JPWO2004048973A1 - Immobilization of biomolecules on metal carriers - Google Patents

Immobilization of biomolecules on metal carriers Download PDF

Info

Publication number
JPWO2004048973A1
JPWO2004048973A1 JP2004555033A JP2004555033A JPWO2004048973A1 JP WO2004048973 A1 JPWO2004048973 A1 JP WO2004048973A1 JP 2004555033 A JP2004555033 A JP 2004555033A JP 2004555033 A JP2004555033 A JP 2004555033A JP WO2004048973 A1 JPWO2004048973 A1 JP WO2004048973A1
Authority
JP
Japan
Prior art keywords
immobilized
nucleic acid
carrier
hybridization
minutes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004555033A
Other languages
Japanese (ja)
Inventor
木村 直紀
直紀 木村
竜一 小田
竜一 小田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nisshinbo Holdings Inc
Original Assignee
Nisshinbo Holdings Inc
Nisshinbo Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshinbo Holdings Inc, Nisshinbo Industries Inc filed Critical Nisshinbo Holdings Inc
Publication of JPWO2004048973A1 publication Critical patent/JPWO2004048973A1/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/551Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals the carrier being inorganic
    • G01N33/553Metal or metal coated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0046Sequential or parallel reactions, e.g. for the synthesis of polypeptides or polynucleotides; Apparatus and devices for combinatorial chemistry or for making molecular arrays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00277Apparatus
    • B01J2219/00279Features relating to reactor vessels
    • B01J2219/00306Reactor vessels in a multiple arrangement
    • B01J2219/00313Reactor vessels in a multiple arrangement the reactor vessels being formed by arrays of wells in blocks
    • B01J2219/00315Microtiter plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00277Apparatus
    • B01J2219/00351Means for dispensing and evacuation of reagents
    • B01J2219/00364Pipettes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00277Apparatus
    • B01J2219/00351Means for dispensing and evacuation of reagents
    • B01J2219/00387Applications using probes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00277Apparatus
    • B01J2219/00497Features relating to the solid phase supports
    • B01J2219/005Beads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00277Apparatus
    • B01J2219/00497Features relating to the solid phase supports
    • B01J2219/00527Sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00585Parallel processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00596Solid-phase processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00603Making arrays on substantially continuous surfaces
    • B01J2219/00657One-dimensional arrays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00603Making arrays on substantially continuous surfaces
    • B01J2219/00659Two-dimensional arrays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00603Making arrays on substantially continuous surfaces
    • B01J2219/00677Ex-situ synthesis followed by deposition on the substrate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00709Type of synthesis
    • B01J2219/00711Light-directed synthesis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00718Type of compounds synthesised
    • B01J2219/0072Organic compounds
    • B01J2219/00722Nucleotides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00718Type of compounds synthesised
    • B01J2219/0072Organic compounds
    • B01J2219/00725Peptides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00718Type of compounds synthesised
    • B01J2219/0072Organic compounds
    • B01J2219/00731Saccharides
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6834Enzymatic or biochemical coupling of nucleic acids to a solid phase

Abstract

核酸の溶液を、周期律表第2周期〜第7周期のI、II、III、IV、V、VI、VII族および遷移元素から選ばれる金属、又は同金属を含む合金等からなる金属担体上にスポットし、同溶液を乾燥させ、担体に波長280nmの成分を含む紫外線を好ましくは100mJ/cm2以上照射することにより、前記担体に核酸を固定する。A solution of nucleic acid is placed on a metal carrier comprising a metal selected from Group I, II, III, IV, V, VI, Group VII and transition elements of Periodic Table 2nd to 7th Period, or an alloy containing the same. The nucleic acid is immobilized on the carrier by irradiating the carrier with ultraviolet rays containing a component having a wavelength of 280 nm, preferably 100 mJ / cm 2 or more.

Description

本発明は、核酸等の生体分子を担体に固定化する方法に関する。本発明の方法は、ハイブリダイゼーションによる核酸の分析等の操作に有用である。  The present invention relates to a method for immobilizing a biomolecule such as a nucleic acid on a carrier. The method of the present invention is useful for operations such as nucleic acid analysis by hybridization.

従来、ハイブリダイゼーションによる核酸の分析や、イムノアッセイ等においては、核酸やタンパク質を膜や平板などの担体に固定化する技術が利用されている。このような生体分子の固定化法として、核酸では、以下のものが知られている。
(1)5’末端にチオール基を有する核酸とチオール基を含むビーズ状基材間のジスルフィド結合による固定(P.J.R.Day,P.S.Flora,J.E.Fox,M.R.Walker,Biochem.J.,278,735−740(1991))等のような、修飾基を導入した核酸を化学結合させる方法。
(2)核酸を、紫外線(UV)照射又は加熱処理により、ニトロセルロース、ナイロンメンブレン、又はポリ−L−リジン等のカチオンポリマーで被覆されたガラス等の担体等に、吸着固定させる方法(J.Sambrok,E.F.Fritsch and T.Maniatis,Molecular Cloning,Cold Spring Harbor Laboratory Pres,Second Edition,pages 2.109−2.113 and pages 9.34−9.46、特表平10−503841号公報)。
(3)ポリリジン溶液で処理されたマイクロプレートのウェル中に核酸を注入し、37℃に加熱することにより、物理吸着させることにより固定する方法(G.C.N.Parry and A.D.B.Malcom,Biochem.Soc.Trans.,17,230−231(1989))。
(4)基材上に結合させたヌクレオチドを用い、基材上でDNAを合成する方法(国際公開第97/10365号パンフレット(WO97/10365))。
(5)カルボジイミド基を有する高分子化合物を担持させたガラス等の基材に核酸を固定する方法(特開平8−23975号公報)。
しかし、上記の(1)の方法は、極めて特殊な機械と試薬を必要とする。また、(2)及び(3)の方法においては、ハイブリダイゼーションを行った場合、特に操作過程で担体から核酸が剥がれ落ち、結果として検出感度が下がったり、再現性が得られない等の欠点がある。また、この方法では、長い核酸は固定できるが、オリゴマー等約50mer以下の短い核酸になると、効率よく固定化できないという欠点がある。尚、これらの方法では、UV照射量は数十mJ/cm程度である。さらに、(4)の方法は、基材上でDNAを合成するために、極めて特殊な機械と試薬を必要とし、さらに、合成できる核酸も25mer程度までに限られるという欠点がある。また、(5)の方法は、基材の材料が限られ、表面のコーティング工程が必要である。
Conventionally, techniques for immobilizing nucleic acids and proteins on a carrier such as a membrane or a plate are used in nucleic acid analysis by hybridization, immunoassay, and the like. As such biomolecule immobilization methods, the following nucleic acids are known.
(1) Immobilization by a disulfide bond between a nucleic acid having a thiol group at the 5 ′ end and a bead-shaped base material containing a thiol group (PJR Day, PS Flora, JE Fox, M .; R. Walker, Biochem. J., 278, 735-740 (1991)), etc., for chemically binding a nucleic acid into which a modifying group has been introduced.
(2) A method in which a nucleic acid is adsorbed and immobilized on a carrier such as glass coated with a cationic polymer such as nitrocellulose, nylon membrane, or poly-L-lysine by ultraviolet (UV) irradiation or heat treatment (J. Sambrook, EF Fritsch and T. Maniatis, Molecular Cloning, Cold Spring Harbor Laboratory Pres, Second Edition, pages 2.109-2113 and pages 9.34-9.46 ).
(3) A method of injecting a nucleic acid into a well of a microplate treated with a polylysine solution and immobilizing it by physical adsorption by heating to 37 ° C. (GCN Parry and ADB) Malcom, Biochem. Soc. Trans., 17, 230-231 (1989)).
(4) A method of synthesizing DNA on a base material using nucleotides bound on the base material (International Publication No. 97/10365 pamphlet (WO 97/10365)).
(5) A method of immobilizing a nucleic acid on a substrate such as glass carrying a polymer compound having a carbodiimide group (JP-A-8-23975).
However, the above method (1) requires very special machines and reagents. In the methods (2) and (3), when hybridization is performed, the nucleic acid is peeled off from the carrier particularly during the operation process, resulting in a decrease in detection sensitivity and inability to obtain reproducibility. is there. Further, in this method, long nucleic acids can be immobilized, but there is a drawback that they cannot be immobilized efficiently if they are short nucleic acids of about 50 mer or less such as oligomers. In these methods, the UV irradiation amount is about several tens of mJ / cm 2 . Furthermore, the method (4) has the disadvantage that a very special machine and reagent are required to synthesize DNA on the substrate, and the nucleic acid that can be synthesized is limited to about 25 mer. In the method (5), the material of the substrate is limited, and a surface coating step is required.

本発明は、上記従来技術の状況に鑑み、生体分子、例えば核酸、特に短鎖長の核酸を担体に、簡便、かつ、効率よく固定する方法を提供することを課題とする。
本発明者は、上記課題を解決するために鋭意検討を行った結果、核酸溶液を金属製の担体上にスポットした後に、紫外線を担体に照射することによって、核酸を担体に効率よく固定化することができることを見い出し、本発明を完成するに至った。
すなわち本発明は、以下のとおりである。
(1)生体分子を担体に固定化する方法であって、生体分子の溶液を担体上にスポットする工程と、前記生体分子溶液をスポットした担体に波長280nmの成分を含む紫外線を照射する工程を含み、前記担体は金属製であることを特徴とする方法。
(2)前記紫外線が、波長220〜300nmの成分を含むことを特徴とする(1)に記載の方法。
(3)前記金属は、周期律表第2周期〜第7周期のI、II、III、IV、V、VI、VII族および遷移元素から選ばれる金属、又は同金属を含む合金である(1)又は(2)に記載の方法。
(4)前記紫外線の照射量は100mJ/cm以上である(1)〜(3)のいずれかに記載の方法。
(5)前記生体分子は核酸、タンパク質、糖、抗原、抗体、ペプチド、酵素から選ばれる(1)〜(4)のいずれかに記載の方法。
(6)生体分子が担体上に固定化された生体分子固定化担体の製造法であって、生体分子の溶液を担体上にスポットする工程と、前記生体分子溶液をスポットした担体に波長280nmの成分を含む紫外線を照射し、前記生体分子を担体に固定化する工程を含む方法。
(7)前記紫外線が、波長220〜300nmの成分を含むことを特徴とする(6)に記載の方法。
(8)前記生体分子は核酸であって、核酸固定化担体はハイブリダイゼーションによる核酸の分析に用いられるものである(6)又は(7)に記載の方法。
An object of the present invention is to provide a method for easily and efficiently immobilizing a biomolecule, for example, a nucleic acid, particularly a short-chain nucleic acid, on a carrier in view of the above-described state of the art.
As a result of intensive studies to solve the above problems, the present inventor efficiently immobilizes a nucleic acid on a carrier by irradiating the carrier with ultraviolet rays after spotting the nucleic acid solution on a metal carrier. As a result, the present invention has been completed.
That is, the present invention is as follows.
(1) A method of immobilizing a biomolecule on a carrier, the step of spotting a biomolecule solution on the carrier, and the step of irradiating the carrier on which the biomolecule solution is spotted with ultraviolet rays containing a component having a wavelength of 280 nm And the carrier is made of metal.
(2) The method according to (1), wherein the ultraviolet ray includes a component having a wavelength of 220 to 300 nm.
(3) The metal is a metal selected from Group I, II, III, IV, V, VI, VII and transition elements of the second to seventh periods of the periodic table, or an alloy containing the same metal (1 ) Or the method according to (2).
(4) The method according to any one of (1) to (3), wherein an irradiation amount of the ultraviolet ray is 100 mJ / cm 2 or more.
(5) The method according to any one of (1) to (4), wherein the biomolecule is selected from nucleic acids, proteins, sugars, antigens, antibodies, peptides, and enzymes.
(6) A method for producing a biomolecule-immobilized carrier in which a biomolecule is immobilized on a carrier, the step of spotting a biomolecule solution on the carrier, and a wavelength of 280 nm on the carrier on which the biomolecule solution is spotted. A method comprising a step of irradiating an ultraviolet ray containing a component and immobilizing the biomolecule on a carrier.
(7) The method according to (6), wherein the ultraviolet ray includes a component having a wavelength of 220 to 300 nm.
(8) The method according to (6) or (7), wherein the biomolecule is a nucleic acid and the nucleic acid-immobilized carrier is used for nucleic acid analysis by hybridization.

図1は、実施例で作製したオリゴヌクレオチド固定化平板を用いたハイブリダイゼーションの結果を示す図(写真)。
点線は、実施例1及び比較例1でオリゴヌクレオチドを固定化した領域、及びコントロールである1×TE緩衝液をスポットした領域を示す。
FIG. 1 is a diagram (photograph) showing the results of hybridization using the oligonucleotide-immobilized plate prepared in Example.
A dotted line shows the area | region which fixed the oligonucleotide in Example 1 and Comparative Example 1, and the area | region which spotted 1 * TE buffer which is a control.

以下、本発明を詳細に説明する。
本発明に用いる担体は、生体分子を固定化するためのものであり、金属製であることを特徴とする。金属としては、紫外線照射により生体分子を固定化することができるものであれば特に制限されず、好ましくは、周期律表第2周期〜第7周期のI、II、III、IV、V、VI、VII族および遷移元素から選ばれる金属、又は同金属を含む合金が挙げられる。
上記周期律表第2周期〜第7周期のI、II、III、IV、V、VI、VII族および遷移元素から選ばれる金属として特に好ましいものとしては、アルミニウム、チタン、白金、タングステン、モリブデン、金、銅、ニッケル等が挙げられる。
また、上記合金として具体的には、洋白(成分:Cu,Ni,Zn)、真鍮(成分:Cu,Zn)、ブロンズ(成分:Cu,Be)、モネル(成分:Cu,Ni,Fe,Mn)、ニッケルコバルト合金(成分:Ni,Co)、ニッケルクロム合金(成分:Ni,Cr)、コバルト合金(成分:Co,Ni,Cr)、ステンレス(成分:Ni,Cr,Fe)、銀タングステン(成分:Ag,W)、βチタン(成分:Ti,V,Al)、αβチタン(成分:Ti,V,Al)、NT合金(成分:Ti,Ni)、アルミニウム合金(成分:Al,Cu,Mg,Si,Mn,Zn)、ジュラルミン(成分:Al,Cu,Si,Fe,Mn,Mg,Zn)、マグネシウム合金(成分:Mg,Al,Zn)、K24(成分:Au)、K18(成分:Au,Ag,Cu)、ベリリウム銅(成分:Cu,Be)、鋳鉄(成分:Fe,Mn,S,C)、炭素鋼(成分:Fe,C,Si,Mn,P,S)、青銅鋳物(成分:Cu,Sn,Zn,Pb)、りん青銅鋳物(成分:Cu,Zn,P)、黄銅鋳物(成分:Cu,Zn,Pb)、マンガン黄銅(成分:Cu,Zn,Mn,Fe,Al)、シルジン青銅鋳物(成分:Cu,Si,Zn)、アルミニウム青銅鋳物(成分:Cu,Al,Fe,Ni,Mn)、エリンバー(成分:Ni,Cr,Mn)、エリンバーエクストラ(成分:Ni,Cr,Co,Mn)、インバー(成分:Ni,Fe)、スーパーインバー(成分:Fe,Ni,Co)、ステンレスインバー(成分:Fe,Co,Cr)、Malottes(成分:Sn,Bi,Pb)、リポウィッツ(Lipowitz)(成分:Sn,Bi,Pb,Cd)、ウッズ(Wood’s)(成分:Sn,Bi,Pb,Cd)、マンガニン(成分:Cu,Mn,Ni,Fe)、イザベリン(成分:Cu,Mn,Al)、コンスタンタン(成分:Cu,Ni)、アルクレス(成分:Fe,Cr,Al)、カンタル(成分:Cr,Fe,Al,Co)、アルメル(成分:Ni,Al)、磁性材料(Fe,Ni,Co等強磁性遷移元素を含む材料)、パーマロイ(成分:Fe,Ni)、アルパーム(成分:Fe,Al)、フェライト(Feを主成分とする複合酸化物)、センダスト(成分:Fe,Si,Al)、スーパーセンダスト(成分:Fe,Si,Al,Ni,)、アルニコ(成分:Fe,Al,Ni,Co)、水素吸蔵金属(ランタンニッケル合金(成分:La,Ni)等)、Co−Cr系合金、SnO系酸化物、Nb−Ti合金、制振合金(振動を低減もしくは吸収、振動の伝播を遮断する合金材料、Al−Zn超塑性合金、サイレントアロイ、ニチノール等)、電極用材料、半導体材料(シリコン、ゲルマニウム、カリウムヒ素等)等が挙げられる。
また、上記金属は、他の金属で蒸着又はメッキ処理(加工)されていても良い。更に、前記金属は、形状を保持するために異なる種類の前記金属が積層してもよく、単一金属であっても良い。
本発明における担体は、本質的に上記金属からなる。担体は、金属のみから構成されていてもよいし、非金属材料上に金属が接着、蒸着又はメッキ等により積層されていてもよい。
上記担体の形状は、特に問われないが、箔(フォイル)状、平板(プレート)状、薄片(ウェーハ)状、フィルター状、ビーズ状等が挙げられる。また、マイクロタイタープレートのような形状であっても良い。さらに、得られる結果の保存を容易にするため、平板等の裏面をシール等に使用できる材料(接着剤等)を塗布、コート等をすることによって、シールとしても使用することもできる。
上記担体の所定の位置に、生体分子の溶液をスポットする。生体分子としては、核酸、タンパク質、糖、抗原、抗体、ペプチド、酵素などが挙げられる。以下、生体分子として核酸を例として説明するが、固定の際に紫外線を照射する以外は、他の物質でも通常固定化に用いられている方法や条件を採用することができる。
核酸としては、通常の固相化核酸を用いた核酸同士のハイブリダイゼーションに用いられる固相化核酸と特に変わるところはなく、ハイブリダイゼーションが可能な核酸であれば特に制限されず、例えば、天然又は合成のDNA(オリゴヌクレオチドを含む)もしくはRNA(オリゴヌクレオチドを含む)が挙げられる。また、上記核酸は1本鎖であっても、2本鎖であっても構わない。核酸の鎖長は、ハイブリダイゼーションが可能な長さであれば特に制限されないが、通常5〜50000塩基、好ましくは20〜10000塩基である。また、核酸の5’末端あるいは3’末端にチミジン等、紫外線によって反応活性基を有するオリゴヌクレオチドの重合体を有しても良い。
核酸を溶解する溶媒も特に制限されず、蒸留水、又は通常核酸溶液の調製に用いられる緩衝液、例えばTE緩衝液(10mM Tris塩酸,pH8.0/1mM EDTA)等のTris緩衝液、食塩を含む水溶液、カルボン酸塩を含む水溶液(クエン酸ナトリウム、クエン酸アンモニウム、酢酸ナトリウム等)、スルホン酸塩を含む水溶液(ドデシル硫酸ナトリウム、ドデシル硫酸アンモニウム等)、ホスホン酸塩を含む水溶液等(リン酸ナトリウム、リン酸アンモニウム等)等を挙げることができる。また、一般に市販されている溶媒、Micro Spotting Solution(TeleCHem International,Inc.社製)等も挙げることができる。また、核酸溶液の濃度も特に制限されないが、通常1mmol/ml〜1fmol/ml、好ましくは100pmol/ml〜100fmol/mlの濃度である。
核酸溶液を担体上にスポットする方法としては、ピペットで核酸溶液を担体上に滴下する方法、又は市販のスポッタを用いる方法等が挙げられる。スポットの形状及びスポット量としては、核酸溶液をスポットした位置を把握することができる程度であれば、特に制限されないが、形状としては点状又は円状が好ましい。また、好ましいスポット量は10nl〜10mlである。核酸溶液は、担体上に1箇所又は複数箇所にスポットされる。スポットされる核酸溶液は、1種類でも2種類又はそれ以上であってもよい。尚、担体に核酸が固定されたことを示す陽性コントロールとして、標識した核酸を固定化しておいてもよい。
本発明の好ましい形態においては、核酸溶液を担体上にスポットした後に、280nmの波長を含む紫外線を照射する。前記紫外線としては、波長220〜300nmの成分を含む紫外線が挙げられる。また、前記核酸溶液をスポット後紫外線照射前に乾燥させることができる。前記核酸溶液の乾燥方法としては、自然に乾燥させてもよく、加熱して乾燥させてもよい。加熱する場合の温度は、通常30〜100℃、好ましくは35〜45℃である。
次に、担体、少なくとも担体の核酸を固定した部位に、波長280nmの成分を含む紫外線を照射する。具体的には、波長280nmの単色光でもよいし、波長280nmを含むブロードな波形を有する紫外線であっても良い。波長280nmを含むブロードな波形を有する紫外線としては、例えば波長220〜300nmの成分を含む紫外線が挙げられる。また、波長220〜300nmの成分を含む紫外線としては、280nm付近に極大値を有する紫外線が挙げられる。照射量は、累積照射量として通常100mJ/cm以上、好ましくは200mJ/cm以上である。
上記のようにして、核酸を担体上に固定化することにより、核酸固定化担体が製造される。本発明の方法により得られる核酸固定化担体は、例えば、ハイブリダイゼーションによる核酸の分析に用いることができる。本発明の方法により担体に固定化された核酸は、通常のハイブリダイゼーションの条件下で担体から脱離しにくいため、紫外線照射を行わない場合に比べて検出感度が良好で、再現性も良い。ハイブリダイゼーション及びその検出は、通常の固相化核酸を用いたハイブリダイゼーションと同様にして行うことができる。
本発明では、核酸を固定化するのに用いる担体として、安価な金属材料を用いることができるので、低コスト化が可能である。また、金属材料は形成が容易なため、様々な形態のDNAマイクロアレイの作製が容易となる。また、長期保存が可能であり、保存安定性に優れている。さらに、本発明の方法は、担体表面のコーティング工程が不要であり、電極等に使用される金属に直接核酸を固定することができる。電極に核酸を固定することにより溶液中の相補的な核酸と固定された核酸とを効率良くハイブリダイゼーションを行うことができる。核酸は負電化をもっている為、正極に引き寄せられるため、正極の付近は核酸濃度が高くなりやすく、ハイブリダイゼーションが効率よく進むと考えられる。
Hereinafter, the present invention will be described in detail.
The carrier used in the present invention is for immobilizing biomolecules and is made of metal. The metal is not particularly limited as long as it can immobilize biomolecules by ultraviolet irradiation, and preferably I, II, III, IV, V, VI of the second to seventh periods of the periodic table. , A metal selected from Group VII and a transition element, or an alloy containing the metal.
Particularly preferable examples of the metal selected from Group I, II, III, IV, V, VI, VII and transition elements of Period 2 to Period 7 of the periodic table include aluminum, titanium, platinum, tungsten, molybdenum, Gold, copper, nickel, etc. are mentioned.
Further, as the above alloy, specifically, white (component: Cu, Ni, Zn), brass (component: Cu, Zn), bronze (component: Cu, Be), monel (component: Cu, Ni, Fe, Mn), nickel cobalt alloy (component: Ni, Co), nickel chromium alloy (component: Ni, Cr), cobalt alloy (component: Co, Ni, Cr), stainless steel (component: Ni, Cr, Fe), silver tungsten (Component: Ag, W), β titanium (component: Ti, V, Al), αβ titanium (component: Ti, V, Al), NT alloy (component: Ti, Ni), aluminum alloy (component: Al, Cu) , Mg, Si, Mn, Zn), duralumin (components: Al, Cu, Si, Fe, Mn, Mg, Zn), magnesium alloys (components: Mg, Al, Zn), K24 (components: Au), K18 ( Ingredients: Au, A , Cu), beryllium copper (components: Cu, Be), cast iron (components: Fe, Mn, S, C), carbon steel (components: Fe, C, Si, Mn, P, S), bronze casting (components: Cu, Sn, Zn, Pb), phosphor bronze casting (component: Cu, Zn, P), brass casting (component: Cu, Zn, Pb), manganese brass (component: Cu, Zn, Mn, Fe, Al), Siljin bronze casting (components: Cu, Si, Zn), aluminum bronze casting (components: Cu, Al, Fe, Ni, Mn), Erin bar (components: Ni, Cr, Mn), Erin bar extra (components: Ni, Cr) , Co, Mn), Invar (components: Ni, Fe), Super Invar (components: Fe, Ni, Co), Stainless Invar (components: Fe, Co, Cr), Malotes (components: Sn, Bi, Pb), Lipowitz Lipowitz) (components: Sn, Bi, Pb, Cd), Woods (components: Sn, Bi, Pb, Cd), manganin (components: Cu, Mn, Ni, Fe), Isavelin (components: Cu , Mn, Al), Constantan (component: Cu, Ni), Alcres (component: Fe, Cr, Al), Kanthal (component: Cr, Fe, Al, Co), Alumel (component: Ni, Al), Magnetic material (Materials containing ferromagnetic transition elements such as Fe, Ni, Co), permalloy (components: Fe, Ni), alpalm (components: Fe, Al), ferrite (composite oxide containing Fe 2 O 3 as a main component), Sendust (components: Fe, Si, Al), super sendust (components: Fe, Si, Al, Ni,), alnico (components: Fe, Al, Ni, Co), hydrogen storage metal (lanthanum) Kell alloy (component: La, Ni) and the like), Co-Cr-based alloy, SnO 2 based oxide, Nb-Ti alloy, damping alloy (alloy material blocking the reduction or absorption of vibration propagation vibration, Al- Zn superplastic alloy, silent alloy, nitinol, etc.), electrode materials, semiconductor materials (silicon, germanium, potassium arsenic, etc.).
The metal may be vapor-deposited or plated (processed) with another metal. Furthermore, the metal may be a laminate of different types of metals or a single metal in order to maintain the shape.
The carrier in the present invention consists essentially of the above metal. The carrier may be composed of only a metal, or a metal may be laminated on a nonmetallic material by adhesion, vapor deposition, plating, or the like.
The shape of the carrier is not particularly limited, and examples thereof include a foil (foil) shape, a flat plate (plate) shape, a thin piece (wafer) shape, a filter shape, and a bead shape. Moreover, the shape like a microtiter plate may be sufficient. Furthermore, in order to facilitate the preservation of the obtained results, a material (adhesive or the like) that can be used for a seal or the like on the back surface of a flat plate or the like can be applied, coated, or the like to be used as a seal.
A biomolecule solution is spotted at a predetermined position of the carrier. Biomolecules include nucleic acids, proteins, sugars, antigens, antibodies, peptides, enzymes and the like. Hereinafter, a nucleic acid will be described as an example of a biomolecule. However, methods and conditions that are usually used for immobilization can be used for other substances, except that ultraviolet rays are irradiated during immobilization.
The nucleic acid is not particularly different from the solid-phased nucleic acid used for hybridization between nucleic acids using a normal solid-phased nucleic acid, and is not particularly limited as long as it is a nucleic acid that can be hybridized. Synthetic DNA (including oligonucleotides) or RNA (including oligonucleotides). The nucleic acid may be single-stranded or double-stranded. The nucleic acid chain length is not particularly limited as long as hybridization is possible, but is usually 5 to 50000 bases, preferably 20 to 10000 bases. Moreover, you may have the polymer of the oligonucleotide which has a reactive group by ultraviolet rays, such as thymidine, at the 5 'terminal or 3' terminal of a nucleic acid.
The solvent for dissolving the nucleic acid is not particularly limited, and distilled water or a buffer solution usually used for preparing the nucleic acid solution, for example, a Tris buffer solution such as TE buffer solution (10 mM Tris hydrochloric acid, pH 8.0 / 1 mM EDTA), a salt solution, etc. Aqueous solutions containing carboxylic acid salts (sodium citrate, ammonium citrate, sodium acetate, etc.), aqueous solutions containing sulfonates (sodium dodecyl sulfate, ammonium dodecyl sulfate, etc.), aqueous solutions containing phosphonates, etc. (sodium phosphate) , Ammonium phosphate, etc.). Further, a commercially available solvent, Micro Spotting Solution (manufactured by TeleChem International, Inc.) and the like can also be mentioned. The concentration of the nucleic acid solution is not particularly limited, but is usually 1 mmol / ml to 1 fmol / ml, preferably 100 pmol / ml to 100 fmol / ml.
Examples of the method of spotting the nucleic acid solution on the carrier include a method of dropping the nucleic acid solution onto the carrier with a pipette, a method using a commercially available spotter, and the like. The shape and amount of the spot are not particularly limited as long as the position where the nucleic acid solution is spotted can be grasped, but the shape is preferably a dot or circle. The preferred spot amount is 10 nl to 10 ml. The nucleic acid solution is spotted at one place or a plurality of places on the carrier. One or two or more nucleic acid solutions may be spotted. As a positive control indicating that the nucleic acid has been immobilized on the carrier, the labeled nucleic acid may be immobilized.
In a preferred embodiment of the present invention, the nucleic acid solution is spotted on the carrier and then irradiated with ultraviolet rays containing a wavelength of 280 nm. Examples of the ultraviolet light include ultraviolet light containing a component having a wavelength of 220 to 300 nm. The nucleic acid solution can be dried after spotting and before ultraviolet irradiation. As a method for drying the nucleic acid solution, the nucleic acid solution may be naturally dried or heated and dried. The temperature for heating is usually 30 to 100 ° C, preferably 35 to 45 ° C.
Next, the carrier, at least the site where the nucleic acid of the carrier is fixed, is irradiated with ultraviolet rays containing a component having a wavelength of 280 nm. Specifically, monochromatic light with a wavelength of 280 nm may be used, or ultraviolet light having a broad waveform including a wavelength of 280 nm may be used. Examples of ultraviolet rays having a broad waveform including a wavelength of 280 nm include ultraviolet rays including a component having a wavelength of 220 to 300 nm. Moreover, as an ultraviolet-ray containing a component with a wavelength of 220-300 nm, the ultraviolet-ray which has local maximum in 280 nm vicinity is mentioned. Irradiation dose is usually 100 mJ / cm 2 or more as the cumulative dose, preferably 200 mJ / cm 2 or more.
As described above, the nucleic acid-immobilized carrier is produced by immobilizing the nucleic acid on the carrier. The nucleic acid-immobilized carrier obtained by the method of the present invention can be used, for example, for nucleic acid analysis by hybridization. Since the nucleic acid immobilized on the carrier by the method of the present invention is less likely to be detached from the carrier under normal hybridization conditions, the detection sensitivity is better and the reproducibility is better than when no ultraviolet irradiation is performed. Hybridization and detection thereof can be performed in the same manner as in the case of hybridization using ordinary solid-phase nucleic acid.
In the present invention, an inexpensive metal material can be used as a carrier used for immobilizing a nucleic acid, so that the cost can be reduced. In addition, since the metal material can be easily formed, it is easy to produce various forms of DNA microarrays. In addition, it can be stored for a long period of time and has excellent storage stability. Furthermore, the method of the present invention does not require a coating step on the surface of the carrier, and the nucleic acid can be directly immobilized on a metal used for an electrode or the like. By immobilizing the nucleic acid on the electrode, the complementary nucleic acid in the solution and the immobilized nucleic acid can be efficiently hybridized. Since the nucleic acid is negatively charged, it is attracted to the positive electrode. Therefore, the nucleic acid concentration tends to be high near the positive electrode, and it is considered that hybridization proceeds efficiently.

以下、実施例により本発明をさらに具体的に説明する。
実施例1 核酸の平板への固定化
常法に従い、オリゴヌクレオチド合成機(Perkin−elmer Applied biosystems)を用いて、配列番号1、2に示す塩基配列を有するオリゴヌクレオチド(21mer)を合成した。また、プローブとして、配列番号3に示す塩基配列を有するDNA(262bp)を調製した。尚、配列番号1に示すオリゴヌクレオチド及びプローブは、5’末端をビオチン化した。また、配列番号2に示すオリゴヌクレオチドはビオチン化プローブと相補性を持っている。これらのオリゴヌクレオチドを1pmol/μlになるように1×TE緩衝液(10mM Tris塩酸,pH8/1mM EDTA)に溶解した。
市販品のアルミニウム箔(三菱アルミニウム株式会社製)の所定の位置に、上記オリゴヌクレオチド溶液それぞれを、3箇所づつスポットした(図1)。スポットの量は0.5μlづつであり、スポットの大きさは直径約1mmであった。このアルミニウム箔を乾燥機に入れ、37℃で20分乾燥した。次にUvstratalinker 2400(STRATAGENE社製)を用い、波長280nmを含む紫外線を16cmの距離から250mJ/cm照射した。照射時間は100秒であった。その後、前記アルミニウム箔を水中で30分間振とうして洗浄した後、乾燥させた。
一方、コントロールとして核酸を含まない溶液(1×TE緩衝液)も同様にアルミニウム箔にスポットし、固定化の操作を行った。
比較例1
予め、アルミニウム箔に、Uvstratalinker 2400(STRATAGENE社製)を用い、波長280nmを含むnmの紫外線を16cmの距離から250mJ/cm照射した。実施例1に記載のオリゴヌクレオチド溶液それぞれを、アルミニウム箔の所定の位置に、3箇所づつスポットした。スポットの量は0.5μlづつであり、スポットの大きさは直径約1mmであった。照射時間は100秒であった。このアルミニウム箔を乾燥機に入れ37℃で20分乾燥した。その後、前記アルミニウム箔を水中で30分間振とうして洗浄し、乾燥させた。
一方、コントロールとして核酸を含まない溶液(1×TE緩衝液)も同様にアルミニウム箔にスポットし、固定化の操作を行った。
実施例2 ハイブリダイゼーション及びその検出
(1)ハイブリダイゼーション
実施例1及び比較例1のオリゴヌクレオチド固定化アルミニウム箔の核酸を固定化した部分に、3pmolビオチン化プローブ(262bp)を含むハイブリダイゼーション溶液(Arrayit UniHyb(TeleCHem International,Inc.) 60μlをのせ、アルミニウム箔を水が浸入しないケース(ハイブリカセット)に入れてそのケースごとウォーターバスに沈め、45℃で2時間加熱した。
(2)ポストハイブリダイゼーション
上記ハイブリダイゼーションの後、以下の条件でポストハイブリダイゼーション洗浄を行い、オリゴヌクレオチド固定化アルミニウム箔に非特異的に吸着したプローブを除去した。
〔ポストハイブリダイゼーション洗浄の条件〕
1)2×SSC,0.1%SDS;室温、5分間、2回
2)0.2×SSC,0.1%SDS;40℃、5分間、2回
3)2×SSC;室温1分間、3回
(3)アルミニウム箔に固定化されたオリゴヌクレオチド及びハイブリダイゼーションの検出
アルミニウム箔のハイブリダイゼーション溶液を載せた部分に、乳タンパクを含むブロッキング溶液(ブロックエース 雪印乳業製)1.5mlをのせ、室温で30分間ブロッキングを行った。ブロッキング溶液を除いた後、ストレプトアビジン−アルカリホスファターゼコンジュゲート溶液(VECTOR社製)を1.5mlのせ、室温で30分間反応させた。つぎに、アルミニウム箔をTBST(50mM Tris−HCl(pH7.5),0.15M NaCl,0.05% Tween20)溶液に浸し、5分間振とうして反応しなかったコンジュゲートを除去した。最後に、アルミニウム箔のハイブリダイゼーション溶液を載せた部分に基質溶液(TMB)を1.5mlのせて、30分間放置し、発色反応を行った。
その結果を、表1に示す。表1中の記号の意味は、表2以下でも同様である。配列番号1のオリゴヌクレオチドを固定化した位置のシグナルは固定化されたオリゴヌクレオチドの量を、配列番号2のオリゴヌクレオチドを固定化した位置のシグナルはハイブリダイゼーションの強度を、それぞれ示す。

Figure 2004048973
表1の結果から明らかなように、実施例1のオリゴヌクレオチド固定化アルミニウム箔は、比較例1のオリゴヌクレオチド固定化アルミニウム箔に比べて、オリゴヌクレオチドが確実にアルミニウム箔上に固定化されていることがわかる。また、実施例1のオリゴヌクレオチド固定化アルミニウム箔では、ハイブリダイゼーションシグナルも明瞭に現れた。なお、コントロールの位置(核酸を含まない溶液をスポットした箇所)にはシグナルはまったく現れなかった。
実施例3 核酸の平板への固定化
常法に従い、オリゴヌクレオチド合成機(Perkin−elmer Applied biosystems)を用いて、配列番号4、5及び6に示す塩基配列を有するオリゴヌクレオチド(31mer)を合成した。尚、配列番号4に示すオリゴヌクレオチドは、5’末端をビオチン化した。また、配列番号4及び5に示すオリゴヌクレオチドは、実施例1に記載の配列番号1及び2に示すオリゴヌクレオチドの5’末端に10個のチミジンが連結した配列を有している。配列番号5のオリゴヌクレオチドは、前記ビオチン化プローブと相補性を持っており、配列番号6に示すオリゴヌクレオチドは、配列番号5に示すオリゴヌクレオチドと1塩基配列が異なるため相補性を持っていない。これらのオリゴヌクレオチドを100pmol/mlになるように5×SSCに溶解した。
市販品のステンレス製の平板(特殊金属工業株式会社製)の所定の位置に、上記オリゴヌクレオチド溶液それぞれを、スポッター(Pyxsis5500 CARTESIAN社製)を用いて3箇所づつスポットした。スポットの大きさは直径約0.3mmであった。この平板を乾燥機に入れ、42℃で20分乾燥した。次にUvstratalinker 2400(STRATAGENE社製)を用い、波長280nmを含む紫外線を16cmの距離から300mJ/cm照射した。照射時間は120秒であった。その後、前記平板を水中で30分間振とうして洗浄した後、乾燥させた。
一方、コントロールとして核酸を含まない溶液(2xSSC緩衝液)も同様に平板にスポットし、固定化の操作を行った。
比較例2
予め、ステンレス製の平板に、Uvstratalinker 2400(STRATAGENE社製)を用い、波長280nmを含む紫外線を16cmの距離から300mJ/cm照射した。実施例3に記載のオリゴヌクレオチド溶液それぞれを、ステンレス製の平板の所定の位置に、スポッター(Pyxsis5500 CARTESIAN社製)を用いて3箇所づつスポットした。照射時間は120秒であった。この平板を乾燥機に入れ42℃で20分乾燥した。その後、前記平板を水中で30分間振とうして洗浄し、乾燥させた。
一方、コントロールとして核酸を含まない溶液(2xSSC緩衝液)も同様に平板にスポットし、固定化の操作を行った。
実施例4 ハイブリダイゼーション及びその検出
実施例3及び比較例2のオリゴヌクレオチド固定化平板の核酸を固定化した部分に、3pmolビオチン化プローブ(262bp)を含むハイブリダイゼーション溶液(Arrayit UniHyb(TeleCHem International,Inc.)60mlをのせ、平板を水が浸入しないケース(ハイブリカセット)に入れてそのケースごとウォーターバスに沈め、45℃で2時間加熱した。
以下、実施例2と同様にしてポストハイブリダイゼーション、及び平板に固定化されたオリゴヌクレオチドならびにハイブリダイゼーションの検出を行った。その結果を、表2に示す。配列番号4のオリゴヌクレオチドを固定化した位置のシグナルは固定化されたオリゴヌクレオチドの量を、配列番号5のオリゴヌクレオチドを固定化した位置のシグナルはハイブリダイゼーションの強度を、それぞれ示す。
Figure 2004048973
表2の結果から明らかなように、実施例3のオリゴヌクレオチド固定化平板は、比較例2のオリゴヌクレオチド固定化平板に比べて、オリゴヌクレオチドが確実に平板上に固定化されていることがわかる。また、実施例3のオリゴヌクレオチド固定化平板では、ハイブリダイゼーションシグナルも明瞭に現れた。ここで、コントロールの位置(核酸を含まない溶液をスポットした箇所)及び配列番号6にはシグナルはまったく現れなかった。
実施例5 核酸の平板への固定化
銀タングステン製の平板(イースタン技研株式会社製)の所定の位置に、実施例3で調製したオリゴヌクレオチド溶液それぞれを、スポッターを用いて3箇所づつスポットした。スポットの大きさは直径約0.3mmであった。この平板を乾燥機に入れ、42℃で20分乾燥した。次にUvstratalinker 2400(STRATAGENE社製)を用い、波長280nmを含む紫外線を16cmの距離から400mJ/cm照射した。照射時間は160秒であった。その後、前記平板を水中で30分間振とうして洗浄した後、乾燥させた。
一方、コントロールとして核酸を含まない溶液(2xSSC緩衝液)も同様に平板にスポットし、固定化の操作を行った。
比較例3
予め、銀タングステン製の平板に、Uvstratalinker 2400(STRATAGENE社製)を用い、波長280nmを含む紫外線を16cmの距離から400mJ/cm照射した。実施例3に記載のオリゴヌクレオチド溶液それぞれを、銀タングステン製の平板の所定の位置に、スポッター(Pyxsis5500 CARTESIAN社製)を用いて3箇所づつスポットした。照射時間は160秒であった。この平板を乾燥機に入れ42℃で20分乾燥した。その後、前記平板を水中で30分間振とうして洗浄し、乾燥させた。
一方、コントロールとして核酸を含まない溶液(2xSSC緩衝液)も同様に平板にスポットし、固定化の操作を行った。
実施例6 ハイブリダイゼーション及びその検出
実施例5及び比較例3のオリゴヌクレオチド固定化平板の核酸を固定化した部分に、3pmolビオチン化プローブ(262bp)を含むハイブリダイゼーション溶液(Arrayit UniHyb(TeleCHem International,Inc.)60mlをのせ、平板を水が浸入しないケース(ハイブリカセット)に入れてそのケースごとウォーターバスに沈め、45℃で2時間加熱した。
以下、実施例2と同様にしてポストハイブリダイゼーション、及び平板に固定化されたオリゴヌクレオチドならびにハイブリダイゼーションの検出を行った。その結果を、表3に示す。
Figure 2004048973
表3の結果から明らかなように、実施例5のオリゴヌクレオチド固定化平板は、比較例3のオリゴヌクレオチド固定化平板に比べて、オリゴヌクレオチドが確実に平板上に固定化されていることがわかる。また、実施例5のオリゴヌクレオチド固定化平板では、ハイブリダイゼーションシグナルも明瞭に現れた。ここで、コントロールの位置(核酸を含まない溶液をスポットした箇所)及び配列番号6にはシグナルはまったく現れなかった。
実施例7 核酸の平板への固定化
常法に従い、配列番号7及び8に示す塩基配列を有するオリゴヌクレオチドをプライマーとして、λDNA断片(A)を増幅した。得られた断片をアガロース電気泳動し、エチジウムブロマイド染色により検出した結果、その断片の長さは約300bであった。また、前記λDNAと相補的でないλDNA断片(B)(約300b)も同様に増幅した。
市販品のアルミニウム箔(三菱アルミニウム株式会社製)の所定の位置に、上記λDNA溶液それぞれを、スポッター(Pyxsis5500 CARTESIAN社製)を用いて3箇所づつスポットした。スポットの大きさは直径約0.3mmであった。このアルミニウム箔を乾燥機に入れ、42℃で20分乾燥した。次にUvstratalinker 2400(STRATAGENE社製)を用い、波長280nmを含む紫外線を16cmの距離から600mJ/cm照射した。照射時間は240秒であった。その後、前記アルミニウム箔を水中で30分間振とうして洗浄した後、乾燥させた。
一方、コントロールとして核酸を含まない溶液(1×TE緩衝液)も同様にアルミニウム箔にスポットし、固定化の操作を行った。
比較例4
実施例7に記載のλDNA溶液(濃度1pmol/μl)それぞれを、アルミニウム箔の所定の位置に、スポッター(Pyxsis5500 CARTESIAN社製)を用いて3箇所づつスポットした。このアルミニウム箔を乾燥機に入れ42℃で20分乾燥した。その後、前記アルミニウム箔を水中で30分間振とうして洗浄し、乾燥させた。
一方、コントロールとして核酸を含まない溶液(1×TE緩衝液)も同様にアルミニウム箔にスポットし、固定化の操作を行った。
実施例8 ハイブリダイゼーション及びその検出
(1)ハイブリダイゼーション
配列番号7に示す塩基配列を有するオリゴヌクレオチドの5’末端にビオチンを標識したオリゴヌクレオチド及び配列番号8に示す塩基配列を有するオリゴヌクレオチドをプライマーとして、λDNA断片(C)を増幅した。このλDNA断片(C)の配列は、実施例7で作製したλDNA断片(A)の配列と同一である。
実施例7及び比較例4のλDNA固定化アルミニウム箔を95℃に暖めた水中に5分間浸し、4℃に冷やした水中に5分間浸した。次いで、λDNA固定化アルミニウム箔の核酸を固定化した部分に、前記0.5pmolビオチン化λDNA(C)を含むハイブリダイゼーション溶液(Arrayit UniHyb(TeleCHem International,Inc.)60mlをのせ、アルミニウム箔を水が浸入しないケース(ハイブリカセット)に入れてそのケースごとウォーターバスに沈め、55℃で2時間加熱した。
(2)ポストハイブリダイゼーション
上記ハイブリダイゼーションの後、以下の条件でポストハイブリダイゼーション洗浄を行い、λDNA固定化アルミニウム箔に非特異的に吸着したプローブを除去した。
〔ポストハイブリダイゼーション洗浄の条件〕
1)2×SSC,0.1%SDS;室温、5分間、2回
2)0.2×SSC,0.1%SDS;40℃、5分間、2回
3)2×SSC;室温1分間、3回
(3)ハイブリダイゼーションの検出
アルミニウム箔のハイブリダイゼーション溶液を載せた部分に、乳タンパクを含むブロッキング溶液(ブロックエース 雪印乳業製)1.5mlをのせ、室温で30分間ブロッキングを行った。ブロッキング溶液を除いた後、ストレプトアビジン−アルカリホスファターゼコンジュゲート溶液(VECTOR社製)を1.5mlのせ、室温で30分間反応させた。つぎに、アルミニウム箔をTBST(50mM Tris−HCl(pH7.5),0.15M NaCl,0.05% Tween20)溶液に浸し、5分間振とうして反応しなかったコンジュゲートを除去した。最後に、アルミニウム箔(はく)のハイブリダイゼーション溶液を載せた部分に基質溶液(TMB)を1.5mlのせて、30分間放置し、発色反応を行った。
その結果を表4に示す。
Figure 2004048973
表4の結果から明らかなように、ハイブリダイゼーションシグナルが特異的かつ明瞭に現れたことから、実施例7のλDNA断片固定化アルミニウムはくはλDNA断片が確実にアルミニウムはく上に固定化されていることがわかる。一方、比較例4のλDNA断片固定化アルミニウムはくには、シグナルはまったく現れなかった。さらに、実施例7のλDNA断片固定化アルミニウムはく及び比較例4のλDNA断片固定化アルミニウムはくのコントロールの位置(核酸を含まない溶液をスポットした箇所)にもシグナルはまったく現れなかった。
実施例9 核酸の平板への固定化
市販品のステンレス製の平板(特殊金属工業株式会社製)の所定の位置に、実施例7に記載のλDNA溶液それぞれを、スポッター(Pyxsis5500 CARTESIAN社製)を用いて3箇所づつスポットした。スポットの大きさは直径約0.3mmであった。この平板を乾燥機に入れ、42℃で20分乾燥した。次にUvstratalinker 2400(STRATAGENE社製)を用い、波長280nmを含む紫外線を16cmの距離から1200mJ/cm照射した。照射時間は480秒であった。その後、前記平板を水中で30分間振とうして洗浄した後、乾燥させた。
一方、コントロールとして核酸を含まない溶液(1×TE緩衝液)も同様に平板にスポットし、固定化の操作を行った。
比較例5
実施例7記載のλDNA溶液(濃度1pmol/μl)それぞれを、ステンレス製の平板の所定の位置に、スポッター(Pyxsis5500 CARTESIAN社製)を用いて3箇所づつスポットした。この平板を乾燥機に入れ42℃で20分乾燥した。その後、前記平板を水中で30分間振とうして洗浄し、乾燥させた。
一方、コントロールとして核酸を含まない溶液(1×TE緩衝液)も同様に平板にスポットし、固定化の操作を行った。
実施例10 ハイブリダイゼーション及びその検出
実施例9及び比較例5のλDNA固定化平板を95℃に暖めた水中に10分間浸し、4℃に冷やした水中に5分間浸した。次いで、λDNA固定化平板の核酸を固定化した部分に、実施例8に記載の1pmolビオチン化λDNA(C)を含むハイブリダイゼーション溶液(Arrayit UniHyb(TeleCHem International,Inc.)60mlをのせ、平板を水が浸入しないケース(ハイブリカセット)に入れてそのケースごとウォーターバスに沈め、60℃で2時間加熱した。
以下、実施例8と同様にしてポストハイブリダイゼーション及びハイブリダイゼーションの検出を行った。その結果を表5に示す。
Figure 2004048973
表5の結果から明らかなように、ハイブリダイゼーションシグナルが特異的かつ明瞭に現れたことから、実施例9のλDNA断片固定化平板はλDNA断片が確実に平板上に固定化されていることがわかる。一方、比較例5のλDNA断片固定化平板には、シグナルはまったく現れなかった。さらに、実施例9のλDNA断片固定化平板及び比較例5のλDNA断片固定化平板のコントロールの位置(核酸を含まない溶液をスポットした箇所)にもシグナルはまったく現れなかった。
実施例11 核酸の平板への固定化
市販品のシリコンウェーハ(三菱住友シリコン株式会社製)の所定の位置に、実施例7に記載のλDNA溶液それぞれを、スポッター(Pyxsis5500 CARTESIAN社製)を用いて3箇所づつスポットした。スポットの大きさは直径約0.3mmであった。このシリコンウェーハを乾燥機に入れ、42℃で20分乾燥した。次にUvstratalinker 2400(STRATAGENE社製)を用い、波長280nmを含む紫外線を16cmの距離から1200mJ/cm照射した。照射時間は480秒であった。その後、前記シリコンウェーハを水中で30分間振とうして洗浄した後、乾燥させた。
一方、コントロールとして核酸を含まない溶液(1×TE緩衝液)も同様にシリコンウェーハにスポットし、固定化の操作を行った。
比較例6
実施例7記載のλDNA溶液(濃度1pmol/μl)それぞれを、シリコンウェーハの所定の位置に、スポッター(Pyxsis5500 CARTESIAN社製)を用いて3箇所づつスポットした。この平板を乾燥機に入れ42℃で20分乾燥した。その後、前記シリコンウェーハを水中で30分間振とうして洗浄し、乾燥させた。
実施例12 ハイブリダイゼーション及びその検出
実施例11及び比較例6のλDNA固定化シリコンウェーハを95℃に暖めた水中に10分間浸し、4℃に冷やした水中に5分間浸した。次いで、λDNA固定化シリコンウェーハの核酸を固定化した部分に、実施例8に記載の1pmolビオチン化λDNA(C)を含むハイブリダイゼーション溶液(Arrayit UniHyb(TeleCHem International,Inc.)60mlをのせ、シリコンウェーハを水が浸入しないケース(ハイブリカセット)に入れてそのケースごとウォーターバスに沈め、60℃で2時間加熱した。
以下、実施例8と同様にしてポストハイブリダイゼーション及びハイブリダイゼーションの検出を行った。その結果を表6に示す。
Figure 2004048973
表6の結果から明らかなように、ハイブリダイゼーションシグナルが特異的かつ明瞭に現れたことから、実施例11のλDNA断片固定化シリコンウェーハはλDNA断片が確実にシリコンウェーハ上に固定化されていることがわかる。一方、比較例6のλDNA断片固定化シリコンウェーハには、シグナルはまったく現れなかった。さらに、実施例11のλDNA断片固定化シリコンウェーハ及び比較例6のλDNA断片固定化シリコンウェーハのコントロールの位置(核酸を含まない溶液をスポットした箇所)にもシグナルはまったく現れなかった。
実施例13 核酸の平板への固定化
ガラス板に金蒸着させた基板の所定の位置に、実施例7に記載のλDNA溶液それぞれを、スポッター(Pyxsis5500 CARTESIAN社製)を用いて3箇所づつスポットした。スポットの大きさは直径約0.3mmであった。この金蒸着ガラス基板を乾燥機に入れ、42℃で20分乾燥した。次にUvstratalinker 2400(STRATAGENE社製)を用い、波長280nmを含む紫外線を16cmの距離から1200mJ/cm照射した。照射時間は480秒であった。その後、前記金蒸着ガラス基板を水中で30分間振とうして洗浄した後、乾燥させた。
一方、コントロールとして核酸を含まない溶液(1×TE緩衝液)も同様に金蒸着ガラス基板にスポットし、固定化の操作を行った。
比較例7
実施例7記載のλDNA溶液(濃度1pmol/μl)それぞれを、金蒸着ガラス基板の所定の位置に、スポッター(Pyxsis5500 CARTESIAN社製)を用いて3箇所づつスポットした。この平板を乾燥機に入れ42℃で20分乾燥した。その後、前記金蒸着ガラス基板を水中で30分間振とうして洗浄し、乾燥させた。
実施例14 ハイブリダイゼーション及びその検出
実施例13及び比較例7のλDNA固定化金蒸着ガラス基板を95℃に暖めた水中に10分間浸し、4℃に冷やした水中に5分間浸した。次いで、λDNA固定化金蒸着ガラス基板の核酸を固定化した部分に、実施例8に記載の1pmolビオチン化λDNA(C)を含むハイブリダイゼーション溶液(Arrayit UniHyb(TeleCHem International,Inc.)60mlをのせ、金蒸着ガラス基板を水が浸入しないケース(ハイブリカセット)に入れてそのケースごとウォーターバスに沈め、60℃で2時間加熱した。
以下、実施例8と同様にしてポストハイブリダイゼーション及びハイブリダイゼーションの検出を行った。その結果を表7に示す。
Figure 2004048973
表7の結果から明らかなように、ハイブリダイゼーションシグナルが特異的かつ明瞭に現れたことから、実施例13のλDNA断片固定化金蒸着ガラス基板はλDNA断片が確実に金蒸着ガラス基板上に固定化されていることがわかる。一方、比較例7のλDNA断片固定化金蒸着ガラス基板には、シグナルはまったく現れなかった。さらに、実施例13のλDNA断片固定化金蒸着ガラス基板及び比較例7のλDNA断片固定化金蒸着ガラス基板のコントロールの位置(核酸を含まない溶液をスポットした箇所)にもシグナルはまったく現れなかった。
実施例15 核酸の平板への固定化
市販の銅箔(日鉱金属加工株式会社製)の所定の位置に、実施例7に記載のλDNA溶液それぞれを、スポッター(Pyxsis5500 CARTESIAN社製)を用いて3箇所づつスポットした。スポットの大きさは直径約0.3mmであった。この銅箔を乾燥機に入れ、42℃で20分乾燥した。次にUvstratalinker 2400(STRATAGENE社製)を用い、波長254nmを含む紫外線を16cmの距離から1200mJ/cm照射した。照射時間は480秒であった。その後、前記銅箔を水中で30分間振とうして洗浄した後、乾燥させた。
一方、コントロールとして核酸を含まない溶液(1×TE緩衝液)も同様に銅箔にスポットし、固定化の操作を行った。
比較例8
実施例7記載のλDNA溶液(濃度1pmol/μl)それぞれを、銅箔の所定の位置に、スポッター(Pyxsis5500 CARTESIAN社製)を用いて3箇所づつスポットした。この銅箔を乾燥機に入れ42℃で20分乾燥した。その後、前記銅箔を水中で30分間振とうして洗浄し、乾燥させた。
実施例16 ハイブリダイゼーション及びその検出
実施例15及び比較例8のλDNA固定化銅箔を95℃に暖めた水中に10分間浸し、4℃に冷やした水中に5分間浸した。次いで、λDNA固定化銅箔の核酸を固定化した部分に、実施例8に記載の1pmolビオチン化λDNA(C)を含むハイブリダイゼーション溶液(Arrayit UniHyb(TeleCHem International,Inc.)60mlをのせ、銅箔を水が浸入しないケース(ハイブリカセット)に入れてそのケースごとウォーターバスに沈め、60℃で2時間加熱した。
以下、実施例8と同様にしてポストハイブリダイゼーション及びハイブリダイゼーションの検出を行った。その結果を表8に示す。
Figure 2004048973
表8の結果から明らかなように、ハイブリダイゼーションシグナルが特異的かつ明瞭に現れたことから、実施例15のλDNA断片固定化銅箔はλDNA断片が確実に銅箔上に固定化されていることがわかる。一方、比較例8のλDNA断片固定化銅箔には、シグナルはまったく現れなかった。さらに、実施例15のλDNA断片固定化金蒸着ガラス基板及び比較例8のλDNA断片固定化銅箔のコントロールの位置(核酸を含まない溶液をスポットした箇所)にもシグナルはまったく現れなかった。
実施例17 核酸の平板への固定化
市販の純ニッケル箔(日鉱金属加工株式会社製)の所定の位置に、実施例7に記載のλDNA溶液それぞれを、スポッター(Pyxsis5500 CARTESIAN社製)を用いて3箇所づつスポットした。スポットの大きさは直径約0.3mmであった。この純ニッケル箔を乾燥機に入れ、42℃で20分乾燥した。次にUvstratalinker 2400(STRATAGENE社製)を用い、波長280nmを含む紫外線を16cmの距離から1200mJ/cm照射した。照射時間は480秒であった。その後、前記純ニッケル箔を水中で30分間振とうして洗浄した後、乾燥させた。
一方、コントロールとして核酸を含まない溶液(1×TE緩衝液)も同様に純ニッケル箔にスポットし、固定化の操作を行った。
比較例9
実施例7記載のλDNA溶液(濃度1pmol/μl)それぞれを、純ニッケル箔の所定の位置に、スポッター(Pyxsis5500 CARTESIAN社製)を用いて3箇所づつスポットした。この純ニッケル箔を乾燥機に入れ42℃で20分乾燥した。その後、前記純ニッケル箔を水中で30分間振とうして洗浄し、乾燥させた。
実施例18 ハイブリダイゼーション及びその検出
実施例17及び比較例9のλDNA固定化純ニッケル箔を95℃に暖めた水中に10分間浸し、4℃に冷やした水中に5分間浸した。次いで、λDNA固定化純ニッケル箔の核酸を固定化した部分に、実施例8に記載の1pmolビオチン化λDNA(C)を含むハイブリダイゼーション溶液(Arrayit UniHyb(TeleCHem International,Inc.)60mlをのせ、純ニッケル箔を水が浸入しないケース(ハイブリカセット)に入れてそのケースごとウォーターバスに沈め、60℃で2時間加熱した。
以下、実施例8と同様にしてポストハイブリダイゼーション及びハイブリダイゼーションの検出を行った。その結果を表9に示す。
Figure 2004048973
表9の結果から明らかなように、ハイブリダイゼーションシグナルが特異的かつ明瞭に現れたことから、実施例17のλDNA断片固定化銅箔はλDNA断片が確実に純ニッケル箔上に固定化されていることがわかる。一方、比較例9のλDNA断片固定化純ニッケル箔には、シグナルはまったく現れなかった。さらに、実施例17のλDNA断片固定化純ニッケル箔及び比較例9のλDNA断片固定化純ニッケル箔のコントロールの位置(核酸を含まない溶液をスポットした箇所)にもシグナルはまったく現れなかった。Hereinafter, the present invention will be described more specifically with reference to examples.
Example 1 Immobilization of nucleic acid on flat plate
According to a conventional method, an oligonucleotide (21mer) having the nucleotide sequences shown in SEQ ID NOs: 1 and 2 was synthesized using an oligonucleotide synthesizer (Perkin-elmer Applied biosystems). In addition, DNA (262 bp) having the base sequence shown in SEQ ID NO: 3 was prepared as a probe. The oligonucleotide and probe shown in SEQ ID NO: 1 were biotinylated at the 5 ′ end. Moreover, the oligonucleotide shown in SEQ ID NO: 2 has complementarity with the biotinylated probe. These oligonucleotides were dissolved in 1 × TE buffer (10 mM Tris hydrochloric acid, pH 8/1 mM EDTA) so as to be 1 pmol / μl.
Each of the oligonucleotide solutions was spotted in three places at predetermined positions on a commercially available aluminum foil (manufactured by Mitsubishi Aluminum Co., Ltd.) (FIG. 1). The amount of the spot was 0.5 μl, and the spot size was about 1 mm in diameter. This aluminum foil was put into a dryer and dried at 37 ° C. for 20 minutes. Next, using a Uvstratalinker 2400 (manufactured by STRATAGENE), ultraviolet rays including a wavelength of 280 nm are 250 mJ / cm from a distance of 16 cm. 2 Irradiated. The irradiation time was 100 seconds. Thereafter, the aluminum foil was washed by shaking in water for 30 minutes, and then dried.
On the other hand, as a control, a solution containing no nucleic acid (1 × TE buffer) was similarly spotted on an aluminum foil to perform an immobilization operation.
Comparative Example 1
In advance, Uvstratalinker 2400 (manufactured by STRATAGENE) was used for the aluminum foil, and ultraviolet rays having a wavelength of 280 nm including a wavelength of 280 nm were 250 mJ / cm from a distance of 16 cm. 2 Irradiated. Each of the oligonucleotide solutions described in Example 1 was spotted at predetermined positions on the aluminum foil at three locations. The amount of the spot was 0.5 μl, and the spot size was about 1 mm in diameter. The irradiation time was 100 seconds. This aluminum foil was put into a dryer and dried at 37 ° C. for 20 minutes. Thereafter, the aluminum foil was washed by shaking in water for 30 minutes and dried.
On the other hand, as a control, a solution containing no nucleic acid (1 × TE buffer) was similarly spotted on an aluminum foil to perform an immobilization operation.
Example 2 Hybridization and Detection
(1) Hybridization
60 μl of hybridization solution (ArrayUniHyb (TeleChem International, Inc.) containing 3 pmol biotinylated probe (262 bp) was placed on the portion of the oligonucleotide-immobilized aluminum foil of Example 1 and Comparative Example 1 on which nucleic acid was immobilized, and aluminum The foil was put in a case (hybrid cassette) in which water did not enter, and the case was submerged in a water bath and heated at 45 ° C. for 2 hours.
(2) Post-hybridization
After the hybridization, post-hybridization washing was performed under the following conditions to remove the probe non-specifically adsorbed on the oligonucleotide-immobilized aluminum foil.
[Conditions for post-hybridization washing]
1) 2 × SSC, 0.1% SDS; room temperature, 5 minutes, 2 times
2) 0.2 × SSC, 0.1% SDS; twice at 40 ° C. for 5 minutes
3) 2 × SSC; room temperature for 1 minute, 3 times
(3) Detection of oligonucleotides immobilized on aluminum foil and hybridization
A 1.5 ml blocking solution containing milk protein (manufactured by Block Ace Snow Brand Milk Products Co., Ltd.) was placed on the aluminum foil hybridization solution, and blocking was performed at room temperature for 30 minutes. After removing the blocking solution, 1.5 ml of a streptavidin-alkaline phosphatase conjugate solution (manufactured by VECTOR) was placed and reacted at room temperature for 30 minutes. Next, the aluminum foil was immersed in a TBST (50 mM Tris-HCl (pH 7.5), 0.15 M NaCl, 0.05% Tween 20) solution, and the unreacted conjugate was removed by shaking for 5 minutes. Finally, 1.5 ml of the substrate solution (TMB) was put on the portion of the aluminum foil where the hybridization solution was placed, and allowed to stand for 30 minutes to perform a color reaction.
The results are shown in Table 1. The meanings of symbols in Table 1 are the same in Table 2 and below. The signal at the position where the oligonucleotide of SEQ ID NO: 1 is immobilized indicates the amount of the immobilized oligonucleotide, and the signal at the position where the oligonucleotide of SEQ ID NO: 2 is immobilized indicates the intensity of hybridization.
Figure 2004048973
As is clear from the results of Table 1, the oligonucleotide-immobilized aluminum foil of Example 1 is more reliably immobilized on the aluminum foil than the oligonucleotide-immobilized aluminum foil of Comparative Example 1. I understand that. In addition, in the oligonucleotide-immobilized aluminum foil of Example 1, hybridization signals also appeared clearly. It should be noted that no signal appeared at the control position (where the solution containing no nucleic acid was spotted).
Example 3 Immobilization of nucleic acids on a flat plate
According to a conventional method, an oligonucleotide (31mer) having the nucleotide sequences shown in SEQ ID NOs: 4, 5, and 6 was synthesized using an oligonucleotide synthesizer (Perkin-elmer Applied biosystems). The oligonucleotide shown in SEQ ID NO: 4 was biotinylated at the 5 ′ end. The oligonucleotides shown in SEQ ID NOs: 4 and 5 have a sequence in which ten thymidines are linked to the 5 ′ end of the oligonucleotides shown in SEQ ID NOs: 1 and 2 described in Example 1. The oligonucleotide of SEQ ID NO: 5 has complementarity with the biotinylated probe, and the oligonucleotide shown in SEQ ID NO: 6 has no complementarity because the nucleotide sequence of the oligonucleotide shown in SEQ ID NO: 5 is different. These oligonucleotides were dissolved in 5 × SSC so as to be 100 pmol / ml.
Each of the oligonucleotide solutions was spotted at predetermined positions on a commercially available stainless steel flat plate (manufactured by Tokushu Kinzoku Kogyo Co., Ltd.) using a spotter (manufactured by Pyxis5500 CARTESIAN). The spot size was about 0.3 mm in diameter. This flat plate was put into a dryer and dried at 42 ° C. for 20 minutes. Next, using an Uvstratalinker 2400 (manufactured by STRATAGENE), ultraviolet rays including a wavelength of 280 nm are 300 mJ / cm from a distance of 16 cm. 2 Irradiated. The irradiation time was 120 seconds. Thereafter, the flat plate was washed by shaking in water for 30 minutes and then dried.
On the other hand, as a control, a solution containing no nucleic acid (2 × SSC buffer) was also spotted on the plate in the same manner, and an immobilization operation was performed.
Comparative Example 2
In advance, Uvstralinker 2400 (manufactured by STRATAGENE) is used on a flat plate made of stainless steel, and ultraviolet rays including a wavelength of 280 nm are applied from a distance of 16 cm to 300 mJ / cm. 2 Irradiated. Each of the oligonucleotide solutions described in Example 3 was spotted at predetermined positions on a stainless steel plate using a spotter (manufactured by Pyxis5500 CARTESIAN) at three locations. The irradiation time was 120 seconds. This flat plate was put into a dryer and dried at 42 ° C. for 20 minutes. Thereafter, the flat plate was washed by shaking in water for 30 minutes and dried.
On the other hand, as a control, a solution containing no nucleic acid (2 × SSC buffer) was also spotted on the plate in the same manner, and an immobilization operation was performed.
Example 4 Hybridization and Detection
60 ml of a hybridization solution (Arrayit UniHyb (TeleChem International, Inc.) containing 3 pmol biotinylated probe (262 bp) was placed on the portion where the nucleic acid was immobilized on the oligonucleotide-immobilized plate of Example 3 and Comparative Example 2. It was put in a case (hybrid cassette) where water did not enter, and the case was submerged in a water bath and heated at 45 ° C. for 2 hours.
Thereafter, post-hybridization, oligonucleotide immobilized on the plate and hybridization were detected in the same manner as in Example 2. The results are shown in Table 2. The signal at the position where the oligonucleotide of SEQ ID NO: 4 is immobilized indicates the amount of the immobilized oligonucleotide, and the signal at the position where the oligonucleotide of SEQ ID NO: 5 is immobilized indicates the intensity of hybridization.
Figure 2004048973
As is clear from the results in Table 2, it can be seen that the oligonucleotide-immobilized plate of Example 3 is more reliably immobilized on the plate than the oligonucleotide-immobilized plate of Comparative Example 2. . In addition, the hybridization signal clearly appeared on the oligonucleotide-immobilized plate of Example 3. Here, no signal appeared at the control position (where the solution containing no nucleic acid was spotted) and SEQ ID NO: 6.
Example 5 Immobilization of nucleic acid on flat plate
Each of the oligonucleotide solutions prepared in Example 3 was spotted at a predetermined position on a silver-tungsten flat plate (Eastern Giken Co., Ltd.) using a spotter. The spot size was about 0.3 mm in diameter. This flat plate was put into a dryer and dried at 42 ° C. for 20 minutes. Next, using an Uvstralinker 2400 (manufactured by STRATAGENE), ultraviolet rays including a wavelength of 280 nm are emitted from a distance of 16 cm to 400 mJ / cm. 2 Irradiated. The irradiation time was 160 seconds. Thereafter, the flat plate was washed by shaking in water for 30 minutes and then dried.
On the other hand, as a control, a solution containing no nucleic acid (2 × SSC buffer) was also spotted on the plate in the same manner, and an immobilization operation was performed.
Comparative Example 3
In advance, Uvstratalinker 2400 (manufactured by STRATAGENE) was used on a silver-tungsten flat plate, and ultraviolet rays including a wavelength of 280 nm were applied from a distance of 16 cm to 400 mJ / cm. 2 Irradiated. Each of the oligonucleotide solutions described in Example 3 was spotted at predetermined positions on a silver-tungsten flat plate using a spotter (manufactured by Pyxis5500 CARTESIAN) at three locations. The irradiation time was 160 seconds. This flat plate was put into a dryer and dried at 42 ° C. for 20 minutes. Thereafter, the flat plate was washed by shaking in water for 30 minutes and dried.
On the other hand, as a control, a solution containing no nucleic acid (2 × SSC buffer) was also spotted on the plate in the same manner, and an immobilization operation was performed.
Example 6 Hybridization and Detection
60 ml of hybridization solution (Arrayit UniHyb (TeleChem International, Inc.) containing 3 pmol biotinylated probe (262 bp) was placed on the portion where the nucleic acid was immobilized on the oligonucleotide-immobilized plate of Example 5 and Comparative Example 3. It was put in a case (hybrid cassette) where water did not enter, and the case was submerged in a water bath and heated at 45 ° C. for 2 hours.
Thereafter, post-hybridization, oligonucleotide immobilized on the plate and hybridization were detected in the same manner as in Example 2. The results are shown in Table 3.
Figure 2004048973
As is clear from the results in Table 3, it can be seen that the oligonucleotide-immobilized plate of Example 5 is more reliably immobilized on the plate than the oligonucleotide-immobilized plate of Comparative Example 3. . In addition, hybridization signals clearly appeared on the oligonucleotide-immobilized plate of Example 5. Here, no signal appeared at the control position (where the solution containing no nucleic acid was spotted) and SEQ ID NO: 6.
Example 7 Immobilization of nucleic acid on flat plate
In accordance with a conventional method, λDNA fragment (A) was amplified using oligonucleotides having the nucleotide sequences shown in SEQ ID NOs: 7 and 8 as primers. The obtained fragment was subjected to agarose electrophoresis and detected by ethidium bromide staining. As a result, the length of the fragment was about 300b. A λDNA fragment (B) (about 300b) that was not complementary to the λDNA was also amplified in the same manner.
Each of the above λDNA solutions was spotted at predetermined positions on a commercially available aluminum foil (manufactured by Mitsubishi Aluminum Co., Ltd.) using a spotter (manufactured by Pyxis5500 CARTESIAN). The spot size was about 0.3 mm in diameter. This aluminum foil was put into a dryer and dried at 42 ° C. for 20 minutes. Next, Uvstratalinker 2400 (manufactured by STRATAGENE) was used, and ultraviolet rays including a wavelength of 280 nm were emitted from a distance of 16 cm to 600 mJ / cm. 2 Irradiated. The irradiation time was 240 seconds. Thereafter, the aluminum foil was washed by shaking in water for 30 minutes, and then dried.
On the other hand, as a control, a solution containing no nucleic acid (1 × TE buffer) was similarly spotted on an aluminum foil to perform an immobilization operation.
Comparative Example 4
Each of the λDNA solutions described in Example 7 (concentration 1 pmol / μl) was spotted at predetermined positions on the aluminum foil at three locations using a spotter (manufactured by Pyxsis 5500 CARTESIAN). This aluminum foil was put into a dryer and dried at 42 ° C. for 20 minutes. Thereafter, the aluminum foil was washed by shaking in water for 30 minutes and dried.
On the other hand, as a control, a solution containing no nucleic acid (1 × TE buffer) was similarly spotted on an aluminum foil to perform an immobilization operation.
Example 8 Hybridization and Detection
(1) Hybridization
The λ DNA fragment (C) was amplified using the oligonucleotide having the base sequence shown in SEQ ID NO: 7 labeled with biotin at the 5 ′ end and the oligonucleotide having the base sequence shown in SEQ ID NO: 8 as primers. The sequence of this λDNA fragment (C) is identical to the sequence of the λDNA fragment (A) prepared in Example 7.
The λDNA-immobilized aluminum foils of Example 7 and Comparative Example 4 were immersed in water warmed to 95 ° C. for 5 minutes and immersed in water cooled to 4 ° C. for 5 minutes. Next, 60 ml of the hybridization solution (ArrayUniHyb (TeleChem International, Inc.) containing the 0.5 pmol biotinylated λDNA (C) is placed on the portion of the λDNA-immobilized aluminum foil where the nucleic acid is immobilized. It was put in a case (hybrid cassette) that did not penetrate, and the case was submerged in a water bath and heated at 55 ° C. for 2 hours.
(2) Post-hybridization
After the hybridization, post-hybridization washing was performed under the following conditions to remove the probe non-specifically adsorbed on the λDNA-immobilized aluminum foil.
[Conditions for post-hybridization washing]
1) 2 × SSC, 0.1% SDS; room temperature, 5 minutes, 2 times
2) 0.2 × SSC, 0.1% SDS; twice at 40 ° C. for 5 minutes
3) 2 × SSC; room temperature for 1 minute, 3 times
(3) Detection of hybridization
A 1.5 ml blocking solution containing milk protein (manufactured by Block Ace Snow Brand Milk Products Co., Ltd.) was placed on the aluminum foil hybridization solution, and blocking was performed at room temperature for 30 minutes. After removing the blocking solution, 1.5 ml of a streptavidin-alkaline phosphatase conjugate solution (manufactured by VECTOR) was placed and reacted at room temperature for 30 minutes. Next, the aluminum foil was immersed in a TBST (50 mM Tris-HCl (pH 7.5), 0.15 M NaCl, 0.05% Tween 20) solution, and the unreacted conjugate was removed by shaking for 5 minutes. Finally, 1.5 ml of the substrate solution (TMB) was placed on the portion of the aluminum foil (fog) where the hybridization solution was placed, and allowed to stand for 30 minutes to perform a color reaction.
The results are shown in Table 4.
Figure 2004048973
As apparent from the results in Table 4, the hybridization signal appeared specifically and clearly, so that the λDNA fragment-immobilized aluminum foil and the λDNA fragment of Example 7 were surely immobilized on the aluminum foil. I understand that. On the other hand, no signal appeared in the λDNA fragment-immobilized aluminum foil of Comparative Example 4. Furthermore, no signal appeared at the control position (the spot where the solution containing no nucleic acid was spotted) of the λDNA fragment-immobilized aluminum foil of Example 7 and the λDNA fragment-immobilized aluminum foil of Comparative Example 4.
Example 9 Immobilization of nucleic acid on flat plate
Each of the λDNA solutions described in Example 7 was spotted at predetermined positions on a commercially available stainless steel flat plate (manufactured by Special Metal Industry Co., Ltd.) using a spotter (manufactured by Pyxis5500 CARTESIAN) in three places. The spot size was about 0.3 mm in diameter. This flat plate was put into a dryer and dried at 42 ° C. for 20 minutes. Next, using Uvstratalinker 2400 (manufactured by STRATAGENE), ultraviolet rays including a wavelength of 280 nm are 1200 mJ / cm from a distance of 16 cm. 2 Irradiated. The irradiation time was 480 seconds. Thereafter, the flat plate was washed by shaking in water for 30 minutes and then dried.
On the other hand, as a control, a solution containing no nucleic acid (1 × TE buffer) was similarly spotted on a flat plate to perform an immobilization operation.
Comparative Example 5
Each of the λDNA solutions described in Example 7 (concentration: 1 pmol / μl) was spotted at predetermined positions on a stainless steel flat plate using a spotter (manufactured by Pyxis5500 CARTESIAN) at three locations. This flat plate was put into a dryer and dried at 42 ° C. for 20 minutes. Thereafter, the flat plate was washed by shaking in water for 30 minutes and dried.
On the other hand, as a control, a solution containing no nucleic acid (1 × TE buffer) was similarly spotted on a flat plate to perform an immobilization operation.
Example 10 Hybridization and Detection
The λDNA-immobilized plates of Example 9 and Comparative Example 5 were immersed in water warmed to 95 ° C. for 10 minutes and immersed in water cooled to 4 ° C. for 5 minutes. Next, 60 ml of the hybridization solution (ArrayUniHyb (TeleChem International, Inc.) containing 1 pmol biotinylated λDNA (C) described in Example 8 was placed on the portion of the λDNA-immobilized plate where the nucleic acid was immobilized. Was put into a case (hybrid cassette) that did not penetrate, and the case was submerged in a water bath and heated at 60 ° C. for 2 hours.
Thereafter, post-hybridization and hybridization detection were carried out in the same manner as in Example 8. The results are shown in Table 5.
Figure 2004048973
As is clear from the results in Table 5, the hybridization signal appeared specifically and clearly, which indicates that the λDNA fragment-immobilized plate of Example 9 is surely immobilized on the plate. . On the other hand, no signal appeared on the λDNA fragment-immobilized plate of Comparative Example 5. Furthermore, no signal appeared at the control position (the spot where the solution containing no nucleic acid was spotted) on the λDNA fragment-immobilized plate of Example 9 and the λDNA fragment-immobilized plate of Comparative Example 5.
Example 11 Immobilization of nucleic acid on flat plate
Each of the λDNA solutions described in Example 7 was spotted at predetermined positions on a commercially available silicon wafer (manufactured by Mitsubishi Sumitomo Silicon Co., Ltd.) using a spotter (manufactured by Pyxis5500 CARTESIAN) in three places. The spot size was about 0.3 mm in diameter. This silicon wafer was put into a dryer and dried at 42 ° C. for 20 minutes. Next, using Uvstratalinker 2400 (manufactured by STRATAGENE), ultraviolet rays including a wavelength of 280 nm are 1200 mJ / cm from a distance of 16 cm. 2 Irradiated. The irradiation time was 480 seconds. Thereafter, the silicon wafer was washed by shaking in water for 30 minutes and then dried.
On the other hand, as a control, a solution containing no nucleic acid (1 × TE buffer) was similarly spotted on a silicon wafer to perform an immobilization operation.
Comparative Example 6
Each of the λDNA solutions described in Example 7 (concentration: 1 pmol / μl) was spotted at three positions using a spotter (manufactured by Pyxis5500 CARTESIAN) at a predetermined position on the silicon wafer. This flat plate was put into a dryer and dried at 42 ° C. for 20 minutes. Thereafter, the silicon wafer was washed by shaking in water for 30 minutes and dried.
Example 12 Hybridization and Detection
The λDNA-immobilized silicon wafers of Example 11 and Comparative Example 6 were immersed in water warmed to 95 ° C. for 10 minutes and immersed in water cooled to 4 ° C. for 5 minutes. Next, 60 ml of the hybridization solution (ArrayUniHyb (TeleChem International, Inc.) containing 1 pmol biotinylated λDNA (C) described in Example 8 was placed on the portion of the λDNA-immobilized silicon wafer on which the nucleic acid had been immobilized. Was placed in a case (hybrid cassette) in which water did not enter and the case was submerged in a water bath and heated at 60 ° C. for 2 hours.
Thereafter, post-hybridization and hybridization detection were carried out in the same manner as in Example 8. The results are shown in Table 6.
Figure 2004048973
As is clear from the results in Table 6, the hybridization signal appeared specifically and clearly, and thus the λDNA fragment-immobilized silicon wafer of Example 11 is surely immobilized on the silicon wafer. I understand. On the other hand, no signal appeared on the λDNA fragment-immobilized silicon wafer of Comparative Example 6. Furthermore, no signal appeared at the control position (the spot where the solution containing no nucleic acid was spotted) of the λDNA fragment-immobilized silicon wafer of Example 11 and the λDNA fragment-immobilized silicon wafer of Comparative Example 6.
Example 13 Immobilization of nucleic acid on flat plate
Each of the λDNA solutions described in Example 7 was spotted at three positions using a spotter (manufactured by Pyxis5500 CARTESIAN) at a predetermined position of the substrate on which gold was vapor-deposited on a glass plate. The spot size was about 0.3 mm in diameter. This gold-deposited glass substrate was placed in a dryer and dried at 42 ° C. for 20 minutes. Next, using Uvstratalinker 2400 (manufactured by STRATAGENE), ultraviolet rays including a wavelength of 280 nm are 1200 mJ / cm from a distance of 16 cm. 2 Irradiated. The irradiation time was 480 seconds. Thereafter, the gold-deposited glass substrate was washed by shaking in water for 30 minutes and then dried.
On the other hand, as a control, a solution containing no nucleic acid (1 × TE buffer) was similarly spotted on a gold-deposited glass substrate to perform an immobilization operation.
Comparative Example 7
Each of the λDNA solutions described in Example 7 (concentration: 1 pmol / μl) was spotted at predetermined positions on a gold-deposited glass substrate in three places using a spotter (manufactured by Pyxis5500 CARTESIAN). This flat plate was put into a dryer and dried at 42 ° C. for 20 minutes. Thereafter, the gold-deposited glass substrate was washed by shaking in water for 30 minutes and dried.
Example 14 Hybridization and Detection
The λDNA-immobilized gold-deposited glass substrates of Example 13 and Comparative Example 7 were immersed in water warmed to 95 ° C. for 10 minutes and immersed in water cooled to 4 ° C. for 5 minutes. Next, 60 ml of a hybridization solution (ArrayUniHyb (TeleChem International, Inc.) containing 1 pmol biotinylated λDNA (C) described in Example 8 was placed on the portion of the λDNA-immobilized gold-deposited glass substrate on which the nucleic acid was immobilized. The gold-deposited glass substrate was placed in a case (hybrid cassette) in which water did not enter and the case was submerged in a water bath and heated at 60 ° C. for 2 hours.
Thereafter, post-hybridization and hybridization detection were carried out in the same manner as in Example 8. The results are shown in Table 7.
Figure 2004048973
As is clear from the results in Table 7, the hybridization signal appeared specifically and clearly, so that the λDNA fragment-immobilized gold-deposited glass substrate of Example 13 was reliably immobilized on the gold-deposited glass substrate. You can see that On the other hand, no signal appeared on the λDNA fragment-immobilized gold-deposited glass substrate of Comparative Example 7. Furthermore, no signal appeared at the control position (the spot where the solution containing no nucleic acid was spotted) of the λDNA fragment-immobilized gold-deposited glass substrate of Example 13 and the λDNA fragment-immobilized gold-deposited glass substrate of Comparative Example 7. .
Example 15 Immobilization of nucleic acid on flat plate
Each of the λDNA solutions described in Example 7 was spotted at predetermined positions on a commercially available copper foil (manufactured by Nikko Metal Processing Co., Ltd.) using a spotter (manufactured by Pyxis5500 CARTESIAN) in three places. The spot size was about 0.3 mm in diameter. This copper foil was put into a dryer and dried at 42 ° C. for 20 minutes. Next, using Uvstratalinker 2400 (manufactured by STRATAGENE), ultraviolet rays including a wavelength of 254 nm are 1200 mJ / cm from a distance of 16 cm. 2 Irradiated. The irradiation time was 480 seconds. Thereafter, the copper foil was washed by shaking in water for 30 minutes, and then dried.
On the other hand, as a control, a solution containing no nucleic acid (1 × TE buffer) was similarly spotted on a copper foil, and an immobilization operation was performed.
Comparative Example 8
Each of the λDNA solutions described in Example 7 (concentration: 1 pmol / μl) was spotted at predetermined positions on the copper foil in three places using a spotter (manufactured by Pyxis5500 CARTESIAN). This copper foil was put into a dryer and dried at 42 ° C. for 20 minutes. Thereafter, the copper foil was washed by shaking in water for 30 minutes and dried.
Example 16 Hybridization and Detection
The λDNA-immobilized copper foils of Example 15 and Comparative Example 8 were immersed in water warmed to 95 ° C. for 10 minutes and immersed in water cooled to 4 ° C. for 5 minutes. Then, 60 ml of the hybridization solution (ArrayUniHyb (TeleChem International, Inc.) containing 1 pmol biotinylated λDNA (C) described in Example 8 was placed on the portion of the λDNA-immobilized copper foil on which the nucleic acid was immobilized. Was placed in a case (hybrid cassette) in which water did not enter and the case was submerged in a water bath and heated at 60 ° C. for 2 hours.
Thereafter, post-hybridization and hybridization detection were carried out in the same manner as in Example 8. The results are shown in Table 8.
Figure 2004048973
As is clear from the results in Table 8, the hybridization signal appeared specifically and clearly, so that the λDNA fragment-immobilized copper foil of Example 15 is surely immobilized on the copper foil. I understand. On the other hand, no signal appeared in the λDNA fragment-immobilized copper foil of Comparative Example 8. Further, no signal appeared at the control position (the spot where the solution containing no nucleic acid was spotted) of the λDNA fragment-immobilized gold-deposited glass substrate of Example 15 and the λDNA fragment-immobilized copper foil of Comparative Example 8.
Example 17 Immobilization of nucleic acid on flat plate
Each of the λDNA solutions described in Example 7 was spotted at predetermined positions on a commercially available pure nickel foil (manufactured by Nikko Metal Processing Co., Ltd.) using a spotter (manufactured by Pyxis5500 CARTESIAN) in three places. The spot size was about 0.3 mm in diameter. This pure nickel foil was put into a dryer and dried at 42 ° C. for 20 minutes. Next, using Uvstratalinker 2400 (manufactured by STRATAGENE), ultraviolet rays including a wavelength of 280 nm are 1200 mJ / cm from a distance of 16 cm. 2 Irradiated. The irradiation time was 480 seconds. Thereafter, the pure nickel foil was washed by shaking in water for 30 minutes and then dried.
On the other hand, as a control, a solution containing no nucleic acid (1 × TE buffer) was similarly spotted on pure nickel foil to perform an immobilization operation.
Comparative Example 9
Each of the λDNA solutions described in Example 7 (concentration: 1 pmol / μl) was spotted at predetermined positions on a pure nickel foil in three places using a spotter (manufactured by Pyxis5500 CARTESIAN). This pure nickel foil was put into a dryer and dried at 42 ° C. for 20 minutes. Thereafter, the pure nickel foil was washed by shaking in water for 30 minutes and dried.
Example 18 Hybridization and Detection
The λDNA-immobilized pure nickel foils of Example 17 and Comparative Example 9 were immersed in water warmed to 95 ° C. for 10 minutes and immersed in water cooled to 4 ° C. for 5 minutes. Next, 60 ml of a hybridization solution (Arrayit UniHyb (TeleChem International, Inc.) containing 1 pmol biotinylated λDNA (C) described in Example 8 was placed on the portion of the λDNA-immobilized pure nickel foil on which the nucleic acid was immobilized. The nickel foil was placed in a case (hybrid cassette) in which water did not enter, and the case was submerged in a water bath and heated at 60 ° C. for 2 hours.
Thereafter, post-hybridization and hybridization detection were carried out in the same manner as in Example 8. The results are shown in Table 9.
Figure 2004048973
As is clear from the results in Table 9, the hybridization signal appeared specifically and clearly, so that the λDNA fragment-immobilized copper foil of Example 17 is surely immobilized on pure nickel foil. I understand that. On the other hand, no signal appeared in the λDNA fragment-immobilized pure nickel foil of Comparative Example 9. Furthermore, no signal appeared at the control position (the spot where the solution containing no nucleic acid was spotted) of the λDNA fragment-immobilized pure nickel foil of Example 17 and the λDNA fragment-immobilized pure nickel foil of Comparative Example 9.

常法に従い、オリゴヌクレオチド合成機(Perkin−elmer Applied biosystems)を用いて、配列番号9、10及び11に示す塩基配列を有するオリゴヌクレオチド(26mer)を合成した。尚、配列番号9に示すオリゴヌクレオチドは、5’末端をビオチン化した。また、配列番号9及び10に示すオリゴヌクレオチドは、実施例1に記載の配列番号1及び2に示すオリゴヌクレオチドの5’末端に5個のチミジンが連結した配列を有している。配列番号11に示すオリゴヌクレオチドは、配列番号5に示すオリゴヌクレオチドと1塩基配列が異なるため相補性を持っていない。すなわち、これらのオリゴヌクレオチドは、実施例3の配列番号4、5及び6のオリゴヌクレオチドの5’末端のチミジンを5個に減らしたものである。
上記オリゴヌクレオチドを、実施例3と同様にして市販品のステンレス製の平板(特殊金属工業株式会社製)に固定化した。以下、実施例2と同様にしてポストハイブリダイゼーション、及び平板に固定化されたオリゴヌクレオチドならびにハイブリダイゼーションの検出を行った。
比較例10
実施例19に記載のオリゴヌクレオチド溶液を用いた他は、比較例2と同様にして、ステンレス製の平板に各々のオリゴヌクレオチドを固定化した。
According to a conventional method, an oligonucleotide (26mer) having the nucleotide sequences shown in SEQ ID NOs: 9, 10 and 11 was synthesized using an oligonucleotide synthesizer (Perkin-elmer Applied biosystems). The oligonucleotide shown in SEQ ID NO: 9 was biotinylated at the 5 ′ end. Further, the oligonucleotides shown in SEQ ID NOs: 9 and 10 have a sequence in which five thymidines are linked to the 5 ′ end of the oligonucleotides shown in SEQ ID NOs: 1 and 2 described in Example 1. The oligonucleotide shown in SEQ ID NO: 11 does not have complementarity because it differs from the oligonucleotide shown in SEQ ID NO: 5 by one base sequence. That is, these oligonucleotides are obtained by reducing the thymidine at the 5 ′ end of the oligonucleotides of SEQ ID NOs: 4, 5 and 6 of Example 3 to 5.
In the same manner as in Example 3, the oligonucleotide was immobilized on a commercially available stainless steel flat plate (manufactured by Special Metal Industries Co., Ltd.). Thereafter, post-hybridization, oligonucleotide immobilized on the plate and hybridization were detected in the same manner as in Example 2.
Comparative Example 10
Each oligonucleotide was immobilized on a stainless steel plate in the same manner as in Comparative Example 2 except that the oligonucleotide solution described in Example 19 was used.

実施例19及び比較例10のオリゴヌクレオチド固定化平板の核酸を固定化した部分に、3pmolビオチン化プローブ(262bp)を含むハイブリダイゼーション溶液(Arrayit UniHyb(TeleCHem International,Inc.)60mlをのせ、平板を水が浸入しないケース(ハイブリカセット)に入れてそのケースごとウォーターバスに沈め、45℃で2時間加熱した。
以下、実施例2と同様にしてポストハイブリダイゼーション、及び平板に固定化されたオリゴヌクレオチドならびにハイブリダイゼーションの検出を行った。その結果を、表10に示す。配列番号9のオリゴヌクレオチドを固定化した位置のシグナルは固定化されたオリゴヌクレオチドの量を、配列番号10のオリゴヌクレオチドを固定化した位置のシグナルはハイブリダイゼーションの強度を、それぞれ示す。

Figure 2004048973
60 ml of hybridization solution (ArrayUniHyb (TeleChem International, Inc.) containing 3 pmol biotinylated probe (262 bp) was placed on the portion where the nucleic acid was immobilized on the oligonucleotide-immobilized plate of Example 19 and Comparative Example 10. It was put in a case (hybrid cassette) where water did not enter, and the case was submerged in a water bath and heated at 45 ° C. for 2 hours.
Thereafter, post-hybridization, oligonucleotide immobilized on the plate and hybridization were detected in the same manner as in Example 2. The results are shown in Table 10. The signal at the position where the oligonucleotide of SEQ ID NO: 9 is immobilized indicates the amount of the immobilized oligonucleotide, and the signal at the position where the oligonucleotide of SEQ ID NO: 10 is immobilized indicates the intensity of hybridization.
Figure 2004048973

産業上の利用の可能性Industrial applicability

本発明の方法により、生体分子、例えば核酸、特に鎖長の短い核酸を、金属製担体に簡便、かつ、効率よく固定することができる。また、担体表面のコーティングが不要であるため、金属製の電極等に直接生体分子を固定化することができる。  By the method of the present invention, a biomolecule, such as a nucleic acid, particularly a nucleic acid having a short chain length, can be simply and efficiently immobilized on a metal carrier. Moreover, since the coating on the surface of the carrier is unnecessary, the biomolecule can be directly immobilized on a metal electrode or the like.

【配列表】

Figure 2004048973
Figure 2004048973
Figure 2004048973
Figure 2004048973
[Sequence Listing]
Figure 2004048973
Figure 2004048973
Figure 2004048973
Figure 2004048973

Claims (8)

生体分子を担体に固定化する方法であって、生体分子の溶液を担体上にスポットする工程と、前記生体分子溶液をスポットした担体に波長280nmの成分を含む紫外線を照射する工程を含み、前記担体は金属であることを特徴とする方法。A method of immobilizing a biomolecule on a carrier, comprising the steps of spotting a biomolecule solution on the carrier, and irradiating the carrier on which the biomolecule solution is spotted with an ultraviolet ray containing a component having a wavelength of 280 nm, A method wherein the support is a metal. 前記紫外線が、波長220〜300nmの成分を含むことを特徴とする請求項1に記載の方法。The method according to claim 1, wherein the ultraviolet ray includes a component having a wavelength of 220 to 300 nm. 前記金属は、周期律表第2周期〜第7周期のI、II、III、IV、V、VI、VII族および遷移元素から選ばれる金属、又は同金属を含む合金である請求項1又は2に記載の方法。The metal is a metal selected from Group I, II, III, IV, V, VI, VII and transition elements of Period 2 to Period 7 of the periodic table, or an alloy containing the same metal. The method described in 1. 前記紫外線の照射量は100mJ/cm以上である請求項1〜3のいずれか一項に記載の方法。The method according to claim 1, wherein the irradiation amount of the ultraviolet rays is 100 mJ / cm 2 or more. 前記生体分子は核酸、タンパク質、糖、抗原、抗体、ペプチド、酵素から選ばれる請求項1〜4のいずれか一項に記載の方法。The method according to any one of claims 1 to 4, wherein the biomolecule is selected from nucleic acids, proteins, sugars, antigens, antibodies, peptides, and enzymes. 生体分子が担体上に固定化された生体分子固定化担体の製造法であって、生体分子の溶液を担体上にスポットする工程と、前記生体分子溶液をスポットした担体に波長280nmの成分を含む紫外線を照射し、前記生体分子を担体に固定化する工程を含む方法。A method for producing a biomolecule-immobilized carrier in which a biomolecule is immobilized on a carrier, the step of spotting a biomolecule solution on the carrier, and a carrier having a wavelength of 280 nm spotted on the biomolecule solution. A method comprising a step of irradiating ultraviolet rays to immobilize the biomolecule on a carrier. 前記紫外線が、波長220〜300nmの成分を含むことを特徴とする請求項6に記載の方法。The method according to claim 6, wherein the ultraviolet ray includes a component having a wavelength of 220 to 300 nm. 前記生体分子は核酸であって、核酸固定化担体はハイブリダイゼーションによる核酸の分析に用いられるものである請求項6に記載の方法。The method according to claim 6, wherein the biomolecule is a nucleic acid, and the nucleic acid-immobilized carrier is used for analysis of nucleic acid by hybridization.
JP2004555033A 2002-11-25 2003-11-25 Immobilization of biomolecules on metal carriers Withdrawn JPWO2004048973A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2002340464 2002-11-25
JP2002340464 2002-11-25
PCT/JP2003/015010 WO2004048973A1 (en) 2002-11-25 2003-11-25 Method of fixing biomolecule on metal support

Publications (1)

Publication Number Publication Date
JPWO2004048973A1 true JPWO2004048973A1 (en) 2006-03-23

Family

ID=32375822

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004555033A Withdrawn JPWO2004048973A1 (en) 2002-11-25 2003-11-25 Immobilization of biomolecules on metal carriers

Country Status (6)

Country Link
US (1) US20060068392A1 (en)
EP (1) EP1566638A4 (en)
JP (1) JPWO2004048973A1 (en)
AU (1) AU2003284679A1 (en)
CA (1) CA2506260A1 (en)
WO (1) WO2004048973A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006024058B8 (en) * 2006-05-16 2010-10-14 Technische Universität Dresden Modular system with immobilized nucleic acids and / or nucleic acid derivatives on metallic surfaces and method for its production
DE102011051692A1 (en) * 2011-07-08 2013-01-10 Peter Brehm Chirurgie-Mechanik e.K. Process for the sterilization of functionalized, coated surfaces containing nucleotides and / or nucleotide derivatives
US9506890B2 (en) 2014-12-16 2016-11-29 Eastman Chemical Company Physical vapor deposited biosensor components
CN109312384B (en) 2016-06-15 2022-12-30 伊士曼化工公司 Physical vapor deposition biosensor assembly
KR102547063B1 (en) 2016-09-16 2023-06-22 이스트만 케미칼 컴파니 Biosensor electrodes fabricated by physical vapor deposition
EP3512958B1 (en) 2016-09-16 2022-04-06 Eastman Chemical Company Biosensor electrodes prepared by physical vapor deposition
US11881549B2 (en) 2017-06-22 2024-01-23 Eastman Chemical Company Physical vapor deposited electrode for electrochemical sensors
CN114538600B (en) * 2022-03-28 2023-12-26 中化学朗正环保科技有限公司 Iron-carbon coupled microbial membrane carrier material, reaction device and nitrogen and phosphorus removal system thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001136968A (en) * 1999-11-11 2001-05-22 Mitsubishi Rayon Co Ltd Biopolymer-immobilized film laminate and thin film thereof, and method for producing them
EP1130121A3 (en) * 2000-01-26 2003-04-16 Nisshinbo Industries Inc. Immobilized nucleic acid and method for detecting nucleic acid
JP2001281246A (en) * 2000-01-26 2001-10-10 Nisshinbo Ind Inc Method for detecting immobilization nucleic acid and nucleic acid
JP2002250726A (en) * 2000-12-08 2002-09-06 Toray Ind Inc Polymer sequence fixed disc and detection method by fixed polymer sequence
JP2003144172A (en) * 2001-11-16 2003-05-20 Nisshinbo Ind Inc Oligonucleotide-immobilized board for detecting methylation
JP2003207505A (en) * 2002-01-11 2003-07-25 Nisshinbo Ind Inc Analyzing method of biological molecule

Also Published As

Publication number Publication date
US20060068392A1 (en) 2006-03-30
CA2506260A1 (en) 2004-06-10
WO2004048973A1 (en) 2004-06-10
EP1566638A4 (en) 2007-06-13
EP1566638A1 (en) 2005-08-24
WO2004048973A8 (en) 2004-11-11
AU2003284679A1 (en) 2004-06-18

Similar Documents

Publication Publication Date Title
CA1340160C (en) Method and reagents for detecting nucleic acid sequences
AU707391B2 (en) Producing copies of nucleic acids
WO1999051773A9 (en) Addressable protein arrays
HUE025489T2 (en) Multiplexed analyses of test samples
JPH07502656A (en) Method for immobilizing nucleic acid probes on polystyrene surfaces
EP1412518B1 (en) Sorting and immobilization system for nucleic acids using synthetic binding systems
WO2005108609A1 (en) Method for identification and analysis of certain molecules using the dual function of single strand nucleic acid
JP2012509062A (en) Methods and compositions in particle-based detection of target molecules using linking molecules
JPWO2006095550A1 (en) PCR primer, PCR method and PCR amplification product using the same, device and DNA-protein complex using PCR amplification product
US9266726B2 (en) Method for making biochips
JPWO2004048973A1 (en) Immobilization of biomolecules on metal carriers
JP2004020386A (en) Hybridization method and hybridization apparatus for selectively coupling substance, and base for immobilizing the selectively coupling substance
WO2014142020A1 (en) Nucleic acid linker
JPWO2005001086A1 (en) Immobilized mRNA-puromycin conjugate and uses thereof
EP1471355A1 (en) Method of fixing biomolecule to carrier
JP4300325B2 (en) Biological material immobilization chip and use thereof
JP2005520568A (en) Increased hybridization rate of specific nucleic acid binding agent bound to substrate
JP3917640B2 (en) Method for detecting presence of target nucleic acid using nucleic acid probe-immobilized substrate
JP3979198B2 (en) Nucleic acid immobilization carrier
US7285401B1 (en) Method and reagents for detecting nucleic acid sequences
JP2008538928A (en) How to minimize reagent consumption in microplate-based reactions
JP2003265168A (en) Immobilized deoxylipozyme
AU2004200234A1 (en) Addressable protein arrays
JPWO2003019199A1 (en) Ligand-immobilized substrate

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061101

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061101

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20071113