JPWO2004096468A1 - Composite rod, manufacturing method thereof, contact tip for arc welding and resistance welding electrode comprising the composite rod - Google Patents

Composite rod, manufacturing method thereof, contact tip for arc welding and resistance welding electrode comprising the composite rod Download PDF

Info

Publication number
JPWO2004096468A1
JPWO2004096468A1 JP2004571302A JP2004571302A JPWO2004096468A1 JP WO2004096468 A1 JPWO2004096468 A1 JP WO2004096468A1 JP 2004571302 A JP2004571302 A JP 2004571302A JP 2004571302 A JP2004571302 A JP 2004571302A JP WO2004096468 A1 JPWO2004096468 A1 JP WO2004096468A1
Authority
JP
Japan
Prior art keywords
copper
copper alloy
composite rod
composite
rod
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004571302A
Other languages
Japanese (ja)
Inventor
毅 伊勢島
毅 伊勢島
Original Assignee
関西パイプ工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 関西パイプ工業株式会社 filed Critical 関西パイプ工業株式会社
Publication of JPWO2004096468A1 publication Critical patent/JPWO2004096468A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0205Non-consumable electrodes; C-electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/06Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools

Abstract

本発明による複合棒は、アーク溶接用コンタクトチップや抵抗溶接用電極の材料として好適に用いられるものであって、少なくとも外皮部を除いた内側部分に分散強化銅合金部を有する芯材を、銅または銅合金よりなる外管材に挿入して、これらを引抜き加工することにより形成されており、棒全体の径に対する分散強化銅合金部の径の比が0.1〜0.49となされている。この複合棒によれば、分散強化銅合金部の占める割合が、アーク溶接用コンタクトチップや抵抗溶接用電極に加工された場合に要求される性能を維持しうる範囲において最小限となされているので、従来のアルミナ分散銅棒と比べて大幅にコストを下げることができる。The composite rod according to the present invention is suitably used as a material for arc welding contact tips and resistance welding electrodes, and at least a core material having a dispersion-strengthened copper alloy portion on the inner side excluding the outer skin portion is made of copper. Or it inserts in the outer pipe material which consists of copper alloys, and these are formed by drawing, The ratio of the diameter of the dispersion strengthened copper alloy part with respect to the diameter of the whole stick | rod is set to 0.1-0.49. . According to this composite rod, the proportion of the dispersion strengthened copper alloy portion is minimized within a range that can maintain the performance required when processed into a contact tip for arc welding or a resistance welding electrode. Compared with the conventional alumina-dispersed copper rod, the cost can be greatly reduced.

Description

本発明は、導電性、耐熱性、耐摩耗性および耐溶着性に優れ、特にアーク溶接用コンタクトチップや抵抗溶接用電極といった導電用の材料として好適に用いられる複合棒に関する。  The present invention relates to a composite rod that is excellent in conductivity, heat resistance, wear resistance, and welding resistance, and that is particularly suitable for use as a conductive material such as a contact tip for arc welding and a resistance welding electrode.

MIG溶接、MAG溶接等のアーク溶接に用いられるコンタクトチップの材料には、導電性および耐熱性が要求され、これらに適合するものとしてクロム銅、ジルコニウム銅、ジルコニウムクロム銅等の銅合金が一般に用いられてきた。
また、スポット溶接等の抵抗溶接に用いられる電極の材料も、導電性および耐熱性が必要とされることから、コンタクトチップの場合と同様に、クロム銅、ジルコニウム銅、ジルコニウムクロム銅等が用いられてきた。
しかしながら、生産性の向上や被溶接材の多様化に伴い、コンタクトチップや電極の使用条件がより過酷なものとなり、上記銅合金よりなる従来のものでは、耐摩耗性や耐溶着性等の点において、満足する結果を得られない状況になってきた。
そこで、近年、コンタクトチップや電極の材料として、アルミナ分散強化銅が用いられるようになった。アルミナ分散強化銅は、銅マトリックス中にアルミナの微細な粒子を分散させたものであって、通常、内部酸化法によって形成される。コンタクトチップや電極の場合、まず、アルミナ分散強化銅棒を形成し、これに所要の加工を施すことによって製造されるのが一般的である。アルミナ分散強化銅をつくる場合、銅マトリックス中における酸素の拡散速度が遅いため、マトリックスである銅を棒状に成形してから内部酸化処理を行うと、棒全体を内部酸化させるのに非常に長い時間がかかってしまうことになる。
そこで、例えば特開平1−263203号公報に開示されているように、表面積の大きいアルミニウム含有銅粉末を内部酸化させてアルミナ分散銅粉末を作製し、これを無酸素銅よりなる容器に封入して、熱間押出加工することにより、アルミナ分散銅合金棒を製造することが通常行われている。
しかしながら、上記のアルミナ分散銅合金棒の場合、生産性が低く、製造コストが高くなってしまうという問題があった。
本発明の目的は、アーク溶接用コンタクトチップや抵抗溶接用電極等の材料として好適に用いられる棒を、より低コストで提供できるようにすることにある。
Contact tip materials used for arc welding such as MIG welding and MAG welding are required to have electrical conductivity and heat resistance, and copper alloys such as chrome copper, zirconium copper, zirconium chrome copper and the like are generally used to meet these requirements. Has been.
In addition, since the electrode material used for resistance welding such as spot welding is also required to have conductivity and heat resistance, chrome copper, zirconium copper, zirconium chrome copper, etc. are used as in the case of contact tips. I came.
However, with the improvement of productivity and the diversification of materials to be welded, the use conditions of contact tips and electrodes become more severe, and the conventional one made of the above copper alloy has points such as wear resistance and welding resistance. However, it has become a situation where satisfactory results cannot be obtained.
In recent years, therefore, alumina dispersion strengthened copper has been used as a material for contact chips and electrodes. Alumina dispersion-strengthened copper is obtained by dispersing fine particles of alumina in a copper matrix, and is usually formed by an internal oxidation method. In the case of a contact tip or an electrode, it is generally manufactured by first forming an alumina dispersion-strengthened copper rod and subjecting it to a required processing. When making alumina dispersion-strengthened copper, the diffusion rate of oxygen in the copper matrix is slow, so if you form the matrix copper into a rod shape and then perform internal oxidation, it takes a very long time to internally oxidize the entire rod. Will be applied.
Therefore, for example, as disclosed in JP-A-1-263203, an aluminum-containing copper powder having a large surface area is internally oxidized to produce an alumina-dispersed copper powder, and this is enclosed in a container made of oxygen-free copper. In general, an alumina-dispersed copper alloy rod is manufactured by hot extrusion.
However, in the case of the above-mentioned alumina-dispersed copper alloy rod, there is a problem that productivity is low and manufacturing cost is high.
An object of the present invention is to provide a rod that is suitably used as a material for an arc welding contact tip, a resistance welding electrode, or the like at a lower cost.

従来のアルミナ分散銅棒の場合、その外皮部に無酸素銅部が形成され、残りの内側部分にアルミナ分散銅合金部が形成される。特開平1−263203号公報には、棒全体の径に対するアルミナ分散銅合金部の径の比を0.5〜0.94とすることが記載されている。
ところが、コンタクトチップや電極において、耐摩耗性や耐溶着性等に優れたアルミナ分散銅合金によって構成される必要があるのは、通常、さらに内側の中心部分のみである。
また、従来のアルミナ分散銅棒は、その製法上、アルミナ分散銅合金部の占める割合をあまり小さくすることができず、棒全体の径に対するアルミナ分散銅合金部の径の比が0.94程度かそれよりもやや大きいものとなされているのが実情である。
そこで、本発明者は、分散強化銅合金部が占める割合を必要最小限としうる複合棒の研究開発に注力し、本発明に至ったものである。
即ち、本発明による複合棒は、少なくとも外皮部を除いた内側部分に分散強化銅合金部を有する芯材を、銅または銅合金よりなる外管材に挿入して、これらを引抜き加工することにより形成されており、棒全体の径に対する分散強化銅合金部の径の比が0.1〜0.49となされているものである。
上記の芯材および外管材よりなる複合棒において、棒全体の径に対する分散強化銅合金部の径の比が0.1未満であると、アーク溶接用コンタクトチップや抵抗溶接用電極に加工された際に所期の性能を発揮できない恐れがある。また、上記比が0.49よりも大きくなると、アーク溶接用コンタクトチップや抵抗溶接用電極に加工された際の性能は変わらないにもかかわらず、分散強化銅合金部の占める割合が多くなって、コストの増大を招いてしまう。上記比は、より好ましくは、0.15〜0.4となされる。
したがって、本発明の複合棒によれば、分散強化銅合金部の占める割合が、アーク溶接用コンタクトチップや抵抗溶接用電極に加工された場合に要求される性能を維持しうる範囲において最小限のものとなされているので、従来のアルミナ分散銅合金棒と比べて大幅にコストを下げることができる。
本発明による複合棒において、分散強化銅合金部は、銅マトリックス中に、例えば、アルミナ、ジルコニア、トリア、イットリア、ベリリアおよびボロニアのうち少なくともいずれか1つの酸化物を分散させたものである。これらの酸化物は、マトリックスである銅よりも硬く、かつ酸化物生成エネルギーが低い酸化物である。なお、酸化物以外に、ホウ化物や炭化物を、銅マトリックス中に分散させることによっても、同様の性質を有する分散強化銅合金を得ることが可能である。
上記の場合において、分散強化銅合金部中の酸化物の量が0.15〜1質量%であるのが好ましい。酸化物の量が0.15質量%未満であると、強度が不足する。また、酸化物の量が1質量%よりも大きくなると、切削や鍛造等の加工が困難になる。
本発明による複合棒において、芯材は、通常、内部酸化法によって得られた分散強化銅合金粉末を銅または銅合金よりなる容器に封入してこれらを熱間押出加工することにより形成されており、分散強化銅合金部が、芯材のうち銅または銅合金よりなる外皮部を除いた内側部分に形成されている。容器を構成する銅または銅合金としては、例えば、無酸素銅、燐脱酸銅、クロム銅、ジルコニウム銅、ジルコニウムクロム銅等が用いられ、これが芯材の外皮部となされる。
本発明による複合棒において、外管材は、通常、純銅(無酸素銅、燐脱酸銅等)、クロム銅、ジルコニウム銅およびジルコニウムクロム銅のうちいずれか1つの溶製材よりなる。
また、本発明には、上記複合棒の製造方法が含まれる。この製造方法は、内部酸化法によって得られた分散強化銅合金粉末を銅または銅合金よりなる容器に封入してこれらを熱間押出加工することにより形成された芯材を、銅または銅合金の溶製材よりなる外管材に挿入して、これらを引抜き加工するものである。
上記の製造方法によれば、分散強化銅合金部の占める割合を必要最小限とした複合棒を容易に得ることができる。
本発明による複合棒の製造方法において、引抜き加工された芯材と外管材との界面を金属結合するために焼鈍を行うのが好ましい。
上記の場合、焼鈍を、真空または弱い還元雰囲気中、400〜700℃で、0.25〜24時間行うのが好ましい。また、焼鈍は、引抜き加工度が20%以上となった時点で開始するのが好ましい。
本発明による複合棒の製造方法において、容器と外管材の材質を同じにする場合がある。
上記の場合、引抜き加工された芯材と外管材の界面の結合強度が高くなり、また、焼鈍後に分散強化銅合金部以外の部分の性質が均一になるので、鍛造等の加工に有利である。
本発明には、上記複合棒から形成されているアーク溶接用コンタクトチップが含まれる。
コンタクトチップは、通常、材料となる棒を所要の外観形状に切削加工し、かつ中心部に細孔をあけることによって形成される。この細孔の中に溶接ワイヤが通されて、通電されるため、細孔の周囲に摩耗やスパッタによる変質が生じることがある。本発明によるコンタクトチップの場合、細孔の周囲のみが、上記のような変質を生じ難い分散強化銅合金部から形成される。したがって、本発明のコンタクトチップによれば、アルミナ分散銅合金棒から形成されている従来のコンタクトチップとほぼ同等の導電性、耐熱性および耐摩耗性を備えているにもかかわらず、大幅にコストを下げることができる。
さらに、本発明には、上記複合棒から形成されている抵抗溶接用電極が含まれる。
電極は、通常、材料となる棒に所要の鍛造および/または切削を施すことによって形成される。特に、自動車の組立ライン等で用いられる電極は、電流強度と加圧力を向上させるために、先端部が細くなされており、この先端部が溶接時に最も損耗し易い。本発明によるコンタクトチップの場合、先端部のみが、上記のような損耗が生じ難い分散強化銅合金部から形成される。したがって、本発明の抵抗溶接用電極によれば、溶接性とコストを両立させることができる。
In the case of a conventional alumina-dispersed copper rod, an oxygen-free copper portion is formed in the outer skin portion, and an alumina-dispersed copper alloy portion is formed in the remaining inner portion. Japanese Patent Laid-Open No. 1-263203 describes that the ratio of the diameter of the alumina-dispersed copper alloy part to the diameter of the entire rod is 0.5 to 0.94.
However, in the contact tip or electrode, it is usually only the inner central portion that needs to be made of an alumina-dispersed copper alloy having excellent wear resistance and welding resistance.
Moreover, the conventional alumina-dispersed copper rod cannot make the proportion of the alumina-dispersed copper alloy part so small due to its manufacturing method, and the ratio of the diameter of the alumina-dispersed copper alloy part to the diameter of the whole bar is about 0.94. The reality is that it is a little larger than that.
Therefore, the present inventor has focused on the research and development of a composite bar capable of minimizing the ratio of the dispersion strengthened copper alloy part to reach the present invention.
That is, the composite rod according to the present invention is formed by inserting a core material having a dispersion-strengthened copper alloy portion at least in the inner portion excluding the outer skin portion into an outer tube material made of copper or copper alloy, and drawing them. The ratio of the diameter of the dispersion strengthened copper alloy portion to the diameter of the entire rod is 0.1 to 0.49.
When the ratio of the diameter of the dispersion strengthened copper alloy part to the diameter of the whole rod is less than 0.1 in the composite rod made of the core material and the outer tube material, the composite rod is processed into an arc welding contact tip or a resistance welding electrode. In some cases, the expected performance may not be achieved. Further, when the ratio is larger than 0.49, the proportion of the dispersion strengthened copper alloy portion increases although the performance when processed into the contact tip for arc welding or the electrode for resistance welding does not change. Incurs an increase in cost. The ratio is more preferably 0.15 to 0.4.
Therefore, according to the composite rod of the present invention, the proportion of the dispersion strengthened copper alloy portion is minimized within a range in which the performance required when processed into a contact tip for arc welding or an electrode for resistance welding can be maintained. Therefore, the cost can be greatly reduced as compared with the conventional alumina-dispersed copper alloy rod.
In the composite rod according to the present invention, the dispersion strengthened copper alloy part is obtained by dispersing, for example, an oxide of at least one of alumina, zirconia, tria, yttria, beryllia and boronia in a copper matrix. These oxides are oxides that are harder than the matrix copper and have a lower oxide formation energy. In addition, it is possible to obtain a dispersion strengthened copper alloy having similar properties by dispersing boride or carbide in the copper matrix in addition to the oxide.
In said case, it is preferable that the quantity of the oxide in a dispersion strengthened copper alloy part is 0.15-1 mass%. When the amount of the oxide is less than 0.15% by mass, the strength is insufficient. Further, when the amount of oxide is larger than 1% by mass, processing such as cutting and forging becomes difficult.
In the composite rod according to the present invention, the core is usually formed by encapsulating a dispersion-strengthened copper alloy powder obtained by an internal oxidation method in a container made of copper or a copper alloy and hot extruding them. The dispersion strengthened copper alloy part is formed on the inner part of the core material excluding the outer skin part made of copper or copper alloy. As the copper or copper alloy constituting the container, for example, oxygen-free copper, phosphorous deoxidized copper, chromium copper, zirconium copper, zirconium chromium copper, or the like is used, and this is used as the outer skin portion of the core material.
In the composite rod according to the present invention, the outer tube material is usually made of any one of melted materials of pure copper (oxygen-free copper, phosphorous deoxidized copper, etc.), chromium copper, zirconium copper and zirconium chromium copper.
The present invention also includes a method for producing the above composite rod. In this production method, a core material formed by encapsulating a dispersion strengthened copper alloy powder obtained by an internal oxidation method in a container made of copper or a copper alloy and hot-extruding them is made of copper or a copper alloy. They are inserted into an outer tube made of melted material, and these are drawn.
According to the above manufacturing method, a composite rod in which the proportion of the dispersion strengthened copper alloy portion is minimized can be easily obtained.
In the method for manufacturing a composite bar according to the present invention, it is preferable to perform annealing in order to metal-bond the interface between the drawn core material and the outer tube material.
In the above case, the annealing is preferably performed at 400 to 700 ° C. in a vacuum or a weak reducing atmosphere for 0.25 to 24 hours. Moreover, it is preferable to start the annealing when the drawing degree reaches 20% or more.
In the composite rod manufacturing method according to the present invention, the container and the outer tube material may be the same.
In the above case, the bond strength at the interface between the drawn core material and the outer tube material becomes high, and the properties of the portions other than the dispersion strengthened copper alloy portion become uniform after annealing, which is advantageous for processing such as forging. .
The present invention includes a contact tip for arc welding formed from the composite rod.
The contact tip is usually formed by cutting a material rod into a required external shape and making a hole in the center. Since a welding wire is passed through the pores and energized, deterioration due to wear or spatter may occur around the pores. In the case of the contact tip according to the present invention, only the periphery of the pores is formed from the dispersion strengthened copper alloy part which hardly causes the alteration as described above. Therefore, according to the contact tip of the present invention, although it has almost the same conductivity, heat resistance and wear resistance as a conventional contact tip formed from an alumina-dispersed copper alloy rod, the cost is greatly reduced. Can be lowered.
Furthermore, the present invention includes a resistance welding electrode formed from the composite rod.
The electrode is usually formed by subjecting a material rod to the required forging and / or cutting. In particular, an electrode used in an automobile assembly line or the like has a thin tip to improve current strength and pressure, and this tip is most easily worn during welding. In the case of the contact chip according to the present invention, only the tip portion is formed from the dispersion strengthened copper alloy portion which is less likely to be worn as described above. Therefore, according to the resistance welding electrode of the present invention, both weldability and cost can be achieved.

図1は、本発明による複合棒の材料として用いられれる芯材および外管材の横断面図である。
図2は、本発明による複合棒の横断面図である。
FIG. 1 is a cross-sectional view of a core material and an outer tube material used as a material for a composite rod according to the present invention.
FIG. 2 is a cross-sectional view of a composite bar according to the present invention.

平均粒径50μmのCu−0.3mass%Al合金粉末を水アトマイズ法により作製した。このCu−Al合金粉末に、平均粒径5μmの亜酸化銅粉末を、アルミニウムが酸化する化学量論量に相当するように混合した。そして、得られた混合粉末を、アルゴンガス雰囲気中、850℃で8時間加熱保持し、さらに、水素ガス中、500℃で3時間加熱保持した。こうして、銅マトリックス中にアルミナが分散したアルミナ分散強化銅粉末を作製した。
次に、アルミナ分散強化銅粉末を、無酸素銅よりなる外径250mm×内径235mmの蓋付き円筒容器に封入して、800℃で直径30mmに水中押出加工し、さらにこれを引抜き加工して、直径6.5mmの棒状芯材を得た。図1(a)に示すように、芯材(1)は、その外皮部に無酸素胴部(2)を有し、残りの内側部分がアルミナ分散強化銅合金部(3)となされている。アルミナ分散強化銅合金部(3)におけるアルミナの含有量は、約0.5mass%であった。
これとは別に、ジルコニウムクロム銅合金を溶解・鋳造し、得られた鋳塊を熱間押出、圧延、引抜き加工することにより、外径25mm×内径7mmの外管材(4)を作製した(図1(b)参照)。
そして、外管材(4)に芯材(1)を挿入して、これらを直径12mmに引抜き加工した後、弱い還元ガス雰囲気(H+COが4%含まれる不活性ガス)中、500℃で1時間焼鈍した。こうして、図2に示すような複合棒(5)を得た。
上記の複合棒(5)において、アルミナ分散強化銅合金部(20)は、その直径(B)が3mmであって、棒(5)全体の外径(A)(12mm)に対して25%の割合を占めている。アルミナ分散強化銅合金部(20)の周囲には、厚さ0.2mmの無酸素銅部(30)を介して、ジルコニウムクロム銅部(40)が形成されている。
(比較例1)
実施例1の工程中で作製したアルミナ分散強化銅粉末と同じものを、無酸素銅よりなる外径250mm×内径235mmの蓋付き円筒容器に封入して、800℃で直径30mmに水中押出加工し、さらにこれを引抜き加工して、直径12mmのアルミナ分散強化銅棒を得た。
上記のアルミナ分散強化銅棒にあっては、アルミナ分散強化銅合金部の直径が11.3mmであり、これは、棒全体の外径(12mm)に対して94%の割合を占めている。
実施例1の複合棒(5)および比較例1のアルミナ分散強化銅棒の製造コストを算出してこれらを比較したところ、実施例1では比較例1の約2分の1のコストしかかかっていなかった。
また、実施例1の複合棒(5)および比較例1のアルミナ分散強化銅棒について、導電率および硬さを測定した。
実施例1の複合棒(5)の導電率は、アルミナ分散強化銅合金部において80%IACSであった。また、複合棒(5)の硬さは、アルミナ分散強化銅合金部(20)において165HVであり、ジルコニウムクロム銅部(40)において170HVであった。
一方、比較例1のアルミナ分散強化銅棒の導電率は、アルミナ分散強化銅合金部において80%IACSであった。また、上記棒の硬さは、アルミナ分散強化銅合金部において165HVであり、外皮部の無酸素銅部において90HVであった。
以上から明らかなように、本発明による複合棒(5)(実施例1)は、従来のアルミナ分散強化銅棒(比較例1)とほぼ同等の優れた導電率および耐摩耗性を有するにもかかわらず、約2分の1のコストで製造することができる。
Cu-0.3 mass% Al alloy powder having an average particle size of 50 μm was prepared by a water atomization method. To this Cu—Al alloy powder, a cuprous oxide powder having an average particle size of 5 μm was mixed so as to correspond to the stoichiometric amount of aluminum to be oxidized. The obtained mixed powder was heated and held at 850 ° C. for 8 hours in an argon gas atmosphere, and further heated and held at 500 ° C. for 3 hours in hydrogen gas. Thus, an alumina dispersion strengthened copper powder in which alumina was dispersed in a copper matrix was produced.
Next, the alumina dispersion-strengthened copper powder is enclosed in a cylindrical container with a lid made of oxygen-free copper having an outer diameter of 250 mm × inner diameter of 235 mm, extruded in water to a diameter of 30 mm at 800 ° C., and further drawn. A rod-shaped core material having a diameter of 6.5 mm was obtained. As shown to Fig.1 (a), the core material (1) has an oxygen-free body part (2) in the outer skin part, and the remaining inner part is made into the alumina dispersion strengthened copper alloy part (3). . The alumina content in the alumina dispersion strengthened copper alloy part (3) was about 0.5 mass%.
Separately, a zirconium chromium copper alloy was melted and cast, and the resulting ingot was hot extruded, rolled, and drawn to produce an outer tube (4) having an outer diameter of 25 mm × an inner diameter of 7 mm (see FIG. 1 (b)).
Then, after inserting the core material (1) into the outer tube material (4) and drawing them to a diameter of 12 mm, in a weak reducing gas atmosphere (inert gas containing 4% of H + CO) at 500 ° C. for 1 hour. Annealed. Thus, a composite rod (5) as shown in FIG. 2 was obtained.
In the composite rod (5), the alumina dispersion strengthened copper alloy part (20) has a diameter (B) of 3 mm, and is 25% of the outer diameter (A) (12 mm) of the entire rod (5). Accounted for. A zirconium chromium copper part (40) is formed around the alumina dispersion strengthened copper alloy part (20) through an oxygen-free copper part (30) having a thickness of 0.2 mm.
(Comparative Example 1)
The same alumina dispersion-strengthened copper powder produced in the process of Example 1 was sealed in a cylindrical container with a lid having an outer diameter of 250 mm and an inner diameter of 235 mm made of oxygen-free copper, and extruded in water to a diameter of 30 mm at 800 ° C. This was further drawn to obtain an alumina dispersion-strengthened copper rod having a diameter of 12 mm.
In the alumina dispersion strengthened copper bar, the diameter of the alumina dispersion strengthened copper alloy part is 11.3 mm, which accounts for 94% of the entire outer diameter (12 mm) of the bar.
The production costs of the composite rod (5) of Example 1 and the alumina dispersion strengthened copper rod of Comparative Example 1 were calculated and compared. As a result, in Example 1, the cost was only about half that of Comparative Example 1. There wasn't.
Further, the electrical conductivity and hardness of the composite rod (5) of Example 1 and the alumina dispersion strengthened copper rod of Comparative Example 1 were measured.
The conductivity of the composite rod (5) of Example 1 was 80% IACS in the alumina dispersion strengthened copper alloy part. The composite rod (5) had a hardness of 165 HV in the alumina dispersion strengthened copper alloy part (20) and 170 HV in the zirconium chromium copper part (40).
On the other hand, the conductivity of the alumina dispersion strengthened copper rod of Comparative Example 1 was 80% IACS in the alumina dispersion strengthened copper alloy part. The hardness of the rod was 165 HV in the alumina dispersion strengthened copper alloy part, and 90 HV in the oxygen-free copper part of the outer skin part.
As is apparent from the above, the composite rod (5) (Example 1) according to the present invention has excellent electrical conductivity and wear resistance substantially equal to those of the conventional alumina dispersion strengthened copper rod (Comparative Example 1). Regardless, it can be manufactured at about half the cost.

実施例1で作製した複合棒(5)に所要の切削加工を施し、さらに中心部にドリルで直径1.2mmの孔をあけて、MIG溶接用コンタクトチップを作製した。
(比較例2)
比較例1で作製したアルミナ分散強化銅棒に、実施例2と同様の切削加工および孔あけ加工を施し、MIG溶接用コンタクトチップを作製した。
(比較例3)
ジルコニウムクロム銅の溶製材よりなる直径12mmの棒に、実施例2と同様の切削加工および孔あけ加工を施し、MIG溶接用コンタクトチップを作製した。
実施例2ならびに比較例2および3のコンタクトチップを使用して軟鋼板のMIG溶接を行った場合の溶接寿命(連続して溶接できる時間)を測定した。評価は、軟鋼板(板厚5mm)のドラムを回転させ、トーチをドラムの長さ方向に少しずつ移動させながらビードを置いていき、余盛が連続して形成されなくなるまでの時間によって行った。
実施例2のコンタクトチップを使用した場合の溶接寿命は、比較例2のコンタクトチップを使用した場合のそれとほぼ同等であり、比較例3のコンタクトチップを使用した場合の溶接寿命の約4倍であった。
The composite rod (5) produced in Example 1 was subjected to necessary cutting, and a hole with a diameter of 1.2 mm was drilled at the center to produce a contact tip for MIG welding.
(Comparative Example 2)
The alumina dispersion-strengthened copper rod produced in Comparative Example 1 was subjected to the same cutting and drilling as in Example 2 to produce a contact tip for MIG welding.
(Comparative Example 3)
A 12 mm diameter rod made of a zirconium chrome copper melt was subjected to the same cutting and drilling as in Example 2 to produce a contact tip for MIG welding.
Using the contact tips of Example 2 and Comparative Examples 2 and 3, the welding life (time for continuous welding) when MIG welding of mild steel sheets was performed was measured. The evaluation was performed by rotating the drum of the mild steel plate (thickness 5 mm), placing the bead while moving the torch little by little in the length direction of the drum, and by the time until no extra filling was continuously formed. .
The welding life when the contact tip of Example 2 is used is almost the same as that when the contact tip of Comparative Example 2 is used, and is about four times the welding life when the contact tip of Comparative Example 3 is used. there were.

実施例1と同じ要領で作製した直径16mm(アルミナ分散強化合金部の直径7mm)の複合棒(5)を所要の形状に鍛造、切削して、抵抗スポット溶接用電極を作製した。電極の形状はCR(ドーム)形とし、先端の平坦部の直径を5mmとした。
(比較例4)
比較例1と同じ要領で作製した直径16mm(アルミナ分散強化合金部の直径15mm)のアルミナ分散強化銅棒に、実施例3と同様の加工を施し、抵抗スポット溶接用電極を作製した。
(比較例5)
ジルコニウムクロム銅の溶製材よりなる直径16mmの棒に、実施例3と同様の切削加工を施し、抵抗スポット溶接用電極を作製した。
実施例3ならびに比較例4および5の電極を使用して、亜鉛メッキ鋼板のスポット溶接を行った場合の電極寿命(打点数)を測定した。評価は、ナゲット(溶融部)径が4√t(t=板厚)を初めて下回った打点数にて行った。
実施例3の電極を使用した場合の電極寿命は、比較例4の電極を使用した場合のそれとほぼ同等であり、比較例5の電極を使用した場合の電極寿命の約2.5倍であった。
A composite rod (5) having a diameter of 16 mm (diameter of 7 mm of alumina dispersion strengthened alloy part) produced in the same manner as in Example 1 was forged and cut into a required shape to produce a resistance spot welding electrode. The shape of the electrode was a CR (dome) shape, and the diameter of the flat portion at the tip was 5 mm.
(Comparative Example 4)
The same processing as in Example 3 was performed on an alumina dispersion strengthened copper rod having a diameter of 16 mm (a diameter of 15 mm of the alumina dispersion strengthened alloy part) produced in the same manner as in Comparative Example 1 to produce a resistance spot welding electrode.
(Comparative Example 5)
A rod having a diameter of 16 mm made of a zirconium-chromium-copper material was cut in the same manner as in Example 3 to produce a resistance spot welding electrode.
Using the electrodes of Example 3 and Comparative Examples 4 and 5, the electrode life (number of hit points) when spot welding of the galvanized steel sheet was measured. The evaluation was performed with the number of hit points at which the nugget (melted part) diameter was below 4√t (t = plate thickness) for the first time.
The electrode life when the electrode of Example 3 is used is approximately the same as that when the electrode of Comparative Example 4 is used, and is approximately 2.5 times the electrode life when the electrode of Comparative Example 5 is used. It was.

容器の材質を外管材と同じジルコニウムクロム銅合金とした点を除いて、実施例1と同じ要領で複合棒を作製した。そして、この複合棒に実施例3と同様の鍛造、切削加工を施して、抵抗スポット溶接用電極を作製した。
実施例4における複合棒の加工性を実施例3と比較すると、実施例4の方が複合棒の加工、特に鍛造を容易に行うことができた。
A composite rod was produced in the same manner as in Example 1 except that the material of the container was the same zirconium chrome copper alloy as that of the outer tube material. The composite rod was subjected to forging and cutting similar to Example 3 to produce a resistance spot welding electrode.
Comparing the workability of the composite rod in Example 4 with that of Example 3, the composite rod in Example 4 could be processed more easily, especially forging.

以上の通り、本発明は、必要最小限の分散強化銅合金部を有する複合棒を提供するものであり、特に、アーク溶接用コンタクトチップ、抵抗溶接用電極等の導電用材料として、従来のアルミナ分散銅棒と同等の高性能を持つにもかかわらず、低コストで供給できる点において有用である。  As described above, the present invention provides a composite rod having a minimum required dispersion-strengthened copper alloy part, and in particular, a conventional alumina as a conductive material such as a contact tip for arc welding and an electrode for resistance welding. Despite having high performance equivalent to that of a dispersed copper rod, it is useful in that it can be supplied at a low cost.

Claims (13)

少なくとも外皮部を除いた内側部分に分散強化銅合金部を有する芯材を、銅または銅合金よりなる外管材に挿入して、これらを引抜き加工することにより形成されており、棒全体の径に対する分散強化銅合金部の径の比が0.1〜0.49となされている、複合棒。It is formed by inserting a core material having a dispersion strengthened copper alloy part in the inner part excluding at least the outer skin part into an outer tube material made of copper or copper alloy, and drawing them, and with respect to the diameter of the entire rod. A composite rod in which the ratio of the diameter of the dispersion strengthened copper alloy part is 0.1 to 0.49. 棒全体の径に対する分散強化銅合金部の径の比が0.15〜0.4となされている、請求項1記載の複合棒。The composite rod according to claim 1, wherein the ratio of the diameter of the dispersion strengthened copper alloy part to the diameter of the entire rod is 0.15 to 0.4. 分散強化銅合金部が、銅マトリックス中に、アルミナ、ジルコニア、トリア、イットリア、ベリリアおよびボロニアのうち少なくともいずれか1つの酸化物を分散させたものである、請求項1または2記載の複合棒。The composite rod according to claim 1 or 2, wherein the dispersion strengthened copper alloy part is obtained by dispersing at least one oxide of alumina, zirconia, tria, yttria, beryllia and boronia in a copper matrix. 分散強化銅合金部中の酸化物の量が0.15〜1質量%である、請求項3記載の複合棒。The composite rod according to claim 3, wherein the amount of oxide in the dispersion strengthened copper alloy part is 0.15 to 1% by mass. 芯材が、内部酸化法によって得られた分散強化銅合金粉末を銅または銅合金よりなる容器に封入してこれらを熱間押出加工することにより形成されており、分散強化銅合金部が、芯材のうち銅または銅合金よりなる外皮部を除いた内側部分に形成されている、請求項1〜4のいずれか1つに記載の複合棒。The core material is formed by enclosing the dispersion-strengthened copper alloy powder obtained by the internal oxidation method in a container made of copper or copper alloy and hot-extruding them. The composite stick | rod as described in any one of Claims 1-4 currently formed in the inner part except the outer skin part which consists of copper or a copper alloy among materials. 外管材が、純銅、クロム銅、ジルコニウム銅およびジルコニウムクロム銅のうちいずれか1つの溶製材よりなる、請求項1〜5のいずれか1つに記載の複合棒。The composite rod according to any one of claims 1 to 5, wherein the outer tube material is made of any one melted material of pure copper, chromium copper, zirconium copper and zirconium chromium copper. 請求項1記載の複合棒を製造する方法であって、内部酸化法によって得られた分散強化銅合金粉末を銅または銅合金よりなる容器に封入してこれらを熱間押出加工することにより形成された芯材を、銅または銅合金の溶製材よりなる外管材に挿入して、これらを引抜き加工する、複合棒の製造方法。A method for producing a composite rod according to claim 1, wherein the dispersion strengthened copper alloy powder obtained by the internal oxidation method is encapsulated in a container made of copper or copper alloy, and these are hot-extruded. A composite rod manufacturing method in which a core material is inserted into an outer tube material made of a copper or copper alloy melt, and these are drawn. 引抜き加工された芯材と外管材との界面を金属結合するために焼鈍を行う、請求項7記載の複合棒の製造方法。The manufacturing method of the composite stick | rod of Claim 7 which anneals in order to metal-bond the interface of the core material and outer tube | pipe material which were drawn. 焼鈍を、真空または弱い還元雰囲気中、400〜700℃で、0.25〜24時間行う、請求項8記載の複合棒の製造方法。The method for producing a composite rod according to claim 8, wherein the annealing is performed at 400 to 700 ° C in a vacuum or a weak reducing atmosphere for 0.25 to 24 hours. 焼鈍を、引抜き加工度が20%以上となった時点で開始する、請求項8または9記載の複合棒の製造方法。The method for producing a composite bar according to claim 8 or 9, wherein the annealing is started when the degree of drawing becomes 20% or more. 容器と外管材の材質を同じにする、請求項8〜10のいずれか1つに記載の複合棒の製造方法。The method for manufacturing a composite rod according to any one of claims 8 to 10, wherein the same material is used for the container and the outer tube material. 請求項1記載の複合棒から形成されている、アーク溶接用コンタクトチップ。A contact tip for arc welding, which is formed from the composite rod according to claim 1. 請求項1記載の複合棒から形成されている、抵抗溶接用電極。An electrode for resistance welding formed from the composite rod according to claim 1.
JP2004571302A 2003-04-30 2003-04-30 Composite rod, manufacturing method thereof, contact tip for arc welding and resistance welding electrode comprising the composite rod Pending JPWO2004096468A1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2003/005496 WO2004096468A1 (en) 2003-04-30 2003-04-30 Composite rod and production method therefor and arc welding contact tip and resistance welding electrode comprising the composite rod

Publications (1)

Publication Number Publication Date
JPWO2004096468A1 true JPWO2004096468A1 (en) 2006-07-13

Family

ID=33398129

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004571302A Pending JPWO2004096468A1 (en) 2003-04-30 2003-04-30 Composite rod, manufacturing method thereof, contact tip for arc welding and resistance welding electrode comprising the composite rod

Country Status (3)

Country Link
JP (1) JPWO2004096468A1 (en)
AU (1) AU2003235977A1 (en)
WO (1) WO2004096468A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008161929A (en) * 2007-01-05 2008-07-17 Tookin:Kk Composite material and method of manufacturing the same
EP3718665A4 (en) * 2017-11-28 2021-08-25 NGK Insulators, Ltd. Conductive end member and manufacturing method therefor
CN110029246B (en) * 2019-05-13 2021-07-09 大连理工大学 Preparation method of yttrium oxide dispersion strengthened copper alloy
CN111136400B (en) * 2020-02-26 2021-04-23 郑州大学 Stainless steel welding rod
WO2024068182A1 (en) * 2022-09-26 2024-04-04 Kjellberg-Stiftung Component such as a wearing part for an arc torch, in particular a plasma burner or plasma cutting torch, arc torch comprising same, and method of plasma cutting

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0097306B1 (en) * 1982-06-18 1990-05-23 Scm Corporation Method of making dispersion strengthened metal bodies and product
JPS60135503A (en) * 1983-12-17 1985-07-18 エスシ−エム・コ−ポレ−シヨン Manufacture of dispersion strengthened metal body and product
JPH01263203A (en) * 1988-04-13 1989-10-19 Sumitomo Light Metal Ind Ltd Electrode material for resistance welding and production thereof

Also Published As

Publication number Publication date
WO2004096468A1 (en) 2004-11-11
AU2003235977A1 (en) 2004-11-23

Similar Documents

Publication Publication Date Title
US4935594A (en) Eroding electrode, in particular a wire electrode for the sparkerosive working
US5675209A (en) Electrode material for a spark plug
JPH03481A (en) Electrode formed of copper or copper alloy having excellent electric conductivity
CN100495585C (en) producing method of combined material of aluminum oxide fringing copper and chromium-copper alloy
JP2006102775A (en) Electrode for spot welding
JPWO2004096468A1 (en) Composite rod, manufacturing method thereof, contact tip for arc welding and resistance welding electrode comprising the composite rod
JP5083930B2 (en) Spot welding electrode
WO2006004073A1 (en) Electrode for spot welding
JP2000517248A (en) High tension erosion electrode
JPH1085950A (en) Equipment for resistance spot welding of sheet or special shaped material made of material of good conductivity
JPH0976074A (en) Material for resistance welding electrode, composite electrode for resistance welding and its manufacture
JP3846960B2 (en) Welding torch member and manufacturing method thereof
JP2009090340A (en) Spot welding electrode of ferrous material, and its manufacturing method
JPS6239217B2 (en)
JPH05185247A (en) Material for resistance welding electrode
JPS63295075A (en) Production of composite electrode tip for resistance welding
JP2007260718A (en) Electrode for seam welding
JP3566735B2 (en) Alloy for spot welding electrode of Al alloy plate
Emmer et al. Microstructure changes of the tungsten insert in CuCrZr compound electrode during resistance spot welding of galvanized sheets
JP2751101B2 (en) Ag-oxide composite strip for electrical contact
JPH0582236A (en) Multipolar spark plug
JP2006159245A (en) Electrode for resistance welding
JP3176746B2 (en) Power supply tip for welding
JPH0366524A (en) Electrode wire for electric discharge machining
Dudko Effect of methods of producing thermochemical electrodes on their service life in welding plasma torches

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090428

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090619

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090721