JPWO2003100848A1 - Substrate processing apparatus and processing method - Google Patents

Substrate processing apparatus and processing method Download PDF

Info

Publication number
JPWO2003100848A1
JPWO2003100848A1 JP2004508403A JP2004508403A JPWO2003100848A1 JP WO2003100848 A1 JPWO2003100848 A1 JP WO2003100848A1 JP 2004508403 A JP2004508403 A JP 2004508403A JP 2004508403 A JP2004508403 A JP 2004508403A JP WO2003100848 A1 JPWO2003100848 A1 JP WO2003100848A1
Authority
JP
Japan
Prior art keywords
substrate
carrier
chamber
substrate processing
processing apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004508403A
Other languages
Japanese (ja)
Other versions
JP4369866B2 (en
Inventor
均 中河原
均 中河原
誠一 井川
誠一 井川
吉史 畦原
吉史 畦原
Original Assignee
アネルバ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アネルバ株式会社 filed Critical アネルバ株式会社
Publication of JPWO2003100848A1 publication Critical patent/JPWO2003100848A1/en
Application granted granted Critical
Publication of JP4369866B2 publication Critical patent/JP4369866B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/68Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for positioning, orientation or alignment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67155Apparatus for manufacturing or treating in a plurality of work-stations
    • H01L21/67161Apparatus for manufacturing or treating in a plurality of work-stations characterized by the layout of the process chambers
    • H01L21/67173Apparatus for manufacturing or treating in a plurality of work-stations characterized by the layout of the process chambers in-line arrangement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G49/00Conveying systems characterised by their application for specified purposes not otherwise provided for
    • B65G49/05Conveying systems characterised by their application for specified purposes not otherwise provided for for fragile or damageable materials or articles
    • B65G49/07Conveying systems characterised by their application for specified purposes not otherwise provided for for fragile or damageable materials or articles for semiconductor wafers Not used, see H01L21/677
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/56Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67739Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations into and out of processing chamber
    • H01L21/67748Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations into and out of processing chamber horizontal transfer of a single workpiece

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Physical Vapour Deposition (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

本発明は、キャリアを介した処理室雰囲気の汚染を抑制し、安定した搬送及び高品質の基板処理を継続できる基板処理装置及び処理方法であって、今後ますます大型化する基板に対応でき、また種々の基板寸法に対応できる汎用性の高い基板処理装置及び処理方法を提供することを目的とする。基板を搭載したキャリアを搬入するロードロック室と、キャリア間で基板の移載を行う移載機構を有する基板移載室と、基板に所定の処理を行う基板処理室と、を有し、前記ロードロック室及び前記基板移載室間を移動する第1のキャリアと、前記基板移載室及び前記基板処理室間を移動する第2のキャリアとを有し、前記移載機構により、前記第1のキャリア及び前記第2のキャリア間で基板を移載する構成としたことを特徴とする。The present invention is a substrate processing apparatus and processing method capable of suppressing the contamination of the processing chamber atmosphere via the carrier, continuing stable transport and high-quality substrate processing, and can cope with an increasingly larger substrate in the future. It is another object of the present invention to provide a versatile substrate processing apparatus and processing method that can cope with various substrate dimensions. A load lock chamber for carrying a carrier on which a substrate is loaded, a substrate transfer chamber having a transfer mechanism for transferring a substrate between carriers, and a substrate processing chamber for performing a predetermined process on the substrate, A first carrier that moves between the load lock chamber and the substrate transfer chamber; and a second carrier that moves between the substrate transfer chamber and the substrate processing chamber. The substrate is transferred between one carrier and the second carrier.

Description

技術分野
本発明は、基板を搭載したキャリアを処理室に連続して搬送し所定の処理を行う基板処理装置及び処理方法に係り、特にキャリアが処理室と大気間を移動することに帰因する処理室雰囲気汚染の問題を解消し、品質の優れた薄膜形成及びエッチング等の処理を安定して行うことが可能な基板処理装置及び処理方法に関する。
背景技術
基板処理装置の従来例として、図7に示した生産用の蒸着装置について説明する。従来の蒸着装置は、図7に示したように、キャリア搬入用ロードロック室10、加熱室70、蒸着室30、キャリア搬出用ロードロック室10’がゲートバルブ41〜43を介して連結され、各室にはキャリア2の搬送ユニット4が設置されている。搬送ユニット4としては、通常、多数の搬送コロの列が2列設けられ、駆動系によりコロを回転させることにより、コロ列上に載置されるキャリアを移動させる構成のものが好適に用いられる。基板3は大気中でキャリア2に搭載され、キャリア2をロードロック室10から加熱室70に搬送し、基板を所定温度に加熱した後、蒸着室30に送って薄膜を形成する。その後、キャリア2はロードロック室10’に送り出され、大気中に取り出される。処理済み基板3’が回収された後、キャリア2には再び未処理基板3が搭載され、ロードロック室10に戻される。これらの操作を繰り返し行うことにより、多数の基板上に薄膜を連続して形成することができる。
この従来方式では、基板搬送用のキャリア2は大気中と真空中との間を繰り返し搬送される。そのため、キャリアに付着した膜に大気中の水分等の汚染物が吸着し、さらにこの上に膜が付着すると、密着性が低下して膜は剥離し易くなる。膜剥離により発生したパーティクルは膜内に取り込まれて膜の欠陥となるため、歩留まり低下の原因となっていた。
また、図7の蒸着装置をプラズマディスプレイ(PDP)のMgO膜の形成に適用すると、表示性能上大きな問題となることが明らかになった。基板への膜形成を繰り返し行うと、図8に示すように、蒸着室内の水分圧は上昇し、これに伴いMgOの膜質が変化することが分かった。即ち、250回程度の膜形成を繰り返すと蒸着室の水分圧は3x10−4Pa程度となり、得られるMgO膜は、図9のX線回折パターンに示すように、(111)面に(200)面及び(220)面が混在した形態の膜となることが分かった。MgO膜の二次電子放出係数は結晶面により異なるため、結晶面が混在すると輝度むらが生じてPDPの表示性能は大きく低下することになる。従って、高性能の表示性能を安定して得るには、蒸着室の水分圧を3x10−4Pa以下に維持する必要がある。
以上の付着膜の剥離の問題及び水分等の蒸着室への取り込みの問題を解決する蒸着装置が特開平9−279341公報に提案されている。この蒸着装置は、図10に示すように、基板搬入用ロードロック室10、蒸着室30、及び基板搬出用ロードロック室10’とがゲートバルブ41,42で連結され、蒸着室30はロードロック室10から搬送される基板3をキャリア(トレイ)2に搭載する基板搭載部31、蒸着部32及び処理済み基板をロードロック室10’に送り出す基板回収部33とからなり、キャリア2は搭載部、蒸着部及び回収部間を循環して、大気に曝されない構成となっている。即ち、基板3はロードロック室10に搬入された後、上述の搬送コロ列からなる搬送ユニット4により基板搭載部31のキャリア(トレイ)2上に搭載され、蒸着部32に送られ、加熱機構(不図示)により所定の温度に加熱されてMgO膜が形成される。その後、キャリア2は基板回収部33に搬送され、キャリア2から処理済み基板3’を取り外し、基板のみロードロック室10’に取り出される。一方、キャリア2は、上部の搬送路に沿って基板搭載部31に戻される。このようにしてキャリアは、常に真空中を搬送されるため、付着膜は大気に接触することはなくパーティクル発生が大きく抑制されるとともに、水分等の持ち込みが抑制される結果、基板全面を通して同じ結晶面を有する均質なMgO膜を形成することができ、高性能PDPに対応できることが分かった。
発明の開示
しかしながら、図10に示した蒸着装置では、基板の大型化等に対応することは実際上非常に困難であることが分かった。即ち、基板単体を搬送する搬送方法では基板の両端を搬送コロの上に載せて搬送するため、基板が大型化すると基板の撓みが大きくなる。その結果として、搬送が不安定となり、最悪の場合には基板が割れ、高精細・高性能PDPの安定した生産が困難になるという問題が生じた。この問題は、タクト向上のために基板短手方向に基板を搬送しようとするとより一層顕在化する。さらに、基板の大きさにより搬送コロ列間の間隔等の種々の煩雑な設定が必要となるため、多品種の基板に対応するのは実際上不可能となり、汎用性が低いという欠点があった。
このように、基板の大型化、多様化に対応するには、基板搬入時から基板を所定の大きさのキャリアに搭載しておく装置構成とするのが不可欠であることが分かり、この装置構成でさらに膜剥離及び膜質維持の検討を行った。この中で、成膜時にキャリアをマスクで覆ってキャリアへの膜付着を抑制し、マスクは外部に取り出さず真空室内にとどめる構成の蒸着装置を開発したが(特開平11−131232号公報)、図7の装置構成と比べて改善されるものの、高精細・高性能の大型PDPに対応するには十分でないことが分かった。例えば、マスク開口部がキャリア開口部よりも大きいとキャリアに膜が付着し上述したのと同様の問題が起こり、逆にマスク開口部が小さいと基板外周部に蒸着材料が回り込んで堆積するため、膜厚が薄くまた結晶面が混在する形態となり輝度むらが生じるという問題があることが分かった。
以上述べてきた問題は、MgOの蒸着装置に限らず、種々の薄膜形成に用いるスパッタやCVD等の成膜装置やエッチング等の処理装置についても同様に起こる問題であり、真空基板処理の分野においては、膜質、処理性能に影響を与えず継続して安定した処理を可能とする基板搬送方法が求められていた。
このような状況の下で、本発明は、キャリアを介した処理室雰囲気の汚染を抑制し、安定した基板搬送及び高品質の基板処理を継続できる基板処理装置及び処理方法であって、今後ますます大型化する基板に対応でき、また種々の基板寸法に対応できる汎用性の高い基板処理装置及び処理方法を提供することを目的とする。
本発明の基板処理装置は、基板を搭載したキャリアを搬入するロードロック室と、キャリア間で基板の移載を行う移載機構を有する基板移載室と、基板に所定の処理を行う基板処理室と、を有する基板処理装置であって、前記ロードロック室及び前記基板移載室間を移動する第1のキャリアと、前記基板移載室及び前記基板処理室間を移動する第2のキャリアとを有し、前記移載機構により、前記第1のキャリア及び前記第2のキャリア間で基板を移載する構成としたことを特徴とする。また、前記ロードロック室へ処理済み基板を搭載した前記第1のキャリアが搬出されることを特徴とする。
これらにより、例えば、成膜時に基板を保持するキャリアは大気に曝されずにすむため、大気中でキャリア付着膜に吸着、吸蔵し蒸着室に持ち込まれる水分等に帰因する薄膜の膜質不均質化や膜剥離を大きく低減でき、欠陥がなく均質な高品質薄膜を多数の基板上に連続して作製することが可能となる。
本発明において、前記移載機構は、複数のキャリア保持台を有し互いに入れ替え可能なキャリア保持機構と基板保持機構とをそれぞれ2つと、該2つのキャリア保持機構の保持台間でキャリアを移動させる移動機構と、により構成されることを特徴とする。
これにより、前記保持台上の前記第1及び第2のキャリアから基板を前記保持機構により保持した状態で、キャリアを前記2つの保持機構間で移動させ、その状態で再びキャリアに基板を載置させてることにより、基板を移載させることができる。この構成は、大型基板であっても、スループットの高い移載を確実に行うことができるため、生産性の高い基板処理装置を実現できる。しかも、ロボット等による移載方法と比べて装置面積を大幅に削減できることから基板処理装置全体で大幅なコストダウンを達成することができる。
また、前記基板保持機構としては、真空吸着又は静電吸着機構を用いるのが好ましい。この保持機構は、基板を裏面から保持できるので、大型基板のみならず種々の大きさの基板を表面の膜堆積面を汚したり疵をつけることなく確実に保持し、大気側キャリアと真空側キャリア間で基板移載を容易且つ確実に行うことができる。
さらに、前記基板移載室は乾燥気体雰囲気に保持することを特徴とし、例えばNガスが用いられる。これにより、基板移載機構及び処理装置構成を簡素化することができる。
また、前記キャリアは、基板の4辺を支持するのが好ましく、基板が大型化しても基板の撓みを抑え全面に均質な薄膜を形成することができる。さらに、本発明は、MgO膜等、吸湿性の高い膜の形成に特に好適に用いられる。
本発明の基板処理方法は、基板を搭載したキャリアを搬出入するロードロック室と、キャリア間で基板の移載を行う基板移載室と、基板に所定の処理を行う基板処理室と、を連結配置し、前記ロードロック室及び前記基板移載室間を移動する第1のキャリアと前記基板移載室及び前記基板処理室間を移動する第2のキャリアとを配置し、前記基板移載室において、第1のキャリア及び前記第2のキャリア間で基板の移載を行い、前記基板処理室に搬出入される前記第2のキャリアを大気にさらすことなく、連続して基板処理を行うことを特徴とする。
ここで、上述したように、前記移載機構は、複数のキャリア保持台を有し互いに入れ替え可能なキャリア保持機構と基板保持機構とをそれぞれ2つと、該2つのキャリア保持機構の保持台間でキャリアを移動させる移動機構とで構成し、前記保持台上の前記第1及び第2のキャリアから基板を前記基板保持機構により保持した状態で、キャリアを前記2つの保持機構間で移動させ、その状態で再びキャリアに基板を載置させることにより基板の移載を行うのが好ましい。
発明を実施するための最良の形態
本発明の基板処理装置の基本構成を図1の模式図に示す。
図1に示すように、基板処理装置は、ロードロック室10、基板移載室20及び処理室30がゲートバルブ41,42を介して連結された構造を有し、ロードロック室10及び基板移載室20間で第1のキャリア1が移動して基板を搬送し、基板移載室20及び処理室30間で第2のキャリア1’が移動して基板を搬送する。ここで、基板移載室20はNガス等の乾燥ガス雰囲気又は真空に保たれ、基板移載機構5が取り付けられている。
大気中で第1のキャリア1に基板3が搭載され、ロードロック室10に搬入され、真空にした後(基板移載室がNガス雰囲気の場合はさらにNガスを充填した後)、ゲートバルブ41が開けられ、基板移載室20に送られる。基板移載室20で、基板移載機構5により、第1のキャリア1から第2のキャリア1’に基板3が移載され、基板3を搭載した第2のキャリア1’が処理室30に送られ、所定の処理が行われた後基板移載室20に戻される。基板移載室では処理済み基板3’が第2のキャリア1’から第1のキャリア1に移載され、第1のキャリア1’はロードロック室10を介して大気中に取り出され、処理済み基板3’と未処理基板3が交換され、再びロードロック室10に戻される。このようにして、処理室30に入る第2のキャリアは大気に触れることはなく、しかも基板3,3’は常にキャリアによって搬送する構成としたため、大型基板であっても安定した搬送及び処理を繰り返し継続することが可能となる。
以下に、本発明の好適な実施形態をPDPのMgO膜蒸着装置について添付図面に基づいてより詳細に説明する。図2は本発明に係るMgO膜の作製方法が実施される蒸着装置の概略構成図、図3は基板移載室における基板の移載方法の一例を説明する概略図である。本実施形態では、ロードロック室10、第1補助室50、基板移載室20、第2補助室60、第1加熱室70、蒸着室30、及びキャリアの搬送方向を変換し、かつ基板加熱も行なう第2加熱室80から構成されている。各室の間にはゲートバルブ41〜46が配設されている。第1及び第2加熱室にはそれぞれ基板を所定温度に加熱するための加熱機構(不図示)が設けられている。
本実施形態では、ロードロック室10、第1補助室50、第2補助室60、第1加熱室70及び蒸着室30には、図の右方向にキャリアを搬送する上部搬送ユニットと左方向に搬送する下部搬送ユニットとがそれぞれ配置されている。各搬送ユニット4は、例えば、特開平9−279341公報に記載された2列の搬送コロ列からなり、コロを駆動系により回転させることにより、コロ上に載置されたキャリアが搬送される構成のものが好適に用いられる。また、第2加熱室80には、1つの搬送ユニットが上下移動可能に取り付けられ、これによりキャリアを上部搬送路から下部搬送路へ移動させることができる。この搬送ユニットの上下移動機構も特開平9−279341公報に記載されたものが好適に用いられ、搬送ユニットをベローズを介して例えばシリンダで上下移動させる構造のものが用いられる。
また、基板移載室20には、キャリア保持棚となる上述の搬送ユニット4が2段に重ねられ、上下に移動する構造のキャリア保持機構21,22が左右に2組配置されており、2つのキャリア保持機構の搬送ユニット間でキャリア1,1’の移動が可能な構成としてある。なお、上下移動機構としては、例えば上述した特開平9−279341公報に記載されたものが用いられる。さらに、基板移載室20の天壁には、基板を真空吸着する公知の吸着機構からなる基板保持機構23が設けられている。
蒸着室30の底壁部には開口部が形成されており、その下部に蒸着手段(例えば中外炉工業株式会社製プラズマ源)35及びMgOを収納するハース34が装備されている。なお、膜質調節のために開口部近郊に酸素ガス導入機構が配設される。
ガラス基板(例えば、42インチテレビ用)は、水平姿勢のキャリアに載せられ、搬送系により水平搬送される。以下に、その搬送方法を説明する。なお、基板を4辺で保持され、基板の片面(本実施形態では下側)に膜が形成される。
第1のキャリア1は、大気中、ロードロック室10及び基板移載室20間を循環し、第2のキャリア1’は基板移載室20と第2加熱室80の間を循環する。
まず、ガラス基板3は第1のキャリア1に搭載され、ロードロック室10に搬入される。ロードロック室10は所定の圧力(10−5Pa台)まで排気される。その後、ゲートバルブ41を開け、第1のキャリア1は第1補助室50に搬送される。第1補助室50に搬入された第1のキャリア1は、加熱機構(不図示)により150℃程度まで加熱して脱ガス処理を行う。加熱を停止し、10−4Pa台に到達後乾燥Nガスを大気圧まで導入する。
このとき、第2補助室60の下部搬送ユニット上には、処理済み基板3’を搭載した第2のキャリア1’が待機しており、室内にはNガスが導入されている。
なお、基板移載室は、大気圧力のNガスにより満たされている。
この状態から基板移載室20における基板移載動作を図3を参照して説明する。
図3(a)の状態から、ゲートバルブ42を開け、第1のキャリア1は基板移載室20の第1キャリア保持機構21の上段棚に搬送される。一方、ゲートバルブ43が開けられ、成膜済みの基板3’を搭載した第2のキャリア1’が第2補助室60から第2キャリア保持機構22の下段棚に搬送される(b)。
基板移載室の天壁から、真空吸着機構23が不図示のシリンダによりベローズを介して押し下げられ、それぞれの基板と接触して真空吸着した後、押し上げられる。ここで、第1及び第2のキャリア保持機構21,22が同じ高さに移動した後、搬送コロを回転させ、第1及び第2キャリアがそれぞれ反対のキャリア保持機構のユニットに移動する(c)。続いて、真空吸着手段23が再び押し下げられ、第1のキャリア1に処理済み基板3’が第2のキャリア1’に未処理基板3が搭載される(d)。次に、第1及び第2のキャリアがそれぞれ反対側のユニットに移動する(e)。続いて、第1及び第2のキャリア保持機構が上下移動し、ゲートバルブ42,43が開いて第1のキャリア1は第1補助室50の下部搬送ユニットへ、第2のキャリア1’は第2補助室60の上部搬送ユニットに送られる(f)。
次に、第2補助室60では、所定の圧力10−5Pa台まで排気された後、ゲートバルブ44が開けられ、第2のキャリアは第1加熱室70に搬送される。第1加熱室70では、加熱機構(不図示)により300℃まで加熱する。その圧力が10−3Pa台に到達するまで脱ガスを行なう。その後、ゲートバルブ45を開け、第2のキャリアは蒸着室30を通って第2加熱室80に送られ、所定時間加熱される。第2加熱室80では、キャリアを載置した搬送ユニット4が例えば特開平9−979341公報に開示されている上下移動機構により下降され、ゲートバルブ46が再び開き、第2のキャリアは搬入方向と反対に移動し、蒸着室30に搬入される。
なお、基板加熱は、以上の実施形態に限らず、ロードロック室10や第2補助室で行ってもよい。
蒸着室30において、第2のキャリア1’に搭載された基板3上に、所定の成膜条件でMgO膜が堆積される。すなわち、蒸着室には酸素ガスが80sccmを導入され、さらに圧力0.1PaまでArガスを導入して,プラズマ蒸着源を駆動し基板上にMgO膜を堆積する。
この後、第2のキャリア1’は、第1加熱室70,第2補助室60を通って基板移載室20に送られ、前述したように、第1及び第2のキャリア間で基板の移載が行われる。
第1のキャリア1に搭載された処理済み基板3’は、第1補助室50を経てロードロック室10に搬送される。大気導入後、第1のキャリアは大気中に取り出され、処理済み基板3’が回収され、未処理基板3が第1のキャリア1に再び搭載される。
以上のようにして、連続的に基板上にMgO膜が堆積される。この間、第2のキャリア1’は大気と接触することはないため、膜剥離は起こり難く欠陥のないMgO膜を安定して形成することができる。また、得られたMgO膜のX線回折パターンは3000回成膜を繰り返しても図4に示すように主に(111)結晶面をもつものとなり、輝度むらのない高性能PDPを継続して作製することが可能となった。なお、B、A及びCは基板中心及び基板端から3cm離れた位置での回折パターンを示す。
図1の装置構成は、ひとつのロードロック室でキャリアを搬入、搬出する構成としたが、ロードロック室を2つ設け、一方から搬入し他方から搬出する構成としてもよい。この一例を図5に示す。図5の装置では、処理室30の両側に基板移載室20,20’及びロードロック室10,10’が配置され、第1基板移載室20と第1ロードロック室10及び大気間、並び第2基板移載室20と第2ロードロック室10及び大気間を移動する第1のキャリア1が2組と、第1基板移載室20、処理室30及び第2基板移載室20’間を移動する第2のキャリア1’とが配置される。
なお、本発明において、基板処理装置の処理室、補助室等の数及び配置等、並びに基板処理装置内を同時に循環するキャリアの数等は、例えば各室でのタクトタイム等に応じて適宜選択すればよい。
また、本実施形態では、基板移載室の基板保持機構として真空吸着手段を用いたが、公知の静電吸着手段や特開平9−279341公報に開示されている基板の端部を保持する機械的保持機構を用いてもよい。また、基板移載機構としては、以上に限らず、例えば、回転軸の周りに2つの基板保持機構を取り付け、第1及び第2のキャリアの基板を保持した後、180°回転軸を回転させ、その状態で基板をキャリア上に載置する構成としてもよいし、また、ロボットにより基板を移載させる構成としてもよい。さらに、以上は基板を水平にして搬送、移載等する場合について述べてきたが、これに限らず、基板を垂直にして搬送、移載、処理等する構成としても良い。
以上の実施形態ではインライン方式の蒸着装置について説明してきたが、本発明は、例えば、図6に示すようにクラスター方式等の蒸着装置にも適用される。この場合、第1のキャリア1は、ロードロック室10と基板移載室20との間を移動し、第2のキャリア1’は基板移載室20と処理室30(30’、30”)との間を移動する。移載室では、例えば2つのハンドを有するロボット6により第1及び第2キャリアの基板を移載する。
さらに、上述したように、本発明は、蒸着装置に限られることはなく、例えばスパッタリング方法により露光用ブランクスとしてCr酸化膜を作製する装置に好適に用いられる他、エッチング処理等の種々の処理装置に応用することができる。
産業上の利用可能性
以上の説明で明らかなように、本発明によれば、従来基板搬送の際に発生していた汚染の問題を低減し、品質の優れた膜を安定性良く形成することができ、特に酸化マグネシウムのような吸湿性の誘電体膜を高速で作製する装置を提供することができる。
【図面の簡単な説明】
図1は、本発明の基板処理装置の基本的な構成例を示す模式図である。
図2は、PDPのMgO膜の蒸着装置の構成を説明する概略図である。
図3は、基板の移載を説明する概略図である。
図4は、本発明により成膜したMgO膜の結晶配向性を示すX線回折図である。
図5は、蒸着装置の他の構成例を示す概略図である。
図6は、基板処理装置の他の構成例を示す概略図である。
図7は、従来の蒸着装置の構成を説明する概略図である。
図8は、膜堆積基板の生産枚数と水分圧の関係を表すグラフである。
図9は、従来装置により成膜したMgO膜の結晶配向性を示すX線回折図である。
図10は、大気中の水分の影響を抑制した蒸着装置の従来例を示す概略図である。
図において、1、1’、2はキャリアを示し、3、3’は基板、4は搬送ユニット、5は基板移載機構、6はロボット、10、10’はロードロック室、20は基板移載室、21,22はキャリア保持機構、23は基板保持機構、30は処理室、34はMgOを収納ハース、35は蒸着手段、40〜46はゲートバルブ、50は第1補助室、60は第2補助室、70は第1加熱室、80は第2加熱室を示す。
TECHNICAL FIELD The present invention relates to a substrate processing apparatus and a processing method for carrying a predetermined processing by continuously transporting a carrier carrying a substrate to a processing chamber, and is particularly attributed to the carrier moving between the processing chamber and the atmosphere. The present invention relates to a substrate processing apparatus and a processing method capable of solving the problem of contamination in the processing chamber atmosphere and stably performing processing such as thin film formation with excellent quality and etching.
As a conventional example of a substrate processing apparatus, a production vapor deposition apparatus shown in FIG. 7 will be described. As shown in FIG. 7, the conventional vapor deposition apparatus has a carrier loading load lock chamber 10, a heating chamber 70, a vapor deposition chamber 30, and a carrier carry out load lock chamber 10 ′ connected via gate valves 41 to 43. A transport unit 4 for the carrier 2 is installed in each chamber. As the transport unit 4, normally, a structure in which a plurality of transport roller rows are provided and a carrier placed on the roller row is moved by rotating the rollers with a drive system is preferably used. . The substrate 3 is mounted on the carrier 2 in the atmosphere, and the carrier 2 is transported from the load lock chamber 10 to the heating chamber 70, heated to a predetermined temperature, and then sent to the vapor deposition chamber 30 to form a thin film. Thereafter, the carrier 2 is sent out to the load lock chamber 10 'and taken out into the atmosphere. After the processed substrate 3 ′ is collected, the unprocessed substrate 3 is again mounted on the carrier 2 and returned to the load lock chamber 10. By repeating these operations, a thin film can be continuously formed on a large number of substrates.
In this conventional method, the carrier 2 for transporting the substrate is repeatedly transported between the atmosphere and the vacuum. Therefore, when contaminants such as moisture in the atmosphere are adsorbed on the film attached to the carrier, and further the film adheres to the film, the adhesion is lowered and the film is easily peeled off. Particles generated by film peeling are taken into the film and become defects in the film, causing a decrease in yield.
Further, it has been clarified that when the vapor deposition apparatus shown in FIG. 7 is applied to the formation of the MgO film of the plasma display (PDP), the display performance becomes a serious problem. It was found that when the film formation on the substrate was repeated, the moisture pressure in the vapor deposition chamber increased as shown in FIG. 8, and the film quality of MgO changed accordingly. That is, when the film formation is repeated about 250 times, the water pressure in the vapor deposition chamber becomes about 3 × 10 −4 Pa, and the obtained MgO film has (200) on the (111) plane as shown in the X-ray diffraction pattern of FIG. It turned out that it becomes a film | membrane of the form with which the surface and the (220) surface were mixed. Since the secondary electron emission coefficient of the MgO film varies depending on the crystal plane, luminance unevenness occurs when the crystal planes are mixed, and the display performance of the PDP is greatly deteriorated. Therefore, in order to stably obtain high-performance display performance, it is necessary to maintain the water pressure in the vapor deposition chamber at 3 × 10 −4 Pa or less.
Japanese Laid-Open Patent Publication No. 9-279341 proposes a vapor deposition apparatus that solves the above-described problem of peeling of the adhered film and the problem of taking moisture into the vapor deposition chamber. As shown in FIG. 10, in this vapor deposition apparatus, a substrate loading load lock chamber 10, a vapor deposition chamber 30, and a substrate carrying load lock chamber 10 'are connected by gate valves 41 and 42, and the vapor deposition chamber 30 is load locked. The substrate 2 includes a substrate mounting unit 31 for mounting the substrate 3 conveyed from the chamber 10 on the carrier (tray) 2, a vapor deposition unit 32, and a substrate recovery unit 33 for sending the processed substrate to the load lock chamber 10 ′. In addition, it circulates between the vapor deposition section and the collection section, and is not exposed to the atmosphere. That is, after the substrate 3 is carried into the load lock chamber 10, it is mounted on the carrier (tray) 2 of the substrate mounting portion 31 by the transfer unit 4 composed of the above-described transfer roller row, sent to the vapor deposition unit 32, and heated. The MgO film is formed by heating to a predetermined temperature (not shown). Thereafter, the carrier 2 is transported to the substrate recovery unit 33, the processed substrate 3 ′ is removed from the carrier 2, and only the substrate is taken out into the load lock chamber 10 ′. On the other hand, the carrier 2 is returned to the substrate mounting portion 31 along the upper conveyance path. In this way, since the carrier is always transported in vacuum, the adhered film does not come into contact with the atmosphere and particle generation is greatly suppressed, and the introduction of moisture and the like is suppressed, resulting in the same crystal throughout the entire surface of the substrate. It was found that a homogeneous MgO film having a surface can be formed, and it can be applied to a high-performance PDP.
DISCLOSURE OF THE INVENTION However, it has been found that the vapor deposition apparatus shown in FIG. 10 is actually very difficult to cope with an increase in the size of the substrate. That is, in the transport method for transporting a single substrate, both ends of the substrate are transported on a transport roller, so that when the substrate is increased in size, the deflection of the substrate increases. As a result, the conveyance becomes unstable, and in the worst case, the substrate is cracked, which makes it difficult to stably produce a high-definition and high-performance PDP. This problem becomes more apparent when an attempt is made to transport the substrate in the short direction of the substrate in order to improve tact. Furthermore, since various complicated settings such as the interval between the conveying roller rows are required depending on the size of the substrate, it is practically impossible to cope with a wide variety of substrates, and there is a disadvantage that versatility is low. .
As described above, in order to cope with the increase in size and diversification of substrates, it is indispensable to adopt a device configuration in which a substrate is mounted on a carrier of a predetermined size from the time of loading the substrate. Then, the film peeling and film quality maintenance were examined. Among them, a carrier was covered with a mask at the time of film formation to suppress film adhesion to the carrier, and a vapor deposition apparatus having a configuration in which the mask was not taken out but stayed in a vacuum chamber was developed (Japanese Patent Application Laid-Open No. 11-131232). Although improved compared to the apparatus configuration of FIG. 7, it was found that the apparatus configuration is not sufficient to support a large PDP having high definition and high performance. For example, if the mask opening is larger than the carrier opening, the film adheres to the carrier and the same problem as described above occurs. Conversely, if the mask opening is small, the deposition material wraps around and accumulates on the outer periphery of the substrate. It has been found that there is a problem that unevenness of brightness occurs because the film thickness is thin and crystal faces are mixed.
The problems described above are not limited to MgO vapor deposition apparatuses, but also occur in film processing apparatuses such as sputtering and CVD used for various thin film formation, and processing apparatuses such as etching, in the field of vacuum substrate processing. Therefore, there has been a demand for a substrate transfer method that enables continuous and stable processing without affecting film quality and processing performance.
Under such circumstances, the present invention is a substrate processing apparatus and processing method capable of suppressing the contamination of the processing chamber atmosphere via the carrier and continuing stable substrate transport and high-quality substrate processing. It is an object of the present invention to provide a highly versatile substrate processing apparatus and processing method that can cope with an ever-increasing substrate size and that can accommodate various substrate dimensions.
The substrate processing apparatus of the present invention includes a load lock chamber for carrying a carrier on which a substrate is mounted, a substrate transfer chamber having a transfer mechanism for transferring a substrate between carriers, and a substrate processing for performing a predetermined process on the substrate. A first carrier that moves between the load lock chamber and the substrate transfer chamber, and a second carrier that moves between the substrate transfer chamber and the substrate processing chamber. The substrate is transferred between the first carrier and the second carrier by the transfer mechanism. Further, the first carrier carrying the processed substrate is carried out to the load lock chamber.
As a result, for example, the carrier that holds the substrate during film formation does not need to be exposed to the atmosphere. Therefore, the film quality inhomogeneity of the thin film is attributed to moisture adsorbed and occluded by the carrier adhesion film in the atmosphere and brought into the deposition chamber. And film peeling can be greatly reduced, and a uniform high-quality thin film having no defects can be continuously produced on a large number of substrates.
In the present invention, the transfer mechanism includes a plurality of carrier holding mechanisms and a substrate holding mechanism that each have a plurality of carrier holding bases and can be replaced with each other, and moves the carrier between the holding bases of the two carrier holding mechanisms. And a moving mechanism.
Accordingly, the carrier is moved between the two holding mechanisms while the substrate is held by the holding mechanism from the first and second carriers on the holding table, and the substrate is again placed on the carrier in this state. By doing so, the substrate can be transferred. With this configuration, even a large substrate can be reliably transferred with high throughput, so that a highly productive substrate processing apparatus can be realized. In addition, since the area of the apparatus can be greatly reduced as compared with a transfer method using a robot or the like, a significant cost reduction can be achieved in the entire substrate processing apparatus.
Further, it is preferable to use a vacuum suction or electrostatic suction mechanism as the substrate holding mechanism. Since this holding mechanism can hold the substrate from the back side, not only a large substrate but also various substrates can be securely held without fouling or scratching the surface film deposition surface. It is possible to transfer the substrate easily and reliably.
Further, the substrate transfer chamber is maintained in a dry gas atmosphere, and for example, N 2 gas is used. Thereby, a board | substrate transfer mechanism and a processing apparatus structure can be simplified.
The carrier preferably supports four sides of the substrate, and even when the substrate is enlarged, the substrate can be prevented from being bent and a uniform thin film can be formed on the entire surface. Furthermore, the present invention is particularly preferably used for forming a highly hygroscopic film such as an MgO film.
The substrate processing method of the present invention includes a load lock chamber for carrying in and out a carrier carrying a substrate, a substrate transfer chamber for transferring a substrate between carriers, and a substrate processing chamber for performing a predetermined process on the substrate. A first carrier moving between the load lock chamber and the substrate transfer chamber and a second carrier moving between the substrate transfer chamber and the substrate processing chamber are arranged, and the substrate transfer is performed. In the chamber, the substrate is transferred between the first carrier and the second carrier, and the substrate is continuously processed without exposing the second carrier carried in / out of the substrate processing chamber to the atmosphere. It is characterized by that.
Here, as described above, the transfer mechanism has two carrier holding mechanisms and substrate holding mechanisms each having a plurality of carrier holding bases and interchangeable with each other, and between the holding bases of the two carrier holding mechanisms. And a moving mechanism for moving the carrier, with the substrate being held by the substrate holding mechanism from the first and second carriers on the holding table, the carrier is moved between the two holding mechanisms, It is preferable to transfer the substrate by placing the substrate on the carrier again in the state.
BEST MODE FOR CARRYING OUT THE INVENTION The basic configuration of a substrate processing apparatus of the present invention is shown in the schematic diagram of FIG.
As shown in FIG. 1, the substrate processing apparatus has a structure in which a load lock chamber 10, a substrate transfer chamber 20, and a processing chamber 30 are connected via gate valves 41, 42. The first carrier 1 moves between the loading chambers 20 to convey the substrate, and the second carrier 1 ′ moves between the substrate transfer chamber 20 and the processing chamber 30 to convey the substrate. Here, the substrate transfer chamber 20 is maintained in a dry gas atmosphere such as N 2 gas or a vacuum, and the substrate transfer mechanism 5 is attached.
After the substrate 3 is mounted on the first carrier 1 in the atmosphere, loaded into the load lock chamber 10 and evacuated (if the substrate transfer chamber is in an N 2 gas atmosphere, it is further filled with N 2 gas), The gate valve 41 is opened and sent to the substrate transfer chamber 20. In the substrate transfer chamber 20, the substrate transfer mechanism 5 transfers the substrate 3 from the first carrier 1 to the second carrier 1 ′, and the second carrier 1 ′ on which the substrate 3 is mounted enters the processing chamber 30. After being sent and subjected to predetermined processing, it is returned to the substrate transfer chamber 20. In the substrate transfer chamber, the processed substrate 3 ′ is transferred from the second carrier 1 ′ to the first carrier 1, and the first carrier 1 ′ is taken out into the atmosphere via the load lock chamber 10 and processed. The substrate 3 ′ and the untreated substrate 3 are exchanged and returned to the load lock chamber 10 again. In this manner, the second carrier entering the processing chamber 30 is not exposed to the atmosphere, and the substrates 3 and 3 ′ are always transported by the carrier, so that stable transport and processing can be performed even for large substrates. It is possible to continue repeatedly.
Hereinafter, a preferred embodiment of the present invention will be described in detail with reference to the accompanying drawings with regard to a PDP MgO film deposition apparatus. FIG. 2 is a schematic configuration diagram of a vapor deposition apparatus in which the method for producing an MgO film according to the present invention is implemented, and FIG. 3 is a schematic diagram for explaining an example of a substrate transfer method in a substrate transfer chamber. In the present embodiment, the load lock chamber 10, the first auxiliary chamber 50, the substrate transfer chamber 20, the second auxiliary chamber 60, the first heating chamber 70, the vapor deposition chamber 30, and the carrier transport direction are changed, and the substrate heating is performed. The second heating chamber 80 is also configured. Gate valves 41 to 46 are disposed between the chambers. Each of the first and second heating chambers is provided with a heating mechanism (not shown) for heating the substrate to a predetermined temperature.
In the present embodiment, the load lock chamber 10, the first auxiliary chamber 50, the second auxiliary chamber 60, the first heating chamber 70, and the vapor deposition chamber 30 have an upper conveyance unit that conveys a carrier in the right direction in the figure and a left direction. A lower transfer unit for transferring is arranged. Each transport unit 4 is composed of, for example, two transport roller rows described in JP-A-9-279341, and the carrier placed on the rollers is transported by rotating the rollers with a drive system. Are preferably used. In addition, one transport unit is attached to the second heating chamber 80 so as to be movable up and down, whereby the carrier can be moved from the upper transport path to the lower transport path. As the vertical movement mechanism of this transport unit, the one described in Japanese Patent Laid-Open No. 9-279341 is preferably used, and a structure in which the transport unit is moved up and down by a cylinder, for example, via a bellows is used.
In the substrate transfer chamber 20, the above-described transport units 4 serving as carrier holding shelves are stacked in two stages, and two sets of carrier holding mechanisms 21, 22 having a structure that moves up and down are arranged on the left and right. The carrier 1, 1 ′ can be moved between the transport units of the two carrier holding mechanisms. In addition, as an up-and-down moving mechanism, what was described in Unexamined-Japanese-Patent No. 9-279341 mentioned above, for example is used. Further, the top wall of the substrate transfer chamber 20 is provided with a substrate holding mechanism 23 composed of a known suction mechanism for vacuum suction of the substrate.
An opening is formed in the bottom wall portion of the vapor deposition chamber 30, and a hearth 34 for storing vapor deposition means (for example, a plasma source manufactured by Chugai Kogyo Kogyo Co., Ltd.) 35 and MgO is provided below the opening. An oxygen gas introduction mechanism is provided in the vicinity of the opening for adjusting the film quality.
A glass substrate (for example, for 42-inch television) is placed on a carrier in a horizontal posture and is horizontally transported by a transport system. Below, the conveyance method is demonstrated. Note that the substrate is held on four sides, and a film is formed on one side of the substrate (lower side in this embodiment).
The first carrier 1 circulates between the load lock chamber 10 and the substrate transfer chamber 20 in the atmosphere, and the second carrier 1 ′ circulates between the substrate transfer chamber 20 and the second heating chamber 80.
First, the glass substrate 3 is mounted on the first carrier 1 and carried into the load lock chamber 10. The load lock chamber 10 is exhausted to a predetermined pressure (10 −5 Pa level). Thereafter, the gate valve 41 is opened, and the first carrier 1 is transferred to the first auxiliary chamber 50. The first carrier 1 carried into the first auxiliary chamber 50 is degassed by being heated to about 150 ° C. by a heating mechanism (not shown). Heating is stopped, and after reaching the level of 10 −4 Pa, dry N 2 gas is introduced to atmospheric pressure.
At this time, the second carrier 1 ′ on which the processed substrate 3 ′ is mounted is waiting on the lower transfer unit of the second auxiliary chamber 60, and N 2 gas is introduced into the chamber.
The substrate transfer chamber is filled with N 2 gas at atmospheric pressure.
The substrate transfer operation in the substrate transfer chamber 20 from this state will be described with reference to FIG.
From the state of FIG. 3A, the gate valve 42 is opened, and the first carrier 1 is transferred to the upper shelf of the first carrier holding mechanism 21 in the substrate transfer chamber 20. On the other hand, the gate valve 43 is opened, and the second carrier 1 ′ on which the film-formed substrate 3 ′ is mounted is transferred from the second auxiliary chamber 60 to the lower shelf of the second carrier holding mechanism 22 (b).
From the top wall of the substrate transfer chamber, the vacuum suction mechanism 23 is pushed down via a bellows by a cylinder (not shown), and is pushed up after coming into contact with each substrate and vacuum suction. Here, after the first and second carrier holding mechanisms 21 and 22 move to the same height, the transport roller is rotated, and the first and second carriers move to the opposite carrier holding mechanism units (c). ). Subsequently, the vacuum suction means 23 is pushed down again, and the processed substrate 3 ′ is mounted on the first carrier 1 and the unprocessed substrate 3 is mounted on the second carrier 1 ′ (d). Next, the first and second carriers each move to the opposite unit (e). Subsequently, the first and second carrier holding mechanisms move up and down, the gate valves 42 and 43 open, the first carrier 1 moves to the lower transfer unit of the first auxiliary chamber 50, and the second carrier 1 'moves to the second carrier 1'. 2 sent to the upper transfer unit in the auxiliary chamber 60 (f).
Next, in the second auxiliary chamber 60, after evacuating to a predetermined pressure of 10 −5 Pa, the gate valve 44 is opened, and the second carrier is conveyed to the first heating chamber 70. In the 1st heating chamber 70, it heats to 300 degreeC with a heating mechanism (not shown). Degassing is performed until the pressure reaches the 10 −3 Pa level. Thereafter, the gate valve 45 is opened and the second carrier is sent to the second heating chamber 80 through the vapor deposition chamber 30 and heated for a predetermined time. In the second heating chamber 80, the transport unit 4 on which the carrier is placed is lowered by, for example, a vertical movement mechanism disclosed in JP-A-9-97341, the gate valve 46 is opened again, and the second carrier is moved in the loading direction. It moves in the opposite direction and is carried into the vapor deposition chamber 30.
The substrate heating is not limited to the above embodiment, and may be performed in the load lock chamber 10 or the second auxiliary chamber.
In the vapor deposition chamber 30, an MgO film is deposited on the substrate 3 mounted on the second carrier 1 ′ under predetermined film forming conditions. That is, 80 sccm of oxygen gas is introduced into the vapor deposition chamber, Ar gas is further introduced to a pressure of 0.1 Pa, and the plasma vapor deposition source is driven to deposit an MgO film on the substrate.
Thereafter, the second carrier 1 ′ is sent to the substrate transfer chamber 20 through the first heating chamber 70 and the second auxiliary chamber 60, and as described above, the substrate is transferred between the first and second carriers. Transfer is performed.
The processed substrate 3 ′ mounted on the first carrier 1 is transferred to the load lock chamber 10 through the first auxiliary chamber 50. After the introduction of the atmosphere, the first carrier is taken out into the atmosphere, the processed substrate 3 ′ is recovered, and the unprocessed substrate 3 is mounted on the first carrier 1 again.
As described above, the MgO film is continuously deposited on the substrate. During this time, since the second carrier 1 ′ does not come into contact with the atmosphere, film peeling does not occur easily and a defect-free MgO film can be stably formed. In addition, the X-ray diffraction pattern of the obtained MgO film has a (111) crystal plane as shown in FIG. 4 even after 3000 times of film formation, and a high-performance PDP without luminance unevenness is continued. It became possible to produce. B, A, and C represent diffraction patterns at positions 3 cm away from the substrate center and the substrate edge.
Although the apparatus configuration of FIG. 1 is configured to carry in and carry out carriers in one load lock chamber, two load lock chambers may be provided so as to carry in from one side and carry out from the other. An example of this is shown in FIG. In the apparatus of FIG. 5, substrate transfer chambers 20, 20 ′ and load lock chambers 10, 10 ′ are disposed on both sides of the processing chamber 30, and the first substrate transfer chamber 20, the first load lock chamber 10, and the atmosphere, Two sets of the first carrier 1 moving between the second substrate transfer chamber 20 and the second load lock chamber 10 and the atmosphere, the first substrate transfer chamber 20, the processing chamber 30, and the second substrate transfer chamber 20 are arranged. A 'second carrier 1' that moves between is arranged.
In the present invention, the number and arrangement of the processing chambers and auxiliary chambers of the substrate processing apparatus, the number of carriers circulating in the substrate processing apparatus at the same time, etc. are appropriately selected according to the tact time in each chamber, for example. do it.
In this embodiment, the vacuum chucking means is used as the substrate holding mechanism of the substrate transfer chamber. However, a known electrostatic chucking means or a machine for holding the end of the substrate disclosed in Japanese Patent Laid-Open No. 9-279341 is disclosed. A mechanical holding mechanism may be used. Further, the substrate transfer mechanism is not limited to the above. For example, two substrate holding mechanisms are attached around the rotation axis, and after holding the substrates of the first and second carriers, the rotation axis is rotated by 180 °. In this state, the substrate may be placed on the carrier, or the substrate may be transferred by a robot. Further, the above description has been made on the case where the substrate is horizontally transported, transferred, etc. However, the present invention is not limited to this, and the substrate may be vertically transported, transferred, processed, or the like.
Although the in-line type vapor deposition apparatus has been described in the above embodiment, the present invention is also applied to a cluster type vapor deposition apparatus as shown in FIG. 6, for example. In this case, the first carrier 1 moves between the load lock chamber 10 and the substrate transfer chamber 20, and the second carrier 1 ′ moves to the substrate transfer chamber 20 and the processing chamber 30 (30 ′, 30 ″). In the transfer chamber, for example, the robot 6 having two hands transfers the substrates of the first and second carriers.
Furthermore, as described above, the present invention is not limited to the vapor deposition apparatus, and is used suitably for an apparatus for producing a Cr oxide film as an exposure blank by a sputtering method, for example, and various processing apparatuses such as an etching process. It can be applied to.
Industrial Applicability As is apparent from the above description, according to the present invention, it is possible to reduce the problem of contamination that has conventionally occurred during substrate transportation and to form a film with excellent quality with good stability. In particular, an apparatus for producing a hygroscopic dielectric film such as magnesium oxide at high speed can be provided.
[Brief description of the drawings]
FIG. 1 is a schematic view showing a basic configuration example of a substrate processing apparatus of the present invention.
FIG. 2 is a schematic diagram illustrating the configuration of a PDP MgO film deposition apparatus.
FIG. 3 is a schematic diagram for explaining the transfer of the substrate.
FIG. 4 is an X-ray diffraction diagram showing the crystal orientation of the MgO film formed according to the present invention.
FIG. 5 is a schematic view showing another configuration example of the vapor deposition apparatus.
FIG. 6 is a schematic view showing another configuration example of the substrate processing apparatus.
FIG. 7 is a schematic diagram illustrating the configuration of a conventional vapor deposition apparatus.
FIG. 8 is a graph showing the relationship between the number of produced film deposition substrates and the water pressure.
FIG. 9 is an X-ray diffraction diagram showing the crystal orientation of the MgO film formed by the conventional apparatus.
FIG. 10 is a schematic view showing a conventional example of a vapor deposition apparatus in which the influence of moisture in the atmosphere is suppressed.
In the figure, 1, 1 ′, 2 indicate carriers, 3, 3 ′ are substrates, 4 is a transfer unit, 5 is a substrate transfer mechanism, 6 is a robot, 10 and 10 ′ are load lock chambers, and 20 is a substrate transfer mechanism. Loading chambers 21 and 22 are carrier holding mechanisms, 23 is a substrate holding mechanism, 30 is a processing chamber, 34 is a house for storing MgO, 35 is a vapor deposition means, 40 to 46 are gate valves, 50 is a first auxiliary chamber, and 60 is The second auxiliary chamber, 70 is a first heating chamber, and 80 is a second heating chamber.

Claims (9)

基板を搭載したキャリアを搬入するロードロック室と、キャリア間で基板の移載を行う移載機構を有する基板移載室と、基板に所定の処理を行う基板処理室と、を有する基板処理装置であって、
前記ロードロック室及び前記基板移載室間を移動する第1のキャリアと、前記基板移載室及び前記基板処理室間を移動する第2のキャリアとを有し、前記移載機構により、前記第1のキャリア及び前記第2のキャリア間で基板を移載する構成としたことを特徴とする基板処理装置。
A substrate processing apparatus having a load lock chamber for carrying a carrier carrying a substrate, a substrate transfer chamber having a transfer mechanism for transferring a substrate between carriers, and a substrate processing chamber for performing a predetermined process on the substrate Because
A first carrier that moves between the load lock chamber and the substrate transfer chamber; and a second carrier that moves between the substrate transfer chamber and the substrate processing chamber. A substrate processing apparatus, wherein the substrate is transferred between the first carrier and the second carrier.
処理済み基板を搭載した前記第1のキャリアを前記ロードロック室へ搬出することを特徴とする請求の範囲第1項に記載の基板処理装置。The substrate processing apparatus according to claim 1, wherein the first carrier on which a processed substrate is mounted is carried out to the load lock chamber. 前記移載機構は、複数のキャリア保持台を有し互いに入れ替え可能なキャリア保持機構と基板保持機構とをそれぞれ2つと、該2つのキャリア保持機構の保持台間でキャリアを移動させる移動機構と、により構成されることを特徴とする請求の範囲第1項又は第2項に記載の基板処理装置。The transfer mechanism has two carrier holding mechanisms and substrate holding mechanisms each having a plurality of carrier holding bases, and a moving mechanism for moving carriers between the holding bases of the two carrier holding mechanisms, The substrate processing apparatus according to claim 1, wherein the substrate processing apparatus is configured as follows. 前記基板保持機構は、真空吸着又は静電吸着機構であることを特徴とする請求の範囲第1項〜第3項のいずれかに記載の基板処理装置。The substrate processing apparatus according to any one of claims 1 to 3, wherein the substrate holding mechanism is a vacuum adsorption or electrostatic adsorption mechanism. 前記基板移載室は乾燥気体雰囲気に保持することを特徴とする請求の範囲第1項〜第3のいずれかに記載の基板処理装置。The substrate processing apparatus according to any one of claims 1 to 3, wherein the substrate transfer chamber is maintained in a dry gas atmosphere. 前記キャリアは、基板の4辺を支持することを特徴とする請求の範囲第1項〜第5項のいずれかに記載の基板処理装置。6. The substrate processing apparatus according to claim 1, wherein the carrier supports four sides of the substrate. 前記薄膜は、MgO膜であることを特徴とする請求の範囲第1項〜第6項のいずれかに記載の基板処理装置。The substrate processing apparatus according to any one of claims 1 to 6, wherein the thin film is an MgO film. 基板を搭載したキャリアを搬出入するロードロック室と、キャリア間で基板の移載を行う基板移載室と、基板に所定の処理を行う基板処理室と、を連結配置し、前記ロードロック室及び前記基板移載室間を移動する第1のキャリアと前記基板移載室及び前記基板処理室間を移動する第2のキャリアとを配置し、前記基板移載室において、前記第1のキャリア及び前記第2のキャリア間で基板の移載を行い、前記基板処理室に搬出入される前記第2のキャリアを大気にさらすことなく、連続して基板処理を行うことを特徴とする基板処理方法。A load lock chamber for loading and unloading a carrier on which a substrate is loaded, a substrate transfer chamber for transferring a substrate between carriers, and a substrate processing chamber for performing predetermined processing on the substrate are connected to each other, and the load lock chamber And a first carrier that moves between the substrate transfer chamber and a second carrier that moves between the substrate transfer chamber and the substrate processing chamber, wherein the first carrier is disposed in the substrate transfer chamber. And substrate transfer between the second carriers, and substrate processing is performed continuously without exposing the second carrier carried in and out of the substrate processing chamber to the atmosphere. Method. 前記移載機構は、複数のキャリア保持台を有し互いに入れ替え可能なキャリア保持機構と基板保持機構とをそれぞれ2つと、該2つのキャリア保持機構の保持台間でキャリアを移動させる移動機構とで構成し、前記保持台上の前記第1及び第2のキャリアから基板を前記基板保持機構により保持した状態で、キャリアを前記2つの保持機構間で移動させ、その状態で再びキャリアに基板を載置させることにより基板の移載を行うことを特徴とする請求の範囲第8項に記載の基板処理方法。The transfer mechanism includes two carrier holding mechanisms and a substrate holding mechanism each having a plurality of carrier holding bases, and a moving mechanism for moving the carrier between the holding bases of the two carrier holding mechanisms. The carrier is moved between the two holding mechanisms in a state where the substrate is held by the substrate holding mechanism from the first and second carriers on the holding table, and the substrate is again mounted on the carrier in that state. The substrate processing method according to claim 8, wherein the substrate is transferred by placing the substrate.
JP2004508403A 2002-05-23 2003-05-23 Substrate processing apparatus and processing method Expired - Lifetime JP4369866B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2002148690 2002-05-23
JP2002148690 2002-05-23
PCT/JP2003/006454 WO2003100848A1 (en) 2002-05-23 2003-05-23 Substrate processing device and substrate processing method

Publications (2)

Publication Number Publication Date
JPWO2003100848A1 true JPWO2003100848A1 (en) 2005-09-29
JP4369866B2 JP4369866B2 (en) 2009-11-25

Family

ID=29561191

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004508403A Expired - Lifetime JP4369866B2 (en) 2002-05-23 2003-05-23 Substrate processing apparatus and processing method

Country Status (6)

Country Link
JP (1) JP4369866B2 (en)
KR (1) KR100951337B1 (en)
CN (1) CN1293621C (en)
AU (1) AU2003242422A1 (en)
TW (1) TWI232242B (en)
WO (1) WO2003100848A1 (en)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4581602B2 (en) * 2004-09-29 2010-11-17 株式会社島津製作所 Vacuum processing equipment
CN1970828B (en) * 2005-11-26 2010-05-26 鸿富锦精密工业(深圳)有限公司 Method for forming multilayer coating on die
JP5036290B2 (en) * 2006-12-12 2012-09-26 東京エレクトロン株式会社 Substrate processing apparatus, substrate transfer method, and computer program
KR101359401B1 (en) * 2007-06-21 2014-02-10 주성엔지니어링(주) High efficiency thin film solar cell and manufacturing method and apparatus thereof
WO2009130790A1 (en) * 2008-04-25 2009-10-29 キヤノンアネルバ株式会社 Tray transfer type inline film forming apparatus
US20090324826A1 (en) * 2008-06-27 2009-12-31 Hitoshi Kato Film Deposition Apparatus, Film Deposition Method, and Computer Readable Storage Medium
US8465591B2 (en) 2008-06-27 2013-06-18 Tokyo Electron Limited Film deposition apparatus
US8465592B2 (en) 2008-08-25 2013-06-18 Tokyo Electron Limited Film deposition apparatus
TWI424784B (en) * 2008-09-04 2014-01-21 Hitachi High Tech Corp Organic electroluminescent device manufacturing apparatus, manufacturing method thereof, film forming apparatus and film forming method
TWI485799B (en) 2009-12-10 2015-05-21 Orbotech Lt Solar Llc Auto-sequencing inline processing
LU91685B1 (en) 2010-05-07 2011-11-08 Cppe Carbon Process & Plant Engineering S A Process for the catalytic removal of carbon dioxide and sulfur dioxide from exhaust gases
JP4535408B1 (en) * 2010-05-10 2010-09-01 智雄 松下 Substrate transport mechanism and substrate transport method
TWI451521B (en) * 2010-06-21 2014-09-01 Semes Co Ltd Substrate treating apparatus and substrate treating method
CN108231642B (en) * 2011-05-13 2023-05-02 株式会社尼康 Substrate replacing device
JP5741834B2 (en) * 2011-05-13 2015-07-01 株式会社ニコン Object carry-out method, object exchange method, object holding apparatus, exposure apparatus, flat panel display manufacturing method, and device manufacturing method
US8459276B2 (en) 2011-05-24 2013-06-11 Orbotech LT Solar, LLC. Broken wafer recovery system
DE102012100929A1 (en) * 2012-02-06 2013-08-08 Roth & Rau Ag Substrate processing system
WO2015042302A1 (en) 2013-09-20 2015-03-26 Applied Materials, Inc. Substrate carrier with integrated electrostatic chuck
JP6088964B2 (en) * 2013-12-13 2017-03-01 株式会社東芝 Semiconductor manufacturing equipment
CN109715846A (en) * 2016-12-14 2019-05-03 应用材料公司 Depositing system
JP6640759B2 (en) * 2017-01-11 2020-02-05 株式会社アルバック Vacuum processing equipment
CN108588667B (en) * 2017-12-27 2020-10-02 深圳市华星光电技术有限公司 Air charging device and air charging method for vacuum atmosphere conversion cavity and vacuum sputtering equipment
CN108396294B (en) * 2018-01-26 2021-12-10 中国科学院物理研究所 Film deposition system and control method
KR20210071334A (en) * 2019-12-06 2021-06-16 주식회사 아바코 Sputtering System
JP2022155711A (en) * 2021-03-31 2022-10-14 芝浦メカトロニクス株式会社 Film deposition apparatus

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3543995B2 (en) * 1994-04-07 2004-07-21 東京エレクトロン株式会社 Processing equipment
JPH08213446A (en) * 1994-12-08 1996-08-20 Tokyo Electron Ltd Processing equipment
JP4034860B2 (en) * 1997-10-31 2008-01-16 キヤノンアネルバ株式会社 Tray transfer film forming apparatus and auxiliary chamber
JP2002222846A (en) * 2001-01-26 2002-08-09 Shin Meiwa Ind Co Ltd Vacuum transport device

Also Published As

Publication number Publication date
KR100951337B1 (en) 2010-04-08
KR20050002862A (en) 2005-01-10
CN1293621C (en) 2007-01-03
WO2003100848A1 (en) 2003-12-04
TWI232242B (en) 2005-05-11
TW200403351A (en) 2004-03-01
AU2003242422A1 (en) 2003-12-12
CN1650416A (en) 2005-08-03
JP4369866B2 (en) 2009-11-25

Similar Documents

Publication Publication Date Title
JP4369866B2 (en) Substrate processing apparatus and processing method
US6382895B1 (en) Substrate processing apparatus
JP5014603B2 (en) Vacuum processing equipment
US20060245852A1 (en) Load lock apparatus, load lock section, substrate processing system and substrate processing method
JP5173699B2 (en) Organic EL device manufacturing equipment
JP2001135704A (en) Substrate treatment apparatus and transfer control method for substrate transfer tray
JPH083744A (en) Vacuum treatment apparatus, method of treating substrate in vacuum treatment apparatus and lock for vacuum treatment apparatus
JPH11131232A (en) Tray-carrying type film forming device
JP2008297584A (en) Film-forming apparatus
JP3629371B2 (en) Film forming apparatus and film forming method
KR20070063930A (en) Process apparatus
JP2020026575A (en) Film deposition device, film deposition system, and film deposition method
JP4417734B2 (en) In-line vacuum processing equipment
KR101760667B1 (en) The system for depositing a atomic layer
US20090266410A1 (en) Vacuum processing apparatus, vacuum processing method, electronic device, and electronic device manufacturing method
KR101483180B1 (en) Deposition apparatus
TW201230233A (en) Vacuum processing apparatus
JP2008266737A (en) Tray conveyance type inline film deposition apparatus
WO2009130790A1 (en) Tray transfer type inline film forming apparatus
TW201910545A (en) Apparatus for processing a substrate, processing system for processing a substrate and method for servicing an apparatus for processing a substrate
JPH09104983A (en) Substrate treating device
JP2001185598A (en) Substrate processor
WO2010013333A1 (en) Vacuum device and vacuum treatment method
JP2002075882A (en) Substrate treatment device, load lock chamber for the same, and cleaning method of load lock chamber in substrate treatment device
KR101512140B1 (en) Atomic layer deposition apparatus and method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060519

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090518

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090629

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090717

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20090717

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090825

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090828

R150 Certificate of patent or registration of utility model

Ref document number: 4369866

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120904

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120904

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130904

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term