JPS6361998B2 - - Google Patents

Info

Publication number
JPS6361998B2
JPS6361998B2 JP16245280A JP16245280A JPS6361998B2 JP S6361998 B2 JPS6361998 B2 JP S6361998B2 JP 16245280 A JP16245280 A JP 16245280A JP 16245280 A JP16245280 A JP 16245280A JP S6361998 B2 JPS6361998 B2 JP S6361998B2
Authority
JP
Japan
Prior art keywords
temperature
pressure vessel
heating
low
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP16245280A
Other languages
Japanese (ja)
Other versions
JPS5784972A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP16245280A priority Critical patent/JPS5784972A/en
Publication of JPS5784972A publication Critical patent/JPS5784972A/en
Publication of JPS6361998B2 publication Critical patent/JPS6361998B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は、水が蒸発しえない雰囲気で加熱する
と水分が液状で離脱する低品位炭の加熱脱水方法
に関し、詳しくは水分の分離と同時に低品位炭が
分解することにより発生する分解ガスの抜き取り
方法に関する。
[Detailed Description of the Invention] The present invention relates to a heating dehydration method for low-rank coal, in which water is separated in liquid form when heated in an atmosphere where water cannot evaporate, and more specifically, low-rank coal is decomposed at the same time as water is separated. This invention relates to a method for extracting decomposed gas generated by.

本件明細書において、「低品位炭」なる用語は、 1 亜瀝青炭、褐炭等の低級石炭(石炭化度の進
んでいない石炭) 2 亜炭、泥炭、草炭等の石炭類似物(石炭化度
が不十分で我国の鉱業法では石炭から除外され
るもの) または、 3 植物、その腐敗物等の石炭根源物質(石炭化
作用を受ければ石炭に変成していくと想定され
る有機固形物) のいずれかに属する多孔質有機固形物であり、よ
り簡明には、 「水分が蒸発しない雰囲気で加熱すると、水分
が液状で離脱する多孔質有機固形物」 として定義されるものである。
In this specification, the term "low-grade coal" refers to 1. low-grade coals such as sub-bituminous coal and lignite (coal with a low degree of coalification); 2. coal analogues such as lignite, peat, and grass coal (with a low degree of coalification). 3. Coal source materials such as plants and their decayed materials (organic solids that are assumed to transform into coal when subjected to coalification) More simply, it is defined as ``a porous organic solid that loses water in liquid form when heated in an atmosphere where water does not evaporate.''

本明細書において「分解ガス」とは、低品位炭
の熱分解により発生する二酸化炭素を主成分とす
るガスとして定義されるものである。厳密には
「分解ガス」とはH2Oを含まないもので「水蒸
気」とはH2Oのみを成分とするものである。た
だし、混合気体をその主成分ガスめるいは着目す
る目的成分ガスで代表して呼称することは一般的
であり、本明細書でもこのように解釈されるもの
とする。なお、混合気体であることに特に着目す
る場合には「気体」と表現するものとする。
In this specification, "cracking gas" is defined as a gas whose main component is carbon dioxide generated by thermal decomposition of low-rank coal. Strictly speaking, "decomposed gas" does not contain H 2 O, and "steam" consists only of H 2 O. However, it is common to refer to a mixed gas by its main component gas or by the target component gas of interest, and this specification shall also be interpreted in this manner. Note that when paying particular attention to the fact that it is a mixed gas, it will be expressed as "gas".

一般に褐炭などの低品位炭を脱水するには、従
来から気流乾燥法や間接加熱乾燥法等の蒸発乾燥
法が用いられている。しかし、これらの技術では
熱消費が大きいこと、予め脱水物を細粒化してお
く必要があること、脱水製品が発塵したり自然発
火し易いこと等の欠点があるので、以前からその
代替技術の開発が進められている。
In general, to dehydrate low-grade coal such as lignite, evaporative drying methods such as flash drying and indirect heating drying have been conventionally used. However, these technologies have drawbacks such as high heat consumption, the need to refine the dehydrated product into fine particles in advance, and the tendency for dehydrated products to generate dust and spontaneously ignite. Therefore, alternative technologies have been developed for some time. development is underway.

ところで、低品位炭を非蒸発雰囲気で加熱する
と物理的化学的変化が生じ、これ等固形物の細孔
内に含まれている水分が液状で離脱する現象(以
下液状脱水現象という)が知られている。この液
状脱水現象を利用した脱水方法として、飽和水蒸
気雰囲気で褐炭を加熱する方法(以下飽和水蒸気
脱水法という)がある。
By the way, it is known that when low-rank coal is heated in a non-evaporating atmosphere, physical and chemical changes occur, and the water contained in the pores of these solids is released in liquid form (hereinafter referred to as liquid dehydration phenomenon). ing. As a dehydration method utilizing this liquid dehydration phenomenon, there is a method of heating lignite in a saturated steam atmosphere (hereinafter referred to as saturated steam dehydration method).

この技術を要約すると、第1図に示す系統から
なる脱水装置において、第2図に示す手順で同一
形状の複数の圧力容器をその処理過程に時間的ず
れをもたせて回分(パツチ)処理する褐炭の脱水
法である。なお、第1図において圧力容器とそれ
に不随するものには同一の添字を付し、他の圧力
容器等と区別している。
To summarize this technology, lignite is treated in batches in a dewatering device consisting of the system shown in Fig. 1, using multiple pressure vessels of the same shape with a time lag in the processing process, using the procedure shown in Fig. 2. This is a dehydration method. In addition, in FIG. 1, the same suffix is given to the pressure vessel and its accompanying components to distinguish them from other pressure vessels and the like.

脱水すべき褐炭(以下原褐炭という)1はベル
トコンベア19により微粉除去手段18に搬送さ
れる。前記除去手段18は、例えば1次篩機2、
破砕機3、2次篩機4からなり、液状脱水に不適
切な微粉を取除く。篩上の原褐炭は搬送手段たと
えばベルトコンベア7により脱水を行う圧力容器
8a,8b等に搬送される。次にベルトコンベア
7のトリツパ9の如き分配手段によつて各圧力容
器に時間的ずれをもたせて原褐炭が投入される。
たとえば圧力容器8aに投入された褐炭は外部水
蒸気源11から管路31aを介して飽和水蒸気の
供給を受けて昇温、液状脱水され、この間発生す
る熱水(褐炭から離脱する水分と蒸気の凝縮水か
らなる)は圧力容器8aの下方に管路20aで接
続された熱水貯留容器10aに貯留される。しか
る後圧力容器8aが減圧され、褐炭の残水分をさ
らに蒸発させ、大気圧にされた後、脱水褐炭が排
出される。
Lignite 1 to be dehydrated (hereinafter referred to as raw lignite) is conveyed to fine powder removing means 18 by a belt conveyor 19. The removing means 18 is, for example, a primary sieve 2,
It consists of a crusher 3 and a secondary sieve 4, which removes fine powder that is unsuitable for liquid dehydration. The raw lignite on the sieve is conveyed by a conveyor, for example, a belt conveyor 7, to pressure vessels 8a, 8b, etc. for dewatering. Next, raw brown coal is charged into each pressure vessel with a time lag by a distribution means such as a tripper 9 of the belt conveyor 7.
For example, lignite charged into the pressure vessel 8a is supplied with saturated steam from an external steam source 11 via a pipe 31a, and is heated and dehydrated in liquid form. (consisting of water) is stored in a hot water storage container 10a connected to the lower part of the pressure vessel 8a through a pipe 20a. Thereafter, the pressure in the pressure vessel 8a is reduced to further evaporate the remaining moisture in the lignite, and after the pressure is brought to atmospheric pressure, the dehydrated lignite is discharged.

ところで、加熱の際発生する熱水は、予熱に利
用されるので、褐炭と分離貯留するため各圧力容
器8a,8bの下方には管路20a,20bで連
通された熱水貯留容器10a,10bが設けられ
ている。ある圧力容器とその熱水貯留容器が減圧
過程にあるとき蒸発する水蒸気あるいは前記熱水
(以下予熱媒体という)は、各圧力容器の処理過
程の時間的ずれを利用して、第2図に示すごとく
予熱過程にある他の圧力容器に2段階にわけて移
動される。上記の予熱媒体のうち水蒸気は圧力容
器間を接続する管路13によつて、熱水は熱水貯
留容器の下部と他の圧力容器とを接続する12b
の如き管路によつて移動する。
By the way, since the hot water generated during heating is used for preheating, hot water storage containers 10a and 10b are connected to each other by pipes 20a and 20b below the pressure vessels 8a and 8b in order to store the hot water separately from the lignite. is provided. The steam or hot water (hereinafter referred to as preheating medium) that evaporates when a certain pressure vessel and its hot water storage vessel are in the depressurization process is calculated as shown in Fig. 2 by using the time lag in the treatment process of each pressure vessel. It is then transferred in two stages to other pressure vessels that are in the preheating process. Of the above preheating media, water vapor is passed through a pipe line 13 that connects the pressure vessels, and hot water is passed through a pipe line 12b that connects the lower part of the hot water storage vessel with another pressure vessel.
It moves through conduits such as

有機固形物は、液状脱水されると脱水物が分解
して二酸化炭素をを主成分とする分解ガスが飽和
水蒸気中に拡散する。したがつて、この分解ガス
が水蒸気温度を低下させたり、これに伴つて脱水
率を低下させたりするのを防止するために、分解
ガスを水蒸気と分離する必要がある。
When an organic solid is dehydrated in a liquid state, the dehydrated product decomposes and a decomposed gas containing carbon dioxide as a main component diffuses into saturated steam. Therefore, it is necessary to separate the cracked gas from the water vapor in order to prevent the cracked gas from lowering the water vapor temperature and thereby reducing the dehydration rate.

従来から、水蒸気と二酸化炭素の比重差に着目
して、分解ガス濃度の比較的高い圧力容器下部の
気体を制限オリフイス44aから抜き取る方法は
知られていたが、単に分解ガス濃度の高い気体が
集まりやすい場所から抜き取るのみであり特別な
制御方法は知られていなかつた。したがつて従来
の方法では、分解ガスに同伴して多量の水蒸気が
流出するので熱損失が大きかつたり、同伴流出す
る水蒸気が制御オリフイス44aで凝縮してオリ
フイスを閉塞させ分解ガスの円滑な抜き取りが阻
害されたりする欠点があつた。
Conventionally, a method has been known that focuses on the difference in specific gravity between water vapor and carbon dioxide and extracts gas from the lower part of the pressure vessel, where the concentration of decomposed gas is relatively high, from the restriction orifice 44a. It was only necessary to extract it from an easy place, and no special control method was known. Therefore, in the conventional method, a large amount of water vapor flows out together with the cracked gas, resulting in large heat loss, and the water vapor that flows out along with the cracked gas condenses in the control orifice 44a to block the orifice, making it difficult to remove the cracked gas smoothly. It had the disadvantage that it sometimes hindered the

本発明は、蒸発乾燥法の問題点を解決するため
に、液状脱水現象を効果的に利用した低品位炭脱
水技術であり、更に詳しくは、液状脱水現象に伴
い発生する有機固形物の分解ガスを効果的に抜き
取ることにより、脱水率と熱効率を高めた有機固
形物の加熱脱水法を提供することを目的とする。
The present invention is a low-rank coal dehydration technology that effectively utilizes the liquid dehydration phenomenon in order to solve the problems of the evaporative drying method. The purpose of the present invention is to provide a heating dehydration method for organic solids that improves the dehydration rate and thermal efficiency by effectively extracting the organic solids.

本発明は、圧力容器への低品位炭の封入、予
熱、加熱、減圧、排出の過程からなる低品位炭の
脱水であつて、加熱過程では外部水蒸気源より前
記圧力容器に飽和水蒸気を注入して有機固形物を
加熱して液状脱水し、この間に発生する熱水を貯
留しておいて予熱媒体として利用する低品位炭の
加熱脱水方法において、圧力容器上部と下部との
水蒸気温度の差を検出し、この差が一定値以上の
場合に圧力容器下部に接続され、貯留された前記
熱水より上方に位置する開閉弁を開口して、この
位置の内部気体を排出するように制御することに
より分解ガスを抜き取ることを特徴とする褐炭等
の低品位炭の加熱脱水方法である。
The present invention is dehydration of low-rank coal, which consists of the steps of enclosing low-rank coal in a pressure vessel, preheating, heating, depressurizing, and discharging, and in the heating process, saturated steam is injected into the pressure vessel from an external steam source. In the heating dehydration method for low-rank coal, in which organic solids are heated and dehydrated in liquid form, and the hot water generated during this process is stored and used as a preheating medium, the difference in steam temperature between the upper and lower parts of the pressure vessel is Detecting the difference, and when this difference is above a certain value, controlling the on-off valve connected to the lower part of the pressure vessel and located above the stored hot water to be opened and the internal gas at this position to be discharged. This is a method for heating and dehydrating low-rank coal such as lignite, which is characterized by removing cracked gas.

また本発明は、圧力容器への低品位炭の封入、
予熱、加熱、減圧、排出の過程からなる低品位炭
の脱水であつて、加熱過程では外部水蒸気源より
前記圧力容器に飽和水蒸気を注入して有機固形物
を加熱して液状脱水し、この間に発生する熱水を
貯留しておいて予熱媒体として利用する低品位炭
の加熱脱水方法において、圧力容器下部の水蒸気
温度を検出し、これが別途設定する温度まで低下
した場合に圧力容器下部に接続され、貯留された
前記熱水より上方に位置する開閉弁を開口して、
この位置の内部気体を排出するように制御するこ
とにより分解ガスを抜き取ることを特徴とする褐
炭等の低品位炭の加熱脱水方法である。
Furthermore, the present invention also includes the inclusion of low-rank coal in a pressure vessel,
Dehydration of low-rank coal consists of the processes of preheating, heating, depressurization, and discharge.In the heating process, saturated steam is injected into the pressure vessel from an external steam source to heat the organic solids and dehydrate them in liquid form. In a heating dehydration method for low-rank coal that stores generated hot water and uses it as a preheating medium, the steam temperature at the bottom of the pressure vessel is detected, and when the temperature drops to a separately set temperature, a system is connected to the bottom of the pressure vessel. , opening an on-off valve located above the stored hot water,
This is a heating dehydration method for low-rank coal such as lignite, which is characterized by extracting cracked gas by controlling the internal gas at this location to be discharged.

本発明は加熱過程において、圧力容器内の水蒸
気温度を検出して、この温度に基いて分解ガス抜
き取り用の開閉弁を開口して内部気体を排出する
よう制御する方法に特に深く関係するものであ
る。
The present invention is particularly closely related to a method of detecting the temperature of water vapor in a pressure vessel during the heating process, and controlling the opening/closing valve for removing cracked gas to discharge the internal gas based on this temperature. be.

実施例 以下、詳細に説明する。第3図は、本発明によ
り第1図の飽和水蒸気脱水方法を改良して実施す
るための装置の例である。なお、前述と重複する
部分については同一の符号を付し説明を省く。
Examples will be described in detail below. FIG. 3 is an example of an apparatus for carrying out an improved saturated steam dehydration method of FIG. 1 according to the present invention. Note that the same reference numerals are given to the parts that overlap with those described above, and the description thereof will be omitted.

本発明を実施する装置は、圧力容器の下部より
特に好ましくは、圧力容器と熱水貯留容器を均圧
する管路より分解ガスが高濃度である内部気体を
抜き取るために以下の構成を有する。圧力容器8
aと熱水貯留容器10aとを接続し熱水を滴下さ
せる管路20aに並設して、前記両容器8a,1
0aを均圧させる均圧管21aと、この均圧管に
枝設された分岐管22aとが設けられる。分岐管
22aの先端には温度により制御される開閉弁2
3aと、制限オリフイス24aが設けられてい
る。開閉弁23a、制限オリフイス24aからな
る抜き取り装置を設ける位置としては、このよう
に圧力容器下部に接続された部分であれば良く、
また第4図の説明で明らかなように貯留される熱
水の液面よりも高くなければならない。
The apparatus implementing the present invention preferably has the following configuration in order to extract the internal gas containing a high concentration of cracked gas from the lower part of the pressure vessel, preferably from the pipe line that equalizes the pressure between the pressure vessel and the hot water storage vessel. Pressure vessel 8
A and the hot water storage container 10a are connected to each other, and both the containers 8a and 1
A pressure equalizing pipe 21a for equalizing the pressure of Oa and a branch pipe 22a branched from this pressure equalizing pipe are provided. At the tip of the branch pipe 22a, there is an on-off valve 2 that is controlled by temperature.
3a and a restriction orifice 24a. The extraction device consisting of the on-off valve 23a and the restriction orifice 24a may be provided at a location connected to the lower part of the pressure vessel as described above.
Furthermore, as is clear from the explanation of FIG. 4, it must be higher than the liquid level of the stored hot water.

開閉弁23aの温度による制御の方法を説明す
るために、まず圧力容器および熱水貯留容器内の
水蒸気の温度の特性について説明する。第2図に
おいて、脱水されるべき低品位炭の炭質、所望の
脱水炭水分等に応じて決定される加熱脱水温度
TSおよび温度TSにおける飽和水蒸気圧PSに調
整された飽和水蒸気が蒸気源より供給される加熱
過程では理想的には圧力容器内部の気体温度は均
一にTSになる。一方第1減圧過程では、内部気
体温度はTSよりも低い温度TR1にまで低下し、
これに伴い第2予熱過程の内部気体温度も理想的
にはTR1まで上昇する。同様に第2減圧過程で
は、TR1よりさらに低温のTR2まで降温し、これ
に伴い第1予熱過程ではTR2まで昇温する。
In order to explain the method of controlling the opening/closing valve 23a by temperature, first, the characteristics of the temperature of water vapor in the pressure vessel and the hot water storage container will be explained. In Figure 2, the heating dehydration temperature is determined according to the quality of the low-rank coal to be dehydrated, the desired moisture content of the dehydrated coal, etc.
In a heating process in which saturated steam adjusted to saturated steam pressure PS at TS and temperature TS is supplied from a steam source, ideally the gas temperature inside the pressure vessel becomes uniformly TS. On the other hand, in the first depressurization process, the internal gas temperature drops to a temperature TR 1 lower than TS,
Along with this, the internal gas temperature in the second preheating process ideally increases to TR1 . Similarly, in the second pressure reduction process, the temperature is lowered to TR 2 , which is lower than TR 1 , and accordingly, in the first preheating process, the temperature is increased to TR 2 .

第2図に示す第1予熱や第2予熱の予熱段階で
は、圧力容器および熱水貯留容器内の水蒸気温度
TR(TR1またはTR2)は第4図の曲線30で示す
ように加熱脱水温度TRよりもはるかに低く、分
解ガスの発生量が少ない。たとえ、この段階で分
解ガスの発生による水蒸気の温度低下があつて
も、褐炭の最終加熱温度に何ら影響はない。な
お、図中△TRは水蒸気下層部の温度の低下分、
HRは水蒸気の温度低下層の厚さ、LRは凝縮水
等の液面の高さであり、これらは上述の段階で第
4図の曲線30に示す如く小さくその影響は事実
上無視できる。しかし、圧力容器8aに外部水蒸
気源11より水蒸気の供給が開始されると第4図
の曲線31に示されるように液状脱水と蒸気の凝
縮により熱水が発生し、熱水貯留容器10a内の
液面の高さLSが上昇して、分解ガスによる水蒸
気温度低下層が上方に移動する。また、褐炭の昇
温により分解ガスの発生も活発になり、最下部の
温度低下△TSや、温度低下層の厚みHSが増大す
る。加熱過程では、圧力容器内部の気体温度は理
想的にはTR1より出発して上昇してゆく上昇期間
を経てTSに達した後、加熱過程の終了するまで
TSに維持される。褐炭の温度はこれよりも遅れ、
気体温度の上昇期間が終了しても昇温を続け、理
想的には、加熱過程の末期にTSに達し、脱水に
必要な最低限の期間TSに維持されて加熱過程を
終了する。
In the preheating stages of the first preheating and the second preheating shown in Figure 2, the water vapor temperature in the pressure vessel and the hot water storage container
As shown by curve 30 in FIG. 4, TR (TR 1 or TR 2 ) is much lower than the heating dehydration temperature TR, and the amount of cracked gas generated is small. Even if the temperature of the steam decreases at this stage due to the generation of cracked gas, this does not affect the final heating temperature of the lignite. In addition, △TR in the figure is the decrease in temperature in the lower layer of water vapor,
HR is the thickness of the temperature-reducing layer of water vapor, and LR is the height of the liquid level of condensed water, etc., and at the above-mentioned stage, these are small as shown by the curve 30 in FIG. 4, and their influence can be virtually ignored. However, when the supply of steam from the external steam source 11 to the pressure vessel 8a is started, hot water is generated due to liquid dehydration and steam condensation, as shown by the curve 31 in FIG. The liquid level height LS rises, and the water vapor temperature lowering layer caused by the cracked gas moves upward. In addition, as the temperature of lignite rises, the generation of cracked gas becomes active, increasing the temperature drop ΔTS at the bottom and the thickness HS of the temperature drop layer. During the heating process, the gas temperature inside the pressure vessel ideally starts from TR 1 , goes through a rising period, and then reaches TS until the end of the heating process.
Maintained by TS. The temperature of brown coal lags behind this,
Even after the gas temperature rising period ends, the temperature continues to rise, ideally reaching TS at the end of the heating process, and being maintained at TS for the minimum period necessary for dehydration to end the heating process.

圧力容器上部の気体はほぼ純粋な水蒸気であ
り、ほぼ上記の理想的な温度の上昇および維持が
行われる。しかし、圧力容器下部は分解ガスの発
生と熱水液面の上昇により分解ガス濃度が高ま
り、水蒸気の分圧が低下するため、理想的な昇温
期間の途中で昇温が停止し、維持期間ではさらに
停下する。加熱過程の初期には褐炭の温度が低い
ために水蒸気温度の低下があつても大きな問題と
ならないが、加熱の後半では褐炭をほぼ加熱脱水
温度TSに昇温させる必要がある。また上記LS、
△TS、HSが増大するために、第4図の曲線3
1,32,33のように、温度低下層の厚みHS
が増大しながら上方に移動するため、圧力容器8
a内の水蒸気温度の低下が著しくなる。
The gas at the top of the pressure vessel is almost pure water vapor, and the ideal temperature is raised and maintained as described above. However, in the lower part of the pressure vessel, the concentration of cracked gas increases due to the generation of cracked gas and the rise in the hydrothermal liquid level, and the partial pressure of water vapor decreases. Then stop further. At the beginning of the heating process, the temperature of the lignite is low, so a drop in steam temperature does not pose a major problem, but in the latter half of the heating process, it is necessary to raise the temperature of the lignite to approximately the heating dehydration temperature TS. Also, the above LS,
Because △TS and HS increase, curve 3 in Figure 4
1, 32, 33, the thickness of the temperature reduction layer HS
moves upward while increasing, pressure vessel 8
The temperature of water vapor in a decreases significantly.

本発明では、このような蒸気温度の分布特性に
着目し、これを利用して温度により開閉弁23a
の開閉を制御して、褐炭の昇温不足による脱水率
の低下を防止するものである。
In the present invention, we pay attention to such distribution characteristics of steam temperature, and utilize this to control the opening/closing valve 23a depending on the temperature.
The system controls the opening and closing of the lignite to prevent the dehydration rate from decreasing due to insufficient heating of the lignite.

本発明による、開閉弁23aの開閉の温度によ
る制御のより具体的な方法について以下に説明す
る。
A more specific method of controlling the opening and closing of the on-off valve 23a based on temperature according to the present invention will be described below.

具体的な温度による制御方法は、2種類に大別
される。第1の具体的方法は、第4図に示される
圧力容器8aの下部Bの水蒸気温度を検出して、
これが別途設定された温度まで低下した場合に圧
力容器の下部に接続され、貯留された熱水より上
方に位置する開閉弁23aを開口するようにして
圧力容器内の温度を制御するものである。別途設
定する温度は圧力容器内部の気体の理想的な温度
よりやや低温とすれば良い。ただし、前記のよう
な気体温度がTR1からTSへと上昇していく期間
では温度の設定が面倒である。そこで、タイマー
などの時間を制御する手段を付加してたとえばこ
の設定温度を前記の加熱脱水温度TSより△TC低
い温度とし、これを加熱の後半の時間、さらに詳
しくは、加熱の後半で圧力容器の上部の温度が加
熱脱水温度にほぼ等しくなつている前記気体温度
維持期間においてのみ、圧力容器下部の気体温度
が設定温度より低下した場合に開閉弁23aを開
いて内部気体を排出するように制御して分解ガス
を抜き取るようにすることもできる。
Specific temperature-based control methods are roughly divided into two types. The first specific method is to detect the water vapor temperature in the lower part B of the pressure vessel 8a shown in FIG.
When this temperature drops to a separately set temperature, the temperature inside the pressure vessel is controlled by opening an on-off valve 23a connected to the lower part of the pressure vessel and located above the stored hot water. The separately set temperature may be slightly lower than the ideal temperature of the gas inside the pressure vessel. However, during the period in which the gas temperature increases from TR 1 to TS as described above, setting the temperature is troublesome. Therefore, by adding a time control means such as a timer, for example, this set temperature is set to a temperature △TC lower than the above-mentioned heating and dehydration temperature TS, and this is set during the second half of heating, more specifically, during the second half of heating. Only during the gas temperature maintenance period in which the temperature at the upper part of the pressure vessel is approximately equal to the heating dehydration temperature, control is performed to open the on-off valve 23a and discharge the internal gas when the gas temperature at the lower part of the pressure vessel falls below the set temperature. It is also possible to remove decomposition gas by doing so.

第2の具体的方法では、上記の圧力容器下部B
の水蒸気温度の検出値に換えて、圧力容器上部A
と下部Bとの水蒸気温度の差を検出し、この差が
一定の設定値以上の場合に圧力容器下部に接続さ
れ熱水の液面より上方に位置する開閉弁23aが
開口するように制御するものである。この方法に
より本発明を実施する場合にもタイマーなどの制
御手段を付加して、加熱の後半の気体温度維持期
間に時間を限定して抜き取りを行なつても良い。
またこの第2の方法では、タイマー等を付加せず
に実施しても、圧力容器の上部の温度が水蒸気温
度TSに達して維持されるべき加熱の後半以外の
処理過程でも一定の温度設定値による制御により
抜き取りを実施することができるので便利であ
る。
In the second specific method, the above-mentioned pressure vessel lower part B
In place of the detected value of water vapor temperature of
and the lower part B, and when this difference exceeds a certain set value, the on-off valve 23a connected to the lower part of the pressure vessel and located above the surface of the hot water is controlled to open. It is something. Even when the present invention is carried out using this method, a control means such as a timer may be added to perform extraction for a limited time during the gas temperature maintenance period in the latter half of heating.
In addition, in this second method, even if carried out without adding a timer or the like, the temperature set value remains constant even during the process other than the second half of the heating process, in which the temperature at the upper part of the pressure vessel should reach the steam temperature TS and be maintained. This is convenient because sampling can be carried out under control.

次に上述の方法の発明を実施する装置について
述べる。大略上述したがそれらに加えて、分岐管
22aの、開閉弁23aよりも上流の部分に、適
当な水蒸気分離器を設けても良い。第3図にはこ
の一例が示されているが、第6図に前述の第1の
具体的方法を実施するための装置のこの部分の詳
細を示す。第6図において、分岐管22aは、コ
ンデンスポツト25aを経て上方に延設されてい
る。その垂直部にはフインが設けられて空冷式コ
ンデンサー26aが構成され、その先端に開閉弁
23a、制御オリフイス24aが設けられてい
る。30aは圧力容器8aの下部温度を検出する
熱電対等の温度センサーであり、31aは温度コ
ントローラである。また第7図は前述の第2の具
体的方法を実施するための装置について、第6図
と同様の部分を示したものであり、圧力容器8a
の上部にもう1つの温度センサー32aが付加さ
れ、その信号も温度コントローラ31aに入力さ
れる。
Next, an apparatus for implementing the above method invention will be described. In addition to the above-mentioned devices, an appropriate steam separator may be provided in a portion of the branch pipe 22a upstream of the on-off valve 23a. An example of this is shown in FIG. 3, while FIG. 6 shows details of this part of the apparatus for carrying out the first specific method described above. In FIG. 6, branch pipe 22a extends upward through condensation spot 25a. A fin is provided on the vertical portion to constitute an air-cooled condenser 26a, and an on-off valve 23a and a control orifice 24a are provided at the tip of the fin. 30a is a temperature sensor such as a thermocouple that detects the lower temperature of the pressure vessel 8a, and 31a is a temperature controller. Moreover, FIG. 7 shows the same parts as FIG. 6 regarding the apparatus for carrying out the second specific method described above, and shows the pressure vessel 8a.
Another temperature sensor 32a is added to the upper part of the temperature sensor 32a, and its signal is also input to the temperature controller 31a.

次にその上記構成の作動を説明すると、第6図
では、温度センサー30aにより下部温度を検出
し、これが第4図に示される(TS−△TC)なる
温度を設定した温度コントローラ31aに入力さ
れ、この検出温度がこの設定値よりも低い場合た
とえば第4図の曲線33のようになつたときには
開閉弁23aを開とするような信号を、また設定
値よりも高い場合たとえば第4図の曲線31のよ
うになつたときには、開閉弁23aを閉とするよ
うな信号を、温度コントローラ31aより開閉弁
23aに送る。第7図では、圧力容器の上部温度
と下部温度との差が一定値以上になつたときに開
閉弁23aを開とするような制御を、温度コント
ローラ31aにより行う。なお、この方法の場合
には抜き取りを加熱過程に限定しなくても一定の
設定値で制御できるのでタイマ等を用いなくても
容易に実施できる。
Next, to explain the operation of the above configuration, in FIG. 6, the temperature sensor 30a detects the lower temperature, and this is input to the temperature controller 31a, which is set to the temperature (TS-△TC) shown in FIG. When the detected temperature is lower than the set value, for example, as shown in curve 33 in FIG. 4, a signal is sent to open the on-off valve 23a, and when it is higher than the set value, for example, the curve shown in FIG. 31, a signal to close the on-off valve 23a is sent from the temperature controller 31a to the on-off valve 23a. In FIG. 7, the temperature controller 31a performs control such that the on-off valve 23a is opened when the difference between the upper and lower temperatures of the pressure vessel exceeds a certain value. In addition, in the case of this method, extraction can be controlled at a constant set value without limiting it to the heating process, so it can be easily implemented without using a timer or the like.

本発明者らが豪州褐炭を用いて実施した実験に
ついて以下に記す。
Experiments conducted by the present inventors using Australian lignite are described below.

実験条件 原褐炭水分:190%(乾炭ベース) 原褐炭処理量:1バツチ当り235Kg 加熱過程:50分 供給水蒸気条件:37Kg/cm2G、246℃ 実験1方法:分解ガスの抜き取りを全く行なわな
い 温度:予熱温度160℃より出発した。加熱開始後
約2分間で225℃となつた。
Experimental conditions Raw lignite moisture: 190% (dry coal base) Raw lignite processing amount: 235Kg per batch Heating process: 50 minutes Supply steam conditions: 37Kg/cm 2 G, 246℃ Experiment 1 method: No cracked gas was extracted No temperature: Starting from preheating temperature of 160°C. The temperature reached 225°C in about 2 minutes after heating started.

この間圧力容器の上部と下部の温度は
ほぼ一致していた。
During this time, the temperatures at the top and bottom of the pressure vessel were almost the same.

以降下部温度は低下し始め加熱開始
20分後には200℃となり、50分後には
190℃となつた。
After that, the temperature at the bottom begins to drop and heating begins.
After 20 minutes it will be 200℃, and after 50 minutes it will be 200℃.
The temperature reached 190℃.

上部温度は加熱開始5分後には246
℃に達し、以降45分間246℃を維持で
きた。
The upper temperature reaches 246 5 minutes after the start of heating.
℃ and was able to maintain the temperature at 246℃ for 45 minutes.

加熱開始15分後には圧力容器中間部
の温度も低下し始め、加熱終了時には
230℃となつた。
15 minutes after the start of heating, the temperature in the middle part of the pressure vessel also begins to drop, and by the end of heating
The temperature reached 230℃.

脱水結果:得られた脱水炭の重量は115Kgであり、
水分は50%(乾炭ベース)であつた。
Dehydration results: The weight of the obtained dehydrated coal is 115Kg,
The moisture content was 50% (based on dry charcoal).

実験2方法:圧力容器下部と熱水貯留器を接続す
る均圧管より制限オリフイス、および
開閉弁を介して排出される気体を水冷
式コンデンサで冷却し、同伴している
している水蒸気を凝縮させて分離して
から積算流量計で分解ガス流量を測
定。
Experiment 2 method: The gas discharged from the pressure equalization pipe connecting the lower part of the pressure vessel and the hot water reservoir through the restriction orifice and on-off valve is cooled with a water-cooled condenser, and the accompanying water vapor is condensed. After separating the gas, the flow rate of the cracked gas is measured using an integrated flow meter.

開閉弁は常時間。The on-off valve is open all the time.

温度:上下温度はほぼ常時一致した。ただし、時
折り水蒸気が制限オリフイスに凝縮し
て制限オリフイスが閉塞した。特に加
熱過程の後半では水蒸気の流量が多
く、閉塞の頻度が多くなり、その度に
圧力容器下部の温度が低下した。
Temperature: The upper and lower temperatures almost always matched. However, occasionally water vapor condensed in the restriction orifice and the restriction orifice became clogged. Particularly in the latter half of the heating process, the flow rate of water vapor was high and blockages occurred frequently, causing the temperature at the bottom of the pressure vessel to drop each time.

ガス:この間に抜き取られたガスは1.49Nm3であ
り、これを全量CO2とすると2.93Kgと
なる。水冷式コンデンサーによる冷却
で分離された同伴水蒸気量は約15Kgで
あつた。
Gas: The gas extracted during this period was 1.49Nm 3 , and if this was taken as the total amount of CO 2 , it would be 2.93Kg. The amount of entrained water vapor separated by cooling with a water-cooled condenser was approximately 15 kg.

脱水結果:脱水炭重量105Kg、水分38%(草炭ベ
ース) 実験3方法:実験2と同様。ただし温度計で圧力
容器の上、下部の温度を人間が監視
し、温度差の大きくなつた時に合図を
送り、別の人間が前記開閉弁を開くよ
うにした。
Dehydration results: Dehydrated charcoal weight 105Kg, moisture 38% (grass charcoal base) Experiment 3 method: Same as Experiment 2. However, a person monitored the temperature at the top and bottom of the pressure vessel using a thermometer, and when the temperature difference became large, a signal was sent and another person opened the on-off valve.

温度:予熱および減圧過程では上限の温度差はほ
とんど見られなかつた。時折開閉弁を
開いたが圧力容器の内圧が低いため排
出ガスの流量は小さかつた。加熱過程
では、圧力容器下部温度が236℃より
低くなると開閉弁を開き、243℃まで
回復すると閉じるようにした。加熱過
程50分のうち弁開放回数は5回で計28
分間。
Temperature: Almost no difference in upper limit temperature was observed during the preheating and decompression processes. Although the on-off valve was occasionally opened, the flow rate of exhaust gas was small because the internal pressure of the pressure vessel was low. During the heating process, the on-off valve was opened when the temperature at the bottom of the pressure vessel dropped below 236°C, and closed when it returned to 243°C. The valve was opened 5 times during the 50 minute heating process, totaling 28 times.
minutes.

ガス:抜き取り分解ガス量2.0Kg、同伴スチーム
量は2.7Kgであつた。
Gas: The amount of decomposed gas extracted was 2.0Kg, and the amount of entrained steam was 2.7Kg.

脱水効果:脱水炭量は107Kg、水分は40%(乾炭
ベース) 以上のように、圧力容器の下部の温度により開
閉弁を操作した実験3は、常時閉とした実験1に
くらべ脱水炭の水分が大幅に低下し、かつ常時開
とした実験2にくらべ同伴して抜き出される水蒸
気量が大幅に少くてすむ。
Dehydration effect: The amount of dehydrated coal was 107 kg, and the moisture content was 40% (based on dry coal). The water content is significantly reduced, and the amount of water vapor that is entrained and extracted is significantly smaller than in Experiment 2, which was kept open all the time.

実験3では人間が開閉弁を操作したが、温度コ
ントローラおよび自動開閉弁を用いて自動制御を
行えば、さらに効果的であるのは明らかである。
In Experiment 3, a human operated the on-off valve, but it is clear that automatic control using a temperature controller and an automatic on-off valve would be even more effective.

本発明とほぼ同等の効果を有する方法として加
熱過程のある時間帯に限定して開閉弁23aを開
くような時間による制御方法があり、これを組合
わせて実施すれば、分解ガスの濃度のさらに高い
蒸気を抜き取ることができるので蒸気の損失がさ
らに少なく、開閉弁23aより下流にある制限オ
リフイス24aの閉塞の可能性をさらに少なくす
ることができ、より効果的である。これを説明す
るために、分解ガスの抜き取り量の抜き取り時間
による特性について、本発明者等が前記と同じ水
分190%(乾炭ベース)の豪州褐炭を用いて実施
した実験結果について記す。実験条件は前記と同
じで水蒸気源として37Kg/cm2Gの飽和水蒸気を用
い、予熱終了後の加熱時間を50分間とした。
As a method having almost the same effect as the present invention, there is a time-based control method in which the on-off valve 23a is opened only during a certain period of time during the heating process. Since a high amount of steam can be extracted, the loss of steam is further reduced, and the possibility of clogging of the restriction orifice 24a located downstream of the on-off valve 23a can be further reduced, which is more effective. In order to explain this, we will describe the results of an experiment conducted by the present inventors using the same Australian brown coal with a moisture content of 190% (dry coal base) as described above, regarding the characteristics of the amount of cracked gas extracted depending on the extraction time. The experimental conditions were the same as above, using 37 Kg/cm 2 G saturated steam as the steam source, and heating time after preheating was 50 minutes.

圧力容器下部と熱水貯留容器とを接続する均圧
管より抜き取つた気体を水冷式コンデンサで冷却
して、同伴している水蒸気を凝縮させて分離した
後の分解ガスを、積算式ガス流量計で流量を測定
した。
The gas extracted from the pressure equalization pipe connecting the lower part of the pressure vessel and the hot water storage vessel is cooled with a water-cooled condenser, and the entrained water vapor is condensed and separated. The flow rate was measured.

予熱過程の開始から減圧の完了に至るまで充分
な抜き取りを行なつた前記の実験1では、1バツ
チの乾炭量が{235×(100/190+100)=81Kg}で
あるので、1バツチ分の分解ガスの積算流量は褐
炭(乾炭ベース)1Kg当り18.4Nl(36.1g)とな
る。これは褐炭(乾炭)の収率や分析値および放
気時、排水時、排入炭時に放出された分解ガス量
の推算値などを基に算出した分解ガスの総発生量
38g/kgof drycoalの95%に相当する。
In Experiment 1, in which sufficient extraction was performed from the start of the preheating process to the completion of depressurization, the amount of dry coal for one batch was {235 x (100/190 + 100) = 81 kg}, so the amount of dry coal for one batch was The cumulative flow rate of cracked gas is 18.4Nl (36.1g) per 1kg of lignite (dry coal base). This is the total amount of cracked gas generated based on the yield and analytical values of brown coal (dry coal) and the estimated amount of cracked gas released during air release, drainage, and discharge.
It corresponds to 95% of 38g/kgof drycoal.

抜き取り時間をこれより短くした場合、分解ガ
スの積算流量はこれよりも少なくなつた。この傾
向を第5図に示す。ここで実線は、抜き取りの終
了を加熱終了時とした場合であり、一点鎖線は抜
き取りの終了を減圧終了時とした場合であり、そ
れぞれ抜き取り開始時期を変えた場合の分解ガス
積算流量を、総発生量に対する比率で示してい
る。
When the extraction time was made shorter than this, the cumulative flow rate of cracked gas was less than this. This tendency is shown in FIG. Here, the solid line shows the case where the end of extraction is at the end of heating, and the one-dot chain line shows the case where the end of extraction is at the end of depressurization. It is expressed as a percentage of the amount generated.

第5図によれば、加熱の開始から全加熱時間の
30%に相当する15分を経過したときまでの35分間
抜き取りを継続すると、分解ガスの全発生量の85
%を抜き取ることができ(同図中点C)、しかも、
加熱の終了までに圧力容器の下部温度を上部温度
と一致させることができた。すなわち分解ガス抜
き取り量は2.6Kgであり、このとき水冷式コンデ
ンサで分離された凝縮水は4Kgで、得られた脱水
炭は105Kg、水分は37%(乾炭ベース)であつた。
なお、同図中縦軸の分解ガス抜き取り量は、分解
ガスの全発生量を1とした比で、横軸は、加熱時
間を1とした比で示した分解ガスの抜き取り開始
時刻である。
According to Figure 5, the total heating time from the start of heating is
If extraction is continued for 35 minutes until 15 minutes have elapsed, which corresponds to 30%, 85% of the total amount of cracked gas generated will be
% can be extracted (middle point C in the figure), and
By the end of heating, the temperature at the bottom of the pressure vessel was able to match the temperature at the top. That is, the amount of decomposed gas removed was 2.6 kg, the condensed water separated by the water-cooled condenser was 4 kg, the obtained dehydrated coal was 105 kg, and the moisture content was 37% (based on dry coal).
Note that the amount of decomposed gas extracted on the vertical axis in the figure is a ratio with the total generated amount of decomposed gas being 1, and the horizontal axis is the start time of decomposed gas extraction expressed as a ratio with the heating time being 1.

全加熱時間の90%に相当する45分を経過した時
点より抜き取りを開始した場合には、抜き取るこ
とのできる分解ガス量比は急激に低下し、上下部
温度の一致は困難でそのため脱水率が低下した。
すなわち、分解ガス抜き取り量は1.9Kgで、この
とき水冷式コンデンサで分離された凝縮水は1Kg
で、得られた脱水炭の水分は41%(乾炭ベース)
と悪化した。
If extraction is started after 45 minutes, which corresponds to 90% of the total heating time, the ratio of the amount of decomposed gas that can be extracted will decrease rapidly, and it will be difficult to match the upper and lower temperatures, resulting in a lower dehydration rate. decreased.
In other words, the amount of decomposed gas removed is 1.9Kg, and the amount of condensed water separated by the water-cooled condenser is 1Kg.
The moisture content of the obtained dehydrated coal is 41% (based on dry coal)
It got worse.

この場合、たとえ下部の気体温度が回復しても
加熱時間が残り5分間しかなく、褐炭が充分に昇
温できないので脱水炭の水分が増加することにな
る。また、第5図の一点鎖線で示されるように加
熱が終了しても抜き取りを停止しない場合、たと
えば、予熱、加熱、減圧の全過程を通じて抜き取
りを行う場合の分解ガスの全発生量に占める抜き
取り分解ガス量の割合は、加熱開始後一定の時
間、たとえば30%経過後抜き取りを開始し、加熱
の終了と同時に抜き取りを停止した場合に比較し
て、大きな差はなく、却つて同伴して流出する水
蒸気量が多かつたり、水蒸気の凝縮により安定し
た抜き取りが阻害されたりした。
In this case, even if the gas temperature in the lower part recovers, there are only 5 minutes of heating time left and the lignite cannot be heated sufficiently, resulting in an increase in water content in the dehydrated coal. In addition, as shown by the dashed line in Fig. 5, when extraction is not stopped even after heating is completed, for example, when extraction is performed throughout the entire process of preheating, heating, and depressurization, the amount of extraction that accounts for the total amount of cracked gas generated is Compared to a case where extraction is started after a certain period of time, for example 30%, after the start of heating, and extraction is stopped at the same time as heating ends, the proportion of decomposed gas is not significantly different; In some cases, the amount of water vapor being removed was large, and stable extraction was hindered by condensation of the water vapor.

上記の結果から、開閉弁23aを開くのを開始
するのは加熱開始後全加熱時間の30%から90%の
間の時間帯とし、開閉弁23aを閉じるのは加熱
の終了と同時にするのが特に好適である。
From the above results, it is recommended to start opening the on-off valve 23a between 30% and 90% of the total heating time after the start of heating, and close the on-off valve 23a at the same time as the end of heating. Particularly suitable.

発明の効果 本発明は以上述べたように圧力容器の下部温度
を検出することにより、別途設定された温度また
は圧力容器の上部温度と対比することにより、分
解ガスの発生を探知し、分解ガスを放出すべく開
閉弁を作動させるようにしたので、圧力容器下部
に滞留する分解ガスを適時放出しつつ圧力容器内
の加熱を最適状態にし、効率の良い脱水が実現で
きる。
Effects of the Invention As described above, the present invention detects the temperature at the bottom of the pressure vessel and compares it with a separately set temperature or the temperature at the top of the pressure vessel to detect the generation of decomposed gas. Since the on-off valve is operated to release the gas, the decomposed gas staying in the lower part of the pressure vessel can be released in a timely manner, the heating inside the pressure vessel can be optimized, and efficient dehydration can be achieved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の脱水法を示す系統図、第2図は
その処理手順説明図、第3図は本発明を実施する
ための装置の系統図、第4図は圧力容器と熱水貯
留容器内の温度分布図、第5図は分解ガス抜き取
り開始時刻と分解ガス抜き取り量比を示す説明
図、第6図および第7図は圧力容器内温度を検出
し、開閉弁を作動させる本発明を実施する装置の
説明図である。 1…有機固形物、8a…圧力容器、21a…均
圧管、22a…分岐管、23a…開閉弁、24a
…オリフイス、30a,32a…温度センサー、
31a…温度コントローラ。
Fig. 1 is a system diagram showing a conventional dehydration method, Fig. 2 is an explanatory diagram of its processing procedure, Fig. 3 is a system diagram of an apparatus for carrying out the present invention, and Fig. 4 is a pressure vessel and a hot water storage vessel. Figure 5 is an explanatory diagram showing the start time of decomposed gas removal and the ratio of decomposed gas removal amount. FIG. 2 is an explanatory diagram of an apparatus for implementation. 1...Organic solid matter, 8a...Pressure vessel, 21a...Pressure equalization pipe, 22a...Branch pipe, 23a...Opening/closing valve, 24a
...Orifice, 30a, 32a...Temperature sensor,
31a...Temperature controller.

Claims (1)

【特許請求の範囲】 1 圧力容器への低品位炭の封入、予熱、加熱、
減圧、排出の過程からなる低品位炭の脱水であつ
て、加熱過程では外部水蒸気源より前記圧力容器
に飽和水蒸気を注入して有機固形物を加熱して液
状脱水し、この間に発生する熱水を貯留しておい
て予熱媒体として利用する低品位炭の加熱脱水方
法において、圧力容器上部と下部との水蒸気温度
の差を検出し、この差が一定値以上の場合に圧力
容器下部に接続され、貯留された前記熱水より上
方に位置する開閉弁を開口して、この位置の内部
気体を排出するように制御することにより分解ガ
スを抜き取ることを特徴とする褐炭等の低品位炭
の加熱脱水方法。 2 圧力容器への低品位炭の封入、予熱、加熱、
減圧、排出の過程からなる低品位炭の脱水であつ
て、加熱過程では外部水蒸気源より前記圧力容器
に飽和水蒸気を注入して有機固形物を加熱して液
状脱水し、この間に発生する熱水を貯留しておい
て予熱媒体として利用する低品位炭の加熱脱水方
法において、圧力容器下部の水蒸気温度を検出
し、これが別途設定する温度まで低下した場合に
圧力容器下部に接続され、貯留された前記熱水よ
り上方に位置する開閉弁を開口して、この位置の
内部気体を排出するように制御することにより分
解ガスを抜き取ることを特徴とする褐炭等の低品
位炭の加熱脱水方法。
[Claims] 1. Enclosure of low-rank coal in a pressure vessel, preheating, heating,
Dehydration of low-rank coal consists of a process of depressurization and discharge, and in the heating process, saturated steam is injected into the pressure vessel from an external steam source to heat organic solids and dehydrate them into liquid form, and the hot water generated during this process is In a heating dehydration method for low-rank coal that stores water and uses it as a preheating medium, the difference in steam temperature between the upper and lower parts of the pressure vessel is detected, and if this difference exceeds a certain value, the steam is connected to the lower part of the pressure vessel. , Heating of low-grade coal such as brown coal, characterized in that cracked gas is extracted by opening an on-off valve located above the stored hot water and controlling the internal gas at this position to be discharged. Dehydration method. 2 Insertion of low-rank coal into the pressure vessel, preheating, heating,
Dehydration of low-rank coal consists of a process of depressurization and discharge, and in the heating process, saturated steam is injected into the pressure vessel from an external steam source to heat organic solids and dehydrate them into liquid form, and the hot water generated during this process is In a heating dehydration method for low-rank coal that stores and uses it as a preheating medium, the steam temperature at the bottom of the pressure vessel is detected, and when the temperature drops to a separately set temperature, it is connected to the bottom of the pressure vessel and stored. A method for heating and dehydrating low-grade coal such as lignite, characterized in that cracked gas is removed by opening an on-off valve located above the hot water and controlling the internal gas at this position to be discharged.
JP16245280A 1980-11-17 1980-11-17 Thermal dewater of organic solid matter Granted JPS5784972A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16245280A JPS5784972A (en) 1980-11-17 1980-11-17 Thermal dewater of organic solid matter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16245280A JPS5784972A (en) 1980-11-17 1980-11-17 Thermal dewater of organic solid matter

Publications (2)

Publication Number Publication Date
JPS5784972A JPS5784972A (en) 1982-05-27
JPS6361998B2 true JPS6361998B2 (en) 1988-11-30

Family

ID=15754873

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16245280A Granted JPS5784972A (en) 1980-11-17 1980-11-17 Thermal dewater of organic solid matter

Country Status (1)

Country Link
JP (1) JPS5784972A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6217589A (en) * 1985-07-15 1987-01-26 平山 一政 Method of drying hygroscopic substance

Also Published As

Publication number Publication date
JPS5784972A (en) 1982-05-27

Similar Documents

Publication Publication Date Title
US4602438A (en) Method and apparatus for fluidized steam drying of low rank coals with wet scrubbing
JP2723357B2 (en) Steam treatment method for carbonaceous materials
FR2535734A1 (en) PROCESS FOR GASIFYING LIGNO-CELLULOSIC PRODUCTS AND DEVICE FOR IMPLEMENTING SAID METHOD
NL8101711A (en) PYROLYSIS METHOD AND SYSTEM USING PYROLYSIS OIL RECIRCULATION.
CA2845026C (en) Oilseed crushing heat recovery process
FR2478287A1 (en) METHOD AND APPARATUS FOR HEATING PARTICULATE MATERIAL
JP2008542004A (en) Method for distilling solid organic products
KR100621713B1 (en) Upgrading solid material
JPS6361998B2 (en)
JP6502532B2 (en) Cooling method of half carbonized biomass
US4514910A (en) Dehydration of lignite or the like
US20080004456A1 (en) Process and Apparatus for Treating Waste Material Incorporating Lipid Containing Material to Recover the Lipid
AU2016230473A1 (en) Coal upgrade plant and method for manufacturing upgraded coal
JPH0144749B2 (en)
AT504996A1 (en) METHOD AND DEVICE FOR DRYING CRYSTALLINE CARBOXYLIC ACIDS
US11292722B2 (en) Treatment of spent cannabis biomass
RU2336125C1 (en) Method of continuous production of peat-mineral hydrophobic oil sorbent
US3812595A (en) Method of and means for flash drying naturally occurring oilseeds
EP2678409A1 (en) Torrefaction process integrated in a fluidized bed reactor
US1156609A (en) Method and apparatus for extracting nicotin from tobacco material.
US1977416A (en) Process of decaffeinating coffee beans
US1374887A (en) And egbert l
JPS649359B2 (en)
JPS6312918B2 (en)
JP3646132B2 (en) Treatment method of organic sludge