハロシランの具体例としては、クロルトリエトキシシラン、クロルトリメトキシシラン、クロルトリn−プロポキシシランなどが挙げられる。  In the trialkoxyhalosilane represented by Chemical formula 35, X is halogen, and chloro is preferable. Specific examples of the trialkoxyhalosilane represented by Chemical formula 35 include chlorotriethoxysilane, chlorotrimethoxysilane, chlorotrin-propoxysilane and the like.

化36で示されるジアルキルアミンにおいて、R又はRは炭素数1〜12の炭化水素基であり、炭素数1〜12の不飽和あるいは飽和脂肪族炭化水素基などが挙げられる。具体例としてはメチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、t−ブチル基、s−ブチル基などが挙げられる。特に好ましくはエチル基である。化36で示されるジアルキルアミンの具体例としては、ジエチルアミンなどが挙げられる。In the dialkylamine represented by Chemical formula 36, R 2 or R 3 is a hydrocarbon group having 1 to 12 carbon atoms, and examples thereof include an unsaturated or saturated aliphatic hydrocarbon group having 1 to 12 carbon atoms. Specific examples thereof include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a t-butyl group and an s-butyl group. Particularly preferred is an ethyl group. Specific examples of the dialkylamine represented by Chemical formula 36 include diethylamine and the like.

α−オレフィンの重合又は共重合用触媒
またさらに、本発明は、上記第1乃至第3のα−オレフィンの重合又は共重要用触媒の触媒成分が含まれたことを特徴とするα−オレフィンの重合又は共重合用触媒であり、また[A]マグネシウム、チタン、ハロゲン元素及び電子供与体を必須とする触媒固体成分、[B]有機アルミニウム化合物成分、[C]上記第1乃至第3のα−オレフィンの重合又は共重要用触媒の触媒成分からなるα−オレフィンの重合又は共重合用触媒である。
The catalyst for the polymerization or copolymerization of α-olefins Furthermore, the present invention is characterized in that the catalyst components of the above-mentioned first to third polymerization or copolymerization catalysts for α-olefins are contained. It is a catalyst for polymerization or copolymerization, and also [A] a catalyst solid component containing magnesium, titanium, a halogen element and an electron donor as an essential component, [B] an organoaluminum compound component, and [C] the first to third α. An olefin polymerization or copolymerization catalyst comprising a catalyst component of an olefin polymerization or copolymerization catalyst.

本発明において、成分[A]としてマグネシウム、チタン、ハロゲン元素、及び電子供与体を必須とする固体触媒成分を用いる。成分[A]の固体触媒成分の製造方法は特に限定されず、例えば、特開昭54−94590号公報、特開昭5−55405号公報、特開昭56−45909号公報、特開昭56−163102号公報、特開昭57−63310号公報、特開昭57−115408号公報、特開昭58−83006号公報、特開昭58−83016号公報、特開昭58−138707号公報、特開昭59−149905号公報、特開昭60−23404号公報、特開昭60−32805号公報、特開昭61−18330号公報、特開昭61−55104号公報、特開昭63−3010号公報、特開平1−315406号公報、特開平2−77413号公報、特開平2−117905号公報などに提案されている方法が採用できる。  In the present invention, a solid catalyst component which essentially contains magnesium, titanium, a halogen element, and an electron donor is used as the component [A]. The method for producing the solid catalyst component of the component [A] is not particularly limited, and examples thereof include JP-A-54-94590, JP-A-5-55405, JP-A-56-45909, and JP-A-56. -163102, JP-A-57-63310, JP-A-57-115408, JP-A-58-83006, JP-A-58-83016, JP-A-58-138707, JP-A-59-149905, JP-A-60-23404, JP-A-60-32805, JP-A-61-18303, JP-A-61-55104, JP-A-63-63 The methods proposed in JP 3010, JP 1-315406 A, JP 2-77413 A, JP 2-117905 A, etc. can be adopted.

固体触媒成分[A]の代表的な製造方法として、(1)マグネシウム化合物、電子供与体、ハロゲン化チタン化合物を共粉砕、あるいは溶媒中で分散、溶解により接触させて調製する方法、(2)トルエン等の溶媒にマグネシウム化合物及び電子供与体を溶解し、この溶液にハロゲン化チタン化合物を添加、反応させて触媒固体を析出させる方法などが挙げられる。  As a typical method for producing the solid catalyst component [A], (1) a method in which a magnesium compound, an electron donor and a titanium halide compound are co-ground or prepared by contacting them by dispersion or dissolution in a solvent, (2) Examples include a method in which a magnesium compound and an electron donor are dissolved in a solvent such as toluene, and a titanium halide compound is added to this solution and reacted to precipitate a catalyst solid.

固体触媒成分[A]の調製に使用できるマグネシウム化合物としては、ハロゲン化マグネシウム、ジアルコキシマグネシウムが挙げられる。ハロゲン化マグネシウムとしては具体的に塩化マグネシウム、臭化マグネシウム、沃化マグネシウム、フッ化マグネシウムが挙げられ、特に塩化マグネシウムが好ましい。ジアルコキシマグネシウ厶としては具体的に、ジメトキシマグネシウム、ジエトキシマグネシウム、ジn−プロポキシマグネシウム、ジn−ブトキシマグネシウム、エトキシメトキシマグネシウム、エトキシn−プロポキシマグネシウム、ブトキシエトキシマグネシウム等が挙げられ、特にジエトキシマグネシウム、ジn−ブトキシマグネシウムが好ましい。また、これらのジアルコキシマグネシウムは、金属マグネシウムをハロゲンあるいはハロゲン含有金属化合物の存在下にアルコールと反応させて調製したものでも良い。前記のジアルコキシマグネシウムは、単独で用いても良いし、2種類以上併用しても良い。  Examples of the magnesium compound that can be used for preparing the solid catalyst component [A] include magnesium halide and dialkoxy magnesium. Specific examples of the magnesium halide include magnesium chloride, magnesium bromide, magnesium iodide and magnesium fluoride, and magnesium chloride is particularly preferable. Specific examples of dialkoxymagnesium include dimethoxymagnesium, diethoxymagnesium, di-n-propoxymagnesium, di-n-butoxymagnesium, ethoxymethoxymagnesium, ethoxyn-propoxymagnesium, butoxyethoxymagnesium, and the like. Magnesium and di-n-butoxy magnesium are preferred. Further, these dialkoxy magnesium may be prepared by reacting metallic magnesium with alcohol in the presence of halogen or a halogen-containing metal compound. The dialkoxy magnesium may be used alone or in combination of two or more kinds.

固体触媒成分[A]の調製に用いるジアルコキシマグネシウムの形状としては、顆粒状、粉末状であり、不定形あるいは球形のものを用いることができる。例えば球形のジアルコキシマグネシウムを用いた場合、モルフォロジーが良好で、しかも粒径分布の狭いα−オレフィン単独重合体、あるいは他のα−オレフィンとの共重合体パウダーが得られるため、パウダー流動性が良く、製造時に、ホッパーやライン閉塞等の問題の解消に繋がる。  The dialkoxymagnesium used for the preparation of the solid catalyst component [A] may be in the form of granules or powder, and may have an amorphous or spherical shape. For example, when spherical dialkoxymagnesium is used, an α-olefin homopolymer having a good morphology and a narrow particle size distribution, or a copolymer powder with another α-olefin can be obtained, so that powder fluidity is improved. Good, it leads to the elimination of problems such as hopper and line blockage during manufacturing.

固体触媒成分[A]の調製に使用できるハロゲン化チタン化合物の具体例としては、テトラクロロチタン、テトラブロモチタンのテトラハライドチタンや、トリクロロメトキシチタン、トリクロロエトキシチタン、トリクロロプロポキシチタン、トリクロロブトキシチタン、トリブロモメトキシチタン、トリブロモエトキシチタン、トリブロモプロポキシチタン、トリブロモブトキシチタン等のトリハライドアルコキシチタンや、ジクロロジメトキシチタン、ジクロロジエトキシチタン、ジクロロジプロポキシチタン、ジクロロジブトキシチタン等のジハライドジアルコキシチタンや、クロロトリメトキシチタン、クロロトリエトキシチタン、クロロトリプロポキシチタン、クロロトリブトキシチタン等のハライドトリアルコキシチタンを挙げることができる。特に、テトラクロロチタンが好ましい。これらのハロゲン化チタン化合物は単独で使用しても良いし、2種類以上併用しても良い。  Specific examples of the titanium halide compound that can be used for the preparation of the solid catalyst component [A] include tetrachlorotitanium and tetrahalide titanium tetrabromotitanium, trichloromethoxytitanium, trichloroethoxytitanium, trichloropropoxytitanium, trichlorobutoxytitanium, Trihalide alkoxy titanium such as tribromomethoxy titanium, tribromoethoxy titanium, tribromopropoxy titanium, and tribromobutoxy titanium, and dihalide dititanium such as dichlorodimethoxy titanium, dichlorodiethoxy titanium, dichlorodipropoxy titanium and dichlorodibutoxy titanium. Examples thereof include alkoxytitanium and halide trialkoxytitanium such as chlorotrimethoxytitanium, chlorotriethoxytitanium, chlorotripropoxytitanium and chlorotributoxytitanium. Particularly, tetrachlorotitanium is preferable. These titanium halide compounds may be used alone or in combination of two or more.

固体触媒成分[A]の調製に使用する電子供与体としては、ルイス塩基性の化合物であり、好ましくは芳香族ジエステル、好ましくは、オルトフタル酸ジエステルである。オルトフタル酸ジエステルの具体例としては、オルトフタル酸ジメチル、オルトフタル酸エチルメチル、オルトフタル酸ジエチル、オルトフタル酸エチルn−プロピル、オルトフタル酸ジn−プロピル、オルトフタル酸n−ブチルn−プロピル、オルトフタル酸n−ブチルエチル、オルトフタル酸イソブチルエチル、オルトフタル酸ジn−ブチル、オルトフタル酸ジイソブチル、オルトフタル酸ジn−ペンチル、オルトフタル酸ジイソペンチル、オルトフタル酸ジn−ヘキシル、オルトフタル酸ビス2−エチルヘキシル、オルトフタル酸ジn−ヘプチル、オルトフタル酸ジn−オクチルなどが挙げられ、オルトフタル酸ジエチル、オルトフタル酸ジn−プロピル、オルトフタル酸ジn−ブチル、オルトフタル酸ジイソブチル、オルトフタル酸ジn−ヘプチル、オルトフタル酸ビス2−エチルヘキシル、オルトフタル酸ジn−オクチルが特に好ましい。これらのオルトフタル酸ジエステルは単独で用いても良いし、2種類以上併用しても良い。  The electron donor used for preparing the solid catalyst component [A] is a Lewis basic compound, preferably an aromatic diester, preferably an orthophthalic acid diester. Specific examples of the orthophthalic acid diester include dimethyl orthophthalate, ethyl methyl orthophthalate, diethyl orthophthalate, ethyl n-propyl orthophthalate, di-n-propyl orthophthalate, n-butyl n-propyl orthophthalate, and n-butyl ethyl orthophthalate. , Isobutylethyl orthophthalate, di-n-butyl orthophthalate, diisobutyl orthophthalate, di-n-pentyl orthophthalate, diisopentyl orthophthalate, di-n-hexyl orthophthalate, bis2-ethylhexyl orthophthalate, di-n-heptyl orthophthalate, orthophthalate Acid di-n-octyl and the like, diethyl orthophthalate, di-n-propyl orthophthalate, di-n-butyl orthophthalate, diisobutyl orthophthalate, di-n-heptyl orthophthalate, bis2-ethylhexyl orthophthalate, di-orthophthalate. -Octyl is particularly preferred. These orthophthalic acid diesters may be used alone or in combination of two or more kinds.

また、電子供与体として、特開平3−706号公報、特開平3−62805号公報、特開平4−270705号公報、特開平6−25332号公報に示されているような2個以上のエーテル基を有する化合物も好ましく用いることができる。さらには、電子供与体として、再公表WO00/39171に示されているような炭素数2〜8の直鎖状あるいは分岐鎖状アルキル基を有するマレイン酸ジエステルを用いても良い。これらのマレイン酸ジエステルの中では特にマレイン酸ジn−ブチルが好ましい。  Further, as an electron donor, two or more ethers as shown in JP-A-3-706, JP-A-3-62805, JP-A-4-270705 and JP-A-6-25332. A compound having a group can also be preferably used. Further, as the electron donor, a maleic acid diester having a linear or branched alkyl group having 2 to 8 carbon atoms as shown in republished WO00/39171 may be used. Among these maleic acid diesters, di-n-butyl maleate is particularly preferable.

本発明の有機アルミニウム化合物成分[B]としては、アルキルアルミニウム又はジエチルアルミニウムクロライドの様なアルキルアルミニウムハライドなどが使用できるが、アルキルアルミニウムが好ましく、具体的にはトリアルキルアルミニウムであり、具体例としては、トリメチルアルミニウム、トリエチルアルミニウム、トリn−プロピルアルミニウム、トリn−ブチルアルミニウム、トリイソプチルアルミニウム、トリn−ヘキシルアルミニウム、トリn−オクチルアルミニウムなどが挙げられる。この中でも特にトリエチルアルミニウムが好ましい。前記有機アルミニウム化合物は単独で使用しても良いが、2種類以上の混合物としても使用することができる。また、アルキルアルミニウムと水との反応によって得られるポリアルミノキサンも同様に使用することができる。  As the organoaluminum compound component [B] of the present invention, an alkylaluminum or an alkylaluminum halide such as diethylaluminum chloride can be used, but an alkylaluminum is preferable, specifically a trialkylaluminum, and a specific example is , Trimethylaluminum, triethylaluminum, tri-n-propylaluminum, tri-n-butylaluminum, triisobutylaluminum, tri-n-hexylaluminum, tri-n-octylaluminum and the like. Of these, triethylaluminum is particularly preferable. The organoaluminum compound may be used alone or as a mixture of two or more kinds. Further, polyaluminoxane obtained by the reaction of alkylaluminum and water can be used as well.

α−オレフィンの重合触媒として有機アルミニウム化合物成分[B]の使用量は、固体触媒成分[A]のチタンに対するモル比(Al/Ti)で、0.1〜2000、好ましくは50〜1000である。  The amount of the organoaluminum compound component [B] used as a polymerization catalyst for the α-olefin is 0.1 to 2000, preferably 50 to 1000, in terms of the molar ratio (Al/Ti) of the solid catalyst component [A] to titanium. ..

本発明においては、上記の[A]及び[B]に、成分[C]として、前記該式(1)で表わされる有機ケイ素化合物と前記該式(2)で表わされる有機ケイ素化合物との混合物を加えた触媒系でα−オレフィンを重合又は共重合する。  In the present invention, a mixture of the above-mentioned [A] and [B] with the organosilicon compound represented by the formula (1) and the organosilicon compound represented by the formula (2) as the component [C]. The α-olefin is polymerized or copolymerized with a catalyst system to which is added.

成分[C]の使用量は成分[B]のアルミニウムに対するモル比(Si/Al)で0.001〜10、好ましくは0.005〜5、特に好ましくは、0.01〜1である。  The component [C] is used in a molar ratio (Si/Al) of component [B] to aluminum of 0.001 to 10, preferably 0.005 to 5, and particularly preferably 0.01 to 1.

本発明におけるα−オレフィンの重合法としては、プロパン、n−ブタン、n−ペンタン、n−ヘキサン、n−ヘプタン、n−オクタンなどの無極性溶媒を使用するスラリー重合法、モノマーを気体状態で触媒と接触して重合を行う気相重合法、あるいは液化状態のモノマ−を溶媒としてその中で重合させるバルク重合法などが採用できる。また、前記重合法において、連続重合、バッチ重合のいずれで行っても良く、重合反応を単段で行っても良いし、上記重合法を組み合わせて多段で行っても良い。  As the method for polymerizing the α-olefin in the present invention, a slurry polymerization method using a non-polar solvent such as propane, n-butane, n-pentane, n-hexane, n-heptane, and n-octane, and a monomer in a gaseous state are used. A gas phase polymerization method of contacting with a catalyst to carry out polymerization, or a bulk polymerization method of carrying out polymerization in a liquefied monomer as a solvent can be employed. Further, in the above-mentioned polymerization method, either continuous polymerization or batch polymerization may be carried out, the polymerization reaction may be carried out in a single stage, or a combination of the above-mentioned polymerization methods may be carried out in multiple stages.

α−オレフィンの重合
さらに、本発明は、前記触媒の存在下にα−オレフィンを重合又は共重合することを特徴とするα−オレフィンの重合方法である。
Polymerization of α-olefin Further, the present invention is a method for polymerizing α-olefin, which comprises polymerizing or copolymerizing α-olefin in the presence of the catalyst.

上記重合法において、重合圧力は0.1〜20MPa、好ましくは0.5〜6MPa、重合温度は10〜150℃、好ましくは30〜100℃、特に好ましくは60〜90℃である。重合時間は通常0.1〜10時間、好ましくは0.5〜7時間である。第3のα−オレフィンの重合又は共重合用触媒の触媒成分を触媒成分[C]として用いる場合、化35で示されるトリアルコキシハロシランと化36で示されるジアルキルアミンを反応混合させた後、有機アルミニウム化合物成分[B]を接触させることが好ましい。  In the above polymerization method, the polymerization pressure is 0.1 to 20 MPa, preferably 0.5 to 6 MPa, and the polymerization temperature is 10 to 150°C, preferably 30 to 100°C, particularly preferably 60 to 90°C. The polymerization time is usually 0.1 to 10 hours, preferably 0.5 to 7 hours. When the catalyst component of the catalyst for polymerizing or copolymerizing the third α-olefin is used as the catalyst component [C], after reacting and mixing the trialkoxyhalosilane represented by Chemical formula 35 and the dialkylamine represented by Chemical formula 36, It is preferable to contact the organoaluminum compound component [B].

また、本発明では、エチレンあるいはα−オレフィンを前記の各種重合方法に従って予備重合してから、α−オレフィンの本重合を行うことが好ましい。予備重合の効果としては、重合活性の向上、重合体の立体規則性の向上、重合体のモルフォロジーの安定化などが挙げられる。あらかじめ触媒固体成分[A]と有機アルミニウム化合物成分[B]及び成分[C]とを接触処理し、限定された量のエチレンあるいはα−オレフィンを重合することにより予備重合処理固体を調製することができる。また、場合によっては、エチレンあるいはα−オレフィンを重合せずに触媒固体成分[A]と有機アルミニウム成分[B]及び成分[C]とを接触処理した予備処理固体を調製することができる。  Further, in the present invention, it is preferable that the ethylene or α-olefin is prepolymerized according to the above-mentioned various polymerization methods and then the main polymerization of the α-olefin is carried out. The effects of prepolymerization include improvement of polymerization activity, improvement of stereoregularity of the polymer, stabilization of morphology of the polymer, and the like. It is possible to prepare a prepolymerized solid by contact-treating the catalyst solid component [A] with the organoaluminum compound component [B] and the component [C] in advance and polymerizing a limited amount of ethylene or α-olefin. it can. Further, in some cases, a pretreated solid obtained by subjecting the catalyst solid component [A] to the organoaluminum component [B] and the component [C] in contact with each other without polymerizing ethylene or α-olefin can be prepared.

本発明の接触処理としては、成分[A]、成分[B]、成分[C]を混合し、通常、0〜100℃で0.1〜10時間反応する。各成分の混合順序は、特に限定されないが、通常、成分[A]、成分[B]、成分[C]の順が好ましい。接触処理した後に、n−ヘプタンなどの不活性炭化水素溶媒で固体を洗浄、ろ過、分離して、予備重合あるいは本重合の触媒固体成分として用いる。  In the contact treatment of the present invention, the component [A], the component [B], and the component [C] are mixed and usually reacted at 0 to 100° C. for 0.1 to 10 hours. The order of mixing each component is not particularly limited, but in general, the order of the component [A], the component [B], and the component [C] is preferable. After the contact treatment, the solid is washed with an inert hydrocarbon solvent such as n-heptane, filtered, separated, and used as a catalyst solid component for prepolymerization or main polymerization.

本発明における予備重合は、気相重合法、スラリー重合法、バルク重合法などで行うことができる。予備重合において得られた固体は分離してから本重合に用いる、あるいは、分離せずに本重合を続けて行うことができる。  The preliminary polymerization in the present invention can be carried out by a gas phase polymerization method, a slurry polymerization method, a bulk polymerization method or the like. The solid obtained in the prepolymerization can be separated and then used in the main polymerization, or the main polymerization can be continuously carried out without separation.

予備重合時間は通常、0.1〜10時間であり、触媒固体成分1g当たり0.1〜100gの予備重合体が生成するまで予備重合を続けることが好ましい。触媒固体成分1g当たり0.1g未満であると本重合活性が充分でなく、触媒残渣が多くなり、またα−オレフィン重合体の立体規則性も充分でない。また、100gをこえると、重合活性及びα−オレフィン重合体の結晶性が低下する場合がある。予備重合温度は、0〜100℃、好ましくは10〜70℃で各触媒成分の存在下に行う。50℃をこえるような高い温度で予備重合を行う場合は、エチレンあるいはα−オレフィン濃度を小さくするか、重合時間を短くすることが好ましい。そうでないと触媒固体成分1g当たり0.1〜100gの予備重合体の生成を制御することが困難であり、また、本重合で重合活性が低下したり、得られるα−オレフィン重合体の結晶性が低下したりする。  The prepolymerization time is usually 0.1 to 10 hours, and it is preferable to continue the prepolymerization until 0.1 to 100 g of the prepolymer is produced per 1 g of the catalyst solid component. If it is less than 0.1 g per 1 g of the catalyst solid component, the main polymerization activity will be insufficient, the amount of catalyst residue will increase, and the stereoregularity of the α-olefin polymer will also be insufficient. Moreover, when it exceeds 100 g, the polymerization activity and the crystallinity of the α-olefin polymer may decrease. The prepolymerization temperature is 0 to 100°C, preferably 10 to 70°C in the presence of each catalyst component. When the prepolymerization is carried out at a high temperature exceeding 50° C., it is preferable to reduce the ethylene or α-olefin concentration or shorten the polymerization time. Otherwise, it is difficult to control the production of 0.1 to 100 g of the prepolymer per 1 g of the catalyst solid component, and the polymerization activity is decreased in the main polymerization, and the crystallinity of the obtained α-olefin polymer is low. Will decrease.

予備重合時の有機アルミニウム化合物成分[B]の使用量は、通常、触媒固体成分[A]のチタンに対してAl/Tiモル比で0.5〜1000、好ましくは1〜100である。成分[C]ジエチルアミノトリエトキシシランの使用量は、通常、成分[B]のアルミニウム対してSi/Alモル比で0.01〜5、好ましくは0.05〜1である。また予備重合時に、必要に応じて水素を共存させることができる。  The amount of the organoaluminum compound component [B] used during the prepolymerization is usually 0.5 to 1000, preferably 1 to 100 in terms of Al/Ti molar ratio to titanium of the catalyst solid component [A]. The amount of the component [C] diethylaminotriethoxysilane used is usually 0.01 to 5, preferably 0.05 to 1 in terms of Si/Al molar ratio with respect to the aluminum of the component [B]. Further, hydrogen can be allowed to coexist at the time of preliminary polymerization, if necessary.

本発明においては、水素などの連鎖移動剤を使用することができる。所望の立体規則性、融点及び分子量を有するα−オレフィン重合体を製造するための水素の使用量は、重合方法及び重合条件によって、適宜決定することができるが、通常、水素分圧0.05〜3の範囲である。  In the present invention, a chain transfer agent such as hydrogen can be used. The amount of hydrogen used for producing an α-olefin polymer having a desired stereoregularity, melting point and molecular weight can be appropriately determined depending on the polymerization method and the polymerization conditions. The range is from 3 to 3.

本発明において、α−オレフィンとしては、エチレン、プロピレン、1−ブテン、1−ヘキセン、4−メチルペンテン−1、3−メチルブテン−1、1−オクテンなどを挙げることができる。本発明ではフィルムのヒ−トシ−ル温度を下げるため、融点を下げたり、フィルムの透明性を高めるなどの目的でα−オレフィンの重合において他のα−オレフィンと共重合することもできる。  In the present invention, examples of the α-olefin include ethylene, propylene, 1-butene, 1-hexene, 4-methylpentene-1,3-methylbutene-1,1-octene and the like. In the present invention, since the heat seal temperature of the film is lowered, it is possible to copolymerize with other α-olefin in the polymerization of α-olefin for the purpose of lowering the melting point or increasing the transparency of the film.

また、α−オレフィン重合体からの成形品の低温衝撃強度を高めるために上記α−オレフィンの単独重合、あるいは他のα−オレフィンとの共重合の後に、更に2種類以上のα−オレフィンを共重合するいわゆるブロック共重合体の製造も行うことができる。  Further, in order to enhance the low temperature impact strength of the molded product from the α-olefin polymer, after homopolymerization of the above α-olefin or copolymerization with another α-olefin, two or more types of α-olefin are further copolymerized. It is also possible to produce so-called block copolymers which polymerize.

エチレン−プロピレンブロック共重合体を製造する場合においては、具体的には、第1工程でプロピレンの単独重合あるいはエチレンとプロピレンの共重合を行い、引き続いて、第2工程でエチレンとプロピレンを共重合することが好ましい。更に、第1工程、第2工程ともに多段重合を行っても良い。第1工程で得られるポリプロピレンのメルトフローレイトの範囲は0.1〜2000、好ましくは30〜1000、特に好ましくは100〜700である。また、第1工程で得られるポリプロピレンの立体規則性はメソペンダット分率(mmmm)で97.5%以上、好ましくは98.0%以上、特に好ましくは98.2%以上である。第2工程で生成するエチレンとプロピレンの共重合体の割合(ブロック率=(エチレンとプロピレンの共重合体生成量/全ポリマー量)×100)の範囲は1〜50wt%、好ましくは5〜35wt%である。  In the case of producing an ethylene-propylene block copolymer, specifically, homopolymerization of propylene or copolymerization of ethylene and propylene is performed in the first step, and subsequently, ethylene and propylene are copolymerized in the second step. Preferably. Further, multistage polymerization may be performed in both the first step and the second step. The melt flow rate of the polypropylene obtained in the first step is 0.1 to 2000, preferably 30 to 1000, particularly preferably 100 to 700. Further, the stereoregularity of the polypropylene obtained in the first step is 97.5% or more, preferably 98.0% or more, particularly preferably 98.2% or more in terms of mesopendat fraction (mmmm). The ratio of the copolymer of ethylene and propylene produced in the second step (block rate=(amount of ethylene/propylene copolymer produced/total amount of polymer)×100) is in the range of 1 to 50 wt %, preferably 5 to 35 wt %. %.

本発明における触媒系は、水素レスポンスが良好で、重合活性が高く、しかも得られるα−オレフィン重合体の立体規則性が高く、溶融流動性が良い。  The catalyst system of the present invention has good hydrogen response, high polymerization activity, high stereoregularity of the obtained α-olefin polymer, and good melt flowability.

本発明で得られるα−オレフィン重合体は、立体規則性が高いため、射出成形体の剛性、耐熱性、引張り強度などの機械物性に優れるため、射出成形体の薄肉化に有益である。また、溶融流動性が良いため、射出成型サイクルの短縮、射出成型体のフロ−マ−クに代表される成形体の外観不良の解消がはかれる。さらには他のα−オレフィンとのブロック共重合体にすることにより耐衝撃性を付与することができ、溶融流動性が良く、剛性と耐衝撃性のバランスに優れたα−オレフィン重合体を得ることができる。本発明で得られるα−オレフィン重合体は、単独で用いるだけではなく、コンパウンド用材として、他のプラスチック、エラストマ−とのブレンド、更にグラスファイバ−、タルクなどの無機、有機フィラ−の強化剤、その他結晶核剤を混合使用でき、特に限定されないが自動車、家電などの構造材料として優れた性能を発揮できる。  The α-olefin polymer obtained in the present invention has high stereoregularity, and is excellent in mechanical properties such as rigidity, heat resistance, and tensile strength of the injection-molded product, and is therefore useful for thinning the injection-molded product. Further, since the melt flowability is good, the injection molding cycle can be shortened and the appearance defect of the molded product represented by the flow mark of the injection molded product can be eliminated. Furthermore, impact resistance can be imparted by using a block copolymer with another α-olefin, and melt flowability is good, and an α-olefin polymer having excellent balance between rigidity and impact resistance is obtained. be able to. The α-olefin polymer obtained in the present invention is not only used alone, but also as a compounding material, another plastic, a blend with an elastomer, further glass fiber, an inorganic filler such as talc, a reinforcing agent for an organic filler, Other crystal nucleating agents can be mixed and used, and although not particularly limited, they can exhibit excellent performance as structural materials for automobiles, home appliances and the like.

市販のSi(OEt) 0.145molとEtOH 0.020molをあらかじめ内部を窒素雰囲気にした100mlのフラスコに入れ、室温で攪拌しながらSiCl0.050molを滴下した。EtOHを反応に用いた場合、SiClと反応し、形式的に4EtOH+SiCl→Si(OEt)+4HClに従って、系中でSi(OEt)とHClが発生する。この式による物質変換を基に、実質的な原料組成を計算すると、SiCl:Si(OEt)=1:3.33、触媒量は10モル%となる。終夜放置後、ガスクロマトグラフィーで反応混合物を分析すると、ClSi(OEt)が仕込みのSi基準で86%生成していた。別途あらかじめ内部を窒素雰囲気にした1000mlのフラスコ中にジエチルアミン80mlと脱水ヘプタン500mlを入れ、この溶液に得られた反応混合物を滴下し、室温で2時間攪拌後、ガスクロマトグラフィーで反応混合物を分析すると、仕込みのSi基準でEtNSi(OEt)が75%生成していた。Commercially available Si(OEt) 4 (0.145 mol) and EtOH (0.020 mol) were placed in a 100 ml flask whose inside had a nitrogen atmosphere in advance, and SiCl 4 (0.050 mol) was added dropwise while stirring at room temperature. When EtOH is used in the reaction, it reacts with SiCl 4 and formally produces Si(OEt) 4 and HCl in the system according to 4EtOH+SiCl 4 →Si(OEt) 4 +4HCl. When the substantial raw material composition is calculated based on the substance conversion by this formula, SiCl 4 :Si(OEt) 4 =1:3.33 and the catalyst amount is 10 mol %. When the reaction mixture was analyzed by gas chromatography after standing overnight, ClSi(OEt) 3 was produced in an amount of 86% based on the charged Si. Separately, put 80 ml of diethylamine and 500 ml of dehydrated heptane in a 1000 ml flask whose inside was previously filled with nitrogen atmosphere, add the obtained reaction mixture to this solution dropwise, stir at room temperature for 2 hours, and analyze the reaction mixture by gas chromatography. As a result, 75% of Et 2 NSi(OEt) 3 was formed based on the charged Si.

(参考例1)
市販のClSi(OEt)(ガスクロマトグラフィー純度96%)0.050molとジエチルアミン0.050molをトリエチルアミン0.10molの存在下100mlのヘプタン中室温で終夜反応させたところ、目的のトリエトキシ(ジエチルアミノ)シランを93%とテトラエトキシシランを6%含む混合物が生成していることをガスクロマトグラフィーで確認した。
(Reference example 1)
When 0.050 mol of commercially available ClSi(OEt) 3 (gas chromatography purity 96%) and 0.050 mol of diethylamine were reacted in 100 ml of heptane at room temperature overnight in the presence of 0.10 mol of triethylamine, the target triethoxy(diethylamino)silane was obtained. It was confirmed by gas chromatography that a mixture containing 93% of H2O and 6% of tetraethoxysilane was produced.

実施例1及びその参考例1の結果より、連続反応の2工程目のアミノ化反応は、ガスクロマトグラフィー分析の精度などを勘案して、93±3%程度で進行すると判断できる。実質的に連続反応の第一工程の収率が、全体としての収率を左右する大きな要因となるのは明らかである。よって以下の実施例2乃至8においては、連続反応の第一工程、すなわちトリアルコキシハロシランの製造について記述する。  From the results of Example 1 and Reference Example 1, it can be determined that the amination reaction in the second step of the continuous reaction proceeds at about 93±3% in consideration of the accuracy of gas chromatography analysis and the like. It is clear that the yield of the first step of the substantially continuous reaction is a major factor in determining the overall yield. Therefore, in Examples 2 to 8 below, the first step of the continuous reaction, namely the production of trialkoxyhalosilane, is described.

市販のSi(OEt) 0.150molとEtOH 0.020molをあらかじめ内部を窒素雰囲気にした100mlのフラスコに入れ、室温で攪拌しながらSiCl0.050molを滴下した。実質的原料組成はSiCl:Si(OEt)=1:3.44、触媒量は10モル%となる。終夜放置後、ガスクロマトグラフィーで反応混合物を分析すると、仕込みのSi基準でClSi(OEt)が82%生成し、Si(OEt)が11%残存していた。Commercially available Si(OEt) 4 (0.150 mol) and EtOH (0.020 mol) were placed in a 100 ml flask having a nitrogen atmosphere in advance, and SiCl 4 (0.050 mol) was added dropwise with stirring at room temperature. The substantial raw material composition is SiCl 4 :Si(OEt) 4 =1:3.44, and the catalyst amount is 10 mol %. When the reaction mixture was analyzed by gas chromatography after standing overnight, 82% of ClSi(OEt) 3 was produced based on the charged Si standard, and 11% of Si(OEt) 4 remained.

実施例2のSi(OEt)0.150molのかわりにSi(OEt)0.170mol使用した以外は同様に反応させた。実質的原料組成はSiCl:Si(OEt)=1:3.89、触媒量は9モル%となる。生成物分析の結果、仕込みのSi基準でClSi(OEt)が77%生成し、Si(OEt)が19%残存していた。The same reaction was performed except that 0.170 mol of Si(OEt) 4 in Example 2 was used instead of 0.150 mol of Si(OEt) 4 . The substantial raw material composition is SiCl 4 :Si(OEt) 4 =1:3.89, and the catalyst amount is 9 mol %. As a result of product analysis, ClSi(OEt) 3 was produced in 77% and Si(OEt) 4 remained in 19% based on the charged Si.

実施例2のSi(OEt)0.150molのかわりにSi(OEt)0.155mol使用した以外は同様に反応させた。実質的原料組成はSiCl:Si(OEt)=1:3.56、触媒量は10モル%となる。生成物分析の結果仕込みのSi基準で、ClSi(OEt)が79%生成し、Si(OEt)が12%残存していた。Except for using Si (OEt) 4 0.155mol instead of the Si (OEt) 4 0.150mol Example 2 was reacted in the same manner. The substantial raw material composition is SiCl 4 :Si(OEt) 4 =1:3.56, and the catalyst amount is 10 mol %. As a result of the product analysis, based on the charged Si, 79% of ClSi(OEt) 3 was produced and 12% of Si(OEt) 4 remained.

実施例2のSi(OEt)0.150molのかわりにSi(OEt)0.140mol使用した以外は同様に反応させた。実質的原料組成はSiCl:Si(OEt)=1:3.22、触媒量は11モル%となる。生成物分析の結果仕込みのSi基準で、ClSi(OEt)が81%生成し、Si(OEt)が13%残存していた。The same reaction was performed except that 0.140 mol of Si(OEt) 4 was used instead of 0.150 mol of Si(OEt) 4 in Example 2. The substantial raw material composition is SiCl 4 :Si(OEt) 4 =1:3.22, and the catalyst amount is 11 mol %. As a result of the product analysis, based on the charged Si, 81% of ClSi(OEt) 3 was produced and 13% of Si(OEt) 4 remained.

実施例2のSi(OEt)0.150molのかわりにSi(OEt)0.135mol使用した以外は同様に反応させた。実質的原料組成はSiCl:Si(OEt)=1:3.11、触媒量は11モル%となる。生成物分析の結果仕込みのSi基準で、ClSi(OEt)が85%生成し、Si(OEt)が10%残存していた。Except for using Si (OEt) 4 0.135mol instead of the Si (OEt) 4 0.150mol Example 2 was reacted in the same manner. The substantial raw material composition is SiCl 4 :Si(OEt) 4 =1:3.11, and the catalyst amount is 11 mol %. As a result of the product analysis, based on the charged Si, 85% of ClSi(OEt) 3 was produced and 10% of Si(OEt) 4 remained.

実施例2のSi(OEt)0.150molのかわりにSi(OEt)0.130mol使用した以外は同様に反応させた。実質的原料組成はSiCl:Si(OEt)=1:3.00、触媒量は11モル%となる。生成物分析の結果仕込みのSi基準で、ClSi(OEt)が84%生成し、Si(OEt)が11%残存していた。The same reaction was performed except that 0.130 mol of Si(OEt) 4 was used instead of 0.150 mol of Si(OEt) 4 in Example 2. The substantial raw material composition is SiCl 4 :Si(OEt) 4 =1:3.00, and the catalyst amount is 11 mol %. As a result of the product analysis, based on the charged Si, 84% of ClSi(OEt) 3 was produced and 11% of Si(OEt) 4 remained.

実施例2のSi(OEt)0.150molのかわりにSi(OEt)0.115mol使用した以外は同様に反応させた。実質的原料組成はSiCl:Si(OEt)=1:2.67、触媒量は12モル%となる。生成物分析の結果仕込みのSi基準で、ClSi(OEt)が75%生成し、Si(OEt)が7%残存していた。
比較例1
The same reaction was performed except that 0.115 mol of Si(OEt) 4 was used instead of 0.150 mol of Si(OEt) 4 in Example 2. The substantial raw material composition is SiCl 4 :Si(OEt) 4 =1:2.67, and the catalyst amount is 12 mol %. As a result of the product analysis, based on the charged Si, 75% of ClSi(OEt) 3 was produced and 7% of Si(OEt) 4 remained.
Comparative Example 1

市販のSi(OEt)0.167molとトリフルオロ酢酸0.020molをあらかじめ内部を窒素雰囲気にした100mlのフラスコに入れ、室温で攪拌しながらSiCl0.050molを滴下した。原料組成はSiCl:Si(OEt)=1:3.33、触媒量は9モル%となる。終夜放置後、ガスクロマトグラフィーで反応混合物を分析すると仕込みのSi基準で、ClSi(OEt)が73%生成し、Si(OEt)が16%残存していた。
比較例2
Commercially available Si(OEt) 4 (0.167 mol) and trifluoroacetic acid (0.020 mol) were placed in a 100 ml flask whose inside had a nitrogen atmosphere in advance, and SiCl 4 ( 0.050 mol) was added dropwise while stirring at room temperature. The raw material composition is SiCl 4 :Si(OEt) 4 =1:3.33, and the catalyst amount is 9 mol %. When the reaction mixture was analyzed by gas chromatography after standing overnight, 73% of ClSi(OEt) 3 was produced and 16% of Si(OEt) 4 remained based on the charged Si.
Comparative example 2

比較例1のトリフルオロ酢酸0.020molのかわりに酢酸0.020mol用いた以外は同様に反応させた。終夜放置後、ガスクロマトグラフィーで反応混合物を分析すると仕込みのSi基準で、ClSi(OEt)が61%生成し、Si(OEt)が20%残存していた。
比較例3
The same reaction was performed except that 0.020 mol of acetic acid was used instead of 0.020 mol of trifluoroacetic acid in Comparative Example 1. When the reaction mixture was analyzed by gas chromatography after standing overnight, 61% of ClSi(OEt) 3 was produced and 20% of Si(OEt) 4 remained based on the charged Si.
Comparative Example 3

比較例1のトリフルオロ酢酸0.020molのかわりに硫酸担持シリカ(硫酸量として0.010mol)を用いた以外は同様に反応させた。終夜放置後、ガスクロマトグラフィーで反応混合物を分析すると仕込みのSi基準で、ClSi(OEt)が27%生成し、Si(OEt)が18%残存していた。The reaction was carried out in the same manner except that sulfuric acid-supporting silica (0.010 mol as the amount of sulfuric acid) was used instead of 0.020 mol of trifluoroacetic acid in Comparative Example 1. When the reaction mixture was analyzed by gas chromatography after standing overnight, 27% of ClSi(OEt) 3 was produced and 18% of Si(OEt) 4 remained based on the charged Si.

窒素導入管、温度計、滴下ロートを備えた500mlの四つ口フラスコにテトラエトキシシラン139.9g(0.669mol)とエタノール9.2g(Si総量に対して21mol%)(0.20mol)を仕込み、水冷下、窒素雰囲気下にテトラクロロシラン46.5g(0.274mol)を10分間で滴下した。滴下終了後、25℃で2時間攪拌し、反応液をガスクロマトグラフィーで分析した結果、クロロトリエトキシシランが0.839mol生成していた。数2によって仕込みのSi基準を求めたところ、89.0%の収率である。  139.9 g (0.669 mol) of tetraethoxysilane and 9.2 g of ethanol (21 mol% with respect to the total amount of Si) (0.20 mol) were placed in a 500 ml four-necked flask equipped with a nitrogen introduction tube, a thermometer, and a dropping funnel. After charging, 46.5 g (0.274 mol) of tetrachlorosilane was added dropwise over 10 minutes under water cooling and nitrogen atmosphere. After completion of dropping, the mixture was stirred at 25° C. for 2 hours, and the reaction liquid was analyzed by gas chromatography. As a result, 0.839 mol of chlorotriethoxysilane was formed. When the charged Si standard was determined by Equation 2, the yield was 89.0%.

Figure 2005026180
Figure 2005026180

次に攪拌機、窒素導入管、温度計、滴下ロートを備えた3Lの四つ口フラスコにジエチルアミン570g(7.79mol)を仕込み、水冷下、窒素雰囲気で前記の反応混合物を攪拌しながら30分間で滴下した。この間、内温は25〜30℃に保った。滴下終了後、2時間攪拌した後、n−ヘプタンを1L加え、さらに10分間攪拌した。反応液は加圧ろ過し、減圧濃縮後、理論段10段のオールダーショー蒸留塔で4トールの減圧下62〜63℃で蒸留した結果、144.3g(0.613mol)のジエチルアミノトリエトキシシランを得た。数3によって仕込みのSi基準を求めたところ、65.0%の収率である。  Next, 570 g (7.79 mol) of diethylamine was charged into a 3 L four-necked flask equipped with a stirrer, a nitrogen introducing tube, a thermometer, and a dropping funnel, and the above reaction mixture was stirred for 30 minutes in a nitrogen atmosphere under water cooling. Dropped. During this time, the internal temperature was kept at 25 to 30°C. After the completion of dropping, the mixture was stirred for 2 hours, 1 L of n-heptane was added, and the mixture was further stirred for 10 minutes. The reaction solution was filtered under pressure, concentrated under reduced pressure, and then distilled at 62 to 63° C. under a reduced pressure of 4 Torr in an Oldershaw distillation column with 10 theoretical plates, and 144.3 g (0.613 mol) of diethylaminotriethoxysilane was obtained. Got When the charged Si standard was determined by Equation 3, the yield was 65.0%.

Figure 2005026180
比較例4
Figure 2005026180
Comparative Example 4

エタノール2.4g(Si総量に対して5.5mol%)(0.052mol)を使用した以外は実施例9と同様に反応し,同様の操作を行った。その結果、第一工程の反応ではクロロトリエトキシシランの仕込みのSi基準での収率は14.4%であり、第二工程の反応後の蒸留によるジエチルアミノトリエトキシシランの取得収率は仕込みのSi基準で8.6%であった。
比較例5
The same reaction and operation were performed as in Example 9, except that 2.4 g of ethanol (5.5 mol% based on the total amount of Si) (0.052 mol) was used. As a result, in the reaction of the first step, the yield of chlorotriethoxysilane charged on the basis of Si was 14.4%, and the yield of diethylaminotriethoxysilane obtained by distillation after the reaction of the second step was the same as the charged yield. It was 8.6% based on Si.
Comparative Example 5

反応時間を24hrにした以外は比較例4と同様に反応し,同様の操作を行った。その結果、第一工程の反応ではクロロトリエトキシシランの仕込みのSi基準での収率は72.3%であり、第二工程の反応後の蒸留によるジエチルアミノトリエトキシシランの取得収率は仕込みのSi基準で52.2%であった。  The reaction was performed in the same manner as in Comparative Example 4 except that the reaction time was 24 hours, and the same operation was performed. As a result, in the reaction in the first step, the yield of chlorotriethoxysilane charged on the basis of Si was 72.3%, and the yield of diethylaminotriethoxysilane obtained by distillation after the reaction in the second step was the same as the charged yield. It was 52.2% based on Si.

エタノール7.0g(Si総量に対して16mol%)(0.15mol)を使用した以外は実施例9と同様に反応し、同様の操作を行った。その結果、第一工程の反応ではクロロトリエトキシシランの仕込みのSi基準での収率は87.5%であり、第二工程の反応後の蒸留によるジエチルアミノトリエトキシシランの取得収率は仕込みのSi基準で63.9%であった。  The same reaction and operation were performed as in Example 9, except that 7.0 g of ethanol (16 mol% based on the total amount of Si) (0.15 mol) was used. As a result, in the reaction of the first step, the yield of chlorotriethoxysilane charged on the basis of Si was 87.5%, and the yield of diethylaminotriethoxysilane obtained by distillation after the reaction of the second step was the same as the charged yield. It was 63.9% based on Si.

エタノール4.6g(Si総量に対して11mol%)(0.10mol)を使用し、第一工程の反応温度を40℃にした以外は実施例9と同様に反応し、同様の操作を行った。その結果、第一工程の反応ではクロロトリエトキシシランの仕込みのSi基準での収率は78.2%であり、第二工程の反応後の蒸留によるジエチルアミノトリエトキシシランの取得収率は仕込みのSi基準で57.3%であった。  Ethanol 4.6 g (11 mol% with respect to the total amount of Si) (0.10 mol) was used, and the reaction was performed in the same manner as in Example 9 except that the reaction temperature in the first step was 40° C., and the same operation was performed. .. As a result, in the reaction of the first step, the yield of chlorotriethoxysilane charged on the basis of Si was 78.2%, and the yield of diethylaminotriethoxysilane obtained by distillation after the reaction of the second step was the same as that of the charged amount. It was 57.3% based on Si.

市販のSiCl0.145molをあらかじめ内部を窒素雰囲気にした100mlのフラスコに入れ、氷浴で2℃程度まで冷却し、良く攪拌しながらEtOH 0.440molをマイクロフィーダーを用いて1時間かけてSiCl中に注入した。この場合のEtOH/SiClモル比は3.0になる。注入中反応温度は徐々に低下し、−20℃に至った。そのまま3時間攪拌し、ガスクロマトグラフィーで反応混合物を分析すると、仕込みのSi基準でClSi(OEt)が87%生成していた。別途あらかじめ内部を窒素雰囲気にした1000mlのフラスコ中にジエチルアミン125mlを入れ、この溶液に得られた反応混合物を滴下し、室温で3時間攪拌後、ガスクロマトグラフィーで反応混合物を分析すると、仕込みのSi基準でEtNSi(OEt)が79%生成していた。Commercially available SiCl 4 ( 0.145 mol) was placed in a 100 ml flask whose inside was previously filled with a nitrogen atmosphere, cooled to about 2° C. in an ice bath, and while stirring well, 0.440 mol of EtOH was added to the SiCl 4 using a micro feeder for 1 hour. It was injected into the 4. In this case, the EtOH/SiCl 4 molar ratio is 3.0. During the injection, the reaction temperature gradually decreased to -20°C. The reaction mixture was stirred as it was for 3 hours, and the reaction mixture was analyzed by gas chromatography to find that 87% of ClSi(OEt) 3 was produced based on the charged Si. Separately, 125 ml of diethylamine was placed in a 1000 ml flask whose interior was previously filled with a nitrogen atmosphere, the reaction mixture obtained was added dropwise to this solution, and after stirring at room temperature for 3 hours, the reaction mixture was analyzed by gas chromatography. 79% of Et 2 NSi(OEt) 3 was formed on the basis of the standard.

実施例12及び実施例1の参考例の結果より、実施例1と同様に実質的に連続反応の第一工程目の収率が、全体としての収率を左右する大きな要因となるのは明らかである。よって以下の参考例では、連続反応の第一工程、すなわちトリアルコキシハロシランの製造方法について記述する。  From the results of the reference examples of Example 12 and Example 1, it is clear that the yield of the first step of the substantially continuous reaction is a major factor influencing the overall yield as in Example 1. Is. Therefore, in the following reference example, the first step of the continuous reaction, that is, the method for producing trialkoxyhalosilane will be described.

EtOH/SiClモル比を3.4にして、実施例12と同様の操作でSiClとEtOHの反応を行い、ガスクロマトグラフィーで反応混合物を分析すると、ClSi(OEt)は57%生成していた。When the reaction between SiCl 4 and EtOH was carried out in the same manner as in Example 12 with EtOH/SiCl 4 molar ratio being 3.4, the reaction mixture was analyzed by gas chromatography to find that ClSi(OEt) 3 was produced at 57%. Was there.

EtOH/SiClモル比を3.3にして、実施例12と同様の操作でSiClとEtOHの反応を行い、ガスクロマトグラフィーで反応混合物を分析すると、ClSi(OEt)は67%生成していた。The reaction between SiCl 4 and EtOH was carried out in the same manner as in Example 12 with EtOH/SiCl 4 molar ratio of 3.3, and the reaction mixture was analyzed by gas chromatography to find that 67% ClSi(OEt) 3 was produced. Was there.

EtOH/SiClモル比を3.2にして、実施例12と同様の操作でSiClとEtOHの反応を行い、ガスクロマトグラフィーで反応混合物を分析すると、ClSi(OEt)は77%生成していた。The reaction between SiCl 4 and EtOH was carried out in the same manner as in Example 12 with EtOH/SiCl 4 molar ratio of 3.2, and the reaction mixture was analyzed by gas chromatography. As a result, 77% of ClSi(OEt) 3 was produced. Was there.

EtOH/SiClモル比を3.1にして、実施例12と同様の操作でSiClとEtOHの反応を行い、ガスクロマトグラフィーで反応混合物を分析すると、ClSi(OEt)は86%生成していた。The reaction of SiCl 4 and EtOH was carried out in the same manner as in Example 12 with EtOH/SiCl 4 molar ratio of 3.1, and the reaction mixture was analyzed by gas chromatography to find that 86% of ClSi(OEt) 3 was produced. Was there.

EtOH/SiClモル比を3.05にして、実施例12と同様の操作でSiClとEtOHの反応を行い、ガスクロマトグラフィーで反応混合物を分析すると、ClSi(OEt)は87%生成していた。The reaction of SiCl 4 and EtOH was carried out in the same manner as in Example 12 with EtOH/SiCl 4 molar ratio of 3.05, and the reaction mixture was analyzed by gas chromatography to find that 87% ClSi(OEt) 3 was produced. Was there.

EtOH/SiClモル比を2.95にして、実施例12と同様の操作でSiClとEtOHの反応を行い、ガスクロマトグラフィーで反応混合物を分析すると、ClSi(OEt)は87%生成していた。The reaction between SiCl 4 and EtOH was carried out in the same manner as in Example 12 with EtOH/SiCl 4 molar ratio of 2.95, and the reaction mixture was analyzed by gas chromatography to find that 87% ClSi(OEt) 3 was produced. Was there.

EtOH/SiClモル比を2.9にして、実施例12と同様の操作でSiClとEtOHの反応を行い、ガスクロマトグラフィーで反応混合物を分析すると、ClSi(OEt)は90%生成していた。The reaction between SiCl 4 and EtOH was carried out in the same manner as in Example 12 with EtOH/SiCl 4 molar ratio of 2.9, and the reaction mixture was analyzed by gas chromatography to find that 90% of ClSi(OEt) 3 was produced. Was there.

EtOH/SiClモル比を2.0にして、実施例12と同様の操作でSiClとEtOHの反応を行い、ガスクロマトグラフィーで反応混合物を分析すると、ClSi(OEt)は88%生成していた。The reaction between SiCl 4 and EtOH was carried out in the same manner as in Example 12 with EtOH/SiCl 4 molar ratio of 2.0, and the reaction mixture was analyzed by gas chromatography to find that ClSi(OEt) 3 was 88% produced. Was there.

以下に本発明に係るα−オレフィンの重合又は共重合用触媒の実施例を説明する。但し、本発明は以下の実施例の記載により何ら制限されるものではない。なお、実施例21乃至26において、重合活性とは、固体触媒1g当たり、重合時間1時間で得られたα−オレフィン重合体の収量(g)を表す。H.Iとはα−オレフィン重合体を沸騰n−ヘプタンで6時間抽出試験を行った時の割合(不溶分重合体の重量/仕込み重合体の重量×100)を示す。メルトフローレイト(MFR)は、ASTM−D1238に準拠して測定した。230℃、2.16Kgの加重下で10分間の溶融重合体の重量(g)を表す。メルトフローレイトは水素レスポンスの指標として用いた。即ち、同一水素濃度におけるα−オレフィン重合条件下において、その数値が高ければ水素レスポンスが高く、低ければ水素レスポンスが低いとした。α−オレフィン重合体の立体規則性の指標であるミクロタクティシティーを調べたメソペンタッド分率(mmmm)%は、プロピレン重合体においてMacromolecules 8,687(1975)に基づいて帰属した13C−NMRスペクトルのピ−ク強度比より算出した。13C−NMRスペクトルは、日本電子製EX−400の装置を用い、TMSを基準とし、温度130℃、o−ジクロロベンゼン溶媒を用い、スキャン回数を8000回で測定した。Examples of the catalyst for polymerization or copolymerization of α-olefin according to the present invention will be described below. However, the present invention is not limited to the description of the examples below. In Examples 21 to 26, the polymerization activity means the yield (g) of the α-olefin polymer obtained in 1 hour of polymerization time per 1 g of the solid catalyst. H. I represents a ratio (weight of insoluble polymer/weight of charged polymer×100) of an α-olefin polymer subjected to an extraction test for 6 hours with boiling n-heptane. Melt flow rate (MFR) was measured according to ASTM-D1238. The weight (g) of the molten polymer for 10 minutes under the load of 230° C. and 2.16 Kg is shown. The melt flow rate was used as an index of hydrogen response. That is, under the α-olefin polymerization conditions at the same hydrogen concentration, the higher the value, the higher the hydrogen response, and the lower the value, the lower the hydrogen response. The mesopentad fraction (mmmm)% for examining the microtacticity, which is an index of the stereoregularity of the α-olefin polymer, was determined based on Macromolecules 8,687 (1975) in the propylene polymer. -It was calculated from the intensity ratio. The 13 C-NMR spectrum was measured with a device of EX-400 manufactured by JEOL Ltd., using TMS as a reference, a temperature of 130° C., an o-dichlorobenzene solvent, and a scanning frequency of 8000.

有機ケイ素化合物である成分[C]は、以下に示す通りに合成した。先ず、充分に窒素置換したマグネットシール攪拌機及び滴下ロートを備えた容量1Lの4つ口フラスコに、テトラクロロシラン0.14mol、テトラエトキシシラン0.34mol、トリフルオロ酢酸0.022molを順次導入し、室温下で3時間反応後、更に60℃にて7時間反応させた。その後引き続いて、あらかじめ滴下ロートに導入しておいたジエチルアミン1.92molを滴下した。滴下終了後、室温にて9時間反応を行った。反応終了後、反応液を一部採取して、ガスクロマトグラフィーで目的物が生成しているのを確認した後に、窒素雰囲気下、G3ガラスフィルターを備えた容器にフラスコ内の反応液を全て移液し、0.01MPaの低圧窒素で加圧ろ過を行った。更に、ろ残であるジエチルアミンの塩酸塩をn−ヘプタンでろ液中に目的物が確認できなくなるまで洗浄、ろ過を繰り返した。ろ液ならびにろ残洗浄混合液は減圧下、濃縮してn−ヘプタン等の溶媒成分を留去し、目的物を回収した。目的物の外観は無色透明の液体で、沸点は58.0℃/5mmHgであった。  Component [C], which is an organosilicon compound, was synthesized as shown below. First, 0.14 mol of tetrachlorosilane, 0.34 mol of tetraethoxysilane, and 0.022 mol of trifluoroacetic acid were sequentially introduced into a four-necked flask having a capacity of 1 L equipped with a magnet seal stirrer and a dropping funnel that were sufficiently replaced with nitrogen, and the mixture was stirred at room temperature. After reacting for 3 hours under the following conditions, the reaction was further performed at 60° C. for 7 hours. Then, subsequently, 1.92 mol of diethylamine, which had been previously introduced into the dropping funnel, was added dropwise. After the dropping was completed, the reaction was carried out at room temperature for 9 hours. After completion of the reaction, a part of the reaction solution was sampled, and after confirming that the desired product was produced by gas chromatography, the reaction solution in the flask was transferred to a container equipped with a G3 glass filter under a nitrogen atmosphere. The solution was liquefied and pressure filtered with low pressure nitrogen of 0.01 MPa. Further, the residue of diethylamine hydrochloride was washed with n-heptane until the target substance could not be confirmed in the filtrate, and the filtration was repeated. The filtrate and the filter residue washing mixture were concentrated under reduced pressure to remove the solvent components such as n-heptane and to recover the desired product. The target product was a colorless transparent liquid having a boiling point of 58.0° C./5 mmHg.

成分[C]の純度はガスクロマトグラフィーのピーク面積比より検量線を用いて求めた重量%で表す。ガスクロマトグラフィーの装置はGC−14A(Shimazu社製)を用い、検出器は水素炎イオン検出器を用いた。カラムはG−100、20m、内径1.2mm、膜厚2μm(ジーエルサイエンス社製)を用いた。インジェクション温度及びディテクター温度は280℃で、昇温条件としては、初期カラム温度を70℃で10分間保持した後、16℃/minの速度で260℃まで昇温し、その後260℃で10分間保持した。  The purity of the component [C] is represented by wt% obtained from the peak area ratio of gas chromatography using a calibration curve. GC-14A (manufactured by Shimazu Co., Ltd.) was used as a gas chromatography device, and a hydrogen flame ion detector was used as a detector. The column used was G-100, 20 m, inner diameter 1.2 mm, film thickness 2 μm (manufactured by GL Sciences Inc.). The injection temperature and the detector temperature are 280° C. As the temperature rising conditions, after maintaining the initial column temperature at 70° C. for 10 minutes, the temperature is raised to 260° C. at a rate of 16° C./min, and then held at 260° C. for 10 minutes. did.

上記の条件でガスクロマトグラフィー分析を行った結果、生成物の組成はジエチルアミノトリエトキシシランが91.5重量%、ジエチルアミンが0.1重量%、テトラエトキシシランが1.6重量%、ジエチルアミノジエトキシメトキシシランが1.1重量%、ビス(ジエチルアミノ)ジエトキシシランが5.2重量%、、ヘキサエトキシジシロキサンが0.5重量%であった。生成物の同定はガス−マスクロマトグラフィーで行ったので、そのマススペクトルを図2〜7に示す。  As a result of gas chromatography analysis under the above conditions, the product composition was 91.5% by weight of diethylaminotriethoxysilane, 0.1% by weight of diethylamine, 1.6% by weight of tetraethoxysilane, and diethylaminodiethoxy. Methoxysilane was 1.1% by weight, bis(diethylamino)diethoxysilane was 5.2% by weight, and hexaethoxydisiloxane was 0.5% by weight. Since the product was identified by gas-mass chromatography, its mass spectrum is shown in FIGS.

プロピレンの重合の際に用いた固体触媒成分[A]は、市販の東邦キャタリスト社製THC−JC型を使用した。Ti含有量は、1.7wt%であった。  As the solid catalyst component [A] used during the polymerization of propylene, a commercially available THC-JC type manufactured by Toho Catalyst was used. The Ti content was 1.7 wt%.

プロピレンの重合は、攪拌機付の内容積2Lのステンレス製オ−トクレ−ブを用いて行った。先ず、オ−トクレ−ブ内部を窒素で充分に置換した後、触媒固体成分[A]のn−ヘプタンスラリ−をチタン原子換算で0.0025mmol及び有機アルミニウム化合物成分[B]としてトリエチルアルミニウム2mmol、有機ケイ素化合物成分[C]として前記で得られた純度91.5重量%のジエチルアミノトリエトキシシラン0.36mmol入れ、次いで0.4MPaの水素、液化プロピレン1.2Lを順次導入した。オ−トクレ−ブ内を10℃に冷却し、10分間予備重合した。引き続き、オートクレーブ内を70℃に昇温し、更に70℃で1時間、重合を行った。この時の重合圧力は3.8MPaであった。重合終了後、未反応プロピレンガスを放出し、重合体を60℃で20時間減圧乾燥して、白色の粉末状ポリプロピレンを得た。結果を表1に示した。  Polymerization of propylene was carried out using a stainless steel autoclave with an internal volume of 2 L equipped with a stirrer. First, after fully replacing the inside of the autoclave with nitrogen, 0.0025 mmol of n-heptane slurry of the catalyst solid component [A] in terms of titanium atom and 2 mmol of triethylaluminum as the organoaluminum compound component [B], As the organosilicon compound component [C], 0.36 mmol of 91.5% by weight of diethylaminotriethoxysilane obtained above was added, and then 0.4 MPa of hydrogen and 1.2 L of liquefied propylene were sequentially introduced. The inside of the autoclave was cooled to 10°C and prepolymerized for 10 minutes. Subsequently, the temperature inside the autoclave was raised to 70° C., and polymerization was further performed at 70° C. for 1 hour. The polymerization pressure at this time was 3.8 MPa. After the polymerization was completed, unreacted propylene gas was released, and the polymer was dried under reduced pressure at 60° C. for 20 hours to obtain white powdery polypropylene. The results are shown in Table 1.

有機ケイ素化合物成分[C]は、以下に示す通りに合成した。先ず、充分に窒素置換した滴下ロートを備えた容量100mlの3つ口フラスコに、ジエチルアミン30mlを導入し、あらかじめ滴下ロートに導入しておいたジクロロジエトキシシラン0.015molを室温下で滴下した。滴下終了後、ジエチルアミン30mlを追加し、室温にて4時間反応を行った。反応終了後、反応液を一部採取して、ガスクロマトグラフィーで目的物が生成しているのを確認した後に、窒素雰囲気下、G3ガラスフィルターを備えた容器にフラスコ内の反応液を全て移液し、0.01MPaの低圧窒素で加圧ろ過を行った。更に、ろ残であるジエチルアミンの塩酸塩をジエチルアミンでろ液中に目的物が確認できなくなるまで洗浄、ろ過を繰り返した。ろ液ならびにろ残洗浄混合液は減圧下、濃縮して溶媒成分を留去し、蒸留精製して目的物を回収した。目的物の外観は無色透明の液体で、沸点は109℃/9mmHgであり、ガスクロマトグラフィーによる分析の結果、生成物の組成は、ビス(ジエチルアミノ)ジエトキシシランが97.7重量%、ジエチルアミンが0.7重量%、ジエチルアミノジエトキシメトキシシランが0.24量%、ジエチルアミノトリエトキシシランが0.8重量%、ヘキサエトキシジシロキサンが0.6重量%であった。  The organosilicon compound component [C] was synthesized as shown below. First, 30 ml of diethylamine was introduced into a three-necked flask having a capacity of 100 ml equipped with a dropping funnel that was sufficiently replaced with nitrogen, and 0.015 mol of dichlorodiethoxysilane previously introduced into the dropping funnel was added dropwise at room temperature. After the dropping was completed, 30 ml of diethylamine was added, and the reaction was carried out at room temperature for 4 hours. After completion of the reaction, a part of the reaction solution was sampled, and after confirming that the desired product was produced by gas chromatography, all the reaction solution in the flask was transferred to a container equipped with a G3 glass filter under a nitrogen atmosphere. The solution was liquefied and pressure filtered with low pressure nitrogen of 0.01 MPa. Further, the residue of diethylamine hydrochloride was washed with diethylamine repeatedly until the desired product could not be confirmed in the filtrate. The filtrate and the filter residue washing mixture were concentrated under reduced pressure to remove the solvent component, and purified by distillation to recover the desired product. The appearance of the target product is a colorless and transparent liquid, and the boiling point is 109° C./9 mmHg. As a result of analysis by gas chromatography, the product composition shows that bis(diethylamino)diethoxysilane is 97.7% by weight and diethylamine is The content was 0.7% by weight, 0.24% by weight of diethylaminodiethoxymethoxysilane, 0.8% by weight of diethylaminotriethoxysilane, and 0.6% by weight of hexaethoxydisiloxane.

上記で得られた97.7重量%のビス(ジエチルアミノ)ジエトキシシランと実施例1で得られた91.5重量%のジエチルアミノトリエトキシシランを1:1の重量比で混合した。この混合物を成分[C]として用いた以外は、実施例1と同様にプロピレンの重合を行った。結果を表1に示す。
比較例6
97.7% by weight of bis(diethylamino)diethoxysilane obtained above and 91.5% by weight of diethylaminotriethoxysilane obtained in Example 1 were mixed in a weight ratio of 1:1. Polymerization of propylene was carried out in the same manner as in Example 1 except that this mixture was used as the component [C]. The results are shown in Table 1.
Comparative Example 6

有機ケイ素化合物成分[C]として、シクロヘキシルメチルジメトキシシランを用いた以外は実施例1と同様にプロピレンの重合を行った。結果を表1に示す。  Polymerization of propylene was carried out in the same manner as in Example 1 except that cyclohexylmethyldimethoxysilane was used as the organosilicon compound component [C]. The results are shown in Table 1.

Figure 2005026180
Figure 2005026180

プロピレンの重合は以下の通りに実施した。内部を窒素で充分置換したマグネットシール攪拌機付の内容積2Lのステンレス製オートクレーブ内に、有機アルミニウム化合物成分[B]としてトリエチルアルミニウムを2.2mmol、成分[C]として本発明により得られたジエチルアミノトリエトキシシランを0.36mmol、東邦キャタリスト社製THC−JC型の固体触媒成分[A]のn−ヘプタンスラリ−をチタン原子換算で2.5×10−3mmolを順次導入し、次いで水素(0.4MPa)、液化プロピレン(1.2L)を導入した。引き続きオートクレーブ内を70℃に昇温し、70℃で1時間重合を行った。この時の重合圧力は3.8MPaであった。重合終了後、未反応プロピレンガスを放出し、重合体を60℃で20時間減圧乾燥して、白色の粉末状ポリプロピレンを得た。重合活性は、42kg/g−Cat.hr、MFRは400g/10min、H.Iは96.2%、mmmmは98.8%であった。Polymerization of propylene was carried out as follows. 2.2 mmol of triethylaluminum as the organoaluminum compound component [B] and diethylaminotris obtained according to the present invention as the component [C] were placed in a stainless steel autoclave with an internal volume of 2 L and a magnet seal agitator whose interior was sufficiently replaced with nitrogen. 0.36 mmol of ethoxysilane, 2.5×10 −3 mmol of n-heptane slurry of THC-JC type solid catalyst component [A] manufactured by Toho Catalyst Co., Ltd. in terms of titanium atom were sequentially introduced, and then hydrogen ( 0.4 MPa) and liquefied propylene (1.2 L) were introduced. Subsequently, the temperature inside the autoclave was raised to 70° C., and polymerization was carried out at 70° C. for 1 hour. The polymerization pressure at this time was 3.8 MPa. After the polymerization was completed, unreacted propylene gas was released, and the polymer was dried under reduced pressure at 60° C. for 20 hours to obtain white powdery polypropylene. The polymerization activity was 42 kg/g-Cat. hr and MFR are 400 g/10 min. I was 96.2% and mmmm was 98.8%.

プロピレンの重合の際に用いた固体触媒成分[A]は、市販の東邦キャタリスト社製THC−JC型を使用した。Ti含有量は、1.7wt%であった。  As the solid catalyst component [A] used during the polymerization of propylene, a commercially available THC-JC type manufactured by Toho Catalyst was used. The Ti content was 1.7 wt%.

プロピレンの重合は、攪拌機付の内容積2Lのステンレス製オ−トクレ−ブを用いて行った。先ず、オ−トクレ−ブ内部を窒素で充分に置換した後、触媒固体成分[A]のn−ヘプタンスラリ−をチタン原子換算で0.0025mmol、(C)成分としてクロルトリエトキシシラン0.36mmol、ジエチルアミン0.72mmol、及び(B)成分としてトリエチルアルミニウム2mmolを入れ、次いで0.4MPaの水素、液化プロピレン1.2Lを順次導入した。オ−トクレ−ブ内を10℃に冷却し、10分間予備重合した。引き続き、オートクレーブ内を70℃に昇温し、更に70℃で1時間、重合を行った。この時の重合圧力は3.8MPaであった。重合終了後、未反応プロピレンガスを放出し、重合体を60℃で20時間減圧乾燥して、白色の粉末状ポリプロピレンを得た。重合活性は、35,800g−PP/g−Ct.hr、MFRは615、H.Iは95.9、メソペンタッド分率(mmmm)は97.9であった。  Polymerization of propylene was performed using a stainless steel autoclave with an internal volume of 2 L equipped with a stirrer. First, after fully replacing the inside of the autoclave with nitrogen, 0.0025 mmol of n-heptane slurry of the catalyst solid component [A] in terms of titanium atom, and 0.36 mmol of chlorotriethoxysilane as the component (C). , Diethylamine 0.72 mmol, and triethylaluminum 2 mmol as the component (B) were added, and then 0.4 MPa of hydrogen and 1.2 L of liquefied propylene were sequentially introduced. The inside of the autoclave was cooled to 10°C and prepolymerized for 10 minutes. Subsequently, the temperature inside the autoclave was raised to 70° C., and polymerization was further carried out at 70° C. for 1 hour. The polymerization pressure at this time was 3.8 MPa. After the polymerization was completed, unreacted propylene gas was released, and the polymer was dried under reduced pressure at 60° C. for 20 hours to obtain white powdery polypropylene. The polymerization activity was 35,800 g-PP/g-Ct. hr, MFR is 615, H. I was 95.9, and the mesopentad fraction (mmmm) was 97.9.

(C)成分としてクロルトリエトキシシランとジエチルアミンを別途混合した反応混合物をろ過したものを用いた以外は、実施例1と同様に行った。重合活性は、41,800g−PP/g−Ct.hr、MFRは400、H.Iは96.6、メソペンタッド分率(mmmm)は98.5であった。  Example 1 was carried out in the same manner as in Example 1 except that a reaction mixture obtained by separately mixing chlorotriethoxysilane and diethylamine was filtered as the component (C). The polymerization activity was 41,800 g-PP/g-Ct. hr, MFR is 400, H.V. I was 96.6 and the mesopentad fraction (mmmm) was 98.5.

(C)成分としてクロルトリエトキシシラン0.36mmolとジエチルアミン0.72mmolと別途混合しろ過した反応混合物をそのまま用いた以外は、実施例2と同様に行った。重合活性は、43,400g−PP/g−Ct.hr、MFRは444、H.Iは96.2、メソペンタッド分率(mmmm)は98.4であった。
比較例7
The same procedure as in Example 2 was repeated, except that 0.36 mmol of chlorotriethoxysilane and 0.72 mmol of diethylamine were separately mixed and filtered as the component (C) and the reaction mixture was used as it was. The polymerization activity was 43,400 g-PP/g-Ct. hr, MFR is 444, H. I was 96.2 and the mesopentad fraction (mmmm) was 98.4.
Comparative Example 7

(B)成分としてクロルトリエトキシシランのみを用い、ジエチルアミンを用いなかった以外は、実施例1と同様に行った。重合活性は、32,900g−PP/g−Ct.hr、MFRは799、H.Iは94.9、メソペンタッド分率(mmmm)は97.6であった。  Example 1 was repeated except that only chlorotriethoxysilane was used as the component (B) and no diethylamine was used. The polymerization activity was 32,900 g-PP/g-Ct. hr, MFR is 799, H. I was 94.9, and the mesopentad fraction (mmmm) was 97.6.

Claims (22)

化1で示されるで示されるテトラハロシランと化2で示されるテトラアルコキシシランとを該テトラアルコキシシランと同じアルコキシ基からなるアルコール混合下で反応させて化3で示されるトリアルコキシハロシランを得るトリアルコキシハロシランの製造方法であって、前記テトラハロシラン及び前記テトラアルコキシシランのSi総量に対して前記アルコールが5〜50mol%であることを特徴とするトリアルコキシハロシランの製造方法。
Figure 2005026180
(但し、Xはハロゲンである。)
Figure 2005026180
(但し、Rは炭素数1〜6の炭化水素基である。)
Figure 2005026180
(但し、Xはハロゲン、Rは炭素数1〜6の炭化水素基である。)
A tetrahalosilane represented by Chemical formula 1 is reacted with a tetraalkoxysilane represented by Chemical formula 2 in a mixture of alcohols containing the same alkoxy groups as the tetraalkoxysilane to obtain a trialkoxyhalosilane represented by Chemical formula 3. A method for producing a trialkoxyhalosilane, wherein the alcohol is 5 to 50 mol% with respect to the total amount of Si in the tetrahalosilane and the tetraalkoxysilane.
Figure 2005026180
(However, X is halogen.)
Figure 2005026180
(However, R 1 is a hydrocarbon group having 1 to 6 carbon atoms.)
Figure 2005026180
(However, X is halogen and R 1 is a hydrocarbon group having 1 to 6 carbon atoms.)
前記テトラアルコキシシランの使用モル量は、前記テトラハロシランの使用モル量の3倍よりも多いことを特徴とする請求項1記載のトリアルコキシハロシランの製造方法。The method for producing a trialkoxyhalosilane according to claim 1, wherein the molar amount of the tetraalkoxysilane used is more than three times the molar amount of the tetrahalosilane used. 前記化1乃至化3で示される化合物のXがクロルであり、Rがエチルであることであることを特徴とする請求項1又は2記載のトリアルコキシハロシランの製造方法。The method for producing trialkoxyhalosilane according to claim 1 or 2, wherein X in the compound represented by Chemical Formula 1 to Chemical Formula 3 is chloro, and R 1 is ethyl. 化4で示されるテトラハロシランと化5で示されるアルコールとを40℃以下の温度に制御して反応させて化6で示されるトリアルコキシハロシランを得ることを特徴とするトリアルコキシハロシランの製造方法。
Figure 2005026180
(但し、Xはハロゲンである。)
Figure 2005026180
(但し、Rは炭素数1〜6の炭化水素基である。)
Figure 2005026180
(但し、Xはハロゲンであり、Rは炭素数1〜6の炭化水素基である。)
A trialkoxyhalosilane represented by Chemical formula 6 is obtained by reacting a tetrahalosilane represented by Chemical formula 4 with an alcohol represented by Chemical formula 5 at a temperature of 40° C. or lower to react. Production method.
Figure 2005026180
(However, X is halogen.)
Figure 2005026180
(However, R 1 is a hydrocarbon group having 1 to 6 carbon atoms.)
Figure 2005026180
(However, X is halogen, and R 1 is a hydrocarbon group having 1 to 6 carbon atoms.)
前記テトラハロシランと前記アルコールとの反応は、酸触媒の存在下で行うことを特徴とする請求項4記載のトリアルコキシハロシランの製造方法。The method for producing trialkoxyhalosilane according to claim 4, wherein the reaction between the tetrahalosilane and the alcohol is performed in the presence of an acid catalyst. 前記酸触媒が、反応により副生するハロゲン化水素であることを特徴とする請求項5に記載のトリアルコキシハロシランの製造方法。The method for producing trialkoxyhalosilane according to claim 5, wherein the acid catalyst is hydrogen halide produced as a by-product of the reaction. 前記化4乃至化6で示される化合物のXがクロルであり、Rがエチルであることであることを特徴とする請求項4乃至6いずれか記載のトリアルコキシハロシランの製造方法。The method for producing trialkoxyhalosilane according to any one of claims 4 to 6, wherein X in the compound represented by Chemical formulas 4 to 6 is chloro, and R 1 is ethyl. 請求項1乃至7のいずれか記載のトリアルコキシハロシランの製造方法を第一工程とし、その後、第一工程により得られたトリアルコキシハロシランに化7で示されるジアルキルアミンを反応させて化8で示されるトリアルコキシ(ジアルキルアミノ)シランを得る第二工程と、を備えたことを特徴とするトリアルコキシ(ジアルキルアミノ)シランの製造方法。
Figure 2005026180
(但し、Rは炭素数1〜12の炭化水素基、Rは炭素数1〜12の炭化水素基である。)
Figure 2005026180
(但し、Rは炭素数1〜6の炭化水素基、Rは炭素数1〜12の炭化水素基、Rは炭素数1〜12の炭化水素基である。)
The method for producing a trialkoxyhalosilane according to any one of claims 1 to 7 is used as a first step, and then the trialkoxyhalosilane obtained in the first step is reacted with a dialkylamine represented by the chemical formula 7 And a second step of obtaining a trialkoxy(dialkylamino)silane represented by the formula (3).
Figure 2005026180
(However, R 2 is a hydrocarbon group having 1 to 12 carbon atoms, and R 3 is a hydrocarbon group having 1 to 12 carbon atoms.)
Figure 2005026180
(However, R 1 is a hydrocarbon group having 1 to 6 carbon atoms, R 2 is a hydrocarbon group having 1 to 12 carbon atoms, and R 3 is a hydrocarbon group having 1 to 12 carbon atoms.)
前記第一工程で得られた反応混合物を単離精製すること無く、化7で示されるジアルキルアミンと反応させることを特徴とする請求項8記載のトリアルコキシ(ジアルキルアミノ)シランの製造方法。The method for producing trialkoxy(dialkylamino)silane according to claim 8, wherein the reaction mixture obtained in the first step is reacted with a dialkylamine represented by Chemical formula 7 without isolation and purification. 前記化1乃至化8で示される化合物のXがクロルであり、R、R及びRがエチルであることであることを特徴とする請求項8又は9記載のトリアルコキシ(ジアルキルアミノ)シランの製造方法。10. The trialkoxy(dialkylamino) according to claim 8 or 9, wherein X in the compound represented by Chemical Formula 1 to Chemical Formula 8 is chloro, and R 1 , R 2 and R 3 are ethyl. Method for producing silane. 化9及び化10で示されるシラン化合物の混合物からなるα−オレフィンの重合又は共重合用触媒の触媒成分。
Figure 2005026180
(但し、Rは炭素数1〜6の炭化水素基、Rは炭素数1〜12の炭化水素基、水素一つと炭素数1〜12の炭化水素基一つがN原子上に結合したアミノ基又は炭素数1〜12の炭化水素基二つ(二つの炭化水素基は同一であっても異なっても良い。)がN原子上に結合したアミノ基である。)
Figure 2005026180
(但し、Rは炭素数1〜6のアルコキシ基、炭素数1〜12の炭化水素基、水素一つと炭素数1〜12の炭化水素基一つがN原子上に結合したアミノ基、炭素数1〜12の炭化水素基二つ(二つの炭化水素基は同一であっても異なっても良い。)がN原子上に結合したアミノ基であり、Rは同一であっても異なっても良い。但し、化9と化10は同一化合物でない。)
A catalyst component of a catalyst for polymerization or copolymerization of α-olefin, which comprises a mixture of silane compounds represented by Chemical formulas 9 and 10.
Figure 2005026180
(However, R 1 is a hydrocarbon group having 1 to 6 carbon atoms, R 2 is a hydrocarbon group having 1 to 12 carbon atoms, an amino group in which one hydrogen atom and one hydrocarbon group having 1 to 12 carbon atoms are bonded to the N atom. A group or two hydrocarbon groups having 1 to 12 carbon atoms (two hydrocarbon groups may be the same or different) are amino groups bonded on the N atom.
Figure 2005026180
(However, R 3 is an alkoxy group having 1 to 6 carbon atoms, a hydrocarbon group having 1 to 12 carbon atoms, an amino group in which one hydrogen atom and one hydrocarbon group having 1 to 12 carbon atoms are bonded to an N atom, and the number of carbon atoms. Two hydrocarbon groups 1 to 12 (two hydrocarbon groups may be the same or different) are amino groups bonded on the N atom, and R 3 may be the same or different. Good, provided that Chemical Formula 9 and Chemical Formula 10 are not the same compound.)
化11及び化12で示されるシラン化合物の混合物からなるα−オレフィンの重合又は共重合用触媒の触媒成分。
Figure 2005026180
(但し、Rは炭素数1〜6の炭化水素基を示し、Rは炭素数1〜12の炭化水素基又は水素を示し、Rは炭素数1〜12の炭化水素基である。)
Figure 2005026180
(但し、Rは炭素数1〜12の炭化水素基又は炭素数1〜6のアルコキシ基であり、Rは同一であっても異なっても良く、Rは炭素数1〜12の炭化水素基であり、Rは炭素数1〜12の炭化水素基である。nは1〜2又は4である。)
A catalyst component for a catalyst for polymerizing or copolymerizing an α-olefin, which comprises a mixture of silane compounds represented by Chemical formulas 11 and 12.
Figure 2005026180
(Wherein, R 1 is a hydrocarbon group having 1 to 6 carbon atoms, R 4 represents a hydrocarbon group or hydrogen having 1 to 12 carbon atoms, R 5 is a hydrocarbon group having 1 to 12 carbon atoms. )
Figure 2005026180
(However, R 6 is a hydrocarbon group having 1 to 12 carbon atoms or an alkoxy group having 1 to 6 carbon atoms, R 6 may be the same or different, and R 7 is a hydrocarbon group having 1 to 12 carbon atoms. R 8 is a hydrocarbon group having 1 to 12 carbon atoms, and n is 1 to 2 or 4.)
前記化9乃至12で示されるシラン化合物は、化13で示されるで示されるテトラハロシランと化14で示されるテトラアルコキシシランとを反応させて化15で示されるトリアルコキシハロシランとした後化16で示されるジアルキルアミンを反応させることによって得られたものであることを特徴とする請求項11又は12記載のα−オレフィンの重合又は共重合用触媒の触媒成分。
Figure 2005026180
(但し、Xはハロゲンである。)
Figure 2005026180
(但し、Rは炭素数1〜6の炭化水素基である。)
Figure 2005026180
(但し、Xはハロゲン、Rは炭素数1〜6の炭化水素基である。)
Figure 2005026180
(但し、Rは炭素数1〜12の炭化水素基であり、Rは炭素数1〜12の炭化水素基である。)
The silane compound represented by Chemical Formulas 9 to 12 is obtained by reacting a tetrahalosilane represented by Chemical Formula 13 with a tetraalkoxysilane represented by Chemical Formula 14 to obtain a trialkoxyhalosilane represented by Chemical Formula 15 The catalyst component of the catalyst for polymerization or copolymerization of α-olefin according to claim 11 or 12, which is obtained by reacting a dialkylamine represented by 16.
Figure 2005026180
(However, X is halogen.)
Figure 2005026180
(However, R 1 is a hydrocarbon group having 1 to 6 carbon atoms.)
Figure 2005026180
(However, X is halogen and R 1 is a hydrocarbon group having 1 to 6 carbon atoms.)
Figure 2005026180
(However, R 2 is a hydrocarbon group having 1 to 12 carbon atoms, and R 3 is a hydrocarbon group having 1 to 12 carbon atoms.)
ジエチルアミノトリエトキシシラン及びビス(ジエチルアミノ)ジエトキシシランの混合物からなるα−オレフィンの重合又は共重合用触媒の触媒成分。A catalyst component of a catalyst for the polymerization or copolymerization of α-olefins, which comprises a mixture of diethylaminotriethoxysilane and bis(diethylamino)diethoxysilane. 請求項11乃至14いずれか記載の触媒成分が含まれたことを特徴とするα−オレフィンの重合又は共重合用触媒。A catalyst for polymerization or copolymerization of an α-olefin, comprising the catalyst component according to any one of claims 11 to 14. [A]マグネシウム、チタン、ハロゲン元素及び電子供与体を必須とする触媒固体成分、[B]有機アルミニウム化合物成分、[C]請求項11乃至14に記載の触媒成分からなるα−オレフィンの重合又は共重合用触媒。Polymerization of [alpha]-olefin consisting of [A] magnesium, titanium, a catalyst solid component essentially containing a halogen element and an electron donor, [B] an organoaluminum compound component, and [C] a catalyst component according to claims 11 to 14. Copolymerization catalyst. 請求項15又は16記載の触媒の存在下にα−オレフィンを重合又は共重合することを特徴とするα−オレフィンの重合方法。A method for polymerizing an α-olefin, which comprises polymerizing or copolymerizing an α-olefin in the presence of the catalyst according to claim 15 or 16. 化17で示されるトリアルコキシハロシランと化18で示されるジアルキルアミンとの反応混合物からなるα−オレフィンの重合又は共重合用触媒の触媒成分。
Figure 2005026180
(但し、Xはハロゲンであり、Rは炭素数1〜6の炭化水素基である。)
Figure 2005026180
(但し、Rは炭素数1〜12の炭化水素基であり、Rは炭素数1〜12の炭化水素基である。)
A catalyst component of a catalyst for polymerizing or copolymerizing an α-olefin, which comprises a reaction mixture of a trialkoxyhalosilane represented by Chemical formula 17 and a dialkylamine represented by Chemical formula 18.
Figure 2005026180
(However, X is halogen, and R 1 is a hydrocarbon group having 1 to 6 carbon atoms.)
Figure 2005026180
(However, R 2 is a hydrocarbon group having 1 to 12 carbon atoms, and R 3 is a hydrocarbon group having 1 to 12 carbon atoms.)
請求項18記載の触媒成分が含まれたことを特徴とするα−オレフィンの重合又は共重合用触媒。A catalyst for polymerization or copolymerization of an α-olefin, which comprises the catalyst component according to claim 18. [A]マグネシウム、チタン、ハロゲン元素及び電子供与体を必須とする触媒固体成分、[B]有機アルミニウム化合物成分、[C]請求項18記載の触媒成分からなるα−オレフィンの重合又は共重合用触媒。[A] For the polymerization or copolymerization of an α-olefin comprising a catalyst solid component containing magnesium, titanium, a halogen element and an electron donor as an essential component, [B] an organoaluminum compound component, and [C] a catalyst component according to claim 18. catalyst. 前記化17で示されるトリアルコキシハロシランと化18で示されるジアルキルアミンとの反応混合物は、単離精製することなく用いることを特徴とする請求項19乃至20いずれか記載のα−オレフィンの重合又は共重合用触媒。The polymerization of α-olefin according to any one of claims 19 to 20, characterized in that the reaction mixture of the trialkoxyhalosilane represented by Chemical formula 17 and the dialkylamine represented by Chemical formula 18 is used without isolation and purification. Or a catalyst for copolymerization. 請求項19乃至21いずれか記載の触媒の存在下にα−オレフィンを重合又は共重合することを特徴とするα−オレフィンの重合方法。A method for polymerizing an α-olefin, which comprises polymerizing or copolymerizing an α-olefin in the presence of the catalyst according to any one of claims 19 to 21.
JP2005513855A 2003-09-08 2004-09-03 Trialkoxyhalosilane production method and alkoxy (dialkylamino) silane production method, α-olefin polymerization or copolymerization catalyst used for α-olefin polymerization or copolymerization, its catalyst component and its catalyst Polymerization method of α-olefin Active JP3861923B2 (en)

Applications Claiming Priority (13)

Application Number Priority Date Filing Date Title
JP2003315705 2003-09-08
JP2003315705 2003-09-08
JP2003417477 2003-12-16
JP2003417477 2003-12-16
JP2004055611 2004-03-01
JP2004055611 2004-03-01
JP2004055610 2004-03-01
JP2004055610 2004-03-01
JP2004070498 2004-03-12
JP2004070498 2004-03-12
JP2004242314 2004-08-23
JP2004242314 2004-08-23
PCT/JP2004/012839 WO2005026180A1 (en) 2003-09-08 2004-09-03 PROCESS FOR PRODUCTION OF TRIALKOXYHALOSILANES, PROCESS FOR PRODUCTION OF ALKOXY(DIALKYLAMINO)SILANES, CATALYSTS FOR (CO)POLYMERIZATION OF α-OLEFINS, CATALYST COMPONENTS THEREFOR, AND PROCESSES FOR POLYMERIZATION OF α-OLEFINS WITH THE CATALYSTS

Publications (2)

Publication Number Publication Date
JPWO2005026180A1 true JPWO2005026180A1 (en) 2006-11-16
JP3861923B2 JP3861923B2 (en) 2006-12-27

Family

ID=34317786

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005513855A Active JP3861923B2 (en) 2003-09-08 2004-09-03 Trialkoxyhalosilane production method and alkoxy (dialkylamino) silane production method, α-olefin polymerization or copolymerization catalyst used for α-olefin polymerization or copolymerization, its catalyst component and its catalyst Polymerization method of α-olefin

Country Status (7)

Country Link
US (3) US20060258825A1 (en)
EP (1) EP1671977B1 (en)
JP (1) JP3861923B2 (en)
KR (1) KR101088323B1 (en)
CN (1) CN1849326B (en)
BR (1) BRPI0414210B1 (en)
WO (1) WO2005026180A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007146032A (en) * 2005-11-29 2007-06-14 Prime Polymer:Kk Process for producing polyolefin
US7540788B2 (en) * 2007-01-05 2009-06-02 Apple Inc. Backward compatible connector system
JP5540776B2 (en) * 2010-03-05 2014-07-02 セントラル硝子株式会社 Method for producing difluoroacetic acid ester
EP2805959A1 (en) * 2012-03-15 2014-11-26 Dow Corning Corporation Alternative methods for the synthesis of organosilicon compounds
CN111295399B (en) 2017-11-06 2022-09-06 埃克森美孚化学专利公司 Propylene-based impact copolymers and process and apparatus for producing

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05310751A (en) * 1992-05-06 1993-11-22 Denki Kagaku Kogyo Kk Production of halogenated alkoxysilane
JPH083215A (en) * 1994-04-22 1996-01-09 Ube Ind Ltd Method for polymerizing alpha-olefin
JPH08143620A (en) * 1994-11-22 1996-06-04 Ube Ind Ltd Polymerization of alpha-olefin
JPH0940714A (en) * 1995-07-28 1997-02-10 Ube Ind Ltd Aminoalkoxysilane

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1209255B (en) 1980-08-13 1989-07-16 Montedison Spa CATALYSTS FOR THE POLYMERIZATION OF OLEFINE.
US4491669A (en) * 1980-11-12 1985-01-01 Petrarch Systems Inc. Mixed alkoxyaminosilanes, methods of making same and vulcanizing silicons prepared therefrom
JPS5883016A (en) 1981-11-13 1983-05-18 Mitsui Petrochem Ind Ltd Production of propylene block copolymer
JPS5958010A (en) 1982-09-29 1984-04-03 Nippon Oil Co Ltd Preparation of polyolefin
JPS6044507A (en) 1983-08-23 1985-03-09 Toho Titanium Co Ltd Catalytic components and catalyst thereof for olefin polymerization
JPH0822890B2 (en) 1985-07-09 1996-03-06 三菱化学株式会社 Method for producing propylene polymer
US4855473A (en) 1986-05-27 1989-08-08 Bayer Aktiengesellschaft Process for the preparation of organooxychlorosilanes
JP2537506B2 (en) 1987-03-13 1996-09-25 三井石油化学工業株式会社 Olefin Polymerization Method
JPS63259807A (en) 1987-04-16 1988-10-26 Sharp Corp Production of magnetic head
JP2723137B2 (en) 1988-06-17 1998-03-09 三井化学株式会社 Olefin polymerization method and olefin polymerization catalyst
JP2984363B2 (en) 1990-11-30 1999-11-29 三井化学株式会社 Method for producing polypropylene, polypropylene, polypropylene composition, and uses thereof
JPH04370103A (en) 1991-06-18 1992-12-22 Tonen Corp Production of polypropylene
JPH08120021A (en) 1994-05-24 1996-05-14 Ube Ind Ltd Process for polymerizing alpha-olefin
JPH08100019A (en) 1994-09-29 1996-04-16 Mitsubishi Chem Corp Catalyst for olefin polymerization
JPH08143621A (en) 1994-11-22 1996-06-04 Ube Ind Ltd Polymerization of alpha-olefin
JPH08157519A (en) 1994-12-01 1996-06-18 Mitsubishi Chem Corp Olefin polymerization catalyst
JPH08231663A (en) 1995-02-28 1996-09-10 Ube Ind Ltd Preparation of propylene block copolymer
JP2000001493A (en) * 1998-06-12 2000-01-07 Ube Ind Ltd Production of aminoalkoxysilane

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05310751A (en) * 1992-05-06 1993-11-22 Denki Kagaku Kogyo Kk Production of halogenated alkoxysilane
JPH083215A (en) * 1994-04-22 1996-01-09 Ube Ind Ltd Method for polymerizing alpha-olefin
JPH08143620A (en) * 1994-11-22 1996-06-04 Ube Ind Ltd Polymerization of alpha-olefin
JPH0940714A (en) * 1995-07-28 1997-02-10 Ube Ind Ltd Aminoalkoxysilane

Also Published As

Publication number Publication date
CN1849326B (en) 2011-02-16
EP1671977B1 (en) 2017-04-26
US7396950B2 (en) 2008-07-08
WO2005026180A1 (en) 2005-03-24
KR20060066739A (en) 2006-06-16
US20060258825A1 (en) 2006-11-16
EP1671977A4 (en) 2009-07-01
US7396951B2 (en) 2008-07-08
BRPI0414210B1 (en) 2014-09-02
JP3861923B2 (en) 2006-12-27
BRPI0414210A (en) 2006-10-31
US20070255067A1 (en) 2007-11-01
KR101088323B1 (en) 2011-12-01
CN1849326A (en) 2006-10-18
EP1671977A1 (en) 2006-06-21
US20070255068A1 (en) 2007-11-01

Similar Documents

Publication Publication Date Title
JP3786138B2 (en) α-Olefin Polymerization or Copolymerization Catalyst Used for α-Olefin Polymerization or Copolymerization, Catalyst Component, and α-Olefin Polymerization Method Using the Catalyst
EP1533322B1 (en) Solid catalyst component for olefin polymerization and catalyst
JPWO2006129773A1 (en) Aminosilane compound, catalyst component and catalyst for olefin polymerization, and method for producing olefin polymer using the same
US7396950B2 (en) Process for production of trialkoxyhalosilanes
CN108148153B (en) Solid catalyst and method for preparing propylene polymer or copolymer using the same
US7619048B2 (en) Method for producing propylene polymer using alkoxysilane compound containing trialkysilyl group in molecular structure
JP3443990B2 (en) α-Olefin polymerization method
JP3752090B2 (en) Polypropylene production method
JPH10292008A (en) Process for producing alpha-olefin
JP2006028312A (en) CYCLIC AMINOSILANE, CATALYST FOR POLYMERIZATION OR COPOLYMERIZATION OF alpha-OLEFIN, AND METHOD FOR POLYMERIZING alpha-OLEFIN
JP2005120332A (en) Catalyst for use in (co)polymerization of alpha-olefin, its catalyst component and method for polymerization of alpha-olefin
JP2004315742A (en) Catalyst for alfaolefin polymerization or copolymerization, catalyst component thereof and method for producing alfaolefin polymer or copolymer
JP2008094764A (en) Cyclic aminosilane, polymerization catalyst and method of polymerization
JP2006131915A (en) alpha-OLEFIN POLYMER
JP3540578B2 (en) α-Olefin polymerization method
JP3697011B2 (en) Propylene polymer
JP3365920B2 (en) α-Olefin polymerization method
JP3752074B2 (en) Method for polymerizing α-olefin
JPH06815B2 (en) Method for producing propylene polymer
JP4947622B2 (en) Olefin polymerization catalyst and process for producing olefin polymer using the same
JP2775501B2 (en) Propylene-silicon compound random copolymer and method for producing the same
JPH10231316A (en) Polymerization of alpha-olefin
JP3913916B2 (en) Polymerization method of organosilicon compound and α-olefin
JP2001247617A (en) Process for polymerizing alpha-olefin and alpha-olefin polymer produced thereby
JP2009203358A (en) ORGANOSILICON COMPOUND AND METHOD FOR POLYMERIZING alpha-OLEFIN BY USING THE SAME

Legal Events

Date Code Title Description
A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20060821

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060905

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060918

R150 Certificate of patent or registration of utility model

Ref document number: 3861923

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101006

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101006

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111006

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111006

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121006

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121006

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20241006

Year of fee payment: 18

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350