JPS649359B2 - - Google Patents

Info

Publication number
JPS649359B2
JPS649359B2 JP11510280A JP11510280A JPS649359B2 JP S649359 B2 JPS649359 B2 JP S649359B2 JP 11510280 A JP11510280 A JP 11510280A JP 11510280 A JP11510280 A JP 11510280A JP S649359 B2 JPS649359 B2 JP S649359B2
Authority
JP
Japan
Prior art keywords
low
pressure vessel
rank coal
coal
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP11510280A
Other languages
Japanese (ja)
Other versions
JPS5738893A (en
Inventor
Yasuyuki Nakabayashi
Hikoo Matsura
Michio Kurihara
Takao Kamei
Akira Nakamura
Keiichi Komai
Michihiko Nakaooji
Takeshi Wakabayashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Electric Power Development Co Ltd
Kawasaki Motors Ltd
Original Assignee
Electric Power Development Co Ltd
Kawasaki Jukogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Electric Power Development Co Ltd, Kawasaki Jukogyo KK filed Critical Electric Power Development Co Ltd
Priority to JP11510280A priority Critical patent/JPS5738893A/en
Publication of JPS5738893A publication Critical patent/JPS5738893A/en
Publication of JPS649359B2 publication Critical patent/JPS649359B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は、水が蒸発しない雰囲気で加熱すると
水分が液状で離脱する低品位炭の脱水に関し、詳
しくは滞留する熱水と水蒸気中で前記低品位炭を
移動させて予熱と加熱を連続的に行い、脱水する
方法およびその装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to the dehydration of low-rank coal from which water is removed in liquid form when heated in an atmosphere where water does not evaporate, and more specifically, the present invention relates to the dehydration of low-rank coal from which water is released in liquid form when heated in an atmosphere where water does not evaporate. The present invention relates to a method and apparatus for continuously performing preheating and heating for dehydration.

本件明細書において、「低品位炭」なる用語は、 1 亜瀝青炭、褐炭等の低級石炭(石炭化度の進
んでいない石炭) 2 亜炭、泥炭、草炭等の石炭類似物(石炭化度
が不十分で我国の鉱業法では石炭から除外され
るもの) または、 3 植物、その腐敗物等の石炭根源物質(石炭化
作用を受ければ石炭に変成していくと想定され
る有機固形物) のいずれかに属する多孔質有機固形物であり、よ
り簡明には、 「水分が蒸発し得ない雰囲気で加熱すると、水
分が液状で離脱する多孔質有機固形物」 として定義されるものである。
In this specification, the term "low-grade coal" refers to 1. low-grade coals such as sub-bituminous coal and lignite (coal with a low degree of coalification); 2. coal analogues such as lignite, peat, and grass coal (with a low degree of coalification). 3. Coal source materials such as plants and their decayed materials (organic solids that are assumed to transform into coal when subjected to coalification) More simply, it is defined as ``a porous organic solid that loses water in liquid form when heated in an atmosphere where water cannot evaporate.''

一般に褐炭などの有機固形物を脱水するには、
従来から気流乾燥法や間接加熱乾燥法等の蒸発乾
燥法が用いられている。しかし、これらの技術で
は熱消費が大きいこと、予め脱水物を細粒化して
おく必要があること、脱水製品が発塵したり自然
発火しやすいこと等の欠点があるので、以前から
その代替技術の開発が進められている。
Generally, to dehydrate organic solids such as lignite,
Conventionally, evaporative drying methods such as flash drying method and indirect heating drying method have been used. However, these technologies have drawbacks such as high heat consumption, the need to refine the dehydrated product into fine particles in advance, and the tendency for dehydrated products to generate dust and spontaneously ignite. Therefore, alternative technologies have been developed for some time. development is underway.

ところで、褐炭等の石炭化度の進んでいない低
級石炭、あるいはまだ石炭化していない植物構成
物質等の石炭根源物質である高水分多孔質有機固
形物を、水分が蒸発し得ない水中あるいは飽和蒸
気中のような非蒸発雰囲気で加熱すると、天然の
石炭化作用に類似した物理的化学的変化が生じ、
これら固形物の細孔内に含まれている水分が液状
で離脱する現象(以下、液状脱水現象という)が
知られている。
By the way, high-moisture porous organic solids, which are low-grade coals such as lignite whose degree of coalification has not progressed, or coal-based substances such as plant constituents that have not yet been coalified, are heated in water where water cannot evaporate or in saturated steam. When heated in a non-evaporating atmosphere such as in
It is known that the water contained in the pores of these solids is released in liquid form (hereinafter referred to as liquid dehydration phenomenon).

この液状脱水現象を利用した脱水方法として、
飽和蒸発圧より高い圧力の熱水に褐炭を浸漬させ
て加熱する方法(以下、水中加熱脱水法という)
と、飽和蒸気雰囲気で褐炭を加熱する方法(以
下、飽和蒸気脱水法という)とがある。
As a dehydration method using this liquid dehydration phenomenon,
A method of heating lignite by immersing it in hot water with a pressure higher than the saturated evaporation pressure (hereinafter referred to as underwater heating dehydration method)
There is also a method of heating lignite in a saturated steam atmosphere (hereinafter referred to as saturated steam dehydration method).

飽和蒸気脱水法は今世紀初頭に提案されたもの
であり、液状脱水現象が知られる以前は、米国特
許第1632829号および第1679078号に示されるよう
に減圧による蒸発乾燥を目的とし、高圧の非蒸発
雰囲気下での有機固形物の加熱はそのための前処
理が目的であつた。
The saturated steam dehydration method was proposed at the beginning of this century, and before the phenomenon of liquid dehydration was known, the saturated steam dehydration method aimed at evaporative drying under reduced pressure, and used high-pressure non-evaporative drying as shown in U.S. Pat. The purpose of heating organic solids under atmosphere was for pretreatment.

液状脱水現象が知られるようになつた後も、米
国特許第3007254号に示されるように、加熱によ
る液状脱水は、有機固形物に水分が残る程度に実
施し、減圧時に残水分を蒸発させるとともに、有
機固形物を冷却するようにしている。過熱蒸気を
用いて液状脱水後もさらに、蒸発乾燥を行なう場
合でも、前記米国特許第3007254号のFig.4に示さ
れるように減圧による蒸発乾燥と冷却効果とを有
効に活用している。
Even after the liquid dehydration phenomenon became known, as shown in U.S. Pat. , to cool the organic solids. Even when evaporative drying is performed after liquid dehydration using superheated steam, the evaporative drying and cooling effect due to reduced pressure are effectively utilized, as shown in FIG. 4 of the above-mentioned US Pat. No. 3,007,254.

水中加熱脱水は、オーストラリア特許第430626
号で紹介されているが、加熱完了後もなお、褐炭
が熱水に浸漬されているので、減圧過程における
蒸発乾燥と冷却効果が有効に活用できないばかり
か、この過程における再吸湿により脱水率が低下
する欠点がある。
Underwater heating dehydration is Australian Patent No. 430626
As introduced in the issue, the lignite is still immersed in hot water even after heating is complete, so not only is the evaporative drying and cooling effect in the depressurization process not effectively utilized, but the dehydration rate is also reduced due to re-absorption of moisture in this process. There is a drawback that it decreases.

飽和蒸気脱水法を実用化したものに、前記米国
特許第3007254号のほかにオーストリー特許第
190490号に示されるように、同一形状の複数の圧
力容器をその処理過程に時間的ずれをもたせて回
分(バツチ)処理する褐炭の脱水法がある。
In addition to the above-mentioned U.S. Patent No. 3007254, Austrian Patent No.
As shown in No. 190490, there is a lignite dehydration method in which a plurality of pressure vessels of the same shape are treated in batches with a time lag in the treatment process.

たとえばプロセスを第1図に示すように圧力容
器に先ず大気圧状態で褐炭を投入し、予熱した後
外部の蒸気源より飽和蒸気を供給して加熱昇圧
し、その後減圧して大気圧とし脱水褐炭を排出す
る。すなわち予熱および加熱過程では液状脱水
が、減圧過程では残水分蒸発脱水が行われる。と
ころで加熱の際発生する熱水は、熱効率を向上さ
せるため予熱に利用されるが、そのため各圧力容
器の下方に管路で連通された熱水貯留器が設けら
れており、熱水を褐炭と分離貯留するようになつ
ている。この予熱は各圧力容器の処理過程の時間
的ずれを利用して行われる。すなわちある圧力容
器とそれに付随する熱水貯留器が減圧過程にある
とき蒸発する蒸気あるいは前記熱水(以下予熱媒
体という)を、この貯留器と予熱過程にある他の
圧力容器との差圧でもつて移動させている。上記
の予熱媒体のうち蒸気は予熱過程にある圧力容器
内に充満して褐炭を予熱するが、熱水は褐炭投入
直後の圧力容器に導入され褐炭層を流下すること
によつてのみ熱交換を行い直ちに熱水貯留器に排
出される。
For example, in the process shown in Figure 1, lignite is first charged into a pressure vessel at atmospheric pressure, and after preheating, saturated steam is supplied from an external steam source to heat and pressurize it, and then the pressure is reduced to atmospheric pressure and dehydrated lignite. discharge. That is, liquid dehydration is performed in the preheating and heating processes, and residual water evaporation dehydration is performed in the pressure reduction process. By the way, hot water generated during heating is used for preheating in order to improve thermal efficiency. For this purpose, a hot water reservoir connected via a pipe is installed below each pressure vessel, and the hot water is used to convert the hot water into lignite and brown coal. It is designed to be stored separately. This preheating is performed by utilizing the time lag in the treatment process of each pressure vessel. In other words, when a certain pressure vessel and its associated hot water reservoir are in the process of depressurization, the steam or hot water (hereinafter referred to as preheating medium) that evaporates can be heated even at the differential pressure between this reservoir and another pressure vessel that is in the preheating process. I'm moving it around. Of the preheating media mentioned above, steam fills the pressure vessel during the preheating process and preheats the brown coal, but hot water is introduced into the pressure vessel immediately after the brown coal is charged and exchanges heat only by flowing down the brown coal bed. The hot water is immediately discharged into the hot water reservoir.

このような回分処理による飽和蒸気脱水法で
は、飽和蒸気の供給を受ける加熱過程の初期と終
期では圧力容器の内圧や褐炭温度が異るため蒸気
流量が変動するので蒸気発生量を大きくするか大
容量のアキユムレータを設けねばならないこと、
熱効率を向上させるための予熱媒体の移動は前述
したように2容器間の圧力差を利用しているため
大気圧(ほぼ100℃)以下の熱水は投炭により大
気状態で密閉されている圧力容器には移動しえな
いからこのような温度の熱水の顕熱を予熱に利用
できないこと、予熱過程における褐炭と熱水との
接触は熱水の流下中に限られ時間が短く熱回収が
不十分であること、複数の圧力容器に時間をずら
して褐炭を投入したり、脱水褐炭を集めたりする
ために複雑なコンベヤ群を設けねばならず、また
運転時間の調整のために大容量のサージビンが必
要であること、蒸気の供給や熱回収の管路を複雑
に切り替えねばならないこと、熱回収の時間の調
整のために熱水貯留器が必要であること、圧力容
器が昇降温を繰り返すので容器材料の熱応力や、
熱膨張による作動不良に注意をはらう必要がある
こと、高価な圧力容器を常に高圧状態にしておく
ことができず無駄時間が多いこと、投炭・排炭は
大気圧で行われるが、加熱過程に於いては投炭排
炭部も高温高圧になるのでこれらの圧力に耐え得
る密閉構造にしなければならないこと、また褐炭
が工業的に有効な程度まで液状脱水現象を生じる
ためには、少なくとも180℃前後まで加熱する必
要があり、そのためには10Kg/cm2以上の高圧が必
要であり、このような高温高圧の圧力容器に褐炭
を連続的に投入したり、脱水褐炭を連続的に排出
したりすることは、圧力容器内部の高温蒸気ある
いは熱水が投入部や排出部から洩れ、熱損失が大
きく、また危険である等の数多くの欠点がある。
In such a saturated steam dehydration method using batch processing, the steam flow rate fluctuates between the initial and final stages of the heating process when saturated steam is supplied because the internal pressure of the pressure vessel and lignite temperature are different, so it is necessary to increase the steam generation amount or increase the steam flow rate. that a capacity accumulator must be provided;
As mentioned above, the movement of the preheating medium to improve thermal efficiency uses the pressure difference between the two containers, so the hot water below atmospheric pressure (approximately 100℃) is sealed in atmospheric conditions by coal injection. The sensible heat of hot water at such a temperature cannot be used for preheating because it cannot move into the container, and the contact between lignite and hot water during the preheating process is limited to the period when the hot water is flowing down, so the time is short and heat recovery is difficult. In order to charge lignite into multiple pressure vessels at different times and to collect dehydrated lignite, a complicated conveyor system must be installed, and large-capacity conveyors are required to adjust the operation time. A surge bin is required, steam supply and heat recovery pipelines must be switched in a complicated manner, a hot water storage device is required to adjust the heat recovery time, and the pressure vessel repeatedly rises and falls in temperature. Therefore, the thermal stress of the container material,
It is necessary to pay attention to malfunctions caused by thermal expansion, it is not possible to keep an expensive pressure vessel under high pressure at all times and there is a lot of wasted time, coal injection and discharge are carried out at atmospheric pressure, but the heating process In this case, the coal discharge section is also exposed to high temperatures and pressures, so it must have a sealed structure that can withstand these pressures.In order for lignite to undergo liquid dehydration to an industrially effective degree, it must be heated to at least 180 ml of water. It is necessary to heat the coal to around ℃, and to do so, a high pressure of 10 kg/cm2 or higher is required.Lignite is continuously charged into such a high-temperature, high-pressure pressure vessel, and dehydrated lignite is continuously discharged. However, there are many disadvantages such as high-temperature steam or hot water inside the pressure vessel leaking from the inlet or outlet, resulting in large heat loss and being dangerous.

飽和蒸気脱水法に類似したものにコツペルマ
ン・プロセスがある。コツペルマン・プロセスは
特開昭52−87401に示されるように褐炭等の有機
固形物を封入した圧力容器を加熱して、有機固形
物の水分を蒸発させ、さらに揮発性の有機固形物
を揮発させることにより、圧力容器内に高圧のガ
ス相を形成し、圧力容器を密封したまま冷却する
もので、飽和蒸気脱水法とは全く異質のものであ
るが、次の諸点で飽和蒸気脱水法と外見上類似し
ている。
The Koppelman process is similar to saturated steam dehydration. As shown in Japanese Patent Application Laid-Open No. 52-87401, the Kospelman process heats a pressure vessel filled with organic solids such as lignite to evaporate the water content of the organic solids and further evaporate volatile organic solids. This method forms a high-pressure gas phase inside the pressure vessel and cools it while the pressure vessel is sealed. Although it is completely different from the saturated steam dehydration method, it differs from the saturated steam dehydration method in appearance in the following points. Similar to above.

水蒸気を主体とする高温・高圧ガスで満たさ
れた容器内で有機固形物が処理される。
Organic solids are processed in a container filled with high-temperature, high-pressure gas, mainly water vapor.

冷却時に揮発性有機成分の方が、水蒸気より
も先に、より高温で凝縮して、有機固形物の表
面に沈着するので、飽和蒸気脱水法における石
炭化作用に類似した物理的、化学的変化と同等
の有機固形物の改質効果がある。
During cooling, volatile organic components condense at higher temperatures before water vapor and are deposited on the surface of organic solids, resulting in physical and chemical changes similar to the coalification effect in saturated steam dehydration. It has the same effect of modifying organic solids.

蒸発乾燥ではあるが、蒸発した水分は密閉さ
れた容器内で冷却されて凝縮し、液体として回
収されるので、冷却工程で熱回収をはかれば、
飽和蒸気脱水法における液状脱水と同等の効果
が期待できる。
Although it is evaporative drying, the evaporated water is cooled and condensed in a sealed container and recovered as a liquid, so if heat is recovered in the cooling process,
The same effect as liquid dehydration in saturated steam dehydration can be expected.

しかしながら、コツペルマン・プロセスは外部
より蒸気を供給しないこと、蒸発乾燥であるこ
と、有機固形物の質的変化が石炭化
(Coalification)よりもむしろ炭化
(Carbonization)あるいは乾留に近いものであ
る点が本質的に異なつている。
However, the essence of the Kospelman process is that no steam is supplied from the outside, that it is evaporative drying, and that the qualitative change of organic solids is closer to carbonization or carbonization than coalification. are different in terms of

コツペルマン・プロセスの飽和蒸気脱水との差
異および問題点は次のとおりである。
The differences and problems of the Kospelman process with saturated steam dehydration are as follows.

水分だけでなく揮発性有機成分をも気化しな
ければならないので、飽和蒸気脱水法にくらべ
高温・高圧を有する。
Since not only moisture but also volatile organic components must be vaporized, the process requires higher temperatures and pressures than saturated steam dehydration.

揮発性有機成分が気化する温度では、水分は
ほとんどすべて蒸発することになる。したがつ
て加熱工程のみで残水分が殆どなくなる程度ま
で乾燥する必要があり、飽和蒸気脱水法のよう
に減圧・冷却段階の蒸発を有効に利用できない
ので不利である。
At temperatures where volatile organic components vaporize, almost all of the water will evaporate. Therefore, it is necessary to dry to the extent that residual moisture is almost completely eliminated by only a heating step, which is disadvantageous because evaporation in the depressurization and cooling stages cannot be used effectively as in the saturated steam dehydration method.

加熱された有機固形物は、自然発火等の危険
を防止するために冷却される必要があるが、こ
の冷却に残水分の蒸発を利用できないので不利
である。
Heated organic solids need to be cooled to prevent risks such as spontaneous combustion, and this is disadvantageous because evaporation of residual water cannot be used for this cooling.

外部から高温の蒸気を圧力容器に注入して有
機固形物を直接接触させて加熱する飽和蒸気脱
水法に比べると、蒸気を注入せずに加熱するの
で伝熱効率が悪く不利である。
Compared to the saturated steam dehydration method, in which high-temperature steam is injected from the outside into a pressure vessel to directly contact and heat organic solids, this method is disadvantageous because it heats without injecting steam, resulting in poor heat transfer efficiency.

このようにコツペルマン・プロセスは、飽和蒸
気脱水法よりもさらに問題の多いものである。
The Koppelman process is thus more problematic than saturated steam dehydration.

コツペルマン・プロセスは特開昭54−56602に
示されるように連続化方式が提案されている。
A continuous method of the Kotzpelman process has been proposed as shown in Japanese Patent Application Laid-Open No. 56602/1983.

この方式は、処理すべき材料を揮発性物質の少
なくとも一部が気化する程度まで加熱する反応チ
ヤンバが中心となつており、その前段に下方から
上方へ材料を搬送する搬送チヤンバを設け、この
搬送チヤンバに材料から発生した気相を逆流させ
て材料を予熱し、この熱交換により凝縮する前記
気相中の成分は搬送チヤンバの入口部である底部
より排出することにより、搬送チヤンバ内に一定
の液面高さを維持し、非凝縮性の前記気相中の成
分はこの液面より上方で抜き出すものである。
This method is centered on a reaction chamber that heats the material to be treated to such an extent that at least part of the volatile substances vaporizes, and a transport chamber is installed in front of the reaction chamber to transport the material from below to above. The material is preheated by causing the gas phase generated from the material to flow back into the chamber, and the components in the gas phase that condense through this heat exchange are discharged from the bottom, which is the inlet of the transport chamber, so that a certain amount of material is kept in the transport chamber. The liquid level is maintained at a high level, and non-condensable components in the gas phase are extracted above the liquid level.

この方式では、処理すべき材料は搬送チヤンバ
の入口部である下部に連続的かつ気密的に供給さ
れ、処理された製品である反応生成物は、反応チ
ヤンバの下部より連続的かつ気密的に排出される
ので、圧力容器を形成する反応チヤンバおよび搬
送チヤンバは常時高圧を保つ連続プロセスとな
る。したがつて、前述の回分処理の飽和蒸気脱水
法の問題点の一部は解決されるが、コツペルマ
ン・プロセス特有の前述の問題点は解決されてい
ない。
In this method, the material to be treated is continuously and airtightly supplied to the lower part of the transport chamber, which is the inlet, and the reaction product, which is the processed product, is continuously and airtightly discharged from the lower part of the reaction chamber. Therefore, the reaction chamber and the transfer chamber forming the pressure vessel become a continuous process in which high pressure is maintained at all times. Therefore, although some of the problems of the batch saturated steam dehydration process described above are solved, the problems inherent to the Koppelman process described above are not solved.

特開昭54−56602では、その特許請求の範囲第
11項で反応チヤンバの下方に注水冷却部を設
け、外部から注入された水が高温の反応生成物に
接触して蒸発し、蒸発潜熱を奪うことにより反応
生成物を冷却することが提案されているが、これ
は加熱条件を緩めて材料に水分を残し、残水分の
蒸発を兼ねて材料を冷却する飽和蒸気脱水法に比
べ明らかに無駄の多い操作である。
In JP-A-54-56602, in claim 11, a water injection cooling section is provided below the reaction chamber, and the water injected from the outside contacts the high temperature reaction product and evaporates, releasing the latent heat of vaporization. It has been proposed to cool the reaction product by removing it, but this method is clearly wasteful compared to the saturated steam dehydration method, which loosens the heating conditions, leaves some moisture in the material, and cools the material by evaporating the remaining moisture. This is an operation with many steps.

一般に、固形物を相変化なし空冷などの手段に
より冷却するのは長大な冷却時間を要し、このた
め滞留時間の長い大容量の冷却容器を要したり、
冷却中に自然着火したりするおそれがある。そこ
で、散水による水分蒸発等の相変化を利用する方
が効果的だが、水分のほとんどない固形物を散水
により冷却すると、表面部の急冷による熱応力等
により粉化したり、固形物の内部の温度は固形物
の熱伝導率が低いため、なかなか下がらなかつた
り、固形物の中心部まで散水された水分の蒸発潜
熱で冷却しようとすると、先に冷却された表面部
の水分が高くなつて脱水の効果が低下したりす
る。
In general, it takes a long cooling time to cool solid materials by means such as air cooling without phase change, which requires a large-capacity cooling container with a long residence time.
There is a risk of spontaneous ignition during cooling. Therefore, it is more effective to utilize phase changes such as water evaporation caused by water sprinkling, but if a solid with almost no moisture is cooled by water sprinkling, it may turn into powder due to thermal stress caused by rapid cooling of the surface, or the internal temperature of the solid may Because the thermal conductivity of solids is low, it may not be able to cool down easily, or if you try to cool the center of the solid using the latent heat of evaporation of the water sprinkled, the water on the surface that was cooled first will rise and dewatering will occur. The effect may decrease.

本発明は蒸発乾燥法の問題点を解決するため
に、液状脱水現象を効果的に利用した褐炭等の多
孔質有機固形物の脱水技術であり、前述した水中
加熱脱水法で採用されている褐炭の熱水浸漬によ
る予熱と、飽和蒸気脱水法で採用されている蒸気
加熱による脱水とを、1つの圧力容器内におい
て、その内圧を昇降させることなく連続的に行な
うとともに、飽和蒸気脱水法の特徴である減圧に
よる残水分の蒸発と有機固形物の冷却の兼用効果
を活用することによつて、前記の回分処理の飽和
蒸気脱水法の問題点を解決するとともに、前記の
連続処理のコツペルマン・プロセスよりも優れた
褐炭等の有機固形物の連続処理脱水法およびその
装置を提供することを目的とする。
The present invention is a dehydration technology for porous organic solids such as lignite that effectively utilizes the liquid dehydration phenomenon in order to solve the problems of the evaporative drying method. Preheating by immersion in hot water and dehydration by steam heating, which is used in the saturated steam dehydration method, are performed continuously in one pressure vessel without raising or lowering the internal pressure, and the characteristics of the saturated steam dehydration method By utilizing the combined effects of evaporation of residual water and cooling of organic solids due to reduced pressure, the problems of the above-mentioned batch process saturated steam dehydration method can be solved, as well as the above-mentioned continuous process Koppelman process. The purpose of the present invention is to provide a method for continuous treatment and dehydration of organic solids such as lignite, which is superior to that described above, and an apparatus therefor.

以下、図面によつて本発明の実施例を説明す
る。第2図は本発明の一実施例の系統図である。
脱水処理すべき有機固形物たとえば褐炭1は、ベ
ルトコンベア2から投入手段3を介して圧力容器
4の下部に気密的かつ連続的に投入される。投入
された褐炭は圧力容器4内の搬送手段5によつ
て、上方に搬送されるとともに、その途中におい
て、下部の液相部6で予熱および脱水された後、
上部の気相部7で加熱されて脱水される。加熱後
の褐炭は圧力容器4の上部から排出手段8を介し
て気密的かつ連続的に排出される。この排出手段
8において加熱後の褐炭は、減圧操作によつてさ
らに脱水し、ベルトコンベア9によつて搬出され
る。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 2 is a system diagram of one embodiment of the present invention.
Organic solids to be dehydrated, such as brown coal 1, are continuously and airtightly charged from a belt conveyor 2 to the lower part of a pressure vessel 4 via a charging means 3. The charged lignite is transported upward by the transport means 5 in the pressure vessel 4, and on the way, it is preheated and dehydrated in the lower liquid phase section 6, and then
It is heated and dehydrated in the upper gas phase section 7. The heated lignite is continuously and airtightly discharged from the upper part of the pressure vessel 4 via the discharge means 8. The lignite heated in the discharge means 8 is further dehydrated by a pressure reduction operation, and then transported by a belt conveyor 9.

さらに詳細に説明すると、圧力容器4は、上下
に長い円筒状であつて傾斜して立設されており、
その下端部に投入部10を備え、上端部に排出部
11を備える。また圧力容器4の上端部には、蒸
気源たとえばボイラ12からの一定圧力の蒸気を
導くための管路13が接続される。投入部10
は、圧力容器4の下端部における上部側壁に形成
された投入口14から上方に延設された耐圧投入
シユート15と、その投入シユート15の上端部
に設けられた投入容器16とを含む。この投入容
器16内には、圧力容器4内の液相部6の液面l
1と同一レベルの液面l2が形成されており、そ
のように投入シユート15の長さが選ばれる。
To explain in more detail, the pressure vessel 4 has a vertically elongated cylindrical shape and is erected at an angle.
An input section 10 is provided at its lower end, and an ejection section 11 is provided at its upper end. Further, a pipe line 13 is connected to the upper end of the pressure vessel 4 for guiding steam at a constant pressure from a steam source, for example, a boiler 12. Insertion section 10
includes a pressure-resistant input chute 15 extending upward from an input port 14 formed in an upper side wall at the lower end of the pressure vessel 4, and an input container 16 provided at the upper end of the input chute 15. In this input container 16, the liquid level l of the liquid phase part 6 in the pressure container 4 is
1 is formed, and the length of the input chute 15 is selected accordingly.

排出部11は圧力容器4の上端部における下部
側壁に形成された排出口17から下方に延設され
た排出シユート18と、その排出シユート18の
下端部に設けられた排出容器19とを含む。この
排出容器19は圧力容器4内の液面l1よりも上
方に配置されており、そうなるように排出シユー
ト18の長さが選ばれる。排出容器19の下部に
は、下狭まりの円錐状多孔板から成る水切板28
が設けられており、排出シユート18内を落下し
てきた褐炭は水切板28上に堆積される。水切板
28上に堆積した褐炭に付着した水分は、水切板
28を通過して排出容器19の下部空間19aに
溜められる。この下部空間19aと圧力容器4と
は、管路29で連結されており、この管路29
は、圧力容器4側を下方にして傾斜されている。
そのため、下部空間19aに溜められた水は管路
29を経て圧力容器4に戻される。
The discharge part 11 includes a discharge chute 18 extending downward from a discharge port 17 formed in a lower side wall at the upper end of the pressure vessel 4, and a discharge container 19 provided at the lower end of the discharge chute 18. This discharge container 19 is arranged above the liquid level l1 in the pressure vessel 4, and the length of the discharge chute 18 is selected so as to do so. At the bottom of the discharge container 19, there is a drain plate 28 made of a conical perforated plate that narrows downward.
is provided, and the lignite that has fallen through the discharge chute 18 is deposited on the drainage plate 28. Moisture adhering to the lignite deposited on the draining plate 28 passes through the draining plate 28 and is stored in the lower space 19a of the discharge container 19. This lower space 19a and the pressure vessel 4 are connected through a pipe line 29.
is inclined with the pressure vessel 4 side facing downward.
Therefore, the water stored in the lower space 19a is returned to the pressure vessel 4 via the pipe line 29.

投入手段3はベルトコンベア2の投入端部の下
方に配置され、上部が開放した下狭まりの円錐状
ホツパ20と、そのホツパ20の下部に連結され
るとともに投入部10の投入容器16の上部に連
結されるロツクホツパ21とを含む。ロツクホツ
パ21の上部および下部にそれぞれ形成された開
口部には上下に変位自在の円錐状弁体22,23
がそれぞれ設けられる。これらの弁体22,23
は上方に変位されているときに各開口部を気密的
に塞ぎ、下方に変位されているときに開口部を開
放する。排出手段8は排出部11の排出容器19
の下部に連結されるロツクホツパ24と、ロツク
ホツパ24の下方でかつベルトコンベア9の上方
に配置されるホツパ25とを含む。ロツクホツパ
24の上下にそれぞれ形成された開口部には上下
に変位自在の円錐状弁体26,27がそれぞれ設
けられ、これらの弁体26,27は前記弁体2
2,23と同様に作動する。ロツクホツパ24の
下部には下狭まりの円錐状多孔板から成る水切板
30が設けられ、弁体26の開放時に排出容器1
9から落下する褐炭は水切板30上に堆積され
る。
The charging means 3 is disposed below the charging end of the belt conveyor 2, and includes a conical hopper 20 with an open upper part and a narrower bottom, and is connected to the lower part of the hopper 20 and connected to the upper part of the charging container 16 of the charging section 10. The lock hopper 21 is connected to the lock hopper 21. Openings formed in the upper and lower parts of the lock hopper 21 have conical valve bodies 22 and 23 that are vertically displaceable.
are provided respectively. These valve bodies 22, 23
closes each opening hermetically when it is displaced upward, and opens the opening when it is displaced downward. The discharge means 8 is a discharge container 19 of the discharge section 11.
and a hopper 25 disposed below the lock hopper 24 and above the belt conveyor 9. Conical valve bodies 26 and 27, which are vertically displaceable, are provided in openings formed at the top and bottom of the lock hopper 24, respectively.
It operates in the same way as 2 and 23. A drain plate 30 is provided at the bottom of the lock hopper 24 and is made of a conical perforated plate that narrows downward.
The lignite falling from the drain plate 9 is deposited on the drain plate 30.

第3図は第2図の切断面線―から見た断面
図である。搬送手段5は、圧力容器4の上端部に
軸支された駆動軸31と、駆動軸31に固定され
た一対のスプロケツトホイル32と、圧力容器4
の下端部で駆動軸31と平行な回転軸線を有して
軸支された一対のスプロケツトホイル33と、両
スプロケツトホイル32,33間にかけ渡された
左右一対の無端状チエーン34と、左右両チエー
ン34間にわたつて固定されチエーン34の長手
方向に一定の幅を有する複数の底板35と、各底
板35の搬送方向後端部に立設されたかき上げ板
36と、駆動軸31に軸継手37を介して連結さ
れた減速機付モータ38とを含む。モータ38は
圧力容器4の外方で固定される。底板35および
かき上げ板36には、水を切るための複数の透孔
39が穿設されている。
FIG. 3 is a sectional view taken along the section line - in FIG. 2. The conveying means 5 includes a drive shaft 31 pivotally supported on the upper end of the pressure vessel 4, a pair of sprocket wheels 32 fixed to the drive shaft 31, and a drive shaft 31 that is rotatably supported at the upper end of the pressure vessel 4.
A pair of sprocket wheels 33 are pivotally supported at the lower ends thereof with rotational axes parallel to the drive shaft 31, a pair of left and right endless chains 34 span between both sprocket wheels 32, 33, A plurality of bottom plates 35 fixed across both chains 34 and having a constant width in the longitudinal direction of the chains 34, a scraping plate 36 erected at the rear end of each bottom plate 35 in the conveyance direction, and a shaft attached to the drive shaft 31. It includes a motor 38 with a reduction gear connected via a joint 37. The motor 38 is fixed outside the pressure vessel 4. The bottom plate 35 and the scooping plate 36 are provided with a plurality of through holes 39 for draining water.

圧力容器4の外方で液面l1付近の高さには、
密閉されたタンク40が配置される。このタンク
40の下部は、管路41を介して圧力容器4の下
部に連結される。タンク40内には、圧力容器4
内の液面l1と同一レベルの液面l3が形成され
る。タンク40の液面l3よりも上方の側壁と、
圧力容器4の液面l1に近接した上方位置71の
側壁とは管路42を介して連結される。タンク4
0よりも上方位置にはサージタンク43が配置さ
れ、このサージタンク43の下部は管路44を介
してタンク40の上部に連結される。サージタン
ク43は、電磁弁47を備える管路46を介して
ロツクホツパ21に連結される。圧力容器4内の
液面l1をほぼ一定に保つために水タンク48が
設けられ、この水タンク48の下部は管路49を
介して圧力容器4の下部に連通される。水タンク
48の上部は管路50を介してサージタンク43
に連通される。水タンク48内には、圧力容器4
内の液面l1と同一レベルの液面l4が形成され
る。
At a height near the liquid level l1 outside the pressure vessel 4,
A sealed tank 40 is arranged. The lower part of this tank 40 is connected to the lower part of the pressure vessel 4 via a conduit 41. Inside the tank 40, there is a pressure vessel 4.
A liquid level l3 is formed at the same level as the liquid level l1 inside. A side wall above the liquid level l3 of the tank 40;
It is connected to the side wall at an upper position 71 close to the liquid level l1 of the pressure vessel 4 via a conduit 42. tank 4
A surge tank 43 is disposed above 0, and the lower part of the surge tank 43 is connected to the upper part of the tank 40 via a pipe 44. The surge tank 43 is connected to the lock hopper 21 via a conduit 46 that includes a solenoid valve 47 . A water tank 48 is provided to keep the liquid level l1 in the pressure vessel 4 substantially constant, and the lower part of the water tank 48 is communicated with the lower part of the pressure vessel 4 via a pipe 49. The upper part of the water tank 48 is connected to the surge tank 43 via a pipe 50.
will be communicated to. Inside the water tank 48, there is a pressure vessel 4.
A liquid level l4 is formed at the same level as the liquid level l1 inside.

圧力容器4の下方には廃水タンク51が設けら
れ、この廃水タンク51の上方に、両端部が開放
された管路52が上下に延びて配置される。この
管路52の上部には管路53の一端部が連結さ
れ、管路53の他端部はサージタンク43の上部
に連結される。この管路53の途中には制御弁5
4が備えられていて、液面l1の直上に滞留した
分解ガスを適宜放出する。
A wastewater tank 51 is provided below the pressure vessel 4, and above the wastewater tank 51, a pipe line 52 with both ends open is arranged to extend vertically. One end of a pipe 53 is connected to the upper part of the pipe 52, and the other end of the pipe 53 is connected to the upper part of the surge tank 43. A control valve 5 is located in the middle of this pipe line 53.
4 is provided to appropriately release the cracked gas that has accumulated just above the liquid level l1.

管路53の途中とロツクホツパ24とは管路5
5を介して連結されており、管路55の途中に
は、電磁弁56と逆止弁57とが備えられる。管
路52の途中とロツクホツパ21とは、電磁弁5
9を備える管路58を介して連結される。ロツク
ホツパ24の水切板30よりも下方の下部空間2
4aには管路60の一端部が連結され、管路60
の他端部は管路52に連結される。水タンク48
の液面l4よりも下部と管路52の途中とを連結
して管路62が設けられ、管路62の途中には電
磁弁63が備えられる。この電磁弁63は、水タ
ンク48に設けられた液面制御手段64によつて
開閉制御され、それによつて液面l1〜l4がほ
ぼ一定に保たれる。
The middle of the pipe 53 and the lock hopper 24 are the pipe 5.
5, and a solenoid valve 56 and a check valve 57 are provided in the middle of the pipe line 55. The middle of the pipe line 52 and the lock hopper 21 are connected to the solenoid valve 5.
They are connected via a conduit 58 having 9. Lower space 2 below the drain plate 30 of the lock hopper 24
One end of a conduit 60 is connected to 4a, and the conduit 60
The other end is connected to the conduit 52. water tank 48
A pipe line 62 is provided by connecting the lower part of the liquid level l4 and the middle of the pipe line 52, and a solenoid valve 63 is provided in the middle of the pipe line 62. This electromagnetic valve 63 is controlled to open and close by a liquid level control means 64 provided in the water tank 48, thereby keeping the liquid levels l1 to l4 substantially constant.

褐炭1の脱水に当つては、ベルトコンベア2か
ら褐炭1をホツパ20に投入する。このときホツ
パ20およびロツクホツパ21の各下部開口部は
気密的に塞がれている。ホツパ20内に所定量の
褐炭が投入された時点で弁体22が下方に変位さ
れ、ホツパ20内の褐炭がロツクホツパ21内に
投入される。その後ロツクホツパ21内を気密に
保つとともに、電磁弁47を開弁する。それによ
つて、ロツクホツパ21内が、管路46、サージ
タンク43、管路44、タンク40および管路4
2を介して圧力容器4内の気相部7に連通し、ロ
ツクホツパ21内の圧力が圧力容器4内の圧力に
等しくされる。次いで、弁体23を下方に変位し
てロツクホツパ21内の褐炭を投入容器16内に
投入する。
When dehydrating the lignite 1, the lignite 1 is fed into the hopper 20 from the belt conveyor 2. At this time, the lower openings of the hopper 20 and the lock hopper 21 are hermetically closed. When a predetermined amount of brown coal is charged into the hopper 20, the valve body 22 is displaced downward, and the brown coal in the hopper 20 is charged into the lock hopper 21. Thereafter, the inside of the lock hopper 21 is kept airtight, and the solenoid valve 47 is opened. As a result, the inside of the lock hopper 21 is connected to the pipe line 46, the surge tank 43, the pipe line 44, the tank 40, and the pipe line 4.
The lock hopper 21 is connected to the gas phase portion 7 in the pressure vessel 4 through the lock hopper 21, and the pressure in the lock hopper 21 is made equal to the pressure in the pressure vessel 4. Next, the valve body 23 is moved downward to charge the lignite in the lock hopper 21 into the charging container 16.

褐炭を投入容器16内に投入し終えた後、弁体
23を上方に変位してロツクホツパ21内を気密
に保つとともに電磁弁59を開弁する。それによ
つて、ロツクホツパ21内の高圧力のガスが、管
路58,52を介して大気に放出され、ロツクホ
ツパ21内が大気圧に等しくなる。一方、投入容
器16内に投入された褐炭は投入シユート15内
の水中を落下して投入口14から圧力容器4の下
端部に到達する。このような過程を順次繰返すこ
とによつて、褐炭がほぼ連続的かつ気密的に圧力
容器4の下端部に供給される。
After charging the lignite into the charging container 16, the valve body 23 is moved upward to keep the inside of the lock hopper 21 airtight and the solenoid valve 59 is opened. As a result, the high-pressure gas in the lock hopper 21 is released to the atmosphere through the pipes 58 and 52, and the pressure in the lock hopper 21 becomes equal to atmospheric pressure. On the other hand, the lignite charged into the charging container 16 falls through the water in the charging chute 15 and reaches the lower end of the pressure vessel 4 through the charging port 14 . By sequentially repeating such a process, lignite is supplied to the lower end of the pressure vessel 4 almost continuously and airtightly.

なお、ロツクホツパ21内を気密に保つたとき
には、ロツクホツパ21内は圧力容器4内と同一
の高圧力に保たれるが、ロツクホツパ21内はサ
ージングタンク43からの濃縮分解ガスで充満さ
れ、その温度は約50℃であつて低いので、漏洩が
あつても熱損失は小さい。分解ガスの漏洩量が大
きい場合には、サージタンク43内の圧力を保つ
ために、サージタンク43に空気などのガスを押
込んでもよい。
Note that when the inside of the lock hopper 21 is kept airtight, the inside of the lock hopper 21 is kept at the same high pressure as the inside of the pressure vessel 4, but the inside of the lock hopper 21 is filled with concentrated cracked gas from the surging tank 43, and its temperature is Since the temperature is low at approximately 50℃, even if there is a leak, the heat loss is small. If the leakage amount of cracked gas is large, gas such as air may be forced into the surge tank 43 in order to maintain the pressure inside the surge tank 43.

圧力容器4の下端部に供給された褐炭は、搬送
手段5の底板35およびかき上げ板36上に順次
載せられて、圧力容器4内を上方に搬送される。
圧力容器4内の液相部6は、上方に向う程温度が
高くなつている。また気相部7においては、上方
に向う程温度が高くなつており、最上部では供給
蒸気温度に等しい。搬送手段5で上方に搬送され
る褐炭は、液相部6で予熱されるとともに一部脱
水され、さらに気相部7で加熱されて脱水され
る。
The lignite supplied to the lower end of the pressure vessel 4 is sequentially placed on the bottom plate 35 and the scraping plate 36 of the conveyance means 5, and is conveyed upward within the pressure vessel 4.
The temperature of the liquid phase portion 6 within the pressure vessel 4 increases as it goes upward. Further, in the gas phase portion 7, the temperature increases as it goes upward, and at the top, it is equal to the temperature of the supplied steam. The brown coal transported upward by the transport means 5 is preheated and partially dehydrated in the liquid phase section 6, and further heated and dehydrated in the gas phase section 7.

このような加熱によつて生じる炭酸ガスを主成
分とする褐炭の分解ガスは、蒸気よりも比重が大
きいために気相部7の下部に蓄積される。したが
つて気相部7の下部は上部よりも低温となつてい
る。たとえば水分65%のオーストラリア褐炭を40
Kg/cm2Gの蒸気で脱水した場合、圧力容器4にお
ける上端部で脱水率70%を得ることができる。
The decomposition gas of lignite, which is mainly composed of carbon dioxide gas, produced by such heating is accumulated in the lower part of the gas phase section 7 because it has a higher specific gravity than steam. Therefore, the lower part of the gas phase section 7 is lower in temperature than the upper part. For example, Australian lignite with a moisture content of 65% is
When dehydrating with steam of Kg/cm 2 G, a dehydration rate of 70% can be obtained at the upper end of the pressure vessel 4.

圧力容器4内を搬送手段5で搬送されながら加
熱され圧力容器4の上端部に至つた褐炭は、排出
口17から排出シユート18内を落下して、排出
容器19に堆積される。このとき排出容器19の
下部開口部は気密的に閉塞されている。排出容器
19内において、褐炭に付着してきた水分は水切
板28で水切され、管路29を介して圧力容器4
内に戻される。
The lignite that has been heated while being conveyed in the pressure vessel 4 by the conveyance means 5 and has reached the upper end of the pressure vessel 4 falls through the discharge port 17 into the discharge chute 18 and is deposited in the discharge vessel 19 . At this time, the lower opening of the discharge container 19 is hermetically closed. In the discharge vessel 19, the water adhering to the lignite is drained by a draining plate 28, and then transferred to the pressure vessel 4 via a conduit 29.
returned inside.

ロツクホツパ24内を気密に保つた状態で電磁
弁56を開弁すると、ロツクホツパ24は管路5
5、管路53、サージタンク43、管路44、タ
ンク40および管路42を介して圧力容器4内に
連通され、したがつてロツクホツパ24内の圧力
は圧力容器4内およびホツパ19内の圧力に均圧
化される。なお、この均圧時において圧力容器4
内にはサージタンク43またはタンク40内の分
解ガスが導入されるので、分解ガス中の成分の一
部の凝縮、付着ないし吸着などによる褐炭の不活
性化を図ることができる。この状態で、弁体26
を下方に変位して、ホツパ19内の褐炭を所定量
だけロツクホツパ24内に受入れた後、ロツクホ
ツパ24を気密に保つ。次いで、電磁弁61を開
弁することにより、ロツクホツパ24内を管路6
0,52を介して大気に連通し、ロツクホツパ2
4内を急速に減圧する。それによつて褐炭が含む
残余の水分が蒸発してさらに脱水が進行する。こ
の減圧時、大気に放散されるのは、蒸発水分を除
けば大部分分解ガスであるから放出蒸気量を抑制
することができる。この急速減圧による脱水処理
が終了した後、弁体27を下方に変位して褐炭を
ホツパ25内に排出し、さらにベルトコンベア9
によつて搬出する。このような過程を順次繰返す
ことによつて、圧力容器4の上端部から褐炭がほ
ぼ連続的かつ気密的に排出される。
When the solenoid valve 56 is opened while keeping the inside of the lock hopper 24 airtight, the lock hopper 24 opens the pipe 5.
5. It is communicated with the pressure vessel 4 through the pipe line 53, the surge tank 43, the pipe line 44, the tank 40, and the pipe line 42, so that the pressure in the lock hopper 24 is equal to the pressure in the pressure vessel 4 and the hopper 19. The pressure is equalized. Note that during this pressure equalization, the pressure vessel 4
Since the cracked gas in the surge tank 43 or tank 40 is introduced into the reactor, it is possible to inactivate the lignite by condensing, adhering to, or adsorbing some of the components in the cracked gas. In this state, the valve body 26
is displaced downward to receive a predetermined amount of lignite in the hopper 19 into the lock hopper 24, and then the lock hopper 24 is kept airtight. Next, by opening the solenoid valve 61, the inside of the lock hopper 24 is opened to the pipe line 6.
0,52 to the atmosphere, lock hopper 2
Rapidly reduce the pressure inside 4. As a result, the remaining moisture contained in the lignite evaporates and dehydration progresses further. During this pressure reduction, most of what is released into the atmosphere, except for evaporated water, is decomposed gas, so the amount of released steam can be suppressed. After the dewatering process by rapid depressurization is completed, the valve body 27 is moved downward to discharge the lignite into the hopper 25, and then to the belt conveyor 9.
Transport by. By sequentially repeating such a process, lignite is discharged from the upper end of the pressure vessel 4 almost continuously and airtightly.

なお、排出容器19内においては、分解ガスの
濃度が高くなつているので温度が低下しており、
一旦加熱された褐炭が冷却されるが、水分は下部
空間19aから圧力容器4に戻されているので、
水分を再吸湿する恐れはない。またロツクホツパ
24内では蒸気の分圧が低いので、褐炭中の残水
分の蒸発脱水が促進されるとともに、ガス中の悪
臭成分が褐炭に吸着されることにより、悪臭の発
生も防止できる効果がある。
Note that inside the discharge container 19, the temperature is decreasing because the concentration of the decomposed gas is increasing.
Once heated, the lignite is cooled, but since the moisture is returned to the pressure vessel 4 from the lower space 19a,
There is no risk of re-absorption of moisture. In addition, since the partial pressure of steam is low in the lock hopper 24, the evaporation and dehydration of residual water in the lignite is promoted, and malodor components in the gas are adsorbed by the lignite, which has the effect of preventing the generation of malodors. .

圧力容器4内で生じた分解ガスは、管路42、
タンク40および管路44を介してサージタンク
43に導かれており、制御弁54が適宜開弁して
分解ガスが大気に放出される。しかも分解ガス
は、気相部7の下部から抜き取られるので、比較
的高濃度の分解ガスを抜き取ることができる。分
解ガスに同伴して流出する蒸気は、管路44およ
びサージタンク43内で冷却されて凝縮し、タン
ク40内に滴下する。したがつて蒸気の流出量は
最小限に抑えられ、熱損失が低下する。
The cracked gas generated within the pressure vessel 4 is passed through the pipe line 42,
The decomposed gas is led to a surge tank 43 via a tank 40 and a pipe 44, and a control valve 54 is opened as appropriate to release the cracked gas to the atmosphere. Moreover, since the decomposed gas is extracted from the lower part of the gas phase section 7, it is possible to extract the decomposed gas with a relatively high concentration. The steam that flows out together with the cracked gas is cooled and condensed in the pipe 44 and the surge tank 43, and drips into the tank 40. The amount of steam escaping is therefore minimized and heat losses are reduced.

本発明の他の実施例として投入手段および排出
手段8に代えて、スクリユーフイーダ、ロータリ
フイーダおよびエクストルーダなどによつてほぼ
連続的かつ気密的に褐炭の投入および排出を行な
つてもよい。その際、排出部ではロツクホツパを
使用した場合と同様に分解ガスの蓄積により温度
が低くなつているので、放熱損失が少なく、危険
性も軽減される。また圧力容器4は円筒状でなく
てもよく、垂直に立設されていてもよい。さら
に、搬送手段5に代えて、スクリユーフイーダや
バケツトエレベータを用いてもよい。
As another embodiment of the present invention, lignite may be charged and discharged almost continuously and airtight using a screw feeder, a rotary feeder, an extruder, etc. instead of the charging means and the discharge means 8. . At this time, the temperature at the discharge section is lowered due to the accumulation of decomposed gas, similar to when a lock hopper is used, so there is less heat radiation loss and the danger is reduced. Further, the pressure vessel 4 does not have to be cylindrical and may be vertically erected. Furthermore, instead of the conveying means 5, a screw feeder or a bucket elevator may be used.

以上の説明においては、蒸気源から供給される
蒸気は、飽和水蒸気であつたが、本発明による脱
水方法は、褐炭の昇温のかなりの部分を水中で行
うので、過熱水蒸気を供給しても蒸発乾燥は最終
部に限られるので、液状脱水現象の特質は十分に
活かされる。また、脱水物を褐炭で説明したが、
非蒸発雰囲気で加熱されることにより液状脱水す
る多孔質有機固形物であれば、すべて適用できる
ことは言うまでもない。そして、本脱水方法にお
ける加熱過程を液状脱水現象を生じない固形物を
高温に加熱する産業上の要求に答えるために適用
することも可能であることを付言しておく。
In the above explanation, the steam supplied from the steam source was saturated steam, but in the dehydration method according to the present invention, a considerable portion of the heating of lignite is carried out in water, so even if superheated steam is supplied. Since evaporative drying is limited to the final stage, the characteristics of liquid dehydration are fully utilized. Also, the dehydrated product was explained using lignite,
Needless to say, any porous organic solid that is dehydrated in a liquid state by being heated in a non-evaporating atmosphere can be applied. It should be added that the heating process in this dehydration method can also be applied to meet the industrial demand for heating solid materials to high temperatures that do not cause liquid dehydration.

上述のごとく本発明によれば、圧力容器の上部
に飽和蒸気の気相部を形成するとともにその下部
に液相部を形成し、圧力容器の下部に脱水すべき
有機固形部をほぼ連続的かつ気密的に投入すると
ともに圧力容器内を下方から上方に搬送し、圧力
容器の上部からほぼ連続的かつ気密的に排出する
ようにしたので、有機固形物を連続的に脱水処理
することができるだけでなく、褐炭ならびに加熱
媒体である熱水および蒸気を連続的に向流接触す
ることができるため、アキユムレータ、サージビ
ン等の付属設備を必要とせず、蒸気源の能力余裕
も小さくて済むこと、褐炭の昇温がスムーズであ
ること、低温の熱水も予熱源として利用できるこ
と、熱水との接触時間が長いこと、排入炭時の損
失蒸気量および損失熱量が少ないこと、大気汚染
物質である分解ガス中の悪臭成分の放出量が低減
されること等の効果を奏することができる。
As described above, according to the present invention, a gas phase of saturated steam is formed in the upper part of the pressure vessel, a liquid phase is formed in the lower part, and the organic solid part to be dehydrated is almost continuously and Organic solids can be dehydrated continuously because they are charged in an airtight manner, transported from the bottom to the top inside the pressure vessel, and discharged almost continuously and airtight from the top of the pressure vessel. Since lignite and hot water and steam, which are heating media, can be brought into continuous countercurrent contact, there is no need for accessory equipment such as an accumulator or surge bin, and the capacity margin of the steam source is small. The temperature rises smoothly, low-temperature hot water can be used as a preheating source, the contact time with hot water is long, the amount of steam and heat lost during discharge of coal is small, and decomposition is an air pollutant. Effects such as a reduction in the amount of malodorous components released from the gas can be achieved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、従来技術である飽和蒸気脱水法にお
ける処理過程を示す図、第2図は本発明の一実施
例の系統図、第3図は第2図の切断面線―か
ら見た断面図である。 1…褐炭、3…投入手段、4…圧力容器、5…
搬送手段、6…気相部、7…液相部、8…排出手
段、10…投入部、11…排出部、12…ボイ
ラ、13…管路。
Fig. 1 is a diagram showing the treatment process in the conventional saturated steam dehydration method, Fig. 2 is a system diagram of an embodiment of the present invention, and Fig. 3 is a cross section taken from the cutting plane line in Fig. 2. It is a diagram. 1...Lignite, 3...Charging means, 4...Pressure vessel, 5...
Conveying means, 6... Gas phase part, 7... Liquid phase part, 8... Discharge means, 10... Input part, 11... Discharge part, 12... Boiler, 13... Pipe line.

Claims (1)

【特許請求の範囲】 1 加圧下で低品位炭を熱水および水蒸気で加熱
して脱水し、次いで加熱された前記低品位炭を減
圧下に移して、水蒸発により水分をさらに減少さ
せるとともに、低品位炭を冷却する低品位炭の加
熱脱水方法において、 圧力容器の上部に水蒸気を注入して圧力容器内
の上部に水蒸気の充満した気相部を形成するとと
もに、その気相部の下部には水蒸気の凝縮水およ
び前記低品位炭から分離した水分からなる熱水を
貯留する液相部を形成して底部より排水するよう
にし、 脱水すべき前記低品位炭を圧力容器の下部に気
密的かつ連続的に投入し、 その投入された低品位炭を前記液相部で予熱し
た後、前記気相部で加熱すべく圧力容器内を上方
に搬送し、 加熱後の残水分を有する低品位炭を圧力容器の
上部から連続的かつ気密的に低圧の雰囲気へ排出
して、 水蒸発により水分をさらに減少させるとともに
低品位炭を冷却することを特徴とする低品位炭の
加熱脱水方法。 2 圧力容器の上部に注入する前記水蒸気を飽和
水蒸気として圧力容器の上部に形成する前記気相
部をすべて飽和水蒸気雰囲気とすることにより、
この気相部では液状脱水のみにより低品位炭を残
水分を有するように脱水することを特徴とする特
許請求の範囲第1項記載の低品位炭の加熱脱水方
法。 3 前記低品位炭の前記気相部における加熱時に
発生する分解ガスを前記液相部の液面に近接した
気相部の下部から抜き取ることを特徴とする特許
請求の範囲第1項記載の低品位炭の加熱脱水方
法。 4 前記低品位炭の連続的かつ気密的な投入およ
び排出を、ロツクホツパを用いて行ない、 前記分解ガスをロツクホツパの置換ガスとして
用い、 かつ排出用のロツクホツパは加熱後の残水分を
有する低品位炭を水蒸発により水分を減少させる
とともに、低品位炭を冷却する減圧手段として用
いることを特徴とする特許請求の範囲第2項記載
の低品位炭の加熱脱水方法。 5 上下に長く形成され、その下端部に投入部を
備えかつ上端部に排出部を備えるとともに、内部
空間の上部に気相部が形成されかつその下部に液
相部が形成され、かつ投入された低品位炭を液相
部から気相部へと搬送する搬送手段を有する圧力
容器、 圧力容器の気相部に蒸気源からの蒸気を導入す
るための管路、 圧力容器の投入部に連結され、脱水すべき低品
位炭を気密的かつ連続的に投入する投入手段、 圧力容器の排出部に連結され、加熱された残水
分を有する前記低品位炭を気密的かつ連続的に排
出して低圧雰囲気へ移送する排出・減圧手段、 ならびに 圧力容器の液相部から外部へ廃水を排出するた
めの管路を含むことを特徴とする低品位炭の加熱
脱水装置。
[Claims] 1. Dehydrate low-rank coal by heating it with hot water and steam under pressure, then transfer the heated low-rank coal under reduced pressure to further reduce water content by water evaporation, and In the heating dehydration method for low-rank coal that cools low-rank coal, steam is injected into the upper part of the pressure vessel to form a gas phase filled with water vapor in the upper part of the pressure vessel, and at the same time, the lower part of the gas phase is A liquid phase part is formed to store hot water consisting of water vapor condensed water and water separated from the low-rank coal, and is drained from the bottom, and the low-rank coal to be dehydrated is airtightly placed at the bottom of the pressure vessel. The introduced low-grade coal is preheated in the liquid phase section, and then conveyed upward in the pressure vessel to be heated in the gas phase section. A method for heating and dehydrating low-rank coal, which comprises continuously and airtightly discharging the coal from the upper part of a pressure vessel into a low-pressure atmosphere to further reduce water content through water evaporation and cooling the low-rank coal. 2. By making the water vapor injected into the upper part of the pressure vessel saturated water vapor and making the entire gas phase part formed in the upper part of the pressure vessel a saturated water vapor atmosphere,
2. The method of heating and dehydrating low-rank coal according to claim 1, wherein the low-rank coal is dehydrated so as to have residual moisture only by liquid dehydration in this gas phase. 3. The low-grade coal according to claim 1, characterized in that decomposition gas generated during heating of the low-rank coal in the gas phase portion is extracted from a lower part of the gas phase portion close to the liquid surface of the liquid phase portion. Method for heating and dehydrating grade coal. 4. Continuously and airtightly charging and discharging the low-rank coal using a rock hopper, using the cracked gas as a replacement gas for the rock hopper, and using the discharging rock hopper as a low-rank coal that has residual moisture after heating. 3. The method of heating and dehydrating low-rank coal according to claim 2, wherein the low-rank coal is used as a depressurizing means for reducing water content by water evaporation and cooling the low-rank coal. 5 It is formed vertically and elongated, has an input part at the lower end and a discharge part at the upper end, and has a gas phase part formed in the upper part of the internal space and a liquid phase part formed in the lower part, and has an input part. A pressure vessel having a conveying means for conveying the low-grade coal from the liquid phase to the gas phase, a pipe line for introducing steam from a steam source into the gas phase of the pressure vessel, and a pipe connected to the input part of the pressure vessel. a charging means for airtightly and continuously charging low-rank coal to be dehydrated and dehydrated; A heating dehydration device for low-rank coal, comprising: a discharge/depressurization means for transferring to a low-pressure atmosphere; and a pipe line for discharging wastewater from a liquid phase portion of a pressure vessel to the outside.
JP11510280A 1980-08-20 1980-08-20 Method and apparatus for heating and dehydrating organic solid Granted JPS5738893A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11510280A JPS5738893A (en) 1980-08-20 1980-08-20 Method and apparatus for heating and dehydrating organic solid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11510280A JPS5738893A (en) 1980-08-20 1980-08-20 Method and apparatus for heating and dehydrating organic solid

Publications (2)

Publication Number Publication Date
JPS5738893A JPS5738893A (en) 1982-03-03
JPS649359B2 true JPS649359B2 (en) 1989-02-17

Family

ID=14654264

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11510280A Granted JPS5738893A (en) 1980-08-20 1980-08-20 Method and apparatus for heating and dehydrating organic solid

Country Status (1)

Country Link
JP (1) JPS5738893A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT375387B (en) * 1982-11-03 1984-07-25 Voest Alpine Ag DEVICE FOR DRYING ORGANIC SOLIDS
JP6130114B2 (en) * 2012-09-14 2017-05-17 九州電力株式会社 Power generation system
CN113234514A (en) * 2021-05-29 2021-08-10 中国矿业大学 Dewatering and quality improving system for high-water-content materials

Also Published As

Publication number Publication date
JPS5738893A (en) 1982-03-03

Similar Documents

Publication Publication Date Title
EP2318795B1 (en) Upgrading carbonaceous materials
US4601113A (en) Method and apparatus for fluidized steam drying of low-rank coals
US4602438A (en) Method and apparatus for fluidized steam drying of low rank coals with wet scrubbing
FI76592B (en) ANORDNING OCH FOERFARANDE FOER BEHANDLING AV ORGANISKA KOLHALTIGA MATERIAL MED VAERME.
US5290523A (en) Method and apparatus for upgrading carbonaceous fuel
CA1145699A (en) Process for upgrading low rank coal
PL187267B1 (en) Method of and apparatus for reducing the content of undesirable by-products in carbonaceous materials
CS271459B2 (en) Equipment for brown coal drying with large water content
US4280415A (en) Method and apparatus for drying and processing moisture-containing solids
FR2478287A1 (en) METHOD AND APPARATUS FOR HEATING PARTICULATE MATERIAL
KR100621713B1 (en) Upgrading solid material
US5624469A (en) Method and apparatus for recovering heat from solid material separated from gasification or combustion processes
BE1015743A3 (en) Device for processing biomass and method applied thereby.
JPS649359B2 (en)
US4514910A (en) Dehydration of lignite or the like
GB2035366A (en) Treating brown coal or lignite
JPS6354758B2 (en)
SU1309923A3 (en) Device for drying organic solid substances with high water content
FI74994C (en) Process for producing fuel from solid bitumen and / or lig nosellulose material.
NL2005716C2 (en) Torrefying device and process for the thermal treatment of organic material.
KR950006548B1 (en) Process and device for the cooling of and the removal of dust from high-temperature coke
JPS6354759B2 (en)
JPS6361998B2 (en)
JPS649360B2 (en)
JPH0144749B2 (en)