JPWO2002044307A1 - Oil refining method - Google Patents

Oil refining method Download PDF

Info

Publication number
JPWO2002044307A1
JPWO2002044307A1 JP2002546656A JP2002546656A JPWO2002044307A1 JP WO2002044307 A1 JPWO2002044307 A1 JP WO2002044307A1 JP 2002546656 A JP2002546656 A JP 2002546656A JP 2002546656 A JP2002546656 A JP 2002546656A JP WO2002044307 A1 JPWO2002044307 A1 JP WO2002044307A1
Authority
JP
Japan
Prior art keywords
oil
petroleum
vacuum
concentration
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002546656A
Other languages
Japanese (ja)
Inventor
猪俣 誠
藤村 靖
岡田 剛
井村 晃三
佐々木 基
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JGC Corp
Original Assignee
JGC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JGC Corp filed Critical JGC Corp
Publication of JPWO2002044307A1 publication Critical patent/JPWO2002044307A1/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G67/00Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one process for refining in the absence of hydrogen only
    • C10G67/16Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one process for refining in the absence of hydrogen only plural parallel stages only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G65/00Treatment of hydrocarbon oils by two or more hydrotreatment processes only
    • C10G65/14Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural parallel stages only
    • C10G65/16Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural parallel stages only including only refining steps
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/107Atmospheric residues having a boiling point of at least about 538 °C

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

本発明の石油の精製方法は、原料油を蒸留処理して留出油M1と残油M2とに分離する蒸留分離工程1と、留出油M1の少なくとも一部を水素化精製処理し、脱硫して水素化精製油M3を得る水素化精製工程2と、残油M2を溶剤脱れき処理し、脱アスファルテン油M4とアスファルテン(ピッチ)M5とを得る溶剤脱れき工程3と、脱アスファルテン油M4の少なくとも一部を水素化脱メタル・脱硫処理し、HDMS精製油M6を得る水素化脱メタル・脱硫工程4と、HDMS精製油M6の一部と水素化精製油M3の少なくとも一部とを混合し、石油製品を得る第1の混合工程5とを備える。The method for refining petroleum according to the present invention comprises a distillation separation step 1 of distilling a feedstock oil to separate it into a distillate M1 and a residual oil M2; A hydrorefining process 2 to obtain a hydrorefined oil M3, a solvent degreasing process 3 to obtain a deasphalted oil M4 and an asphaltene (pitch) M5 by subjecting the residual oil M2 to a solvent removal process, Is subjected to a hydrodemetallation / desulfurization treatment to obtain an HDMS refined oil M6, and a part of the HDMS refined oil M6 and at least a portion of the hydrogenated refined oil M3 are mixed. And a first mixing step 5 for obtaining a petroleum product.

Description

技術分野
本発明は、高付加価値の複数の石油製品を効率的に併産する石油の精製方法に関し、特に重質または低硫黄濃度の原料油から付加価値の高い、仕様の異なる複数の石油製品を効率的に併産する石油の精製方法に関する。
背景技術
従来、この種の技術として、例えば以下に示すような、個々の石油製品やその中間製品を効率的に生産することのできる技術が知られている。
(1)原料油を常圧蒸留処理して留出油と常圧残油とに分離し、さらに得られた常圧残油を減圧蒸留し、その減圧残油(VR)をコーカーにかけることにより、熱分解ガソリンや軽油を製造する技術。
(2)前記の常圧残油を溶剤脱れき(SDA)にかけ、得られた脱アスファルテン油(溶剤脱れき油;DAO)を流動接触分解(FCC)の原料とする技術、あるいは常圧残油を減圧蒸留(VDU)にかけ、得られた減圧軽油(VGO)を流動接触分解(FCC)の原料とする技術。
しかし、前記(1)に示した技術では、コーカーのボトム(コークス)の市場が供給過剰であり、コークスを副生するコーカーの建設が制約されるといった問題がある。
また、(2)に示した技術では、以下に述べる問題がある。膨大な埋蔵量の超重質原油や今後過剰になることが予想される常圧残油から、脱アスファルテン油や減圧軽油を分離し、流動接触分解(FCC)や水素化分解(HCR)に導入してガソリンや軽油などの輸送燃料を製造することは、今後、世界的にガソリンや軽油の需要の伸びに対する電力の需要の伸びが高くなることが予想されるため、輸送燃料と発電燃料の市場需給バランスに対応できない。
また、前記(1)や(2)に示した技術以外にも、例えばバナジウム(V)濃度が多い超重質原油や常圧残油から溶剤脱れき処理を行ってガスタービン燃料(GTF)を製造する技術があるが、この技術にあっても、溶剤脱れき処理での脱アスファルテン油の得率(抽出率)を上げると、得られる脱アスファルテン油のメタルや残留炭素によるコンタミネーションが多くなり、その結果、この脱アスファルテン油を脱メタル・脱硫精製する際の負荷が高く(高圧、低LHSV)なってしまい、経済的に不利になってしまう。また、このような事情から脱アスファルテン油の得率を下げると、ガスタービン燃料の得率が減ってしまい、結果として付加価値の低いアスファルテン(ピッチ)の生産量が増えてしまうといった新たな問題が生じてしまう。
本発明の目的は、特に重質の原料油を出発物質とする場合と、低硫黄濃度原料油を出発物質とする場合のそれぞれにおいて、バナジウム(V)濃度が0.5wtppm以下の石油製品(ガスタービン燃料)と、メタル濃度(V+Ni)が30wtppm以下である流動接触分解用あるいは水素化分解用の原料としての中間石油製品とを、効率的に併産することのできる、石油の精製方法を提供することにある。
発明の開示
本発明の第1態様に係る石油の精製方法は、原料油を精製処理して複数の中間石油製品を含む石油製品を製造する石油の精製方法であって、原料油を蒸留処理して留出油と残油とに分離する蒸留分離工程と、蒸留分離工程で得られた留出油の少なくとも一部を水素と触媒の存在下で水素化精製処理し、脱硫することによって脱硫精製油を得る水素化精製工程と、前記残油を溶剤脱れき処理し、抽出液としての脱アスファルテン油と残渣であるアスファルテン(ピッチ)とを得る溶剤脱れき工程と、前記脱アスファルテン油の少なくとも一部を水素と触媒の存在下で水素化脱メタル・脱硫処理し、脱メタル・脱硫精製したHDMS精製油を得る水素化脱メタル・脱硫工程と、前記HDMS精製油の一部と前記脱硫精製油の少なくとも一部とを混合し、石油製品の一つを得る第1の混合工程とを備える。
この精製方法によれば、第1の混合工程でHDMS精製油の一部に脱硫精製油の少なくとも一部を混合するので、これにより例えばガスタービン燃料などのバナジウム(V)濃度が十分に低い石油製品を得ることができ、また、HDMS精製油の残部から比較的メタル濃度(V+Ni)が低い、流動接触分解用あるいは水素化分解用の原料としての中間石油製品を得ることができる。
また、流動接触分解用あるいは水素化分解用の原料としての中間石油製品については、ガスタービン燃料などに比べメタルに対する許容濃度が高いことから、ガスタービン燃料と流動接触用あるいは水素化分解用の原料とを併産することによって溶剤脱れき工程による脱アスファルテン油の得率を高めることができ、これにより常圧残油からのアスファルテン(ピッチ)の副生量を抑えることが可能になる。
本発明の第2態様に係る石油の精製方法は、原料油を蒸留処理して留出油と残油とに分離する蒸留分離工程と、蒸留分離工程で得られた留出油の少なくとも一部を水素と触媒の存在下で水素化精製処理し、脱硫することによって脱硫精製油を得る水素化精製工程と、前記残油を溶剤脱れき処理し、抽出液としての脱アスファルテン油と残渣であるアスファルテン(ピッチ)とを得る溶剤脱れき工程と、前記脱アスファルテン油の少なくとも一部を水素と触媒の存在下で水素化脱メタル・脱硫処理し、脱メタル・脱硫精製したHDMS精製油を得る水素化脱メタル・脱硫工程と、前記HDMS精製油を減圧蒸留処理して減圧軽油と減圧残油とに分離する減圧蒸留分離工程と、前記減圧軽油の少なくとも一部と前記脱硫精製油の少なくとも一部とを混合し、石油製品の一つを得る第2の混合工程とを備える。
この精製方法によれば、第2の混合工程で減圧軽油の少なくとも一部と脱硫精製油の少なくとも一部とを混合するので、これにより例えばガスタービン燃料などのバナジウム(V)濃度が十分に低い石油製品を得ることができる。また、減圧軽油の残部や減圧蒸留処理して得られる減圧残油、さらにはHDMS精製油からでも、比較的メタル濃度(V+Ni)が低い、流動接触分解用あるいは水素化分解用の原料としての中間石油製品を得ることができる。
また、特に減圧蒸留分離工程により、HDMS精製油を減圧蒸留処理して蒸留性状の沸点範囲からメタル分や残留炭素分の少ない減圧軽油と減圧残油とに分離するようにしたので、HDMS精製油そのもののバナジウム濃度やメタル濃度を比較的高い濃度まで許容することができ、これにより溶剤脱れき工程による脱アスファルテン油の得率を高めることができ、したがって常圧残油からのアスファルテン(ピッチ)の副生量を抑えることが可能になる。
本発明の第3態様に係る石油の精製方法は、原料油を蒸留処理して留出油と残油とに分離する蒸留分離工程と、蒸留分離工程で得られた留出油の少なくとも一部を水素と触媒の存在下で水素化精製処理し、脱硫することによって脱硫精製油を得る水素化精製工程と、前記残油を減圧蒸留処理して減圧軽油と減圧残油とに分離する減圧蒸留分離工程と、前記減圧残油を溶剤脱れき処理し、抽出液としての脱アスファルテン油と残渣であるアスファルテン(ピッチ)とを得る溶剤脱れき工程と、前記減圧軽油と脱アスファルテン油を混合し、この混合油を水素と触媒の存在下で水素化脱メタル・脱硫処理し、脱メタル・脱硫精製したHDMS精製油を得る水素化脱メタル・脱硫工程と、前記HDMS精製油の一部と前記脱硫精製油の少なくとも一部とを混合し、石油製品の一つを得る第3の混合工程とを備える。
この精製方法によれば、第3の混合工程でHDMS精製油の一部と脱硫精製油の少なくとも一部とを混合するので、得られた混合油のバナジウム(V)濃度が十分に低くなることにより、ガスタービン燃料としての石油製品を得ることができる。また、減圧軽油と脱アスファルテン油の混合油を水素化脱メタル・脱硫処理して得られたHDMS精製油の残部からでも、メタル濃度(V+Ni)が低い、流動接触分解用あるいは水素化分解用の原料としての中間石油製品を得ることができる。
また、流動接触分解用あるいは水素化分解用の原料としての中間石油製品については、ガスタービン燃料などに比べメタルに対する許容濃度が高いことから、ガスタービン燃料と流動接触用あるいは水素化分解用の原料とを併産することによって溶剤脱れき工程による脱アスファルテン油の得率を高めることができ、これにより減圧残油からのアスファルテン(ピッチ)の副生量を抑えることが可能になる。
また、API度が20以下の重質油に本発明を適用した場合、商品価値の低いピッチを多量に副生していた従来技術に比べ、ピッチの生成量を低減することが可能となり、付加価値の高い複数の石油製品の回収率が高まり、生産性が大幅に向上する。
本発明の第4態様に係る石油の精製方法は、低硫黄濃度の原料油を対象とし、原料油を精製処理して複数の中間石油製品を含む石油製品を製造する石油の精製方法であって、原料油を蒸留処理して留出油と残油とに分離する蒸留分離工程と、蒸留分離工程で得られた残油を溶剤脱れき処理し、抽出液としての脱アスファルテン油と残渣であるアスファルテン(ピッチ)とを得る溶剤脱れき工程と、前記脱アスファルテン油の少なくとも一部を水素と触媒の存在下で水素化脱メタル・脱硫処理し、脱メタル・脱硫精製したHDMS精製油を得る水素化脱メタル・脱硫工程と、前記HDMS精製油の一部と前記留出油の少なくとも一部とを混合し、石油製品の一つを得る第4の混合工程とを備える。
この精製方法によれば、第4の混合工程でHDMS精製油の一部に脱硫精製油の少なくとも一部を混合するので、これにより例えばガスタービン燃料などのバナジウム(V)濃度が十分に低い石油製品を得ることができ、また、HDMS精製油の残部から比較的メタル濃度(V+Ni)が低い、流動接触分解用あるいは水素化分解用の原料としての中間石油製品を得ることができる。
また、流動接触分解用あるいは水素化分解用の原料としての中間石油製品については、ガスタービン燃料などに比べメタルに対する許容濃度が高いことから、ガスタービン燃料と流動接触用あるいは水素化分解用の原料とを併産することによって溶剤脱れき工程による脱アスファルテン油の得率を高めることができ、これにより常圧残油からのアスファルテン(ピッチ)の副生量を抑えることが可能になる。
本発明の第5態様に係る石油の精製方法は、原料油を蒸留処理して留出油と残油とに分離する蒸留分離工程と、蒸留分離工程で得られた残油を溶剤脱れき処理し、抽出液としての脱アスファルテン油と残渣であるアスファルテン(ピッチ)とを得る溶剤脱れき工程と、前記脱アスファルテン油の少なくとも一部を水素と触媒の存在下で水素化脱メタル・脱硫処理し、脱メタル・脱硫精製したHDMS精製油を得る水素化脱メタル・脱硫工程と、前記HDMS精製油を減圧蒸留処理して減圧軽油と減圧残油とに分離する減圧蒸留分離工程と、前記減圧軽油の少なくとも一部と前記留出油の少なくとも一部とを混合し、石油製品の一つを得る第5の混合工程とを備える。
この精製方法によれば、第5の混合工程で減圧軽油の少なくとも一部と留出油の少なくとも一部とを混合するので、これにより例えばガスタービン燃料などのバナジウム(V)濃度が十分に低い石油製品を得ることができる。また、減圧軽油の残部や減圧蒸留処理して得られる減圧残油、さらにはHDMS精製油からでも、比較的メタル濃度(V+Ni)が低い、流動接触分解用あるいは水素化分解用の原料としての中間石油製品を得ることができる。
また、特に減圧蒸留分離工程により、HDMS精製油を減圧蒸留処理して蒸留性状の沸点範囲からメタル分や残留炭素分の少ない減圧軽油と減圧残油とに分離するようにしたので、HDMS精製油そのもののバナジウム濃度やメタル濃度を比較的高い濃度まで許容することができ、これにより溶剤脱れき工程による脱アスファルテン油の得率を高めることができ、したがって常圧残油からのアスファルテン(ピッチ)の副生量を抑えることが可能になる。
本発明の第6態様に係る石油の精製方法は、原料油を蒸留処理して留出油と残油とに分離する蒸留分離工程と、蒸留分離工程で得られた残油を減圧蒸留処理して減圧軽油と減圧残油とに分離する減圧蒸留分離工程と、前記減圧残油を溶剤脱れき処理し、抽出液としての脱アスファルテン油と残渣であるアスファルテン(ピッチ)とを得る溶剤脱れき工程と、前記減圧軽油と脱アスファルテン油を混合し、この混合油を水素と触媒の存在下で水素化脱メタル・脱硫処理し、脱メタル・脱硫精製したHDMS精製油を得る水素化脱メタル・脱硫工程と、前記HDMS精製油の一部と前記留出油の少なくとも一部とを混合し、石油製品の一つを得る第6の混合工程とを備える。
この精製方法によれば、第6の混合工程でHDMS精製油の一部と留出油の少なくとも一部とを混合するので、得られた混合油のバナジウム(V)濃度が十分に低くなることにより、ガスタービン燃料としての石油製品を得ることができる。また、減圧軽油と脱アスファルテン油の混合油を水素化脱メタル・脱硫処理して得られたHDMS精製油の残部からでも、メタル濃度(V+Ni)が低い、流動接触分解用あるいは水素化分解用の原料としての中間石油製品を得ることができる。
また、流動接触分解用あるいは水素化分解用の原料としての中間石油製品については、ガスタービン燃料などに比べメタルに対する許容濃度が高いことから、ガスタービン燃料と流動接触用あるいは水素化分解用の原料とを併産することによって溶剤脱れき工程による脱アスファルテン油の得率を高めることができ、これにより減圧残油からのアスファルテン(ピッチ)の副生量を抑えることが可能になる。
また、硫黄濃度が2.0wt%以下の低硫黄原油に、前記第4〜第6態様の方法を適用した場合、商品価値の低いピッチを多量に副生していた従来技術に比べ、ピッチの生成量を低減することが可能となり、付加価値の高い複数の石油製品の回収率が高まり、生産性が大幅に向上する。
発明を実施するための最良の形態
以下、図面を参照しつつ、本発明に係る石油の精製方法の好適な実施例について説明する。ただし、本発明は以下の各実施例に限定されるものではなく、例えばこれら実施例の構成要素同士を適宜組み合わせてもよい。
図1は本発明の石油の精製方法の一実施例を説明するための処理フロー図であり、特に原料油として重質原油を用い、これからガスタービン燃料(GTF)と流動接触分解用(FCC)の原料あるいは水素化分解用(HCR)の原料とを併産する場合の処理フローを示している。
処理対象となる原料油は、特に制限されず、原油から重質油までの炭化水素油に適用可能であるが、オリノコタール等の重質原油、特にAPI度が20以下の重質油に適用した場合に付加価値の高い石油製品の収率が顕著に向上する例について説明する。
API度とは、原油を物理的性状で分類する指標であり、下式のようにその比重によって導き出される数値である。Sは華氏60°における比重を示す。
API=(141.5/S)−131.5
本例の方法ではこのような重質原油を原料油として、まず、原料油を蒸留分離工程1にかけ、従来と同様の蒸留処理することによって低沸点油からなる留出油M1と、それより高沸点の残油M2とに分離する。蒸留処理を行う装置としては、一般的な常圧蒸留装置であるトッパーが好適に用いられるが、蒸留分離手段であれば特に限定されない。また、留出油を区分することなく一括して蒸留回収してもよいし、留出油を沸点で複数に区分して回収してもよい。複数に区分して回収する場合、得られた留出油が石油成分の仕様を満たせば、次の工程である水素化精製工程2を矢印11に示すようにバイパスして省略することもできる。
次に、蒸留分離工程1で得られた留出油M1の少なくとも一部を水素化精製工程(HT工程)2にかけ、水素と触媒の存在下で水素化精製処理し、脱硫することにより、水素化精製油M3、M3’を得る。
留出油M1の水素化精製処理としては、留出油M1に水素ガスを混合し、CoMo触媒あるいはNiMo触媒を充填した反応器に導入し、高圧水素の条件下で留出油M1中に含まれている硫黄分、窒素分を水素化脱硫、脱窒素した後、高圧セパレータで水素ガスを分離して水素化精製油M3、M3’を得る。
水素化精製工程2とは別に、蒸留分離工程1で得られた残油M2を溶剤脱れき工程(SDA工程)3にかけ、溶剤脱れき処理することにより、抽出液としての脱アスファルテン油(DAO)M4とアスファルテン(ピッチ)M5とを得る。
この溶剤脱れき処理としては、まず、残油M2を、溶剤抽出塔において溶剤と向流接触させることにより、脱アスファルテン油と、メタルや残留炭素が濃縮されているアスファルテン(ピッチ)とに分離する。脱アスファルテン油は塔頂部から溶剤と共に回収し、回収物中の溶剤を超臨界状態で分離除去することによって得る。アスファルテン(ピッチ)は、塔底部から溶剤と共に回収し、回収物中の溶剤を蒸発させて除去する。
一般に溶剤脱れき工程は、供給原料油に対する抽出油である脱アスファルテン油中に含有される硫黄、バナジウム、窒素、残留炭素などの抽出率が各成分毎に異なることが知られている。本発明においては、重質原料油を蒸留分離して得られる残油を原料とする場合、原料油中のバナジウム濃度に対する脱アスファルテン油中のバナジウム濃度を、バナジウム抽出率として、原料油が常圧蒸留残油の場合には20%以下、減圧蒸留残油の場合には15%以下とすることが好ましい。それぞれにおいて抽出率の下限は特になく、供給される原料油の種類、バナジウム濃度などにより適宜の範囲を選択できる。また、硫黄濃度が2.0wt%以下の低硫黄原料油を蒸留分離して得られる残油を原料とする場合、脱アスファルテン油中のバナジウム濃度を、常圧蒸留残油の場合には25wtppm以下、減圧蒸留残油の場合には70wtppm以下とすることが好ましい。
本発明は上記それぞれの場合において、溶剤脱れき工程の後段の水素化脱メタル・脱硫工程に大きな負荷をかけることなく、溶剤脱れき工程の抽出率を最大限にして効率的に精製油を得ることができる。
溶剤脱れき工程3より後段の精製工程が水素化脱メタル・脱硫工程4だけの場合、溶剤脱れき工程3は、供給原料である残油M2中のバナジウム(V)に対して得られる脱アスファルテン油M4中のバナジウムの抽出率が20%以下になるように抽出率を制御することが望ましい。
溶剤脱れき工程3により得られた脱アスファルテン油M4の少なくとも一部を、水素化脱メタル・脱硫工程(HDMS工程)4にかけ、水素および触媒の存在下で水素化脱メタル・脱硫処理し、脱メタル・脱硫精製したHDMS精製油M6を得る。この水素化脱メタル・脱硫処理については、前述した水素化精製処理(水素化精製工程2)と基本的に同様であるので、説明を省略する。
このような水素化脱メタル・脱硫処理によって得られるHDMS精製油M6については、そのバナジウム(V)濃度を2wtppm以下、好ましくは1wtppm以下とするとともに、その硫黄濃度を0.5wt%以下、好ましくは0.3wt%以下となるように、脱メタル・脱硫条件を選択するのが望ましい。
さらに、水素化脱メタル・脱硫工程4で得られたHDMS精製油M6の一部と、水素化精製工程2で得られた水素化精製油M3の少なくとも一部とを、第1の混合工程5にかけて混合し、石油製品を得る。
この第1の混合工程5で得られる石油製品をガスタービン燃料(GTF)とする場合には、そのバナジウム(V)濃度が0.5wtppm以下となるように混合条件を設定する。その場合、例えばHDMS精製油M6のV濃度が1wtppmであるとすると、水素化精製油M3のV濃度を0wtppmとして、HDMS精製油M6と水素化精製油M3との容量比を1:1あるいはそれ以下に(すなわち、HDMS精製油M6の方を少なく)混合する。
また、水素化脱メタル・脱硫工程4で得られたHDMS精製油M6のうちの、第1の混合工程5に供さない残部については、これを流動接触分解用(FCC)の原料あるいは水素化分解用(HCR)の原料とし、中間石油製品とする。さらに、水素化精製油M3のうち、第1の混合工程5に供されない残部については、これをナフサ、ガソリン、灯軽油等の石油製品M3’とすることもできる。
このような石油の精製方法によれば、HDMS精製油M6の一部に水素化精製油M3の少なくとも一部を混合するので、これにより例えばガスタービン燃料などのバナジウム(V)濃度が十分に低い石油製品を得ることができ、また、HDMS精製油M6の残部から比較的メタル濃度(V+Ni)が低い、流動接触分解用(FCC)あるいは水素化分解用の原料(HCR)としての中間石油製品を得ることができることになり、付加価値の高い複数の石油製品を効率的に併産することができる。
また、流動接触分解用(FCC)あるいは水素化分解用(HCR)の原料としての中間石油製品については、ガスタービン燃料(GTF)などに比べメタルに対する許容濃度が高いことから、水素化脱メタル・脱硫の負荷を伴うことなく、溶剤脱れき工程3による脱アスファルテン油M4の得率を高めることができ、これにより残油M2からのアスファルテン(ピッチ)M5の副生量を抑えることができる。
なお、図1に示した処理フローにおいて、溶剤脱れき工程3で得られた脱アスファルテン油M4のメタル濃度、硫黄濃度が比較的低く、メタル濃度、硫黄濃度がさらに低いHDMS精製油の一部と混合して、流動接触分解用(FCC)や水素化分解用(HCR)の原料性状を満足する場合には、その一部を水素化脱メタル・脱硫工程4にかけることなく、図1中符号12で示すバイパスを通してHDMS精製油M6の一部と混合して、流動接触分解用(FCC)の原料、水素化分解用(HCR)の原料としての中間石油製品にしてもよい。
[第2実施例]
図2は、本発明の石油の精製方法の第2実施例を説明するための処理フローであり、この方法では、図1に示した第1実施例と同様に、原料油からガスタービン燃料(GTF)と、流動接触分解用(FCC)の原料あるいは水素化分解用(HCR)の原料とを、併産する。
第2実施例が、図1に示した第1実施例と主に異なるところは、水素化脱メタル・脱硫工程4の後段に、得られたHDMS精製油M6を減圧蒸留処理して減圧軽油M7と減圧残油M8とに分離する減圧蒸留分離工程6を設けた点である。すなわち、図2に示した石油の精製方法では、図1に示した例と同様にして得られたHDMS精製油M6を、減圧蒸留分離工程6にかけて減圧蒸留処理する。
この減圧蒸留処理では、HDMS精製油M6を減圧蒸留塔に導入して蒸留を行い、HDMS精製油M6中の低沸点成分と高沸点成分とを分離し、塔頂部から低沸点の減圧軽油M7を、また塔底部から高沸点の減圧残油M8をそれぞれ得る。
このような減圧蒸留処理を行うことから、本例においては、前記の溶剤脱れき処理によって得られる脱アスファルテン油M4について、供給原料である残油M2中のバナジウム(V)に対して得られる脱アスファルテン油M4中のバナジウムの抽出率を30%以下に制御することが望ましい。これにより、後段の水素化脱メタルおよび脱硫処理に大きく負担をかけることなく、石油製品の回収率を上げることができる。
また、このような脱アスファルテン油M4を水素化脱メタル・脱硫処理することによって得られるHDMS精製油M6については、そのバナジウム(V)濃度を20wtppm以下、好ましくは10wtppm以下となるように脱メタル・脱硫条件を選択するとともに、硫黄濃度を0.5wt%以下、好ましくは0.3wt%以下とするのが望ましい。
さらに、このようなHDMS精製油M6を減圧蒸留処理することによって得られる減圧軽油については、そのバナジウム濃度を1wtppm以下とするのが望ましい。
このような工程の後、減圧蒸留分離工程6で得られた減圧軽油M7の少なくとも一部と、水素化精製工程2で得られた水素化精製油M3の少なくとも一部とを、第2の混合工程7にかけて混合し、石油製品の一つを得る。
第2の混合工程7で得られる石油製品をガスタービン燃料(GTF)とする場合には、図1に示した例と同様に、そのバナジウム(V)濃度を0.5wtppm以下とする。その場合に、先の例と同様に減圧軽油M7のV濃度によって混合比を適宜に調整する。なお、減圧軽油M7のバナジウム(V)濃度が0.5wtppm以下である場合には、これに水素化精製油M3を加えることなく、そのままガスタービン燃料(GTF)としてもよい。
減圧軽油M7の残部や減圧蒸留処理して得られた減圧残油M8、さらにはHDMS精製油M6のうちの減圧蒸留分離工程6に供さない残部については、これらを単独であるいは適宜に混合することにより、流動接触分解用(FCC)の原料あるいは水素化分解用(HCR)の原料とし、中間石油製品とする。
このような石油の精製方法によれば、減圧蒸留分離工程6により、HDMS精製油M6を減圧蒸留処理して蒸留性状の沸点範囲からメタルや残留炭素をほとんど含まない減圧軽油M7と減圧残油M8とに分離するようにしたので、HDMS精製油M6そのもののバナジウム濃度、メタル濃度や残留炭素を比較的高い濃度まで許容することができ、これにより溶剤脱れき工程3による脱アスファルテン油M4の得率を高めることができ、したがって残油M2からのアスファルテン(ピッチ)M5の副生量を抑えることができる。
また、溶剤脱れき工程3で得られた脱アスファルテン油M4についても、これのバナジウム(V)濃度等が十分に低い場合には、その一部を水素化脱メタル・脱硫工程4にかけることなく、バイパス12に導入し、減圧蒸留分離工程6からの減圧残油M8に混合して流動接触分解用(FCC)、水素化分解用(HCR)の原料としての中間製品にしてもよく、また、水素化脱メタル・脱硫工程4で得られるHDMS精製油M6についても、バイパス12に導入し、減圧蒸留分離工程6からの減圧残油M8に混合して流動接触分解用(HCC)、水素化分解用の原料(HCR)としての中間石油製品にしてもよい。
[第3実施例]
図3は本発明の第3実施例を説明するための処理フローであり、この方法では、図1に示した例と同様に、原料油からガスタービン燃料(GTF)と、流動接触分解用(FCC)あるいは水素化分解用(HCR)の原料とを併産する。
第3実施例が図1に示した第1実施例と主に異なるところは、蒸留分離工程1の後に、得られた残油M2を減圧蒸留処理して減圧軽油M11と減圧残油M12とに分離する減圧蒸留分離工程20と、得られた減圧残油M12を溶剤脱れき処理し、脱アスファルテン油M13とアスファルテン(ピッチ)M14とに分離する溶剤脱れき工程21と、得られた脱アスファルテン油M13と減圧軽油M11との混合油を水素化脱メタル・脱硫処理してHDMS精製油M15を得る水素化脱メタル・脱硫工程22とを設けた点である。
すなわち、図3に示した石油の精製方法では、図1に示した例と同様にして得られた残油M2を、減圧蒸留分離工程20にかけて減圧蒸留処理する。
この減圧蒸留分離処理では、残油M2を減圧蒸留塔に導入して蒸留を行い、残油M2中の低沸点留分と高沸点留分とを分離し、塔頂から低沸点成分の減圧軽油M11を、塔底から高沸点の減圧残油M12をそれぞれ得る。
減圧蒸留分離工程20の後に、得られた減圧残油M12を溶剤脱れき工程21にかけ、脱アスファルテン油M13とアスファルテン(ピッチ)M14とに分離する。この溶剤脱れき処理については、図1、図2に示した例と同様であるが、メタルや残留炭素、硫黄分が残油M2より濃縮されているから、減圧残油の溶剤脱れき処理によって得られる脱アスファルテン油M13について、バナジウム(V)の抽出率の望ましい上限値は低くなり、抽出率を15%となるように制御することが好ましい。
次いで、このようにして得られた脱アスファルテン油M13と前記減圧軽油M11とを混合し、この混合油を水素化脱メタル・脱硫処理することにより、HDMS精製油M15を得る。得られるHDMS精製油M15については、そのバナジウム(V)濃度を2wtppm以下、好ましくは1wtppm以下とするとともに、その硫黄濃度を0.5wtppm、好ましくは0.3wtppm以下となるように脱メタル・脱硫条件を選択するのが望ましい。
その後、水素化脱メタル・脱硫工程22で得られたHDMS精製油M15の一部と、水素化精製工程2で得られた水素化精製油M3の少なくとも一部とを、第3の混合工程23にかけて混合し、バナジウム(V)濃度が0.5wtppm以下の石油製品の一つとしてのガスタービン燃料(GTF)を得る。
水素化脱メタル・脱硫工程で22得られたHDMS精製油M15のうちの、第3の混合工程23に供しない残部については、これを流動接触分解用(FCC)の原料あるいは水素化分解用(HCR)の原料として、中間石油製品とすることができる。
脱アスファルテンM13と減圧軽油M11とが、それぞれ含有するメタル分、残留炭素、硫黄分の濃度が大きく異なり、反応条件、特に水素分圧に大きな隔たりがある場合には、これらを混合することなく、別々の反応器でそれぞれ最適な条件で水素化脱メタル・脱硫処理し、その後、混合あるいは水素化脱メタル・脱硫処理した減圧軽油M11の少なくとも一部と水素化精製油M3の少なくとも一部とを混合し、そのバナジウム(V)濃度を0.5wtppm以下のガスタービン燃料(GTF)を得ることもできる。
このような石油の精製方法によれば、第3の混合工程23でHDMS精製油M15の一部と水素化精製油M3の少なくとも一部とを混合するようにしたので、得られた混合油のバナジウム(V)濃度が十分に低くなり、石油製品の一つとしてガスタービン燃料を得ることができる。また、減圧軽油M11と脱アスファルテン油M13の混合油を水素化脱メタル・脱硫処理して得られたHDMS精製油M15の残部からでも、メタル濃度(V+Ni)が低い、流動接触分解用あるいは水素化分解用の原料としての中間石油製品を得ることができ、付加価値の高い複数の石油製品を効率的に併産することができる。
流動接触分解用(FCC)あるいは水素化分解用(HCR)の原料としての中間石油製品については、ガスタービン燃料などに比べメタルに対する許容濃度が高いことから、ガスタービン燃料(GTF)と流動接触用あるいは水素化分解用の原料とを併産することによって溶剤脱れき工程21による脱アスファルテン油M13の得率を高めることができ、これにより減圧残油M12からのアスファルテン(ピッチ)M14の副生量を抑えることができる。
次に、低硫黄原油を原料油とした場合に好適な第4実施例〜第6実施例を説明する。本明細書における低硫黄原油とは、アラビアンライト、イラニアンライト、イラニアンヘビー・マーバン、および硫黄濃度がそれらと同等もしくはより低い原油を含み、具体的には、硫黄濃度が2.0wt%以下の原油を指す。
以下の実施例では、低硫黄原油を使用することから、重質原油を対象とした第1実施例に比べて、水素化精製工程(HT工程)2が省略されている。それ以外の点は、基本的に第1実施例と同様の処理を行う。以下、第1実施例と同一の工程には、第1実施例中の符号の後にAを加えた符号を付して説明する。
[第4実施例]
図4は、本発明の第4実施例を示すフロー図である。この第4実施例では、前記低硫黄原油を原料油として、まず、原料油を蒸留分離工程1Aにかけ、従来と同様の蒸留処理を行い、低沸点油からなる留出油M1Aと、それより高沸点の残油M2Aとに分離する。装置は第1実施例と同様でよい。
蒸留分離工程1Aで得られた留出油M1Aは、フラッシャー30により、留出油M3Aと、M3A’に分離される。
蒸留分離工程1Aで得られた残油M2Aを溶剤脱れき工程(SDA工程)3Aにかけ、溶剤脱れき処理することにより、抽出液としての脱アスファルテン油(DAO)M4Aとアスファルテン(ピッチ)M5Aとを得る。
この溶剤脱れき処理としては、まず、残油M2Aを、溶剤抽出塔において溶剤と向流接触させることにより、脱アスファルテン油と、メタルや残留炭素が濃縮されているアスファルテン(ピッチ)とに分離する。脱アスファルテン油は塔頂部から溶剤と共に回収し、回収物中の溶剤を超臨界状態で分離除去することによって得る。アスファルテン(ピッチ)は、塔底部から溶剤と共に回収し、回収物中の溶剤を蒸発させて除去する。
溶剤脱れき工程3Aより後段の精製工程が水素化脱メタル・脱硫工程4Aだけの場合、脱アスファルテン油M4Aのバナジウム(V)濃度が25wtppm以下となるように、溶剤脱れき処理の抽出率を制御することが好ましい。
溶剤脱れき工程3Aにより得られた脱アスファルテン油M4Aの少なくとも一部を、水素化脱メタル・脱硫工程(HDMS工程)4Aにかけ、水素および触媒の存在下で水素化脱メタル・脱硫処理し、脱メタル・脱硫精製したHDMS精製油M6Aを得る。この水素化脱メタル・脱硫処理は、重質原料を対象とした前述の水素化精製処理(水素化精製工程2)と基本的に同様であるので、説明を省略する。
水素化脱メタル・脱硫処理の条件は、得られるHDMS精製油M6Aのバナジウム(V)濃度が2wtppm以下、好ましくは1wtppm以下になり、かつ、HDMS精製油M6Aの硫黄濃度が0.5wt%以下、好ましくは0.3wt%以下となるように、選択することが望ましい。
水素化脱メタル・脱硫工程4Aで得られたHDMS精製油M6Aの一部と、留出油M3Aの少なくとも一部とを、第4の混合工程5Aにかけて混合し、石油製品を得る。
この第4の混合工程5Aで得られる石油製品をガスタービン燃料(GTF)とする場合には、石油製品のバナジウム(V)濃度が0.5wtppm以下となるように混合比を設定する。例えば、HDMS精製油M6AのV濃度が1wtppmであり、留出油M3AのV濃度が0wtppmである場合、HDMS精製油M6Aと留出油M3Aとの容量比を1:1あるいはそれ以下に(すなわち、HDMS精製油M6Aの方を少なく)設定して混合する。
水素化脱メタル・脱硫工程4Aで得られたHDMS精製油M6Aのうちの、第4の混合工程5Aに供さない残部については、これを流動接触分解用(FCC)の原料あるいは水素化分解用(HCR)の原料とし、中間石油製品とする。さらに、水素化精製油M3のうち、第1の混合工程5Aに供されない残部については、これをナフサ、ガソリン、灯軽油等の石油製品M3A’とすることもできる。
このような石油の精製方法によれば、HDMS精製油M6Aの一部に水素化銅製油M3Aの少なくとも一部を混合するので、これにより例えばガスタービン燃料などのバナジウム(V)濃度が十分に低い石油製品を得ることができ、また、HDMS精製油M6Aの残部から比較的メタル濃度(V+Ni)が低い、流動接触分解用(FCC)あるいは水素化分解用の原料(HCR)としての中間石油製品を得ることができることになり、付加価値の高い複数の石油製品を効率的に併産することができる。
また、流動接触分解用(FCC)あるいは水素化分解用(HCR)の原料としての中間石油製品については、ガスタービン燃料(GTF)などに比べメタルに対する許容濃度が高いことから、水素化脱メタル・脱硫の負荷を伴うことなく、溶剤脱れき工程3Aによる脱アスファルテン油M4Aの得率を高めることができ、これにより残油M2Aからのアスファルテン(ピッチ)M5Aの副生量を抑えることができる。
なお、図4に示した処理フローにおいて、溶剤脱れき工程3Aで得られた脱アスファルテン油M4Aのメタル濃度、硫黄濃度が比較的低く、メタル濃度、硫黄濃度がさらに低いHDMS精製油の一部と混合して、流動接触分解用(FCC)や水素化分解用(HCR)の原料性状を満足する場合には、その一部を水素化脱メタル・脱硫工程4Aにかけることなく、図4中符号12Aで示すバイパスを通してHDMS精製油M6Aの一部と混合して、流動接触分解用(FCC)の原料、水素化分解用(HCR)の原料としての中間石油製品にしてもよい。
[第5実施例]
図5は本発明の第5実施例の石油の精製方法を説明するフロー図であり、図4に示した例と同様に、原料油からガスタービン燃料(GTF)と流動接触分解用(FCC)の原料あるいは水素化分解用(HCR)の原料とを併産する場合の処理フローを示す図である。
本例が図4に示した例と主に異なるところは、前記水素化脱メタル・脱硫工程4Aの後段に、得られたHDMS精製油M6Aを減圧蒸留処理して減圧軽油M7Aと減圧残油M8Aとに分離する減圧蒸留分離工程6Aを設けた点である。
すなわち、図5に示した石油の精製方法では、図4に示した例と同様にして得られたHDMS精製油M6Aを、減圧蒸留分離工程6Aにかけて減圧蒸留処理する。
この減圧蒸留処理としては、HDMS精製油M6Aを減圧蒸留塔に導入して蒸留を行い、HDMS精製油M6A中の低沸点成分と高沸点成分とを分離し、塔頂部から低沸点の減圧軽油M7Aを、また塔底部から高沸点の減圧残油M8Aをそれぞれ得るようにする。
このような減圧蒸留処理を行うことから、本例においては、前記の溶剤脱れき処理によって得られる脱アスファルテン油M4Aについて、そのバナジウム(V)濃度の望ましい上限値を例えば50wtppmとなるように抽出率を制御することができる。すなわち、抽出率を大きくすることができ、石油製品の回収率を上げることができる。
また、このような脱アスファルテン油M4Aを水素化脱メタル・脱硫処理することによって得られるHDMS精製油M6Aについては、そのバナジウム(V)濃度を20wtppm以下、好ましくは10wtppm以下となるように脱メタル・脱硫条件を選択するとともに、硫黄濃度を0.5wt%以下、好ましくは0.3wt%以下とするのが望ましい。
さらに、このようなHDMS精製油M6Aを減圧蒸留処理することによって得られる減圧軽油については、そのバナジウム濃度を1wtppm以下とするのが望ましい。
このような工程の後、減圧蒸留分離工程6Aで得られた減圧軽油M7Aの少なくとも一部と、留出油M3Aとを第5の混合工程7Aにかけて混合し、石油製品の一つを得る。
この第5の混合工程7Aで得られる石油製品をガスタービン燃料(GTF)とする場合には、図4に示した例と同様に、そのバナジウム(V)濃度を0.5wtppm以下とする。その場合に、先の例と同様に減圧軽油M7AのV濃度によって混合比を適宜に調整する。なお、減圧軽油M7Aのバナジウム(V)濃度が0.5wtppm以下である場合には、これに留出油M3Aを加えることなく、そのままガスタービン燃料(GTF)としてもよい。
また、減圧軽油M7Aの残部や減圧蒸留処理して得られた減圧残油M8A、さらにはHDMS精製油M6Aのうちの減圧蒸留分離工程6Aに供さない残部については、これらを単独であるいは適宜に混合することにより、流動接触分解用(FCC)の原料あるいは水素化分解用(HCR)の原料とし、中間石油製品とする。
このような石油の精製方法によれば、減圧蒸留分離工程6Aにより、HDMS精製油M6Aを減圧蒸留処理して蒸留性状の沸点範囲からメタルや残留炭素をほとんど含まない減圧軽油M7Aと減圧残油M8Aとに分離するようにしたので、HDMS精製油M6Aそのもののバナジウム濃度、メタル濃度や残留炭素を比較的高い濃度まで許容することができ、これにより溶剤脱れき工程3Aによる脱アスファルテン油M4Aの得率を高めることができ、したがって残油M2Aからのアスファルテン(ピッチ)M5Aの副生量を抑えることができる。
また、溶剤脱れき工程3Aで得られた脱アスファルテン油M4Aについても、これのバナジウム(V)濃度等が十分に低い場合には、その一部を水素化脱メタル・脱硫工程4Aにかけることなく、バイパス12Aに導入し、減圧蒸留分離工程6Aからの減圧残油M8Aに混合して流動接触分解用(FCC)、水素化分解用(HCR)の原料としての中間製品にしてもよく、また、水素化脱メタル・脱硫工程4Aで得られるHDMS精製油M6Aについても、バイパス12Aに導入し、減圧蒸留分離工程6Aからの減圧残油M8Aに混合して流動接触分解用(HCC)、水素化分解用の原料(HCR)としての中間石油製品にしてもよい。
[第6実施例]
図6は本発明の石油の精製方法の第6実施例を説明するための図であり、図4に示した例と同様に原料油からガスタービン燃料(GTF)と流動接触分解用(FCC)あるいは水素化分解用(HCR)の原料とを併産する場合の処理フローを示す図である。
本例が図4に示した例と主に異なるところは、前記蒸留分離工程1Aの後段に、得られた残油M2Aを減圧蒸留処理して減圧軽油M11Aと減圧残油M12Aとに分離する減圧蒸留分離工程20Aと、得られた減圧残油M12Aを溶剤脱れき処理し、脱アスファルテン油M13Aとアスファルテン(ピッチ)M14Aとに分離する溶剤脱れき工程21Aと、得られた脱アスファルテン油M13Aと減圧軽油M11Aとの混合油を水素化脱メタル・脱硫処理してHDMS精製油M15Aを得る水素化脱メタル・脱硫工程22Aとを設けた点である。
すなわち、図6に示した石油の精製方法では、図4に示した例と同様にして得られた残油M2Aを、減圧蒸留分離工程20Aにかけて減圧蒸留処理する。
この減圧蒸留分離処理としては、残油M2Aを減圧蒸留塔に導入して蒸留を行い、残油M2A中の低沸点留分と高沸点留分とを分離し、塔頂から低沸点成分の減圧軽油M11Aを、また塔底から高沸点の減圧残油M12Aをそれぞれ得るようにする。
このような減圧蒸留分離工程20Aの後に、得られた減圧残油M12Aを溶剤脱れき工程21Aにかけ、脱アスファルテン油M13Aとアスファルテン(ピッチ)M14Aとに分離する。この溶剤脱れき処理については、図4、図5に示した例と同様であるが、メタルや残留炭素、硫黄分が残油M2Aより濃縮されている分、減圧残油の溶剤脱れき処理によって得られる脱アスファルテン油M13Aについて、そのバナジウム(V)濃度の望ましい上限値は高くなり、例えば70wtppmとなるように抽出率を制御する。
次いで、このようにして得られた脱アスファルテン油M13Aと前記減圧軽油M11Aとを混合し、この混合油を水素化脱メタル・脱硫処理することにより、HDMS精製油M15Aを得る。得られるHDMS精製油M15Aについては、そのバナジウム(V)濃度を2wtppm以下、好ましくは1wtppm以下とするとともに、その硫黄濃度を0.5wtppm、好ましくは0.3wtppm以下となるように脱メタル・脱硫条件を選択するのが望ましい。
その後、水素化脱メタル・脱硫工程22Aで得られたHDMS精製油M15Aの一部と、留出油M3Aとを、第6の混合工程23Aにかけて混合し、バナジウム(V)濃度が0.5wtppm以下の石油製品の一つとしてのガスタービン燃料(GTF)を得る。
また、水素化脱メタル・脱硫工程で22Aで得られたHDMS精製油M15Aのうちの、第6の混合工程23Aに供しない残部については、これを流動接触分解用(FCC)の原料あるいは水素化分解用(HCR)の原料として、中間石油製品とすることができる。
脱アスファルテンM13Aと減圧軽油M11Aとが、それぞれ含有するメタル分、残留炭素、硫黄分の濃度が大きく異なり、反応条件、特に水素分圧に大きな隔たりがある場合には、これらを混合することなく、別々の反応器でそれぞれ最適な条件で水素化脱メタル・脱硫処理し、その後、混合あるいは水素化脱メタル・脱硫処理した減圧軽油M11Aの少なくとも一部と留出油M3Aの少なくとも一部とを混合し、そのバナジウム(V)濃度を0.5wtppm以下のガスタービン燃料(GTF)を得ることもできる。
このような石油の精製方法によれば、第6の混合工程23AでHDMS精製油M15Aの一部と留出油M3Aの少なくとも一部とを混合するようにしたので、得られた混合油のバナジウム(V)濃度が十分に低くなることにより、石油製品の一つとしてガスタービン燃料を得ることができる。また、減圧軽油M7Aと脱アスファルテン油M13Aの混合油を水素化脱メタル・脱硫処理して得られたHDMS精製油M15Aの残部からでも、メタル濃度(V+Ni)が低い、流動接触分解用あるいは水素化分解用の原料としての中間石油製品を得ることができることになり、付加価値の高い複数の石油製品を効率的に併産することができる。
また、流動接触分解用(FCC)あるいは水素化分解用(HCR)の原料としての中間石油製品については、ガスタービン燃料などに比べメタルに対する許容濃度が高いことから、ガスタービン燃料(GTF)と流動接触用あるいは水素化分解用の原料とを併産することによって溶剤脱れき工程21Aによる脱アスファルテン油M13Aの得率を高めることができ、これにより減圧残油M12Aからのアスファルテン(ピッチ)M14Aの副生量を抑えることができる。
実験例
以下、実験例によって本発明をより具体的に説明する。
(実験例1)
図1に示した石油の精製方法に基づき、複数の石油製品としてガスタービン燃料と、流動接触分解用あるいは水素化分解用の原料としての中間石油製品とを図7に示すようにして併産した。
API度が8.5であり、硫黄濃度が3.67wt%、バナジウム濃度が393wtppmの超重質原油(オリノコ油)を原料油とし、まず、これをトッパーで常圧蒸留処理(蒸留分離工程1)して留出油M1と残油M2とを得た。得られた留出油M1の原料油に対する得率は15.9wt%、硫黄濃度は2.41wt%であった。また、残油M2の原料油に対する得率は83.5wt%、硫黄濃度は4.07wt%、バナジウム濃度は472wtppmであった。
次に、得られた留出油M1を水素と触媒の存在下で水素化精製処理(水素化精製工程2)し、脱硫することにより、水素化精製油M3、M3’を得た。M3’はそのままナフサとして石油製品の一つとした。得られた水素化精製油M3の原料油に対する得率は13.0wt%、硫黄濃度は0.02wt%であった。また、M3’ナフサの原料油に対する得率は2wt%であった。
また、水素化精製処理とは別に、イソブタンを溶媒として残油M2を溶剤抽出塔で溶剤脱れき処理(溶剤脱れき工程3)し、65%の抽出率で脱アスファルテン油M4を得るとともに、残渣であるアスファルテン(ピッチ)M5を得た。なお、溶剤脱れき処理における溶剤と残油M2との比(溶媒/M2)は8とした。得られた脱アスファルテン油M4の原料油に対する得率は54.3wt%、硫黄濃度は3.60wt%、バナジウム濃度は66wtppm(抽出率14%)であった。また、アスファルテン(ピッチ)M5の原料油に対する得率は29.2wt%であった。
次いで、得られた脱アスファルテン油M4を、水素化脱メタル触媒と水素化脱硫触媒とが3:7のvol比で充填された反応器に導入し、水素と該触媒の存在下で水素化脱メタル・脱硫処理(水素化脱メタル・脱硫工程4)し、HDMS精製油M6を得た。なお、処理は水素分圧を100atm、(H/油)比を800Nl/l、LHSVを0.7/hr、反応温度を370℃とする条件下で行った。得られたHDMS精製油M6の原料油に対する得率は51wt%、硫黄濃度は0.4wt%、バナジウム濃度は0.7wtppmであった。
その後、得られたHDMS精製油M6のうちの15wt%(原料油に対する得率として)を前記水素化精製油M3に混合し(第1の混合工程5)、原料油に対する得率が28wt%、硫黄濃度が0.22wt%、バナジウム濃度が0.38wtppmのガスタービン燃料(GTF)を得た。また、HDMS精製油M6の残りの分、すなわちその36wt%(原料油に対する得率として)を、そのまま流動接触分解用(FCC)の原料あるいは水素化分解用(HCR)の原料とした。
(実験例2)
図2に示した石油の精製方法に基づき、複数の石油製品としてガスタービン燃料と、流動接触分解用あるいは水素化分解用の原料としての中間石油製品とを図8に示すようにして併産した。
API度が8.5であり、硫黄濃度が3.67wt%、バナジウム濃度が393wtppmの超重質原油(オリノコ油)を原料油とし、まず、これをトッパーで常圧蒸留処理(蒸留分離工程1)して留出油M1と残油M2とを得た。得られた留出油M1の原料油に対する得率は15.9wt%、硫黄濃度は2.41wt%であった。また、残油M2の原料油に対する得率は83.5wt%、硫黄濃度は4.07wt%、バナジウム濃度は472wtppmであった。
次に、得られた留出油M1を水素と触媒の存在下で水素化精製処理(水素化精製工程2)し、脱硫することにより、水素化精製油M3、M3’を得た。M3’はそのままナフサとして石油製品の一つとした。得られた水素化精製油M3の原料油に対する得率は13.0wt%、硫黄濃度は0.02wt%であった。また、M3’ナフサの原料油に対する得率は2wt%であった。
また、水素化精製処理とは別に、ペンタンを溶媒として残油M2を溶剤抽出塔で溶剤脱れき処理(溶剤脱れき工程3)し、76.6%の抽出率で脱アスファルテン油M4を得るとともに、残渣であるアスファルテン(ピッチ)M5を得た。なお、溶剤脱れき処理における溶剤と残油M2との比(溶媒/M2)は8とした。得られた脱アスファルテン油M4の原料油に対する得率は64wt%、硫黄濃度は3.9wt%、バナジウム濃度は130wtppm(抽出率27.5%)であった。また、アスファルテン(ピッチ)M5の原料油に対する得率は19.5wt%であった。
次いで、得られた脱アスファルテン油M4を、水素化脱メタル触媒と水素化脱硫触媒とが5:5のvol比で充填された反応器に導入し、水素と該触媒の存在下で水素化脱メタル・脱硫処理(水素化脱メタル・脱硫工程4)し、HDMS精製油M6を得た。なお、処理は水素分圧を100atm、(H/油)比を800Nl/l、LHSVを0.5/hr、反応温度を370℃とする条件下で行った。得られたHDMS精製油M6の原料油に対する得率は59wt%、硫黄濃度は0.45wt%、バナジウム濃度は8wtppmであった。
次いで、得られたHDMS精製油M6を減圧蒸留処理(減圧蒸留分離工程6)し、減圧軽油(VGO)M7と減圧残油M8とをそれぞれ得た。得られた減圧軽油M7の原料油に対する得率は25wt%、硫黄濃度は0.24wt%、バナジウム濃度は0.3wtppmであった。
その後、得られた減圧軽油M7の全部を前記水素化精製油M3に混合し(第2の混合工程7)、原料油に対する得率が38wt%、硫黄濃度が0.16wt%、バナジウム濃度が0.19wtppmのガスタービン燃料(GTF)を得た。また、減圧蒸留処理で得られた減圧残油M8は、そのまま流動接触分解用(FCC)の原料あるいは水素化分解用(HCR)の原料とした。なお、脱アスファルテン油M4の一部や、HDMS精製油M6の一部を減圧残油M8に混合することなどにより、流動接触分解用(FCC)の原料あるいは水素化分解用(HCR)の原料を得てもよい。このようにして得られた流動接触分解用(FCC)の原料あるいは水素化分解用(HCR)の原料は、原料油に対する得率が34wt%、硫黄濃度が0.60wt%、バナジウム濃度が13.7wtppmであった。
(実験例3)
図3に示した石油の精製方法に基づき、複数の石油製品としてガスタービン燃料と、流動接触分解用あるいは水素化分解用の原料としての中間石油製品とを図9に示すようにして併産した。
API度が28であり、硫黄濃度が2.9wt%、バナジウム濃度が69wtppmの超重質原油(アラビアンヘビー)を原料油とし、まず、これをトッパーで常圧蒸留処理(蒸留分離工程1)して留出油M1と残油M2とを得た。得られた留出油M1の原料油に対する得率は41wt%、硫黄濃度は0.79wt%であった。また、残油M2の原料油に対する得率は58.5wt%、硫黄濃度は4.72wt%、バナジウム濃度は117wtppmであった。
次に、得られた残油M2を減圧蒸留処理(減圧蒸留分離工程20)し、減圧軽油M11と減圧残油M12とをそれぞれ得た。得られた減圧軽油M11の原料油に対する得率は28.2wt%、硫黄濃度は3.37wt%、バナジウム濃度は1.5wtppmであった。また、得られた減圧残油M12の原料油に対する得率は30.6wt%、バナジウム濃度は223wtppm、(V+Ni)濃度は294wtppm、残留炭素は24.4wt%、硫黄濃度は6.04wt%であった。
また、得られた留出油M1のLPG、ナフサ、灯油、軽油の各留分は、別々に水素化精製処理(水素化精製工程2)し、それぞれに相当する脱硫精製油(軽質留分)M3、M3’を得た。得られた水素化精製油M3の原料油に対する得率は20.3wt%、硫黄濃度は0.05wt%であった。また、水素化精製油M3’からのガソリン、灯軽油の原料油に対する得率はそれぞれ6.0wt%と13.7wt%であった。
また、水素化精製処理とは別に、イソブタンを溶媒として減圧残油M12を溶剤抽出塔で溶剤脱れき処理(溶剤脱れき工程21)し、60%の抽出率で脱アスファルテン油M13を得るとともに、残渣であるアスファルテン(ピッチ)M14を得た。なお、溶剤脱れき処理における溶剤と減圧残油M12との比(溶媒/M12)は8とした。得られた脱アスファルテン油M13の原料油に対する得率は18.4wt%、硫黄濃度は4.62wt%、バナジウム濃度は22wtppm(抽出率19%)であった。また、アスファルテン(ピッチ)M14の原料油に対する得率は12.2wt%であった。
次いで、得られた脱アスファルテン油M13と減圧軽油M11との混合油を、水素化脱メタル触媒と水素化脱硫触媒とが1:9のvol比で充填された反応器に導入し、水素と該触媒の存在下で水素化脱メタル・脱硫処理(水素化脱メタル・脱硫工程4)し、HDMS精製油M15を得た。なお、処理は水素分圧を90atm、(H/油)比を800Nl/l、LHSVを0.7/hr、反応温度を370℃とする条件下で行った。得られたHDMS精製油M15の原料油に対する得率は44wt%、硫黄濃度は0.6wt%、バナジウム濃度は1.0wtppmであった。
その後、得られたHDMS精製油M15のうち15wt%(原料油に対して)を前記水素化精製油M3に混合し、原料油に対する得率が45wt%、硫黄濃度が0.28wt%、バナジウム濃度が0.42wtppmのガスタービン燃料を得た。また、HDMS精製油の残りの分、すなわちその29wt%をそのまま流動接触分解用(FCC)あるいは水素化分解用(HCR)の原料とした。
次に、低硫黄原油を用いた実験例について説明する。
(実験例4)
図4に示した石油の精製方法に基づき、複数の石油製品としてガスタービン燃料と、流動接触分解用あるいは水素化分解用の原料としての中間石油製品とを図10に示すようにして併産した。
硫黄濃度が1.79wt%、バナジウム濃度が13.5wtppmの低硫黄原油(アラビアンライト)を原料油とし、まず、これをトッパーで常圧蒸留処理(蒸留分離工程1A)して留出油M1Aと残油M2Aとを得た。得られた留出油M1Aの原料油に対する得率は53.5wt%、硫黄濃度は0.63wt%であった。また、残油M2Aの原料油に対する得率は45.4wt%、硫黄濃度は3.20wt%、バナジウム濃度は30.0wtppmであった。
次に、得られた留出油M1Aをフラッシャー30により分離し、留出油M3A、M3A’を得た。M3A’はそのままナフサとして石油製品の一つとした。得られた留出油M3Aの原料油に対する得率は50.9wt%、硫黄濃度は0.66wt%であった。また、ナフサM3A’の原料油に対する得率は2.6wt%であった。
また、イソブタンを溶媒として残油M2Aを溶剤抽出塔で溶剤脱れき処理(溶剤脱れき工程3A)し、65%の抽出率で脱アスファルテン油M4Aを得るとともに、残渣であるアスファルテン(ピッチ)M5Aを得た。なお、溶剤脱れき処理における溶剤と残油M2Aとの比(溶媒/M2A)は8とした。得られた脱アスファルテン油M4Aの原料油に対する得率は38.6wt%、硫黄濃度は2.80wt%、バナジウム濃度は5.9wtppmであった。また、アスファルテン(ピッチ)M5Aの原料油に対する得率は6.8wt%であった。
次いで、得られた脱アスファルテン油M4Aを、水素化脱メタル触媒と水素化脱硫触媒とが1:9のvol比で充填された反応器に導入し、水素と該触媒の存在下で水素化脱メタル・脱硫処理(水素化脱メタル・脱硫工程4A)し、HDMS精製油M6Aを得た。なお、処理は水素分圧を100atm、(H/油)比を800Nl/l、LHSVを0.5/hr、反応温度を370℃とする条件下で行った。得られたHDMS精製油M6Aの原料油に対する得率は36.3wt%、硫黄濃度は0.10wt%、バナジウム濃度は0.9wtppmであった。
その後、得られたHDMS精製油M6Aのうちの22.7wt%(原料油に対する得率として)を留出油M3Aに混合し(第4の混合工程5A)、原料油に対する得率が73.6wt%、硫黄濃度が0.49wt%、バナジウム濃度が0.28wtppmのガスタービン燃料(GTF)を得た。また、HDMS精製油M6Aの残りの分、すなわちその13.6wt%(原料油に対する得率として)を、そのまま流動接触分解用(FCC)の原料あるいは水素化分解用(HCR)の原料とした。
(実験例5)
図5に示した石油の精製方法に基づき、複数の石油製品としてガスタービン燃料と、流動接触分解用あるいは水素化分解用の原料としての中間石油製品とを図11に示すようにして併産した。
実験例4と同じ低硫黄原油である硫黄濃度が1.79wt%、バナジウム濃度が13.5wtppmの原油(アラビアンライト)を原料油とし、まず、これをトッパーで常圧蒸留処理(蒸留分離工程1A)して留出油M1Aと残油M2Aとを得た。得られた留出油M1Aの原料油に対する得率は53.5wt%、硫黄濃度は0.63wt%であった。また、残油M2Aの原料油に対する得率は45.4wt%、硫黄濃度は3.20wt%、バナジウム濃度は30.0wtppmであった。
次に、得られた留出油M1Aをフラッシャー30により分離し、留出油M3A、M3A’を得た。留出油M3Aはそのままナフサとして石油製品の一つとした。得られた留出油M3Aの原料油に対する得率は50.9wt%、硫黄濃度は0.66wt%であった。また、ナフサM3A’の原料油に対する得率は2.6wt%であった。
また、水素化精製処理とは別に、ペンタンを溶媒として残油M2Aを溶剤抽出塔で溶剤脱れき処理(溶剤脱れき工程3A)し、65%の抽出率で脱アスファルテン油M4Aを得るとともに、残渣であるアスファルテン(ピッチ)M5Aを得た。なお、溶剤脱れき処理における溶剤と残油M2Aとの比(溶媒/M2)は8とした。得られた脱アスファルテン油M4Aの原料油に対する得率は38.6wt%、硫黄濃度は2.80wt%、バナジウム濃度は5.9wtppmであった。また、アスファルテン(ピッチ)M5Aの原料油に対する得率は6.8wt%であった。
次いで、得られた脱アスファルテン油M4Aを、水素化脱メタル触媒と水素化脱硫触媒とが1:9のvol比で充填された反応器に導入し、水素と該触媒の存在下で水素化脱メタル・脱硫処理(水素化脱メタル・脱硫工程4A)し、HDMS精製油M6Aを得た。なお、処理は水素分圧を100atm、(H/油)比を800Nl/l、LHSVを0.7/hr、反応温度を360℃とする条件下で行った。得られたHDMS精製油M6Aの原料油に対する得率は36.3wt%、硫黄濃度は0.30wt%、バナジウム濃度は1.5wtppmであった。
次いで、得られたHDMS精製油M6Aを減圧蒸留処理(減圧蒸留分離工程6A)し、減圧軽油(VGO)M7Aと減圧残油M8Aとをそれぞれ得た。得られた減圧軽油M7Aの原料油に対する得率は23.0wt%、硫黄濃度は0.10wt%、バナジウム濃度は0.2wtppmであった。
その後、得られた減圧軽油M7Aの全部を留出油M3Aに混合し(第5の混合工程7A)、原料油に対する得率が73.9wt%、硫黄濃度が0.49wt%、バナジウム濃度が0.06wtppmのガスタービン燃料(GTF)を得た。また、減圧蒸留処理で得られた減圧残油M8Aは、そのまま流動接触分解用(FCC)の原料あるいは水素化分解用(HCR)の原料とした。なお、脱アスファルテン油M4Aの一部や、HDMS精製油M6Aの一部を減圧残油M8Aに混合することなどにより、流動接触分解用(FCC)の原料あるいは水素化分解用(HCR)の原料を得てもよい。このようにして得られた流動接触分解用(FCC)の原料あるいは水素化分解用(HCR)の原料は、原料油に対する得率が13.3wt%、硫黄濃度が0.65wt%、バナジウム濃度が3.7wtppmであった。
(実験例6)
図6に示した石油の精製方法に基づき、複数の石油製品としてガスタービン燃料と、流動接触分解用あるいは水素化分解用の原料としての中間石油製品とを図12に示すようにして併産した。
実験例4と同じ低硫黄原油である、硫黄濃度が1.79wt%、バナジウム濃度が13.5wtppmの原油(アラビアンライト)を原料油とし、まず、これをトッパーで常圧蒸留処理(蒸留分離工程1A)して留出油M1Aと残油M2Aとを得た。得られた留出油M1Aの原料油に対する得率は53.5wt%、硫黄濃度は0.63wt%であった。また、残油M2Aの原料油に対する得率は45.4wt%、硫黄濃度は3.20wt%、バナジウム濃度は30.0wtppmであった。
次に、得られた残油M2Aを減圧蒸留処理(減圧蒸留分離工程20A)し、減圧軽油M11Aと減圧残油M12Aとをそれぞれ得た。得られた減圧軽油M11Aの原料油に対する得率は30.4wt%、硫黄濃度は2.70wt%、バナジウム濃度は0.1wtppmであった。また、得られた減圧残油M12Aの原料油に対する得率は15.0wt%、バナジウム濃度は91.0wtppm、硫黄濃度は4.10wt%であった。
得られた留出油M1Aをフラッシャー30により分離し、留出油M3A、M3A’を得た。留出油M3A’はそのままナフサとして石油製品の一つにした。留出油M3Aの原料油に対する得率は50.9%であり、硫黄濃度は0.66wt%であった。また、ナフサM3A’の原料油に対する得率は2.6wt%であった。
また、水素化精製処理とは別に、イソブタンを溶媒として減圧残油M12Aを溶剤抽出塔で溶剤脱れき処理(溶剤脱れき工程21A)し、60%の抽出率で脱アスファルテン油M13Aを得るとともに、残渣であるアスファルテン(ピッチ)M14Aを得た。なお、溶剤脱れき処理における溶剤と減圧残油M12Aとの比(溶媒/M12A)は8とした。得られた脱アスファルテン油M13Aの原料油に対する得率は10.5wt%、硫黄濃度は3.30wt%、バナジウム濃度は11.0wtppmであった。また、アスファルテン(ピッチ)M14Aの原料油に対する得率は4.5wt%であった。
次いで、得られた脱アスファルテン油M13Aと減圧軽油M11Aとの混合油を、水素化脱メタル触媒と水素化脱硫触媒とが1:9のvol比で充填された反応器に導入し、水素と該触媒の存在下で水素化脱メタル・脱硫処理(水素化脱メタル・脱硫工程22A)し、HDMS精製油M15Aを得た。なお、処理は水素分圧を100atm、(H/油)比を800Nl/l、LHSVを0.5/hr、反応温度を375℃とする条件下で行った。得られたHDMS精製油M15Aの原料油に対する得率は38.4wt%、硫黄濃度は0.10wt%、バナジウム濃度は0.9wtppmであった。
その後、得られたHDMS精製油M15Aのうち22.7wt%(原料油に対して)を留出油M3Aに混合し、原料油に対する得率が73.6wt%、硫黄濃度が0.49wt%、バナジウム濃度が0.28wtppmのガスタービン燃料を得た。また、HDMS精製油の残りの分、すなわちその15.7wt%をそのまま流動接触分解用(FCC)あるいは水素化分解用(HCR)の原料とした。
産業上の利用の可能性
本発明の石油の精製方法によれば、オリノコタール等の重質の原料油または低硫黄濃度の原料油から、例えばバナジウム(V)濃度が0.5wtppm以下の石油製品(ガスタービン燃料)と、流動接触分解用(FCC)の原料あるいは水素化分解用(HCR)の原料として好適な、メタル濃度(V+Ni)が30wtppm以下である中間石油製品とを効率的に併産することができる。
【図面の簡単な説明】
図1〜図6はそれぞれ、本発明の石油精製方法の第1〜第6実施例を説明するための処理フロー図である。
図7〜図12はそれぞれ、実験例1〜6の石油の精製方法を説明するための処理フロー図である。
Technical field
The present invention relates to a method for refining petroleum which efficiently produces a plurality of high value-added petroleum products, and more particularly to a method for efficiently producing a plurality of high value-added petroleum products having different specifications from heavy or low sulfur concentration feedstock. The present invention relates to a method for refining petroleum which is produced jointly.
Background art
Conventionally, as this type of technology, for example, a technology that can efficiently produce individual petroleum products and intermediate products thereof as described below is known.
(1) Feedstock is subjected to atmospheric distillation to separate distillate and atmospheric residual oil, and the obtained atmospheric residual oil is distilled under reduced pressure, and the vacuum residual oil (VR) is applied to a coker. Technology to produce pyrolysis gasoline and light oil.
(2) A technique of subjecting the above-mentioned normal pressure residual oil to solvent desorption (SDA) and using the resulting deasphalted oil (solvent deoiled oil; DAO) as a raw material for fluid catalytic cracking (FCC), or a normal pressure residual oil Is subjected to vacuum distillation (VDU), and the resulting vacuum gas oil (VGO) is used as a raw material for fluid catalytic cracking (FCC).
However, the technique shown in the above (1) has a problem that the market of the bottom (coke) of coker is oversupplied, and the construction of the coker which produces coke is restricted.
The technique shown in (2) has the following problem. Deasphaltenated oil and decompressed gas oil are separated from enormous reserves of ultra-heavy crude oil and atmospheric residual oil that is expected to become excessive in the future, and introduced into fluid catalytic cracking (FCC) and hydrocracking (HCR). Producing transport fuels such as gasoline and light oil will increase the demand for electric power relative to the increase in demand for gasoline and light oil in the future. Inability to balance.
In addition to the techniques described in the above (1) and (2), for example, a gas turbine fuel (GTF) is produced by performing a solvent removal process from an ultra-heavy crude oil having a high vanadium (V) concentration or an atmospheric residual oil. However, even with this technology, if the yield (extraction rate) of deasphalted oil in solvent degreasing is increased, contamination of the resulting deasphalted oil by metal and residual carbon increases, As a result, the load when demetallizing and desulfurizing and refining this deasphalted oil becomes high (high pressure, low LHSV), which is economically disadvantageous. In addition, if the yield of deasphalted oil is reduced in such circumstances, the yield of gas turbine fuel will be reduced, and as a result, the production of low value-added asphaltene (pitch) will increase. Will happen.
An object of the present invention is to provide a petroleum product (gas) having a vanadium (V) concentration of 0.5 wtppm or less, particularly in a case where a heavy feedstock is used as a starting material and a case where a low-sulfur concentration feedstock is used as a starting material. A petroleum refining method capable of efficiently co-producing a turbine fuel) and an intermediate petroleum product as a raw material for fluid catalytic cracking or hydrocracking having a metal concentration (V + Ni) of 30 wtppm or less. Is to do.
Disclosure of the invention
A petroleum refining method according to a first aspect of the present invention is a petroleum refining method for refining a feedstock to produce a petroleum product including a plurality of intermediate petroleum products. A distillation separation step of separating oil and residual oil, and at least a part of the distillate obtained in the distillation separation step is subjected to hydrorefining treatment in the presence of hydrogen and a catalyst, and desulfurized to obtain a desulfurized purified oil. A hydrorefining process, a solvent degreasing treatment of the residual oil to obtain deasphalted oil as an extract and asphaltene (pitch) as a residue, and at least a part of the deasphalted oil as hydrogen. And a hydrodemetallation / desulfurization treatment in the presence of a catalyst to obtain a demetallated / desulfurized purified HDMS refined oil, and at least one of a part of the HDMS refined oil and the desulfurized refined oil. Mix with And, and a first mixing step of obtaining a single petroleum products.
According to this refining method, in the first mixing step, at least a part of the desulfurized refined oil is mixed with a part of the HDMS refined oil, whereby the petroleum oil having a sufficiently low vanadium (V) concentration, such as a gas turbine fuel, is obtained. A product can be obtained, and an intermediate petroleum product having a relatively low metal concentration (V + Ni) as a raw material for fluid catalytic cracking or hydrocracking can be obtained from the remaining HDMS refined oil.
In addition, intermediate petroleum products used as fluid catalytic cracking or hydrocracking raw materials have higher metal concentrations than gas turbine fuels. By co-producing the above, the yield of deasphalted oil in the solvent dewatering step can be increased, whereby the amount of asphaltene (pitch) by-produced from the residual oil under normal pressure can be suppressed.
The petroleum refining method according to the second aspect of the present invention comprises a distillation separation step of subjecting a feedstock to distillation to separate it into a distillate and a residual oil, and at least a part of the distillate obtained in the distillation separation step. Is subjected to hydrorefining treatment in the presence of hydrogen and a catalyst, a hydrorefining step of obtaining a desulfurized purified oil by desulfurization, and a solvent removal of the residual oil, a deasphalted oil and a residue as an extract. A solvent desorption step for obtaining asphaltene (pitch); and a hydrogen for obtaining at least a part of the deasphaltenated oil by hydrodemetallization / desulfurization treatment in the presence of hydrogen and a catalyst to obtain an HDMS refined oil purified by demetallation / desulfurization. A demetalation / desulfurization step, a vacuum distillation separation step of subjecting the HDMS refined oil to vacuum distillation to separate it into a vacuum gas oil and a vacuum residue, and at least a portion of the vacuum gas oil and at least a portion of the desulfurized refined oil. When Mixed, and a second mixing step of obtaining a single petroleum products.
According to this refining method, at least a part of the vacuum gas oil and at least a part of the desulfurized refined oil are mixed in the second mixing step, whereby the concentration of vanadium (V) in, for example, gas turbine fuel is sufficiently low. You can get petroleum products. Further, even from a vacuum gas oil residue, a vacuum residue obtained by vacuum distillation treatment, and an HDMS refined oil, an intermediate as a raw material for fluid catalytic cracking or hydrocracking having a relatively low metal concentration (V + Ni). You can get petroleum products.
Also, in particular, the HDMS refined oil is subjected to a vacuum distillation treatment in a vacuum distillation separation step to separate from the boiling point range of the distillation properties into a vacuum gas oil having a low content of metals and a residual carbon and a vacuum residual oil. The concentration of vanadium and metal can be tolerated to a relatively high concentration, which can increase the yield of deasphalted oil in the solvent dewatering process, and therefore can reduce asphaltene (pitch) from atmospheric residual oil. The amount of by-products can be suppressed.
The petroleum refining method according to the third aspect of the present invention comprises a distillation separation step of subjecting a feed oil to distillation to separate it into a distillate and a residual oil, and at least a part of the distillate obtained in the distillation separation step. Is subjected to hydrorefining treatment in the presence of hydrogen and a catalyst, and a hydrorefining step of obtaining a desulfurized refined oil by desulfurization, and vacuum distillation for separating the residual oil into a vacuum gas oil and a vacuum residual oil by vacuum distillation treatment. A separation step, a solvent degreasing treatment of the vacuum residual oil, a solvent degreasing step of obtaining deasphalted oil as an extract and asphaltene (pitch) as a residue, mixing the reduced pressure gas oil and deasphalted oil, Hydrodemetallization / desulfurization treatment of this mixed oil in the presence of hydrogen and a catalyst to obtain a demetallized / desulfurized purified HDMS refined oil; and a part of the HDMS refined oil and the desulfurization. At least one of the refined oils Mixing the door, and a third mixing step of obtaining a single petroleum products.
According to this refining method, a part of the HDMS refined oil and at least a part of the desulfurized refined oil are mixed in the third mixing step, so that the obtained mixed oil has a sufficiently low vanadium (V) concentration. Thereby, a petroleum product as a gas turbine fuel can be obtained. Further, even from the remainder of HDMS refined oil obtained by hydrodemetallization / desulfurization of a mixed oil of vacuum gas oil and deasphalted oil, low metal concentration (V + Ni), fluid catalytic cracking or hydrocracking Intermediate petroleum products can be obtained as raw materials.
In addition, intermediate petroleum products used as fluid catalytic cracking or hydrocracking raw materials have higher metal concentrations than gas turbine fuels. By co-producing both, it is possible to increase the yield of deasphalted oil in the solvent dewatering step, thereby suppressing the amount of asphaltene (pitch) by-produced from the vacuum residual oil.
In addition, when the present invention is applied to heavy oil having an API degree of 20 or less, it is possible to reduce the amount of pitch generation as compared with the prior art in which a large amount of pitch with low commercial value is produced as a by-product. The recovery rate of multiple high value petroleum products will increase, and the productivity will increase significantly.
A petroleum refining method according to a fourth aspect of the present invention is a petroleum refining method for producing a petroleum product including a plurality of intermediate petroleum products by subjecting the feedstock to a refining process for a low-sulfur-concentration feedstock. A distillation separation step of subjecting the raw oil to distillation to separate it into a distillate oil and a residual oil, and a solvent removal of the residual oil obtained in the distillation separation step to remove asphaltene oil and residue as an extract. A solvent desorption step for obtaining asphaltene (pitch); and a hydrogen for obtaining at least a part of the deasphaltenated oil by hydrodemetallization / desulfurization treatment in the presence of hydrogen and a catalyst to obtain an HDMS refined oil purified by demetallation / desulfurization. And a fourth mixing step of mixing a part of the HDMS refined oil and at least a part of the distillate oil to obtain one of petroleum products.
According to this refining method, in the fourth mixing step, at least a part of the desulfurized refined oil is mixed with a part of the HDMS refined oil, so that, for example, a gas such as a gas turbine fuel having a sufficiently low vanadium (V) concentration is used. A product can be obtained, and an intermediate petroleum product having a relatively low metal concentration (V + Ni) as a raw material for fluid catalytic cracking or hydrocracking can be obtained from the remaining HDMS refined oil.
In addition, intermediate petroleum products used as fluid catalytic cracking or hydrocracking raw materials have higher metal concentrations than gas turbine fuels. By co-producing the above, the yield of deasphalted oil in the solvent dewatering step can be increased, whereby the amount of asphaltene (pitch) by-produced from the residual oil under normal pressure can be suppressed.
The petroleum refining method according to the fifth aspect of the present invention comprises a distillation separation step of distilling a feedstock oil to separate it into a distillate oil and a residua, and a solvent removal treatment of the residual oil obtained in the distillation separation step. And a solvent removal step for obtaining deasphalted oil as an extract and asphaltene (pitch) as a residue, and subjecting at least a part of the deasphalted oil to hydrogenation demetallization / desulfurization treatment in the presence of hydrogen and a catalyst. A hydrogenation demetallation / desulfurization step of obtaining a purified HDMS refined oil demetallated / desulfurized; a vacuum distillation separation step of subjecting the HDMS refined oil to a vacuum distillation treatment to separate it into a vacuum gas oil and a vacuum residue; And a fifth mixing step of mixing at least a part of the distillate oil with at least a part of the distillate oil to obtain one of the petroleum products.
According to this refining method, at least a part of the vacuum gas oil and at least a part of the distillate oil are mixed in the fifth mixing step, whereby the concentration of vanadium (V) in, for example, gas turbine fuel is sufficiently low. You can get petroleum products. Further, even from a vacuum gas oil residue, a vacuum residue obtained by vacuum distillation treatment, and an HDMS refined oil, an intermediate as a raw material for fluid catalytic cracking or hydrocracking having a relatively low metal concentration (V + Ni). You can get petroleum products.
Also, in particular, the HDMS refined oil is subjected to a vacuum distillation treatment in a vacuum distillation separation step to separate from the boiling point range of the distillation properties into a vacuum gas oil having a low content of metals and a residual carbon and a vacuum residual oil. The concentration of vanadium and metal can be tolerated to a relatively high concentration, which can increase the yield of deasphalted oil in the solvent dewatering process, and therefore can reduce asphaltene (pitch) from atmospheric residual oil. The amount of by-products can be suppressed.
The petroleum refining method according to the sixth aspect of the present invention comprises a distillation separation step of distilling a feedstock oil to separate it into a distillate oil and a residual oil, and a vacuum distillation treatment of the residual oil obtained in the distillation separation step. A vacuum distillation separation step of separating the vacuum residue into a vacuum oil and a vacuum residue, and a solvent removal step of subjecting the vacuum residue to solvent removal to obtain a deasphalted oil as an extract and asphaltene (pitch) as a residue. And the above decompressed gas oil and deasphalted oil are mixed, and the mixed oil is subjected to hydrodemetallation / desulfurization treatment in the presence of hydrogen and a catalyst to obtain an HDMS refined oil purified by demetallation / desulfurization. And a sixth mixing step of mixing a part of the HDMS refined oil and at least a part of the distillate to obtain one of petroleum products.
According to this refining method, a part of the HDMS refined oil and at least a part of the distillate oil are mixed in the sixth mixing step, so that the obtained mixed oil has a sufficiently low vanadium (V) concentration. Thereby, a petroleum product as a gas turbine fuel can be obtained. Further, even from the remainder of HDMS refined oil obtained by hydrodemetallization / desulfurization of a mixed oil of vacuum gas oil and deasphalted oil, low metal concentration (V + Ni), fluid catalytic cracking or hydrocracking Intermediate petroleum products can be obtained as raw materials.
In addition, intermediate petroleum products used as fluid catalytic cracking or hydrocracking raw materials have higher metal concentrations than gas turbine fuels. By co-producing both, it is possible to increase the yield of deasphalted oil in the solvent dewatering step, thereby suppressing the amount of asphaltene (pitch) by-produced from the vacuum residual oil.
Further, when the methods of the fourth to sixth aspects are applied to a low-sulfur crude oil having a sulfur concentration of 2.0 wt% or less, the pitch of the pitch is lower than that of the conventional technology in which a large amount of pitch having a low commercial value is produced as a by-product. The production amount can be reduced, the recovery rate of a plurality of high value-added petroleum products is increased, and the productivity is greatly improved.
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, preferred embodiments of the petroleum refining method according to the present invention will be described with reference to the drawings. However, the present invention is not limited to the following embodiments. For example, the components of these embodiments may be appropriately combined.
FIG. 1 is a process flow chart for explaining an embodiment of the petroleum refining method of the present invention. In particular, a heavy crude oil is used as a feed oil, and a gas turbine fuel (GTF) and a fluid catalytic cracking (FCC) are used. 1 shows a process flow when co-producing a raw material for hydrocracking or a raw material for hydrocracking (HCR).
The raw material oil to be treated is not particularly limited and can be applied to hydrocarbon oils from crude oil to heavy oil, but is applied to heavy crude oil such as orinoco tar, particularly heavy oil having an API degree of 20 or less. An example will be described in which the yield of high value-added petroleum products is significantly improved.
The API degree is an index for classifying crude oil by physical properties, and is a numerical value derived from its specific gravity as in the following equation. S indicates the specific gravity at 60 ° F.
API = (141.5 / S) -131.5
In the method of the present example, such a heavy crude oil is used as a feed oil, and the feed oil is first subjected to a distillation separation step 1 and subjected to the same distillation treatment as in the prior art to obtain a distillate M1 composed of a low-boiling oil and a distillate oil M1 having a higher boiling point. It is separated from the residual oil M2 having a boiling point. As a device for performing the distillation treatment, a topper which is a common atmospheric distillation device is suitably used, but is not particularly limited as long as it is a distillation separation means. Further, the distillate oil may be collectively distilled and collected without being divided, or the distillate oil may be divided and collected by a plurality of boiling points. In the case of recovering a plurality of fractionated oils, if the obtained distillate satisfies the specifications of the petroleum component, the next step, the hydrorefining step 2 can be bypassed as shown by the arrow 11 and omitted.
Next, at least a part of the distillate M1 obtained in the distillation separation step 1 is subjected to a hydrorefining step (HT step) 2, subjected to hydrorefining treatment in the presence of hydrogen and a catalyst, and desulfurized to thereby obtain hydrogen. To obtain chemically purified oils M3 and M3 '.
In the hydrorefining treatment of the distillate oil M1, hydrogen gas is mixed with the distillate oil M1, introduced into a reactor filled with a CoMo catalyst or a NiMo catalyst, and contained in the distillate oil M1 under high-pressure hydrogen conditions. After hydrodesulfurization and denitrification of the sulfur content and nitrogen content, hydrogen gas is separated by a high-pressure separator to obtain hydrorefined oils M3 and M3 '.
Separately from the hydrorefining step 2, the residual oil M2 obtained in the distillation separation step 1 is subjected to a solvent stripping step (SDA step) 3 and subjected to a solvent stripping treatment, whereby deasphalted oil (DAO) as an extract is obtained. M4 and asphaltene (pitch) M5 are obtained.
In the solvent removal treatment, first, the residual oil M2 is separated into deasphalted oil and asphaltene (pitch) in which metal and residual carbon are concentrated by bringing the residual oil M2 into countercurrent contact with the solvent in a solvent extraction column. . The deasphalted oil is recovered together with the solvent from the top of the tower, and the solvent in the recovered material is separated and removed in a supercritical state. Asphaltene (pitch) is recovered together with the solvent from the bottom of the tower, and the solvent in the recovered material is removed by evaporation.
In general, it is known that in the solvent dewatering step, the extraction rates of sulfur, vanadium, nitrogen, residual carbon, and the like contained in the deasphalted oil, which is the extraction oil for the feedstock oil, differ for each component. In the present invention, when the residual oil obtained by distilling and separating the heavy raw oil is used as the raw material, the vanadium concentration in the deasphaltenated oil with respect to the vanadium concentration in the raw oil is defined as a vanadium extraction ratio, and the raw oil is at normal pressure. In the case of distillation residue, it is preferably 20% or less, and in the case of vacuum distillation residue, it is preferably 15% or less. There is no particular lower limit for the extraction rate in each case, and an appropriate range can be selected depending on the type of the supplied feedstock oil, the vanadium concentration, and the like. When the residual oil obtained by distilling and separating the low sulfur raw material oil having a sulfur concentration of 2.0 wt% or less is used as a raw material, the vanadium concentration in the deasphalted oil is 25 wtppm or less in the case of the atmospheric distillation residual oil. In the case of vacuum distillation residual oil, the content is preferably 70 wtppm or less.
In each of the above cases, the present invention efficiently obtains a refined oil by maximizing the extraction rate of the solvent removal step without imposing a large load on the hydrodemetallation / desulfurization step subsequent to the solvent removal step. be able to.
When the purification step subsequent to the solvent stripping step 3 is only the hydrodemetallation / desulfurization step 4, the solvent stripping step 3 is a step in which the asphaltene obtained for vanadium (V) in the residual oil M2 as the feedstock is removed. It is desirable to control the extraction rate so that the extraction rate of vanadium in the oil M4 is 20% or less.
At least a part of the deasphalted oil M4 obtained in the solvent removal step 3 is subjected to a hydrodemetallation / desulfurization step (HDMS step) 4, and subjected to a hydrodemetallation / desulfurization treatment in the presence of hydrogen and a catalyst. A metal / desulfurized HDMS refined oil M6 is obtained. The hydrodemetallization / desulfurization treatment is basically the same as the hydrorefining treatment (hydrorefining step 2) described above, and a description thereof will be omitted.
The HDMS refined oil M6 obtained by such hydrodemetallation / desulfurization treatment has a vanadium (V) concentration of 2 wtppm or less, preferably 1 wtppm or less, and a sulfur concentration of 0.5 wt% or less, preferably It is desirable to select the demetalization and desulfurization conditions so as to be 0.3 wt% or less.
Further, a part of the HDMS refined oil M6 obtained in the hydrodemetallation / desulfurization step 4 and at least a part of the hydrorefined oil M3 obtained in the hydrotreating step 2 are mixed in a first mixing step 5 To obtain a petroleum product.
When the petroleum product obtained in the first mixing step 5 is used as gas turbine fuel (GTF), the mixing conditions are set so that the vanadium (V) concentration is 0.5 wtppm or less. In this case, for example, assuming that the V concentration of the HDMS refined oil M6 is 1 wt ppm, the V concentration of the hydrogenated refined oil M3 is set to 0 wt ppm, and the volume ratio of the HDMS refined oil M6 to the hydrogenated refined oil M3 is 1: 1 or less. Mix below (ie less HDMS refined oil M6).
Also, of the HDMS refined oil M6 obtained in the hydrodemetallation / desulfurization step 4, the remainder not subjected to the first mixing step 5 is used as a raw material for fluid catalytic cracking (FCC) or hydrogenation. Used as raw material for cracking (HCR) and as intermediate petroleum products. Further, the remaining portion of the hydrorefined oil M3 that is not subjected to the first mixing step 5 may be used as a petroleum product M3 ′ such as naphtha, gasoline, and light oil.
According to such a petroleum refining method, at least a part of the hydrorefined oil M3 is mixed with a part of the HDMS refined oil M6, whereby the concentration of vanadium (V) in, for example, gas turbine fuel is sufficiently low. A petroleum product can be obtained, and an intermediate petroleum product as a raw material for fluid catalytic cracking (FCC) or hydrocracking (HCR) having a relatively low metal concentration (V + Ni) from the remainder of the HDMS refined oil M6 can be obtained. As a result, a plurality of high value-added petroleum products can be efficiently co-produced.
For intermediate petroleum products as a raw material for fluid catalytic cracking (FCC) or hydrocracking (HCR), the permissible metal concentration is higher than that of gas turbine fuel (GTF), etc. The yield of the deasphalted oil M4 in the solvent removal step 3 can be increased without the load of desulfurization, whereby the amount of by-produced asphaltene (pitch) M5 from the residual oil M2 can be suppressed.
In addition, in the processing flow shown in FIG. 1, the metal concentration and sulfur concentration of the deasphalted oil M4 obtained in the solvent removal step 3 are relatively low, and a part of the HDMS refined oil having a lower metal concentration and sulfur concentration. When mixed and satisfying the raw material properties for fluid catalytic cracking (FCC) and hydrocracking (HCR), a part of the raw material is not subjected to the hydrodemetallization / desulfurization step 4 and the symbol in FIG. It may be mixed with a part of the HDMS refined oil M6 through a bypass indicated by 12 to obtain an intermediate petroleum product as a raw material for fluid catalytic cracking (FCC) or a raw material for hydrocracking (HCR).
[Second embodiment]
FIG. 2 is a process flow for explaining a second embodiment of the petroleum refining method of the present invention. In this method, as in the first embodiment shown in FIG. GTF) and a raw material for fluid catalytic cracking (FCC) or a raw material for hydrocracking (HCR).
The main difference between the second embodiment and the first embodiment shown in FIG. 1 is that after the hydrodemetallization / desulfurization step 4, the obtained HDMS refined oil M6 is subjected to vacuum distillation to obtain a vacuum gas oil M7. And a vacuum distillation separation step 6 for separating into a vacuum residue M8. That is, in the petroleum refining method shown in FIG. 2, the HDMS refined oil M6 obtained in the same manner as in the example shown in FIG.
In this vacuum distillation treatment, the HDMS refined oil M6 is introduced into a vacuum distillation column for distillation to separate the low-boiling component and the high-boiling component in the HDMS refined oil M6, and a low-boiling vacuum gas oil M7 is separated from the top of the column. , And a high boiling point vacuum residue M8 is obtained from the bottom of the column.
By performing such a vacuum distillation treatment, in this example, the deasphalted oil M4 obtained by the above-mentioned solvent desorption treatment is used to remove the asphaltene oil M4 obtained from the vanadium (V) in the residual oil M2 as the feedstock. It is desirable to control the extraction rate of vanadium in asphalten oil M4 to 30% or less. As a result, the recovery rate of petroleum products can be increased without greatly burdening the subsequent hydrodemetallation and desulfurization treatment.
The HDMS refined oil M6 obtained by subjecting such a deasphalted oil M4 to a hydrodemetallation / desulfurization treatment has a vanadium (V) concentration of 20 wtppm or less, preferably 10 wtppm or less. The desulfurization conditions are selected, and the sulfur concentration is desirably 0.5 wt% or less, preferably 0.3 wt% or less.
Further, with respect to the vacuum gas oil obtained by subjecting such HDMS refined oil M6 to a distillation under reduced pressure, it is desirable that the vanadium concentration be 1 wtppm or less.
After such a step, at least a part of the vacuum gas oil M7 obtained in the vacuum distillation separation step 6 and at least a part of the hydrorefined oil M3 obtained in the hydrorefining step 2 are mixed in a second mixture. Mix through step 7 to obtain one of the petroleum products.
When the petroleum product obtained in the second mixing step 7 is used as gas turbine fuel (GTF), the vanadium (V) concentration is set to 0.5 wtppm or less as in the example shown in FIG. In that case, the mixing ratio is appropriately adjusted according to the V concentration of the vacuum gas oil M7 as in the previous example. In addition, when the vanadium (V) concentration of the reduced pressure gas oil M7 is 0.5 wtppm or less, the gas turbine fuel (GTF) may be used as it is without adding the hydrorefined oil M3 thereto.
With respect to the remainder of the vacuum gas oil M7, the vacuum residue M8 obtained by vacuum distillation, and the remainder of the HDMS refined oil M6 not subjected to the vacuum distillation separation step 6, these may be used alone or appropriately. Thereby, it is used as a raw material for fluid catalytic cracking (FCC) or a raw material for hydrocracking (HCR), and is used as an intermediate petroleum product.
According to such a petroleum refining method, the HDMS refined oil M6 is subjected to the vacuum distillation treatment in the vacuum distillation separation step 6, and the vacuum gas oil M7 and the vacuum resid M8 containing almost no metal or residual carbon from the boiling point range of the distillation properties. , The vanadium concentration, the metal concentration and the residual carbon content of the HDMS refined oil M6 itself can be allowed to a relatively high concentration, and the yield of the deasphalted oil M4 in the solvent removal step 3 can be increased. Therefore, the amount of by-produced asphaltene (pitch) M5 from the residual oil M2 can be suppressed.
If the vanadium (V) concentration and the like of the deasphalted oil M4 obtained in the solvent removal step 3 is sufficiently low, a part of the deasphalted oil M4 is not subjected to the hydrodemetallation / desulfurization step 4. , Introduced into the bypass 12 and mixed with the vacuum residue M8 from the vacuum distillation separation step 6 to obtain an intermediate product as a raw material for fluid catalytic cracking (FCC) and hydrocracking (HCR). The HDMS refined oil M6 obtained in the hydrodemetallation / desulfurization step 4 is also introduced into the bypass 12 and mixed with the vacuum residue M8 from the vacuum distillation separation step 6 for fluid catalytic cracking (HCC), hydrocracking May be an intermediate petroleum product as a feedstock (HCR).
[Third embodiment]
FIG. 3 is a process flow for explaining a third embodiment of the present invention. In this method, as in the example shown in FIG. 1, a gas turbine fuel (GTF) is converted from a feed oil to fluid catalytic cracking (GTF). FCC) or hydrocracking (HCR) raw materials.
The main difference between the third embodiment and the first embodiment shown in FIG. 1 is that after the distillation separation step 1, the obtained residual oil M2 is subjected to a vacuum distillation treatment to form a vacuum gas oil M11 and a vacuum residual oil M12. A vacuum distillation separation step 20 for separation, a solvent desorption step 21 for subjecting the obtained vacuum residual oil M12 to solvent removal and separation into deasphalted oil M13 and asphaltene (pitch) M14, and an obtained deasphalted oil. A hydrodemetallization / desulfurization step 22 for obtaining a HDMS refined oil M15 by hydrodemetallization / desulfurization of a mixed oil of M13 and vacuum gas oil M11 is provided.
That is, in the petroleum refining method shown in FIG. 3, the residual oil M2 obtained in the same manner as in the example shown in FIG.
In this vacuum distillation separation treatment, the residual oil M2 is introduced into a vacuum distillation column and distillation is carried out to separate the low-boiling fraction and the high-boiling fraction in the residual oil M2. M11 and a high boiling point vacuum residue M12 are obtained from the bottom of the column.
After the vacuum distillation separation step 20, the obtained vacuum residue M12 is subjected to a solvent removal step 21 to separate it into deasphalted oil M13 and asphaltene (pitch) M14. The solvent removal treatment is the same as in the examples shown in FIGS. 1 and 2 except that the metal, residual carbon and sulfur are concentrated from the residual oil M2. Regarding the obtained deasphalted oil M13, it is preferable that the desirable upper limit of the extraction rate of vanadium (V) is lowered and the extraction rate is controlled to be 15%.
Next, the thus obtained deasphalted oil M13 and the reduced pressure gas oil M11 are mixed, and the mixed oil is subjected to a hydrodemetallation / desulfurization treatment to obtain an HDMS refined oil M15. The obtained HDMS refined oil M15 has a vanadium (V) concentration of 2 wtppm or less, preferably 1 wtppm or less, and a demetalization / desulfurization condition such that its sulfur concentration is 0.5 wtppm or preferably 0.3 wtppm or less. It is desirable to select
Then, a part of the HDMS refined oil M15 obtained in the hydrodemetallation / desulfurization step 22 and at least a part of the hydrorefined oil M3 obtained in the hydrotreating step 2 are mixed in a third mixing step 23. To obtain gas turbine fuel (GTF) as one of petroleum products having a vanadium (V) concentration of 0.5 wtppm or less.
Of the HDMS refined oil M15 obtained in the hydrodemetallation / desulfurization step 22, the remainder not subjected to the third mixing step 23 is used as a raw material for fluid catalytic cracking (FCC) or for hydrocracking ( HCR) can be an intermediate petroleum product.
Deasphalten M13 and vacuum gas oil M11 have significantly different concentrations of metal, residual carbon, and sulfur, respectively, and when reaction conditions, especially hydrogen partial pressure, are greatly different, without mixing them, Hydrodemetallization / desulfurization treatment under optimum conditions in separate reactors, and then at least a part of the mixed or hydrodemetallized / desulfurized vacuum gas oil M11 and at least a part of the hydrorefined oil M3 By mixing, a gas turbine fuel (GTF) having a vanadium (V) concentration of 0.5 wtppm or less can be obtained.
According to such a petroleum refining method, a part of the HDMS refined oil M15 and at least a part of the hydrorefined oil M3 are mixed in the third mixing step 23, so that the obtained mixed oil The vanadium (V) concentration becomes sufficiently low, and gas turbine fuel can be obtained as one of petroleum products. Further, even from the remainder of HDMS refined oil M15 obtained by hydrodemetallization and desulfurization of a mixed oil of vacuum gas oil M11 and deasphalted oil M13, the metal concentration (V + Ni) is low, for fluid catalytic cracking or hydrogenation. An intermediate petroleum product can be obtained as a raw material for cracking, and a plurality of high value-added petroleum products can be efficiently co-produced.
Intermediate petroleum products used as fluid catalytic cracking (FCC) or hydrocracking (HCR) raw materials have a higher allowable concentration for metals than gas turbine fuels. Alternatively, by simultaneously producing a raw material for hydrocracking, the yield of deasphalted oil M13 in the solvent dewatering step 21 can be increased, whereby the by-product amount of asphaltene (pitch) M14 from the vacuum residue M12 can be increased. Can be suppressed.
Next, a fourth embodiment to a sixth embodiment, which are preferable when low-sulfur crude oil is used as a feedstock, will be described. The low-sulfur crude oil in the present specification includes Arabian light, Iranian light, Iranian heavy marban, and crude oil having a sulfur concentration equal to or lower than those, and specifically, a crude oil having a sulfur concentration of 2.0 wt% or less. Point to.
In the following examples, a low-sulfur crude oil is used, and therefore, the hydrorefining step (HT step) 2 is omitted as compared with the first embodiment for heavy crude oil. Otherwise, basically the same processing as in the first embodiment is performed. Hereinafter, the same steps as those in the first embodiment will be described by adding the reference numerals obtained by adding A to the reference numerals in the first embodiment.
[Fourth embodiment]
FIG. 4 is a flowchart showing a fourth embodiment of the present invention. In the fourth embodiment, the low-sulfur crude oil is used as a feedstock, and the feedstock is first subjected to a distillation separation step 1A, and the same distillation treatment as in the prior art is performed. It is separated into boiling residue M2A. The device may be the same as in the first embodiment.
The distillate M1A obtained in the distillation separation step 1A is separated into the distillate M3A and M3A ′ by the flasher 30.
The residual oil M2A obtained in the distillation separation step 1A is subjected to a solvent stripping step (SDA step) 3A, and is subjected to a solvent stripping treatment, whereby a deasphalted oil (DAO) M4A and an asphaltene (pitch) M5A as extracts are separated. obtain.
In the solvent removal treatment, first, the residual oil M2A is separated into deasphalted oil and asphaltene (pitch) in which metal and residual carbon are concentrated by bringing the residual oil M2A into countercurrent contact with the solvent in a solvent extraction column. . The deasphalted oil is recovered together with the solvent from the top of the tower, and the solvent in the recovered material is separated and removed in a supercritical state. Asphaltene (pitch) is recovered together with the solvent from the bottom of the tower, and the solvent in the recovered material is removed by evaporation.
When the refining step after the solvent stripping step 3A is only the hydrodemetallation / desulfurization step 4A, the extraction rate of the solvent stripping treatment is controlled so that the vanadium (V) concentration of the deasphalted oil M4A is 25 wtppm or less. Is preferred.
At least a part of the deasphalted oil M4A obtained in the solvent dewatering step 3A is subjected to a hydrodemetallation / desulfurization step (HDMS step) 4A, and subjected to a hydrodemetallation / desulfurization treatment in the presence of hydrogen and a catalyst. A metal-desulfurized purified HDMS refined oil M6A is obtained. This hydrodemetallization / desulfurization treatment is basically the same as the above-mentioned hydrorefining treatment (hydrorefining step 2) for heavy raw materials, and therefore description thereof is omitted.
The conditions of the hydrodemetallation / desulfurization treatment are as follows: the obtained HDMS refined oil M6A has a vanadium (V) concentration of 2 wtppm or less, preferably 1 wtppm or less, and the HDMS refined oil M6A has a sulfur concentration of 0.5 wt% or less. It is desirable to select such that the content is preferably 0.3 wt% or less.
A part of the HDMS refined oil M6A obtained in the hydrodemetallation / desulfurization step 4A and at least a part of the distillate oil M3A are mixed in a fourth mixing step 5A to obtain a petroleum product.
When the petroleum product obtained in the fourth mixing step 5A is used as gas turbine fuel (GTF), the mixing ratio is set so that the vanadium (V) concentration of the petroleum product becomes 0.5 wtppm or less. For example, when the V concentration of the HDMS refined oil M6A is 1 wtppm and the V concentration of the distillate oil M3A is 0 wtppm, the volume ratio between the HDMS refined oil M6A and the distillate oil M3A is 1: 1 or less (that is, the volume ratio is 1: 1 or less). , HDMS refined oil M6A less) and mix.
Of the HDMS refined oil M6A obtained in the hydrodemetallation / desulfurization step 4A, the remainder not subjected to the fourth mixing step 5A is used as a raw material for fluid catalytic cracking (FCC) or for hydrocracking. (HCR) and intermediate petroleum products. Further, the remaining portion of the hydrorefined oil M3 that is not subjected to the first mixing step 5A may be used as a petroleum product M3A ′ such as naphtha, gasoline, and light oil.
According to such a petroleum refining method, since at least a part of the copper hydride oil M3A is mixed with a part of the HDMS refined oil M6A, the vanadium (V) concentration of, for example, gas turbine fuel is sufficiently low. A petroleum product can be obtained, and an intermediate petroleum product as a raw material for fluid catalytic cracking (FCC) or hydrocracking (HCR) having a relatively low metal concentration (V + Ni) from the remainder of the HDMS refined oil M6A can be obtained. As a result, a plurality of high value-added petroleum products can be efficiently co-produced.
For intermediate petroleum products as a raw material for fluid catalytic cracking (FCC) or hydrocracking (HCR), the permissible metal concentration is higher than that of gas turbine fuel (GTF), etc. It is possible to increase the yield of the deasphalted oil M4A in the solvent dewatering step 3A without the load of desulfurization, thereby suppressing the amount of asphaltene (pitch) M5A from the residual oil M2A.
In addition, in the processing flow shown in FIG. 4, the metal concentration and sulfur concentration of the deasphalted oil M4A obtained in the solvent removal step 3A are relatively low, and a part of the HDMS refined oil having a lower metal concentration and lower sulfur concentration. When the raw material properties for fluid catalytic cracking (FCC) or hydrocracking (HCR) are satisfied by mixing, a part of the raw material is not subjected to the hydrodemetallation / desulfurization step 4A, and the symbol in FIG. It may be mixed with a part of the HDMS refined oil M6A through a bypass indicated by 12A to form an intermediate petroleum product as a feed for fluid catalytic cracking (FCC) or a feed for hydrocracking (HCR).
[Fifth embodiment]
FIG. 5 is a flow chart for explaining a petroleum refining method according to a fifth embodiment of the present invention. Similar to the example shown in FIG. 4, a gas turbine fuel (GTF) and a fluid catalytic cracking (FCC) are converted from a raw material oil. FIG. 2 is a diagram showing a processing flow when co-producing a raw material for hydrocracking or a raw material for hydrocracking (HCR).
The main difference between this example and the example shown in FIG. 4 is that, after the hydrodemetallation / desulfurization step 4A, the obtained HDMS refined oil M6A is subjected to vacuum distillation to obtain a vacuum gas oil M7A and a vacuum residue M8A. And a reduced pressure distillation separation step 6A.
That is, in the petroleum refining method shown in FIG. 5, the HDMS refined oil M6A obtained in the same manner as in the example shown in FIG. 4 is subjected to a vacuum distillation treatment in a vacuum distillation separation step 6A.
In this vacuum distillation treatment, HDMS refined oil M6A is introduced into a vacuum distillation column for distillation to separate low-boiling components and high-boiling components in HDMS refined oil M6A, and a low-boiling vacuum gas oil M7A from the top of the column. , And a high boiling point vacuum residue M8A from the bottom of the column.
Since such a vacuum distillation treatment is performed, in this example, the extraction ratio of the deasphalted oil M4A obtained by the solvent desorption treatment is set so that the desirable upper limit of the vanadium (V) concentration is, for example, 50 wtppm. Can be controlled. That is, the extraction rate can be increased, and the recovery rate of petroleum products can be increased.
The HDMS refined oil M6A obtained by subjecting such a deasphalted oil M4A to a hydrodemetallation / desulfurization treatment has a vanadium (V) concentration of 20 wtppm or less, preferably 10 wtppm or less. The desulfurization conditions are selected, and the sulfur concentration is desirably 0.5 wt% or less, preferably 0.3 wt% or less.
Further, with respect to the vacuum gas oil obtained by subjecting such HDMS refined oil M6A to distillation under reduced pressure, it is desirable that the vanadium concentration be 1 wtppm or less.
After such a step, at least a portion of the vacuum gas oil M7A obtained in the vacuum distillation separation step 6A and the distillate oil M3A are mixed in a fifth mixing step 7A to obtain one of petroleum products.
When the petroleum product obtained in the fifth mixing step 7A is used as gas turbine fuel (GTF), the vanadium (V) concentration is set to 0.5 wtppm or less, as in the example shown in FIG. In that case, the mixing ratio is appropriately adjusted according to the V concentration of the vacuum gas oil M7A as in the previous example. In addition, when the vanadium (V) concentration of the reduced pressure gas oil M7A is 0.5 wtppm or less, the gas turbine fuel (GTF) may be used as it is without adding the distillate oil M3A.
In addition, as for the remainder of the vacuum gas oil M7A, the vacuum residue M8A obtained by the vacuum distillation treatment, and the remainder of the HDMS refined oil M6A that is not subjected to the vacuum distillation separation step 6A, these may be used alone or appropriately. By mixing, it becomes a raw material for fluid catalytic cracking (FCC) or a raw material for hydrocracking (HCR), and is used as an intermediate petroleum product.
According to such a petroleum refining method, in the vacuum distillation separation step 6A, the HDMS refined oil M6A is subjected to a vacuum distillation treatment, and the vacuum gas oil M7A and the vacuum residual oil M8A containing almost no metal or residual carbon from the boiling range of the distillation properties. , The vanadium concentration, the metal concentration and the residual carbon concentration of the HDMS refined oil M6A itself can be allowed to a relatively high concentration, and the yield of the deasphalted oil M4A in the solvent removal step 3A can be increased. Therefore, the amount of by-produced asphaltene (pitch) M5A from the residual oil M2A can be suppressed.
In addition, if the vanadium (V) concentration and the like of the deasphalted oil M4A obtained in the solvent removal step 3A is sufficiently low, a part of the oil is not subjected to the hydrodemetallation / desulfurization step 4A. , Introduced into the bypass 12A and mixed with the vacuum residue M8A from the vacuum distillation separation step 6A to obtain an intermediate product as a raw material for fluid catalytic cracking (FCC) and hydrocracking (HCR). The HDMS refined oil M6A obtained in the hydrodemetallation / desulfurization step 4A is also introduced into the bypass 12A and mixed with the vacuum residue M8A from the vacuum distillation separation step 6A for fluid catalytic cracking (HCC), hydrocracking May be an intermediate petroleum product as a feedstock (HCR).
[Sixth embodiment]
FIG. 6 is a view for explaining a sixth embodiment of the petroleum refining method of the present invention. As in the example shown in FIG. 4, a gas turbine fuel (GTF) and a fluid catalytic cracking (FCC) are obtained from a raw material oil. Alternatively, it is a diagram showing a processing flow when co-producing a raw material for hydrocracking (HCR).
The main difference between this example and the example shown in FIG. 4 is that, after the distillation separation step 1A, the obtained residual oil M2A is subjected to a vacuum distillation treatment to separate it into a vacuum light oil M11A and a vacuum residual oil M12A. A distillation separation step 20A, a solvent dewatering step 21A for subjecting the obtained vacuum residual oil M12A to a solvent dewatering treatment to separate it into a deasphalted oil M13A and an asphaltene (pitch) M14A, and a deasphalted oil M13A obtained. A hydrodemetallization / desulfurization step 22A for obtaining a HDMS refined oil M15A by hydrodemetallization / desulfurization of a mixed oil with light oil M11A is provided.
That is, in the petroleum refining method shown in FIG. 6, the residual oil M2A obtained in the same manner as in the example shown in FIG. 4 is subjected to the vacuum distillation treatment in the vacuum distillation separation step 20A.
In this vacuum distillation separation treatment, the residual oil M2A is introduced into a vacuum distillation column and subjected to distillation to separate the low-boiling fraction and the high-boiling fraction in the residual oil M2A, and the low-boiling components are decompressed from the top of the column. Light oil M11A and high-boiling vacuum residue M12A having a high boiling point are obtained from the bottom of the column.
After such a vacuum distillation separation step 20A, the obtained vacuum residue M12A is subjected to a solvent removal step 21A to separate it into deasphalted oil M13A and asphaltene (pitch) M14A. This solvent removal treatment is the same as the example shown in FIGS. 4 and 5, except that the metal, residual carbon and sulfur are concentrated from the residual oil M2A, so that the solvent removal of the vacuum residual oil is carried out. With respect to the obtained deasphalted oil M13A, the extraction rate is controlled such that the desirable upper limit of the vanadium (V) concentration becomes high, for example, 70 wtppm.
Next, the thus obtained deasphalted oil M13A and the reduced pressure light oil M11A are mixed, and the mixed oil is subjected to a hydrodemetallation / desulfurization treatment to obtain an HDMS refined oil M15A. The obtained HDMS refined oil M15A has a vanadium (V) concentration of 2 wtppm or less, preferably 1 wtppm or less, and a metal removal / desulfurization condition of which the sulfur concentration is 0.5 wtppm or less, preferably 0.3 wtppm or less. It is desirable to select
Thereafter, a part of the HDMS refined oil M15A obtained in the hydrodemetallation / desulfurization step 22A and the distillate oil M3A are mixed in a sixth mixing step 23A, and the vanadium (V) concentration is 0.5 wtppm or less. Gas turbine fuel (GTF) as one of the petroleum products.
Also, of the HDMS refined oil M15A obtained in 22A in the hydrodemetallation / desulfurization step, the remainder not subjected to the sixth mixing step 23A is used as a raw material for fluid catalytic cracking (FCC) or hydrogenation. An intermediate petroleum product can be used as a raw material for cracking (HCR).
Deasphalten M13A and vacuum gas oil M11A have significantly different concentrations of metal, residual carbon, and sulfur, respectively, and when reaction conditions, especially hydrogen partial pressure, are greatly different, without mixing these components, Hydrodemetallization / desulfurization treatment under optimum conditions in separate reactors, and then mixing or at least part of the mixed or hydrodemetallized / desulfurized vacuum gas oil M11A and at least part of the distillate oil M3A However, a gas turbine fuel (GTF) having a vanadium (V) concentration of 0.5 wtppm or less can be obtained.
According to such a petroleum refining method, a part of the HDMS refined oil M15A and at least a part of the distillate oil M3A are mixed in the sixth mixing step 23A, so that the vanadium of the obtained mixed oil is mixed. (V) When the concentration is sufficiently low, gas turbine fuel can be obtained as one of petroleum products. Further, even from the remaining HDMS refined oil M15A obtained by hydrodemetallizing and desulfurizing a mixed oil of vacuum gas oil M7A and deasphalted oil M13A, the metal concentration (V + Ni) is low, for fluid catalytic cracking or hydrogenation. An intermediate petroleum product can be obtained as a raw material for cracking, and a plurality of high value-added petroleum products can be efficiently co-produced.
In addition, intermediate petroleum products as raw materials for fluid catalytic cracking (FCC) or hydrocracking (HCR) have a higher allowable concentration for metals than gas turbine fuels, so that they can be mixed with gas turbine fuel (GTF). By simultaneously producing a raw material for contact or hydrocracking, the yield of deasphalted oil M13A in the solvent dewatering step 21A can be increased, and as a result, asphaltene (pitch) M14A from the vacuum residue M12A can be reduced. The amount of production can be reduced.
Experimental example
Hereinafter, the present invention will be described more specifically with reference to experimental examples.
(Experimental example 1)
Based on the petroleum refining method shown in FIG. 1, a plurality of petroleum products, gas turbine fuel, and an intermediate petroleum product as a raw material for fluid catalytic cracking or hydrocracking were produced as shown in FIG. .
An ultra-heavy crude oil (orinoko oil) having an API degree of 8.5, a sulfur concentration of 3.67 wt%, and a vanadium concentration of 393 wt ppm is used as a feed oil, and is first subjected to a normal pressure distillation treatment with a topper (distillation separation step 1). As a result, a distillate M1 and a residual oil M2 were obtained. The yield of the obtained distillate M1 with respect to the feedstock oil was 15.9 wt%, and the sulfur concentration was 2.41 wt%. The yield of the residual oil M2 with respect to the feed oil was 83.5 wt%, the sulfur concentration was 4.07 wt%, and the vanadium concentration was 472 wtppm.
Next, the obtained distillate oil M1 was subjected to hydrorefining treatment (hydrorefining step 2) in the presence of hydrogen and a catalyst, and desulfurized to obtain hydrorefined oils M3 and M3 ′. M3 'was directly used as naphtha as one of the petroleum products. The yield of the obtained hydrorefined oil M3 with respect to the feed oil was 13.0 wt%, and the sulfur concentration was 0.02 wt%. The yield of M3 ′ naphtha with respect to the feed oil was 2 wt%.
Separately from the hydrorefining treatment, the residual oil M2 is subjected to a solvent removal process (solvent removal step 3) using isobutane as a solvent in a solvent extraction tower to obtain a deasphalted oil M4 at an extraction rate of 65%. Was obtained asphaltene (pitch) M5. The ratio (solvent / M2) between the solvent and the residual oil M2 in the solvent removal treatment was set to 8. The yield of the obtained deasphalted oil M4 with respect to the feed oil was 54.3 wt%, the sulfur concentration was 3.60 wt%, and the vanadium concentration was 66 wtppm (extraction rate 14%). The yield of asphaltene (pitch) M5 with respect to the feedstock oil was 29.2 wt%.
Next, the obtained deasphalted oil M4 is introduced into a reactor filled with a hydrodemetallation catalyst and a hydrodesulfurization catalyst at a vol ratio of 3: 7, and dehydrogenated in the presence of hydrogen and the catalyst. A metal / desulfurization treatment (hydrodemetallation / desulfurization step 4) was performed to obtain an HDMS refined oil M6. The treatment was carried out at a hydrogen partial pressure of 100 atm and (H 2 (Oil) ratio was 800 Nl / l, LHSV was 0.7 / hr, and reaction temperature was 370 ° C. The yield of the obtained HDMS refined oil M6 with respect to the stock oil was 51 wt%, the sulfur concentration was 0.4 wt%, and the vanadium concentration was 0.7 wtppm.
Thereafter, 15 wt% (as the yield to the feed oil) of the obtained HDMS refined oil M6 is mixed with the hydrorefined oil M3 (first mixing step 5), and the yield to the feed oil is 28 wt%. A gas turbine fuel (GTF) having a sulfur concentration of 0.22 wt% and a vanadium concentration of 0.38 wtppm was obtained. The remaining portion of the HDMS refined oil M6, that is, 36 wt% (as the yield to the feed oil) was used as it was as a raw material for fluid catalytic cracking (FCC) or a raw material for hydrocracking (HCR).
(Experimental example 2)
Based on the oil refining method shown in FIG. 2, a plurality of gas turbine fuels and an intermediate petroleum product as a raw material for fluid catalytic cracking or hydrocracking were produced as a plurality of petroleum products as shown in FIG. .
An ultra-heavy crude oil (orinoko oil) having an API degree of 8.5, a sulfur concentration of 3.67 wt%, and a vanadium concentration of 393 wt ppm is used as a feed oil, and is first subjected to a normal pressure distillation treatment with a topper (distillation separation step 1). As a result, a distillate M1 and a residual oil M2 were obtained. The yield of the obtained distillate M1 with respect to the feedstock oil was 15.9 wt%, and the sulfur concentration was 2.41 wt%. The yield of the residual oil M2 with respect to the feed oil was 83.5 wt%, the sulfur concentration was 4.07 wt%, and the vanadium concentration was 472 wtppm.
Next, the obtained distillate oil M1 was subjected to hydrorefining treatment (hydrorefining step 2) in the presence of hydrogen and a catalyst, and desulfurized to obtain hydrorefined oils M3 and M3 ′. M3 'was directly used as naphtha as one of the petroleum products. The yield of the obtained hydrorefined oil M3 with respect to the feed oil was 13.0 wt%, and the sulfur concentration was 0.02 wt%. The yield of M3 ′ naphtha with respect to the feed oil was 2 wt%.
Separately from the hydrorefining treatment, the residual oil M2 is subjected to a solvent removal process (solvent removal process 3) using pentane as a solvent in a solvent extraction tower to obtain a deasphalted oil M4 at an extraction rate of 76.6%. Asphaltene (pitch) M5 as a residue was obtained. The ratio (solvent / M2) between the solvent and the residual oil M2 in the solvent removal treatment was set to 8. The yield of the obtained deasphalted oil M4 with respect to the stock oil was 64 wt%, the sulfur concentration was 3.9 wt%, and the vanadium concentration was 130 wtppm (extraction rate 27.5%). The yield of asphaltene (pitch) M5 with respect to the feedstock oil was 19.5 wt%.
Next, the obtained deasphalted oil M4 is introduced into a reactor filled with a hydrodemetallation catalyst and a hydrodesulfurization catalyst at a vol ratio of 5: 5, and dehydrogenated in the presence of hydrogen and the catalyst. A metal / desulfurization treatment (hydrodemetallation / desulfurization step 4) was performed to obtain an HDMS refined oil M6. The treatment was carried out at a hydrogen partial pressure of 100 atm and (H 2 (Oil) ratio was 800 Nl / l, LHSV was 0.5 / hr, and reaction temperature was 370 ° C. The yield of the obtained HDMS refined oil M6 with respect to the stock oil was 59 wt%, the sulfur concentration was 0.45 wt%, and the vanadium concentration was 8 wtppm.
Next, the obtained HDMS refined oil M6 was subjected to a vacuum distillation treatment (a vacuum distillation separation step 6) to obtain a vacuum gas oil (VGO) M7 and a vacuum residue M8, respectively. The yield of the obtained vacuum gas oil M7 with respect to the feed oil was 25 wt%, the sulfur concentration was 0.24 wt%, and the vanadium concentration was 0.3 wt ppm.
Thereafter, all of the obtained reduced pressure gas oil M7 is mixed with the hydrorefined oil M3 (second mixing step 7), and the yield to the feed oil is 38 wt%, the sulfur concentration is 0.16 wt%, and the vanadium concentration is 0. .19 wtppm of gas turbine fuel (GTF) was obtained. The vacuum residue M8 obtained by the vacuum distillation treatment was used as a raw material for fluid catalytic cracking (FCC) or a raw material for hydrocracking (HCR). The raw material for fluid catalytic cracking (FCC) or the raw material for hydrocracking (HCR) can be obtained by mixing a part of the deasphalted oil M4 or a part of the HDMS refined oil M6 with the vacuum residue M8. You may get it. The raw material for fluid catalytic cracking (FCC) or the raw material for hydrocracking (HCR) obtained in this way has a yield of 34% by weight, a sulfur concentration of 0.60% by weight, and a vanadium concentration of 13. It was 7 wtppm.
(Experimental example 3)
Based on the petroleum refining method shown in FIG. 3, a plurality of petroleum products, gas turbine fuel, and an intermediate petroleum product as a raw material for fluid catalytic cracking or hydrocracking were produced as shown in FIG. .
An API is 28, a sulfur concentration is 2.9 wt%, and a vanadium concentration is 69 wtppm. An ultra-heavy crude oil (Arabian heavy) is used as a feed oil, which is first subjected to a normal pressure distillation treatment (distillation separation step 1) with a topper. Distilled oil M1 and residual oil M2 were obtained. The yield of the obtained distillate M1 with respect to the feed oil was 41 wt%, and the sulfur concentration was 0.79 wt%. The yield of the residual oil M2 with respect to the feed oil was 58.5 wt%, the sulfur concentration was 4.72 wt%, and the vanadium concentration was 117 wtppm.
Next, the obtained residual oil M2 was subjected to a vacuum distillation treatment (a vacuum distillation separation step 20) to obtain a vacuum gas oil M11 and a vacuum residual oil M12, respectively. The obtained vacuum gas oil M11 had a yield of 28.2 wt% with respect to the feed oil, a sulfur concentration of 3.37 wt%, and a vanadium concentration of 1.5 wt ppm. Further, the yield of the obtained vacuum residue M12 with respect to the feed oil was 30.6 wt%, the vanadium concentration was 223 wtppm, the (V + Ni) concentration was 294 wtppm, the residual carbon was 24.4 wt%, and the sulfur concentration was 6.04 wt%. Was.
Further, the obtained LPG, naphtha, kerosene and gas oil fractions of the distillate oil M1 are separately subjected to hydrorefining treatment (hydrotreating step 2), and the corresponding desulfurized refined oil (light fraction) M3 and M3 'were obtained. The yield of the obtained hydrorefined oil M3 with respect to the feedstock oil was 20.3 wt%, and the sulfur concentration was 0.05 wt%. The yields of gasoline and kerosene from the hydrorefined oil M3 'with respect to the feedstock oil were 6.0 wt% and 13.7 wt%, respectively.
Separately from the hydrorefining treatment, the solvent is removed from the vacuum residue M12 in a solvent extraction column using isobutane as a solvent (solvent removal step 21) to obtain a deasphalted oil M13 at an extraction rate of 60%. Asphaltene (pitch) M14 as a residue was obtained. The ratio (solvent / M12) between the solvent and the vacuum residue M12 in the solvent desorption treatment was set to 8. The yield of the obtained deasphalted oil M13 with respect to the feedstock oil was 18.4 wt%, the sulfur concentration was 4.62 wt%, and the vanadium concentration was 22 wtppm (extraction rate 19%). The yield of asphaltene (pitch) M14 with respect to the feedstock oil was 12.2% by weight.
Next, the obtained mixed oil of the deasphalted oil M13 and the vacuum gas oil M11 was introduced into a reactor filled with a hydrodemetallation catalyst and a hydrodesulfurization catalyst at a vol ratio of 1: 9, and hydrogen and the hydrogen were added. Hydrodemetallization / desulfurization treatment (hydrodemetallization / desulfurization step 4) in the presence of a catalyst gave HDMS purified oil M15. The treatment was performed with a hydrogen partial pressure of 90 atm and (H 2 (Oil) ratio was 800 Nl / l, LHSV was 0.7 / hr, and reaction temperature was 370 ° C. The yield of the obtained HDMS refined oil M15 with respect to the stock oil was 44 wt%, the sulfur concentration was 0.6 wt%, and the vanadium concentration was 1.0 wtppm.
Then, 15 wt% (based on the feed oil) of the obtained HDMS refined oil M 15 is mixed with the hydrorefined oil M 3, and the yield on the feed oil is 45 wt%, the sulfur concentration is 0.28 wt%, and the vanadium concentration. Obtained 0.42 wtppm of gas turbine fuel. Further, the remaining portion of the HDMS refined oil, that is, 29 wt% thereof was used as it was as a raw material for fluid catalytic cracking (FCC) or hydrocracking (HCR).
Next, an experimental example using low-sulfur crude oil will be described.
(Experimental example 4)
Based on the petroleum refining method shown in FIG. 4, gas turbine fuel as a plurality of petroleum products and an intermediate petroleum product as a raw material for fluid catalytic cracking or hydrocracking were produced as shown in FIG. .
A low-sulfur crude oil (Arabian light) having a sulfur concentration of 1.79 wt% and a vanadium concentration of 13.5 wt ppm was used as a feed oil, and this was first subjected to a normal pressure distillation treatment (distillation separation step 1A) with a topper to obtain a distillate oil M1A. Residual oil M2A was obtained. The yield of the obtained distillate M1A with respect to the feed oil was 53.5 wt%, and the sulfur concentration was 0.63 wt%. The yield of the residual oil M2A with respect to the feed oil was 45.4 wt%, the sulfur concentration was 3.20 wt%, and the vanadium concentration was 30.0 wtppm.
Next, the obtained distillate M1A was separated by the flasher 30 to obtain distillates M3A and M3A ′. M3A 'was directly used as naphtha as one of the petroleum products. The yield of the obtained distillate M3A with respect to the feed oil was 50.9 wt%, and the sulfur concentration was 0.66 wt%. Further, the yield of naphtha M3A ′ with respect to the feed oil was 2.6 wt%.
Further, the residual oil M2A is subjected to a solvent removal treatment (solvent removal step 3A) using isobutane as a solvent in a solvent extraction tower (solvent removal step 3A) to obtain a deasphalted oil M4A at an extraction rate of 65%, and to remove asphaltene (pitch) M5A as a residue. Obtained. The ratio of the solvent to the residual oil M2A in the solvent removal treatment (solvent / M2A) was set to 8. The yield of the obtained deasphalted oil M4A with respect to the stock oil was 38.6 wt%, the sulfur concentration was 2.80 wt%, and the vanadium concentration was 5.9 wtppm. The yield of asphaltene (pitch) M5A with respect to the feedstock oil was 6.8 wt%.
Next, the obtained deasphalted oil M4A was introduced into a reactor filled with a hydrodemetallation catalyst and a hydrodesulfurization catalyst at a vol ratio of 1: 9, and dehydrogenated in the presence of hydrogen and the catalyst. Metal / desulfurization treatment (hydrodemetallation / desulfurization step 4A) gave HDMS refined oil M6A. The treatment was carried out at a hydrogen partial pressure of 100 atm and (H 2 (Oil) ratio was 800 Nl / l, LHSV was 0.5 / hr, and reaction temperature was 370 ° C. The yield of the obtained HDMS refined oil M6A with respect to the stock oil was 36.3 wt%, the sulfur concentration was 0.10 wt%, and the vanadium concentration was 0.9 wtppm.
Thereafter, 22.7 wt% (as the yield to the feed oil) of the obtained HDMS refined oil M6A was mixed with the distillate oil M3A (fourth mixing step 5A), and the yield to the feed oil was 73.6 wt. %, A sulfur concentration of 0.49 wt%, and a vanadium concentration of 0.28 wt ppm. The remaining portion of the HDMS refined oil M6A, that is, 13.6% by weight (as a yield to the feedstock oil) was used as it was as a feedstock for fluid catalytic cracking (FCC) or a feedstock for hydrocracking (HCR).
(Experimental example 5)
Based on the petroleum refining method shown in FIG. 5, gas turbine fuel as a plurality of petroleum products and an intermediate petroleum product as a raw material for fluid catalytic cracking or hydrocracking were produced as shown in FIG. .
The same low-sulfur crude oil as in Experimental Example 4 having a sulfur concentration of 1.79 wt% and a vanadium concentration of 13.5 wt ppm (Arabian light) was used as a feed oil. First, this was subjected to atmospheric distillation treatment with a topper (distillation separation step 1A). ) To obtain distillate M1A and residual oil M2A. The yield of the obtained distillate M1A with respect to the feed oil was 53.5 wt%, and the sulfur concentration was 0.63 wt%. The yield of the residual oil M2A with respect to the feed oil was 45.4 wt%, the sulfur concentration was 3.20 wt%, and the vanadium concentration was 30.0 wtppm.
Next, the obtained distillate M1A was separated by the flasher 30 to obtain distillates M3A and M3A ′. Distilled oil M3A was used as naphtha as one of the petroleum products. The yield of the obtained distillate M3A with respect to the feed oil was 50.9 wt%, and the sulfur concentration was 0.66 wt%. Further, the yield of naphtha M3A ′ with respect to the feed oil was 2.6 wt%.
Separately from the hydrorefining treatment, the residual oil M2A is subjected to a solvent removal process (solvent removal process 3A) using pentane as a solvent in a solvent extraction tower to obtain a deasphalted oil M4A at an extraction rate of 65%. Was obtained asphaltene (pitch) M5A. The ratio of the solvent to the residual oil M2A (solvent / M2) in the solvent removal treatment was set to 8. The yield of the obtained deasphalted oil M4A with respect to the stock oil was 38.6 wt%, the sulfur concentration was 2.80 wt%, and the vanadium concentration was 5.9 wtppm. The yield of asphaltene (pitch) M5A with respect to the feedstock oil was 6.8 wt%.
Next, the obtained deasphalted oil M4A was introduced into a reactor filled with a hydrodemetallation catalyst and a hydrodesulfurization catalyst at a vol ratio of 1: 9, and dehydrogenated in the presence of hydrogen and the catalyst. Metal / desulfurization treatment (hydrodemetallation / desulfurization step 4A) gave HDMS refined oil M6A. The treatment was carried out at a hydrogen partial pressure of 100 atm and (H 2 (Oil) ratio was 800 Nl / l, LHSV was 0.7 / hr, and reaction temperature was 360 ° C. The yield of the obtained HDMS refined oil M6A with respect to the stock oil was 36.3 wt%, the sulfur concentration was 0.30 wt%, and the vanadium concentration was 1.5 wtppm.
Next, the obtained HDMS refined oil M6A was subjected to a vacuum distillation treatment (a vacuum distillation separation step 6A) to obtain a vacuum gas oil (VGO) M7A and a vacuum residual oil M8A, respectively. The yield of the obtained vacuum gas oil M7A with respect to the feed oil was 23.0 wt%, the sulfur concentration was 0.10 wt%, and the vanadium concentration was 0.2 wtppm.
Thereafter, all of the obtained vacuum gas oil M7A was mixed with the distillate M3A (fifth mixing step 7A), and the yield with respect to the feed oil was 73.9 wt%, the sulfur concentration was 0.49 wt%, and the vanadium concentration was 0. 0.06 wtppm of gas turbine fuel (GTF) was obtained. The vacuum residue M8A obtained by the vacuum distillation treatment was used as a raw material for fluid catalytic cracking (FCC) or a raw material for hydrocracking (HCR). The raw material for fluid catalytic cracking (FCC) or the raw material for hydrocracking (HCR) can be obtained by mixing a part of the deasphalted oil M4A or a part of the HDMS refined oil M6A with the vacuum residue M8A. You may get it. The feedstock for fluid catalytic cracking (FCC) or the feedstock for hydrocracking (HCR) thus obtained has a yield of 13.3 wt%, a sulfur concentration of 0.65 wt%, and a vanadium concentration with respect to the feedstock oil. 3.7 wtppm.
(Experimental example 6)
Based on the petroleum refining method shown in FIG. 6, gas turbine fuel as a plurality of petroleum products and an intermediate petroleum product as a raw material for fluid catalytic cracking or hydrocracking were produced as shown in FIG. .
Crude oil (arabian light) having a sulfur concentration of 1.79 wt% and a vanadium concentration of 13.5 wtppm, which is the same low-sulfur crude oil as in Experimental Example 4, was used as a feed oil, and the crude oil was first subjected to normal pressure distillation with a topper (distillation separation step) 1A) to obtain a distillate M1A and a residual oil M2A. The yield of the obtained distillate M1A with respect to the feed oil was 53.5 wt%, and the sulfur concentration was 0.63 wt%. The yield of the residual oil M2A with respect to the feed oil was 45.4 wt%, the sulfur concentration was 3.20 wt%, and the vanadium concentration was 30.0 wtppm.
Next, the obtained residual oil M2A was subjected to a vacuum distillation treatment (a vacuum distillation separation step 20A) to obtain a vacuum light oil M11A and a vacuum residual oil M12A, respectively. The yield of the obtained vacuum gas oil M11A with respect to the feedstock oil was 30.4 wt%, the sulfur concentration was 2.70 wt%, and the vanadium concentration was 0.1 wt ppm. The yield of the obtained vacuum residue M12A with respect to the feedstock oil was 15.0 wt%, the vanadium concentration was 91.0 wtppm, and the sulfur concentration was 4.10 wt%.
The obtained distillate oil M1A was separated by the flasher 30 to obtain distillate oils M3A and M3A ′. Distilled oil M3A 'was made into one of petroleum products as naphtha. The yield of the distillate M3A with respect to the feed oil was 50.9%, and the sulfur concentration was 0.66% by weight. Further, the yield of naphtha M3A ′ with respect to the feed oil was 2.6 wt%.
Separately from the hydrorefining treatment, the vacuum residue M12A is subjected to a solvent removal process (solvent removal process 21A) using isobutane as a solvent in a solvent extraction tower to obtain a deasphalted oil M13A at an extraction rate of 60%. Asphaltene (pitch) M14A as a residue was obtained. The ratio (solvent / M12A) of the solvent and the vacuum residue M12A in the solvent removal treatment was set to 8. The yield of the obtained deasphalted oil M13A with respect to the stock oil was 10.5 wt%, the sulfur concentration was 3.30 wt%, and the vanadium concentration was 11.0 wtppm. The yield of asphaltene (pitch) M14A with respect to the feedstock oil was 4.5% by weight.
Next, the obtained mixed oil of the deasphalted oil M13A and the reduced pressure gas oil M11A was introduced into a reactor filled with a hydrodemetallation catalyst and a hydrodesulfurization catalyst at a vol ratio of 1: 9, and hydrogen and the hydrogen were added. Hydrodemetallization / desulfurization treatment (hydrodemetallization / desulfurization step 22A) in the presence of a catalyst gave HDMS refined oil M15A. The treatment was carried out at a hydrogen partial pressure of 100 atm and (H 2 (Oil) ratio was 800 Nl / l, LHSV was 0.5 / hr, and reaction temperature was 375 ° C. The yield of the obtained HDMS refined oil M15A with respect to the stock oil was 38.4 wt%, the sulfur concentration was 0.10 wt%, and the vanadium concentration was 0.9 wtppm.
Thereafter, 22.7 wt% (relative to the feed oil) of the obtained HDMS refined oil M15A was mixed with the distillate oil M3A, and the yield for the feed oil was 73.6 wt%, the sulfur concentration was 0.49 wt%, A gas turbine fuel having a vanadium concentration of 0.28 wtppm was obtained. The remaining portion of the HDMS refined oil, that is, 15.7 wt% thereof was used as it was as a raw material for fluid catalytic cracking (FCC) or hydrocracking (HCR).
Industrial potential
According to the petroleum refining method of the present invention, a petroleum product (gas turbine fuel) having a vanadium (V) concentration of 0.5 wtppm or less, for example, from a heavy raw material oil such as orinoco tar or a low-sulfur raw material oil, An intermediate petroleum product having a metal concentration (V + Ni) of 30 wtppm or less, which is suitable as a raw material for fluid catalytic cracking (FCC) or a raw material for hydrocracking (HCR), can be efficiently produced together.
[Brief description of the drawings]
1 to 6 are process flow charts for explaining first to sixth embodiments of the petroleum refining method of the present invention, respectively.
FIGS. 7 to 12 are process flow charts for explaining the petroleum refining methods of Experimental Examples 1 to 6, respectively.

Claims (26)

原料油を精製処理して複数の中間石油製品を含む石油製品を製造する石油の精製方法であって、
原料油を蒸留処理して留出油と残油とに分離する蒸留分離工程と、
蒸留分離工程で得られた留出油の少なくとも一部を水素と触媒の存在下で水素化精製処理し、脱硫することによって脱硫精製油を得る水素化精製工程と、
前記残油を溶剤脱れき処理し、抽出液としての脱アスファルテン油と残渣であるアスファルテン(ピッチ)とを得る溶剤脱れき工程と、
前記脱アスファルテン油の少なくとも一部を水素と触媒の存在下で水素化脱メタル・脱硫処理し、脱メタル・脱硫精製したHDMS精製油を得る水素化脱メタル・脱硫工程と、
前記HDMS精製油の一部と前記脱硫精製油の少なくとも一部とを混合し、石油製品の一つを得る第1の混合工程とを備える。
A petroleum refining method for refining a feedstock to produce a petroleum product including a plurality of intermediate petroleum products,
A distillation separation step of distilling the feedstock oil to separate it into distillate oil and residual oil,
A hydrorefining step of hydrotreating at least a part of the distillate obtained in the distillation separation step in the presence of hydrogen and a catalyst to obtain a desulfurized purified oil by desulfurization,
A solvent degreasing step of removing the residual oil with a solvent to obtain deasphalted oil as an extract and asphaltene (pitch) as a residue;
A hydrodemetallation / desulfurization step of subjecting at least a part of the deasphalted oil to hydrodemetallation / desulfurization treatment in the presence of hydrogen and a catalyst to obtain a demetalated / desulfurized purified HDMS refined oil;
A first mixing step of mixing a part of the HDMS refined oil and at least a part of the desulfurized refined oil to obtain one of petroleum products.
請求項1記載の石油の精製方法であって、前記第1の混合工程で得られる石油製品がガスタービン燃料であり、前記溶剤脱れき工程は、供給原料である残油中のバナジウムに対し得られる脱アスファルテン油中のバナジウムの抽出率が20%以下になるように抽出率を制御し、さらにこの脱アスファルテン油が水素化脱メタル・脱硫工程で処理して得られるHDMS精製油のバナジウム濃度が2wtppm以下、硫黄濃度が0.5wt%以下となるように脱メタル・脱硫条件を選択する。The petroleum refining method according to claim 1, wherein the petroleum product obtained in the first mixing step is a gas turbine fuel, and the solvent stripping step is performed on vanadium in the residual oil as a feedstock. The extraction rate is controlled so that the extraction rate of vanadium in the obtained asphaltene oil is 20% or less, and the vanadium concentration of the HDMS refined oil obtained by treating this deasphalted oil in the hydrodemetallation / desulfurization step is reduced. Demetalization and desulfurization conditions are selected so that the concentration of sulfur is 2 wtppm or less and the concentration of sulfur is 0.5 wt% or less. 請求項1記載の石油の精製方法であって、前記第1の混合工程で得られる石油製品がガスタービン燃料であり、前記第1の混合工程では前記ガスタービン燃料のバナジウム濃度が0.5wtppm以下となるように混合条件を設定する。The petroleum refining method according to claim 1, wherein the petroleum product obtained in the first mixing step is a gas turbine fuel, and the gas turbine fuel has a vanadium concentration of 0.5 wtppm or less in the first mixing step. Set the mixing conditions so that 請求項1記載の石油の精製方法であって、HDMS精製油の残部を、流動接触分解用あるいは水素化分解用の原料としての中間石油製品とする。The petroleum refining method according to claim 1, wherein the remainder of the HDMS refined oil is an intermediate petroleum product as a raw material for fluid catalytic cracking or hydrocracking. 原料油を精製処理して複数の中間石油製品を含む石油製品を製造する石油の精製方法であって、
原料油を蒸留処理して留出油と残油とに分離する蒸留分離工程と、
蒸留分離工程で得られた留出油の少なくとも一部を水素と触媒の存在下で水素化精製処理し、脱硫することによって脱硫精製油を得る水素化精製工程と、
前記残油を溶剤脱れき処理し、抽出液としての脱アスファルテン油と残渣であるアスファルテン(ピッチ)とを得る溶剤脱れき工程と、
前記脱アスファルテン油の少なくとも一部を水素と触媒の存在下で水素化脱メタル・脱硫処理し、脱メタル・脱硫精製したHDMS精製油を得る水素化脱メタル・脱硫工程と、
前記HDMS精製油を減圧蒸留処理して減圧軽油と減圧残油とに分離する減圧蒸留分離工程と、
前記減圧軽油の少なくとも一部と前記脱硫精製油の少なくとも一部とを混合し、石油製品の一つを得る第2の混合工程とを備える。
A petroleum refining method for refining a feedstock to produce a petroleum product including a plurality of intermediate petroleum products,
A distillation separation step of distilling the feedstock oil to separate it into distillate oil and residual oil,
A hydrorefining step of hydrotreating at least a part of the distillate obtained in the distillation separation step in the presence of hydrogen and a catalyst to obtain a desulfurized purified oil by desulfurization,
A solvent degreasing step of removing the residual oil with a solvent to obtain deasphalted oil as an extract and asphaltene (pitch) as a residue;
A hydrodemetallation / desulfurization step of subjecting at least a part of the deasphalted oil to hydrodemetallation / desulfurization treatment in the presence of hydrogen and a catalyst to obtain a demetalated / desulfurized purified HDMS refined oil;
A vacuum distillation separation step of subjecting the HDMS refined oil to vacuum distillation to separate it into vacuum gas oil and vacuum residue;
A second mixing step of mixing at least a part of the vacuum gas oil and at least a part of the desulfurized refined oil to obtain one of petroleum products.
請求項5記載の石油の精製方法であって、前記第2の混合工程で得られる石油製品がガスタービン燃料であり、前記溶剤脱れき工程は、供給原料である残油中のバナジウムに対し得られる脱アスファルテン油中のバナジウムの抽出率が30%以下になるように抽出率を制御し、この脱アスファルテン油が水素化脱メタル・脱硫工程で処理されて得られるHDMS精製油のバナジウム濃度が20wtppm以下、硫黄濃度が0.5wt%以下となるように脱メタル・脱硫条件を選択し、減圧蒸留分離工程で得られる減圧軽油のバナジウム濃度を1wtppm以下となるようにする。6. The petroleum refining method according to claim 5, wherein the petroleum product obtained in the second mixing step is a gas turbine fuel, and the solvent stripping step is performed on vanadium in residual oil as a feedstock. The extraction rate is controlled so that the extraction rate of vanadium in the deasphalted oil to be obtained is 30% or less, and the vanadium concentration of the HDMS refined oil obtained by treating this deasphalted oil in the hydrodemetallation / desulfurization step is 20 wtppm. Hereinafter, metal removal / desulfurization conditions are selected so that the sulfur concentration is 0.5 wt% or less, and the vanadium concentration of the vacuum gas oil obtained in the vacuum distillation separation step is 1 wtppm or less. 請求項5記載の石油の精製方法であって、前記第2の混合工程で得られる石油製品がガスタービン燃料であり、前記第2の混合工程では前記ガスタービン燃料のバナジウム濃度が0.5wtppm以下となるように混合条件を設定する。The petroleum refining method according to claim 5, wherein the petroleum product obtained in the second mixing step is a gas turbine fuel, and the gas turbine fuel has a vanadium concentration of 0.5 wtppm or less in the second mixing step. Set the mixing conditions so that 請求項5記載の石油の精製方法であって、前記HDMS精製油の少なくとも一部を減圧蒸留処理して得られる減圧軽油を、流動接触分解用あるいは水素化分解用の原料としての中間石油製品とする。6. The method for refining petroleum according to claim 5, wherein the vacuum gas oil obtained by subjecting at least a part of the HDMS refined oil to a vacuum distillation treatment is used as an intermediate petroleum product as a raw material for fluid catalytic cracking or hydrocracking. I do. 原料油を精製処理して複数の中間石油製品を含む石油製品を製造する石油の精製方法であって、
原料油を蒸留処理して留出油と残油とに分離する蒸留分離工程と、
蒸留分離工程で得られた留出油の少なくとも一部を水素と触媒の存在下で水素化精製処理し、脱硫することによって脱硫精製油を得る水素化精製工程と、
前記残油を減圧蒸留処理して減圧軽油と減圧残油とに分離する減圧蒸留分離工程と、
前記減圧残油を溶剤脱れき処理し、抽出液としての脱アスファルテン油と残渣であるアスファルテン(ピッチ)とを得る溶剤脱れき工程と、
前記減圧軽油と脱アスファルテン油を混合し、この混合油を水素と触媒の存在下で水素化脱メタル・脱硫処理し、脱メタル・脱硫精製したHDMS精製油を得る水素化脱メタル・脱硫工程と、
前記HDMS精製油の一部と前記脱硫精製油の少なくとも一部とを混合し、石油製品の一つを得る第3の混合工程とを備える。
A petroleum refining method for refining a feedstock to produce a petroleum product including a plurality of intermediate petroleum products,
A distillation separation step of distilling the feedstock oil to separate it into distillate oil and residual oil,
A hydrorefining step of hydrotreating at least a part of the distillate obtained in the distillation separation step in the presence of hydrogen and a catalyst to obtain a desulfurized purified oil by desulfurization,
A vacuum distillation separation step of subjecting the residual oil to vacuum distillation to separate it into vacuum gas oil and vacuum residual oil,
Solvent removal of the vacuum residue, solvent removal to obtain deasphalted oil as an extract and asphaltene (pitch) as a residue,
Mixing the reduced pressure gas oil and deasphalted oil, subjecting the mixed oil to hydrodemetallation / desulfurization treatment in the presence of hydrogen and a catalyst to obtain a demetalated / desulfurized purified HDMS refined oil; ,
A third mixing step of mixing a part of the HDMS refined oil and at least a part of the desulfurized refined oil to obtain one of petroleum products.
請求項9記載の石油の精製方法であって、前記第3の混合工程で得られる石油製品がガスタービン燃料であり、前記溶剤脱れき工程は、供給原料である残油中のバナジウムに対し得られる脱アスファルテン油中のバナジウムの抽出率が15%以下になるように抽出率を制御し、さらに前記HDMS精製油のバナジウム濃度が2wtppm以下、硫黄濃度が0.5wt%以下となるように前記脱メタル・脱硫工程の条件を選択する。10. The petroleum refining method according to claim 9, wherein the petroleum product obtained in the third mixing step is a gas turbine fuel, and the solvent stripping step is performed on vanadium in residual oil as a feedstock. The extraction rate is controlled so that the extraction rate of vanadium in the deasphalted oil to be obtained is 15% or less, and the extraction rate is controlled so that the HDMS refined oil has a vanadium concentration of 2 wtppm or less and a sulfur concentration of 0.5 wt% or less. Select the conditions for the metal / desulfurization process. 請求項9記載の石油の精製方法であって、前記第3の混合工程で得られる石油製品がガスタービン燃料であり、前記第3の混合工程では前記ガスタービン燃料のバナジウム濃度が0.5wtppm以下となるように混合条件を設定する。The petroleum refining method according to claim 9, wherein the petroleum product obtained in the third mixing step is a gas turbine fuel, and the vanadium concentration of the gas turbine fuel is 0.5 wtppm or less in the third mixing step. Set the mixing conditions so that 請求項9記載の石油の精製方法であって、前記HDMS精製油の残部を流動接触分解用あるいは水素化分解用の原料としての中間石油製品とする。The petroleum refining method according to claim 9, wherein the remaining HDMS refined oil is used as an intermediate petroleum product as a raw material for fluid catalytic cracking or hydrocracking. 請求項1、5、9のいずれかに記載の石油の精製方法であって、前記原料油がAPI度20以下の重質油である。The method for refining petroleum according to any one of claims 1, 5, and 9, wherein the raw material oil is a heavy oil having an API degree of 20 or less. 原料油を精製処理して複数の中間石油製品を含む石油製品を製造する石油の精製方法であって、
原料油を蒸留処理して留出油と残油とに分離する蒸留分離工程と、
前記蒸留分離工程で得られた残油を溶剤脱れき処理し、抽出液としての脱アスファルテン油と残渣であるアスファルテン(ピッチ)とを得る溶剤脱れき工程と、
前記脱アスファルテン油の少なくとも一部を水素と触媒の存在下で水素化脱メタル・脱硫処理し、脱メタル・脱硫精製したHDMS精製油を得る水素化脱メタル・脱硫工程と、
前記HDMS精製油の一部と前記留出油の少なくとも一部とを混合し、石油製品の一つを得る第4の混合工程とを備える。
A petroleum refining method for refining a feedstock to produce a petroleum product including a plurality of intermediate petroleum products,
A distillation separation step of distilling the feedstock oil to separate it into distillate oil and residual oil,
A solvent degreasing step in which the residual oil obtained in the distillation separation step is subjected to a solvent degreasing treatment to obtain a deasphalted oil as an extract and asphaltene (pitch) as a residue.
A hydrodemetallation / desulfurization step of subjecting at least a part of the deasphalted oil to hydrodemetallation / desulfurization treatment in the presence of hydrogen and a catalyst to obtain a demetalated / desulfurized purified HDMS refined oil;
A fourth mixing step of mixing a part of the HDMS refined oil and at least a part of the distillate oil to obtain one of petroleum products.
請求項14記載の石油の精製方法であって、前記第4の混合工程で得られる石油製品がガスタービン燃料であり、前記脱アスファルテン油のバナジウム濃度が25wtppm以下となるように前記溶剤脱れき工程での抽出率を制御し、さらに前記HDMS精製油のバナジウム濃度が2wtppm以下、硫黄濃度が0.5wt%以下となるように前記水素化脱メタル・脱硫処理の条件を選択する。15. The petroleum refining method according to claim 14, wherein the petroleum product obtained in the fourth mixing step is a gas turbine fuel, and the solvent removing step is performed so that the vanadium concentration of the deasphalted oil is 25 wtppm or less. And the conditions for the hydrodemetallation / desulfurization treatment are selected so that the HDMS refined oil has a vanadium concentration of 2 wtppm or less and a sulfur concentration of 0.5 wt% or less. 請求項14記載の石油の精製方法であって、前記第4の混合工程で得られる石油製品がガスタービン燃料であり、前記第4の混合工程では前記ガスタービン燃料のバナジウム濃度が0.5wtppm以下となるように混合条件を設定する。The method for refining petroleum according to claim 14, wherein the petroleum product obtained in the fourth mixing step is a gas turbine fuel, and the gas turbine fuel has a vanadium concentration of 0.5 wtppm or less in the fourth mixing step. Set the mixing conditions so that 請求項14記載の石油の精製方法であって、前記HDMS精製油の残部を流動接触分解用あるいは水素化分解用の原料としての中間石油製品とする。The petroleum refining method according to claim 14, wherein the remaining HDMS refined oil is used as an intermediate petroleum product as a raw material for fluid catalytic cracking or hydrocracking. 原料油を精製処理して複数の中間石油製品を含む石油製品を製造する石油の精製方法であって、
原料油を蒸留処理して留出油と残油とに分離する蒸留分離工程と、
前記蒸留分離工程で得られた残油を溶剤脱れき処理し、抽出液としての脱アスファルテン油と残渣であるアスファルテン(ピッチ)とを得る溶剤脱れき工程と、
前記脱アスファルテン油の少なくとも一部を水素と触媒の存在下で水素化脱メタル・脱硫処理し、脱メタル・脱硫精製したHDMS精製油を得る水素化脱メタル・脱硫工程と、
前記HDMS精製油を減圧蒸留処理して減圧軽油と減圧残油とに分離する減圧蒸留分離工程と、
前記減圧軽油の少なくとも一部と前記留出油の少なくとも一部とを混合し、石油製品の一つを得る第5の混合工程とを備える。
A petroleum refining method for refining a feedstock to produce a petroleum product including a plurality of intermediate petroleum products,
A distillation separation step of distilling the feedstock oil to separate it into distillate oil and residual oil,
A solvent degreasing step in which the residual oil obtained in the distillation separation step is subjected to a solvent degreasing treatment to obtain a deasphalted oil as an extract and asphaltene (pitch) as a residue.
A hydrodemetallation / desulfurization step of subjecting at least a part of the deasphalted oil to hydrodemetallation / desulfurization treatment in the presence of hydrogen and a catalyst to obtain a demetalated / desulfurized purified HDMS refined oil;
A vacuum distillation separation step of subjecting the HDMS refined oil to vacuum distillation to separate it into vacuum gas oil and vacuum residue;
A fifth mixing step of mixing at least a part of the vacuum gas oil and at least a part of the distillate oil to obtain one of petroleum products.
請求項18記載の石油の精製方法であって、前記第5の混合工程で得られる石油製品がガスタービン燃料であり、前記脱アスファルテン油のバナジウム濃度が50wtppm以下となるように前記溶剤脱れき工程における抽出率を制御し、前記HDMS精製油のバナジウム濃度が20wtppm以下、硫黄濃度が0.5wt%以下となるように前記水素化脱メタル・脱硫処理の条件を選択し、前記減圧蒸留分離工程で得られる減圧軽油のバナジウム濃度が1wtppm以下にする。19. The petroleum refining method according to claim 18, wherein the petroleum product obtained in the fifth mixing step is a gas turbine fuel, and the solvent removing step is performed such that a vanadium concentration of the deasphalted oil is 50 wtppm or less. And the conditions of the hydrodemetallation and desulfurization treatment are selected so that the HDMS refined oil has a vanadium concentration of 20 wtppm or less and a sulfur concentration of 0.5 wt% or less. The obtained vacuum gas oil has a vanadium concentration of 1 wtppm or less. 請求項18記載の石油の精製方法であって、前記第5の混合工程で得られる石油製品がガスタービン燃料であり、前記第5の混合工程では前記ガスタービン燃料のバナジウム濃度が0.5wtppm以下となるように混合条件を設定する。19. The petroleum refining method according to claim 18, wherein the petroleum product obtained in the fifth mixing step is a gas turbine fuel, and the gas turbine fuel has a vanadium concentration of 0.5 wtppm or less in the fifth mixing step. Set the mixing conditions so that 請求項18記載の石油の精製方法であって、前記HDMS精製油の少なくとも一部を減圧蒸留処理して得られる減圧軽油を、流動接触分解用あるいは水素化分解用の原料としての中間石油製品とする。19. The petroleum refining method according to claim 18, wherein the vacuum gas oil obtained by subjecting at least a part of the HDMS refined oil to a vacuum distillation treatment is used as an intermediate petroleum product as a raw material for fluid catalytic cracking or hydrocracking. I do. 原料油を精製処理して複数の中間石油製品を含む石油製品を製造する石油の精製方法であって、
原料油を蒸留処理して留出油と残油とに分離する蒸留分離工程と、
蒸留分離工程で得られた残油を減圧蒸留処理して減圧軽油と減圧残油とに分離する減圧蒸留分離工程と、
前記減圧残油を溶剤脱れき処理し、抽出液としての脱アスファルテン油と残渣であるアスファルテン(ピッチ)とを得る溶剤脱れき工程と、
前記減圧軽油と脱アスファルテン油を混合し、この混合油を水素と触媒の存在下で水素化脱メタル・脱硫処理し、脱メタル・脱硫精製したHDMS精製油を得る水素化脱メタル・脱硫工程と、
前記HDMS精製油の一部と前記留出油の少なくとも一部とを混合し、石油製品の一つを得る第6の混合工程とを備える。
A petroleum refining method for refining a feedstock to produce a petroleum product including a plurality of intermediate petroleum products,
A distillation separation step of distilling the feedstock oil to separate it into distillate oil and residual oil,
A vacuum distillation separation step of subjecting the residual oil obtained in the distillation separation step to vacuum distillation treatment to separate it into vacuum gas oil and vacuum residual oil,
Solvent removal of the vacuum residue, solvent removal to obtain deasphalted oil as an extract and asphaltene (pitch) as a residue,
Mixing the reduced pressure gas oil and deasphalted oil, subjecting the mixed oil to hydrodemetallation / desulfurization treatment in the presence of hydrogen and a catalyst to obtain a demetalated / desulfurized purified HDMS refined oil; ,
A sixth mixing step of mixing a part of the HDMS refined oil and at least a part of the distillate oil to obtain one of petroleum products.
請求項22記載の石油の精製方法であって、前記第6の混合工程で得られる石油製品がガスタービン燃料であり、前記脱アスファルテン油のバナジウム濃度が70wtppm以下となるように前記溶剤脱れき工程における抽出率を制御し、さらに前記HDMS精製油のバナジウム濃度が2wtppm以下、硫黄濃度が0.5wt%以下となるように前記水素化脱メタル・脱硫処理の条件を選択する。23. The petroleum refining method according to claim 22, wherein the petroleum product obtained in the sixth mixing step is a gas turbine fuel, and the solvent removing step is performed so that a vanadium concentration of the deasphalted oil is 70 wtppm or less. And the conditions of the hydrodemetallation / desulfurization treatment are selected so that the HDMS refined oil has a vanadium concentration of 2 wtppm or less and a sulfur concentration of 0.5 wt% or less. 請求項22記載の石油の精製方法であって、前記第6の混合工程で得られる石油製品がガスタービン燃料であり、前記第6の混合工程では前記ガスタービン燃料のバナジウム濃度が0.5wtppm以下となるように混合条件を設定する。23. The petroleum refining method according to claim 22, wherein the petroleum product obtained in the sixth mixing step is a gas turbine fuel, and the vanadium concentration of the gas turbine fuel is 0.5 wtppm or less in the sixth mixing step. Set the mixing conditions so that 請求項22記載の石油の精製方法であって、前記HDMS精製油の残部を流動接触分解用あるいは水素化分解用の原料としての中間石油製品とする。23. The petroleum refining method according to claim 22, wherein the remaining HDMS refined oil is used as an intermediate petroleum product as a raw material for fluid catalytic cracking or hydrocracking. 請求項14、18、22のいずれかに記載の石油の精製方法であって、前記原料油は硫黄濃度2.0wt%以下の低硫黄原油である。The method for refining petroleum according to any one of claims 14, 18, and 22, wherein the feedstock is a low-sulfur crude oil having a sulfur concentration of 2.0 wt% or less.
JP2002546656A 2000-11-30 2001-11-30 Oil refining method Withdrawn JPWO2002044307A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000366013 2000-11-30
JP2000366013 2000-11-30
PCT/JP2001/010489 WO2002044307A1 (en) 2000-11-30 2001-11-30 Method of refining petroleum

Publications (1)

Publication Number Publication Date
JPWO2002044307A1 true JPWO2002044307A1 (en) 2004-04-02

Family

ID=18836694

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002546656A Withdrawn JPWO2002044307A1 (en) 2000-11-30 2001-11-30 Oil refining method

Country Status (11)

Country Link
US (1) US20040069685A1 (en)
EP (1) EP1350832A4 (en)
JP (1) JPWO2002044307A1 (en)
KR (1) KR100800286B1 (en)
CN (1) CN100387690C (en)
AU (2) AU2002222568B2 (en)
NZ (1) NZ526112A (en)
PL (1) PL194242B1 (en)
RU (1) RU2270230C2 (en)
SA (1) SA01220564B1 (en)
WO (1) WO2002044307A1 (en)

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2866897B1 (en) * 2004-03-01 2007-08-31 Inst Francais Du Petrole USE OF GAS FOR THE PRE-REFINING OF CONVENTIONAL OIL AND OPTIONALLY SEQUESTRATION OF CO2
FR2885136A1 (en) * 2005-04-28 2006-11-03 Inst Francais Du Petrole Pre-refining crude oil comprises fractionation into number of fractions, hydrotreating, hydrocracking or hydroconverting some fractions
FR2885135B1 (en) * 2005-04-28 2007-06-29 Inst Francais Du Petrole PROCESS FOR PRE-REFINING RAW OIL FOR THE PRODUCTION OF AT LEAST TWO NON-ASPHALTENIC PETROL PA, PB AND ASPHALTENIC PETROLEUM PC
CA2621905C (en) * 2005-09-21 2013-12-03 Institut Francais Du Petrole Non-asphaltene oil
JP4627468B2 (en) 2005-09-26 2011-02-09 株式会社日立製作所 Gas turbine fuel manufacturing method, gas turbine power generation method, and power generation apparatus
FR2890972B1 (en) * 2006-07-13 2011-04-08 Inst Francais Du Petrole NON-ASPHALTENIC PETROLEUM.
US7966115B2 (en) * 2007-08-02 2011-06-21 Cummins Inc. System and method for controlling transmission shift points based on vehicle weight
US8152994B2 (en) * 2007-12-27 2012-04-10 Kellogg Brown & Root Llc Process for upgrading atmospheric residues
FR2958658B1 (en) * 2010-04-13 2012-03-30 Inst Francais Du Petrole METHOD FOR HYDROCONVERSION OF PETROLEUM LOADS VIA SLURRY TECHNOLOGY FOR RECOVERING METALS FROM THE CATALYST AND THE LOAD USING A LEACHING STEP.
FR2958656B1 (en) * 2010-04-13 2012-05-11 Inst Francais Du Petrole METHOD FOR HYDROCONVERSION OF PETROLEUM LOADS VIA SLURRY TECHNOLOGY FOR RECOVERING METALS FROM THE CATALYST AND THE LOAD USING AN EXTRACTION STEP
FR2958657B1 (en) * 2010-04-13 2012-05-11 Inst Francais Du Petrole METHOD OF HYDROCONVERSIONING PETROLEUM LOADS THROUGH SLURRY TECHNOLOGY FOR RECOVERING METALS FROM THE CATALYST AND THE LOAD USING A COKEFACTION STEP.
US20110094937A1 (en) * 2009-10-27 2011-04-28 Kellogg Brown & Root Llc Residuum Oil Supercritical Extraction Process
US9074143B2 (en) * 2009-12-11 2015-07-07 Uop Llc Process for producing hydrocarbon fuel
MX2012003049A (en) * 2009-12-11 2012-07-03 Uop Llc Process and apparatus for producing hydrocarbon fuel and composition.
US8133446B2 (en) * 2009-12-11 2012-03-13 Uop Llc Apparatus for producing hydrocarbon fuel
US8193401B2 (en) * 2009-12-11 2012-06-05 Uop Llc Composition of hydrocarbon fuel
IT1397514B1 (en) * 2009-12-14 2013-01-16 Eni Spa PROCEDURE FOR RECOVERING METALS FROM A CURRENT RICH IN HYDROCARBONS AND IN CARBON RESIDUES.
GB2478332A (en) 2010-03-04 2011-09-07 Grimley Smith Associates Method of metals recovery from refinery residues
US8728300B2 (en) 2010-10-15 2014-05-20 Kellogg Brown & Root Llc Flash processing a solvent deasphalting feed
JP5751876B2 (en) * 2011-03-22 2015-07-22 Jx日鉱日石エネルギー株式会社 Method for hydrorefining heavy oil
RU2510643C2 (en) * 2011-10-07 2014-04-10 Общество с ограниченной ответственностью "ЛУКОЙЛ-Нижегородский научно-исследовательский и проектный институт по переработке нефти ООО "ЛУКОЙЛ-Нижегородниинефтепроект" Method of bituminous oils processing
FR2999600B1 (en) 2012-12-18 2015-11-13 IFP Energies Nouvelles METHOD FOR REFINING A HEAVY HYDROCARBONIC LOAD USING SELECTIVE DESASPHALTAGE
RU2510642C1 (en) * 2013-01-10 2014-04-10 Андрей Владиславович Курочкин Oil refining method
CN103554926B (en) * 2013-10-16 2016-01-27 中国石油化工股份有限公司 A kind of low grade asphalt for high grade road and preparation method thereof
WO2016089590A1 (en) * 2014-12-04 2016-06-09 Exxonmobil Research And Engineering Company Low sulfur marine bunker fuels and methods of making same
FR3059673B1 (en) 2016-12-07 2018-11-23 Total Marketing Services SOLID BINDERS
FR3059672B1 (en) 2016-12-07 2020-10-30 Total Marketing Services SOLID OILY COMPOSITIONS
FR3059674B1 (en) 2016-12-07 2018-11-23 Total Marketing Services SOLID BITUMEN AT AMBIENT TEMPERATURE
FR3061191B1 (en) 2016-12-22 2019-05-24 Total Marketing Services COLOR ASPHALT COMPOSITION FOR REALIZING COATINGS
FR3061190B1 (en) 2016-12-22 2022-05-27 Total Marketing Services SOLID BINDER AT ROOM TEMPERATURE
CN110643380B (en) * 2019-08-22 2020-10-13 中科合成油工程有限公司 Method for converting coal pyrolysis product into gasoline, diesel oil and hydrogen
JP2020122150A (en) * 2020-04-01 2020-08-13 マウェタール エルエルシー Process for reducing sulfur-containing emissions from ship

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3227645A (en) * 1962-01-22 1966-01-04 Chevron Res Combined process for metal removal and hydrocracking of high boiling oils
DE2109030B2 (en) * 1971-02-25 1973-01-25 Allied Chemical Corp., New York, N.Y. (V.StA.) THREAD MADE OF A POLYAMIDE OR POLYESTER
US4006076A (en) * 1973-04-27 1977-02-01 Chevron Research Company Process for the production of low-sulfur-content hydrocarbon mixtures
US4271042A (en) * 1977-12-20 1981-06-02 Mobil Oil Corporation Process for demetalation and desulfurization of petroleum oils
US4165274A (en) * 1978-06-13 1979-08-21 Shell Oil Company Process for the preparation of synthetic crude oil
FR2706492B1 (en) * 1993-06-16 1995-09-29 Peaudouce Composite nonwoven material, manufacturing process and its application to any absorbent hygiene article.
JPH10501309A (en) * 1994-06-07 1998-02-03 リオンデル・ペトロケミカル・カンパニー Dyeable polyolefin compositions and methods
US5614574A (en) * 1994-07-12 1997-03-25 Lyondell Petrochemical Company Wettable polyolefin fiber compositions and method
IT1275447B (en) * 1995-05-26 1997-08-07 Snam Progetti PROCEDURE FOR THE CONVERSION OF HEAVY CRUDE AND DISTILLATION DISTILLATION RESIDUES
JP3475596B2 (en) * 1995-08-01 2003-12-08 チッソ株式会社 Durable hydrophilic fibers, cloths and moldings
FR2753983B1 (en) * 1996-10-02 1999-06-04 Inst Francais Du Petrole MULTIPLE STEP CONVERSION OF AN OIL RESIDUE
US5698322A (en) * 1996-12-02 1997-12-16 Kimberly-Clark Worldwide, Inc. Multicomponent fiber
JP4050364B2 (en) * 1997-09-11 2008-02-20 日揮株式会社 Oil processing method and oil processing apparatus
JP5057315B2 (en) * 1998-10-30 2012-10-24 日揮株式会社 Method for producing gas turbine fuel oil
JP2000282060A (en) * 1999-04-01 2000-10-10 Jgc Corp Gas turbine fuel oil, its production and power generation method
JP2007096700A (en) * 2005-09-28 2007-04-12 Clarion Co Ltd Speaker system
JP2007097700A (en) * 2005-09-30 2007-04-19 Samii Kk Pinball game machine

Also Published As

Publication number Publication date
KR20030053062A (en) 2003-06-27
EP1350832A1 (en) 2003-10-08
US20040069685A1 (en) 2004-04-15
CN1487989A (en) 2004-04-07
PL194242B1 (en) 2007-05-31
CN100387690C (en) 2008-05-14
PL362971A1 (en) 2004-11-02
WO2002044307A1 (en) 2002-06-06
RU2270230C2 (en) 2006-02-20
AU2256802A (en) 2002-06-11
EP1350832A4 (en) 2004-12-01
AU2002222568B2 (en) 2006-08-31
NZ526112A (en) 2005-02-25
SA01220564B1 (en) 2008-06-04
KR100800286B1 (en) 2008-02-04

Similar Documents

Publication Publication Date Title
JPWO2002044307A1 (en) Oil refining method
CN105765036B (en) By the method for transformation of the integrated heavy hydrocarbon feedstocks of selectivity cascade depitching and the recycling of de-asphalted fraction
US7214308B2 (en) Effective integration of solvent deasphalting and ebullated-bed processing
JP5528681B2 (en) Method for producing high-grade lubricating base oil feedstock from unconverted oil
US7938952B2 (en) Process for multistage residue hydroconversion integrated with straight-run and conversion gasoils hydroconversion steps
US3287254A (en) Residual oil conversion process
CN105793395B (en) Deasphalting method of the refining containing heavy hydrocarbon feedstocks of making choice property cascade
CA2867914C (en) Integration of solvent deasphalting with resin hydroprocessing and with delayed coking
KR20180014775A (en) Method for converting feedstocks comprising a hydrotreatment step, a hydrocracking step, a precipitation step and a sediment separation step, in order to produce fuel oils
CN103987813B (en) The integration that solvent deasphalting processes with adding hydrogen into resin
US8778169B2 (en) Residue conversion process that includes a deasphalting stage and a hydroconversion stage
CN105713655A (en) Residue hydrocracking
CN105308158A (en) Increased production of fuels by integration of vacuum distillation with solvent deasphalting
Anchita HYDRO-IMP technology for upgrading of heavy petroleum
JP4271585B2 (en) Oil refining method and refiner
CN105849237A (en) Process for producing middle distillates
JP4564176B2 (en) Crude oil processing method
CN110776954B (en) Process for treating heavy hydrocarbon-based feedstock comprising fixed bed hydroprocessing, deasphalting operations and ebullated bed hydrocracking of asphalt
CN110776953B (en) Process for treating heavy hydrocarbon feedstock comprising fixed bed hydroprocessing, two deasphalting operations and hydrocracking of bitumen
US11142704B2 (en) Methods and systems of steam stripping a hydrocracking feedstock
TW202408659A (en) Hydrocracking process with optimized management of the recycling for the production of naphtha
JP2000212578A (en) Production of low sulfur light oil and light oil composition prepared thereby

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20050201