JPS647154B2 - - Google Patents

Info

Publication number
JPS647154B2
JPS647154B2 JP22483585A JP22483585A JPS647154B2 JP S647154 B2 JPS647154 B2 JP S647154B2 JP 22483585 A JP22483585 A JP 22483585A JP 22483585 A JP22483585 A JP 22483585A JP S647154 B2 JPS647154 B2 JP S647154B2
Authority
JP
Japan
Prior art keywords
film
thermosetting resin
oxide film
alloy
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP22483585A
Other languages
Japanese (ja)
Other versions
JPS6286180A (en
Inventor
Goro Yamauchi
Kishio Arita
Junichi Seki
Eiichi Sakida
Masato Mino
Juzo Matsudaira
Ryoji Takekoshi
Shigemori Myata
Junichi Masuda
Yoshitaka Koide
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP22483585A priority Critical patent/JPS6286180A/en
Priority to US06/865,034 priority patent/US4770946A/en
Priority to PCT/JP1985/000571 priority patent/WO1986002388A1/en
Priority to DE8585905112T priority patent/DE3576834D1/en
Priority to EP19850905112 priority patent/EP0198092B1/en
Publication of JPS6286180A publication Critical patent/JPS6286180A/en
Publication of JPS647154B2 publication Critical patent/JPS647154B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Physical Vapour Deposition (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は耐食性、表面導電性、耐摩耗性および
耐熱衝撃性が改善された、たとえば航空宇宙機器
用、精密電気機械機器用、自動車部品用として好
適な、表面処理を施したマグネシウム(Mg)ま
たはMg合金とその表面処理方法に関する。 〔開示の概要〕 本発明は、表面処理を施したMgまたはMg合
金とその表面処理方法において、MgまたはMg
合金の表面に酸化皮膜、熱硬化性樹脂膜、導電性
皮膜が順次設けられてなり、前記熱硬化性樹脂膜
および導電性皮膜のうちの少なくとも一つを材質
の異なる複数の層とすることにより、耐食性を著
しく向上させることができるのみでなく、表面導
電性を確保でき、さらには耐熱衝撃性、耐摩耗性
を向上させる技術を開示するものである。 なお、この概要はあくまでも本発明の技術内容
に迅速にアクセスするためにのみ供されるもので
あつて、本発明の技術的範囲および権利解釈に対
しては何の影響も及ぼさないものである。 〔従来の技術〕 航空宇宙機器用、精密電気機器用ならびに自動
車部品用などに使用される金属材料は、軽量化、
低消費エネルギー化、高性能化のため、アルミニ
ウム(Al)を始めとする軽合金が多用されてい
る。たとえば、衛星用中継器筐体等に見られるよ
うに、電気・電子部品または回路を内蔵する筐体
では、安定な接地を得るため、また耐電磁干渉性
を確保するため表面導電性が必要とされる。これ
ら筐体に従来用いられてきたAl合金の場合には、
耐食性が優れているので、厚い耐食性の絶縁皮膜
を表面に生成する必要がない。 最近、上述した機器用として、Al合金にかわ
り、Al合金よりも30%以上比重の小さいMg合金
が用いられる傾向にある。Mgは実用金属の中で
最も化学的に活性であり、実用に際してMgまた
はMg合金の表面には防錆膜の形成が必要であ
る。Mg合金の防食法には、例えばSpencer,L.
F.の論文“Chemical Coatings for Magnesium
Alloys”(Metal Finishing;Sept.,1970,63―
66および同誌Oct.,1970,52―57)など多くの研
究がなされているが、Mg合金の防食技術はいま
だ確立されていない。通常の化成処理、陽極酸化
処理、湿式めつき、乾式めつきあるいは塗装等に
より防錆膜をマグネシウム表面上に付着させたと
しても、これらの膜中にはミクロなピンホールが
存在するため、下地のマグネシウムが表面に拡散
してくるのを防ぎきれず、耐食性の劣化をきた
す。さらに表面導電性を付与するために、防食酸
化皮膜上にAu、銀(Ag)その他の導電性金属皮
膜を設けると、MgまたはMg合金と導電性金属
皮膜の間には、濕つた環境下では電池が形成さ
れ、MgまたはMg合金の腐食が進行するという
問題がある。 このようにMgまたはMg合金については、有
効な防食法が確立しておらず、まして、防食性と
表面導電性の双方を具えたMgまたはMg合金は
これまで実現しておらず、また、そのようなMg
またはMg合金の表面処理方法もこれまでなかつ
た。 〔発明が解決しようとする問題点〕 上述したように従来のMgまたはMg合金の表
面処理方法ではMgまたはMg合金の耐食性、表
面導電性が十分でないのみならず耐熱衝撃性、耐
摩耗性のいずれも十分でなかつた。 本発明は、このような従来のMgまたはMg合
金の表面処理方法の欠点を改良するためになされ
たものであつて、特に耐食性、表面導電性と共
に、耐熱衝撃性および耐摩耗性にすぐれた表面処
理の施されたMgまたはMg合金を提供すること
および、そのための表面処理方法を提供すること
を目的とする。 〔問題点を解決するための手段〕 かかる目的を達成するために、本発明において
は、MgまたはMg合金の表面に酸化皮膜、熱硬
化性樹脂膜、導電性皮膜が順次設けられてなり、
熱硬化性樹脂膜および導電性皮膜のうちの少なく
とも一つが材質の異なる複数からなつている。 〔作用〕 以上のように、本発明にかかる表面処理を施し
たMgおよびMg合金は、MgおよびMg合金表面
に、順次酸化皮膜、熱硬化性樹脂膜および導電性
皮膜を被着させ、熱硬化性樹脂膜および導電性皮
膜のうちの少なくとも一つは材質の異なる複層と
しているので、耐食性と表面導電性をともに備
え、皮膜の付着力が強い。また、たとえ導電性皮
膜、熱硬化性樹脂膜の一部が傷つけられても、硬
い酸化皮膜が下地のMgまたはMg合金を保護す
るため耐摩耗性、耐食性が極めて大きい。 〔実施例〕 本発明の内容を実施例および比較例に基づいて
詳細に説明する。 MgまたはMg合金表面に酸化皮膜、熱硬化性
樹脂膜、導電性皮膜を順次形成し、7種類の表面
処理を施したMgまたはMg合金と、比較のため
に酸化皮膜、熱硬化性樹脂膜または導電性皮膜の
一つを有しない7種類のMgまたはMg合金を以
下に示す方法で作製した。 〔実施例 1〕 3wt%Al―1wt%Zn―Mgの組成の合金板に陽
極酸化処理のため電極リード線を接続させた後、
この合金板をKOH165g、KF35g、Na3PO435g、
Al(OH)335g、KMnO420gを水1中に溶かした
混合水溶液中に浸し、電圧AV40V、電流密度
2.0A/dm2で15分陽極酸化を行い、合金板表面
に厚さ20μmの酸化皮膜を形成し、ついで、酸化
皮膜上にエポキシ樹脂を10μmの厚さとなるよう
付着させ、さらにその上にウレタン樹脂を15μm
の厚さとなるように付着させた。この熱硬化性樹
脂が固化した後、Arガス圧5×10-5Torr、バイ
アス電圧−20Vの条件でスパツタクリーニングを
行い、熱硬化樹脂膜表面を清浄化するとともに、
この膜の表面を活性化させた。ついで、Arガス
圧2×10-4Torr、バイアス電圧−200Vの条件で
Auを5μmの厚さとなるようイオンプレーテイン
グを行つた。導電性皮膜を設けるに際して、熱硬
化性樹脂の温度を、その樹脂が熱分解する温度以
下にとどめることが、熱硬化性樹脂の強度を弱め
ず、また樹脂と導電性皮膜の密着性を高める上で
必要である。このように表面処理した合金板を実
施例試料1と名付けた。 〔実施例 2〕 3wt%Al―1wt%Zn―Mgの組成の合金の表面
に実施例1と同じ条件で陽極酸化処理を施し、厚
さ20μmの酸化皮膜を形成した。ついで、酸化皮
膜上に、エポキシ樹脂を10μmの厚さとなるよう
付着させた。この熱硬化性樹脂が固化した後、実
施例1と同様にスパツタクリーニングを行い、熱
硬化性樹脂膜表面を清浄化するとともに、この膜
の表面を活性化させた。ついで、Arガス圧2×
10-4Torr、バイアス電圧−200Vの条件で、Niを
0.04μmの厚さとなるようイオンプレーテイング
を行い、引き続き、Auを5μmの厚さとなるよう
イオンプレーテイングを行つた。このように表面
処理した合金板を実施例試料2と名付けた。 〔実施例 3〕 純Mg板をNa2Cr2O7120g、CaF212g、
MgF212gを1の水に溶かした混合水溶液中に
60分浸し、いわゆる化成処理により20Å厚さの酸
化皮膜を生成させた。 この酸化皮膜上に、エポキシ樹脂を厚さ5μmと
なるよう付着させ、その上にユリア樹脂を25μm
付着させた。この熱硬化性樹脂が固化した後、そ
の表面をスパツタクリーニングすることなく、
Arガス圧4×10-4Torr、バイアス電圧−70Vの
条件で、Tiを0.05μmの厚さとなるようイオンプ
レーテイングを行い、ひきつづきAuを3μmの厚
さとなるようイオンプレーテイングを行つた。こ
のように表面処理したMg板を実施例試料3と名
付けた。 〔実施例 4〕 第1図を参照して本実施例を説明する。図にお
いて、1はMg合金板、2は陽極酸化皮膜、3は
熱硬化性樹脂膜で3A,3Bの2層からなつてい
る。4は導電性皮膜で4A,4Bの2層からなつ
ている。 3wt%Al―1wt%Zn―Mgの組成の合金板1の
表面に実施例1と同じ条件で陽極酸化処理を施
し、厚さ20μmの酸化皮膜2を形成した。ついで
酸化皮膜2上にエポキシ樹脂3Aを10μmの厚さ
となるように付着させ、その上にウレタン樹脂3
Bを15μmの厚さとなるように付着して熱硬化樹
脂層3とした。熱硬化樹脂層3が固化した後、ウ
レタン樹脂3Bの表面をスパツタクリーニング
し、Arガス圧2×10-4Torr、バイアス電圧−
260Vの条件でNi4Aを0.04μmの厚さとなるよう
にイオンプレーテイングし、さらに実施例1と同
条件でAu4Bを5μmの厚さとなるようイオンプ
レーテイングして、導電性皮膜4とした。このよ
うに表面処理した合金板を実施例試料4と名付け
た。 〔実施例 5〕 6wt%Zn―0.5wt%Zr―Mgからなる組成の合金
板をNa2Cr2O7120g、CaF212g、MgF212gを1
の水に溶かした混合水溶液中に70分浸し、いわゆ
る化成処理を施すことにより20Å厚さの酸化皮膜
を生成させた。 この酸化皮膜上に、フエノール樹脂を7μmの厚
さとなるよう付着させ、その上にアクリル樹脂を
20μmの厚さとなるよう付着させた。この熱硬化
性樹脂が固化した後、その表面をスパツタクリー
ニングし、Arガス圧3×10-3Torr、バイアス電
圧−300Vの条件で、Alを0.1μmの厚さとなるよ
うスパツタリングを行つた。さらにArガス圧5
×10-3Torr、バイアス電圧−250Vの条件で、Ag
を5μmの厚さとなるよう付着させた。このように
表面処理した合金板を実施例試料5と名付けた。 〔実施例 6〕 純Mg板に電極リード線を付着させた後、この
Mg板をKOH165g、KF35g、Na3PO435g、Al
(OH)335g、KMnO420gを水1中に溶かした混
合水溶液中に浸し、電圧AC80V、電流密度
2.0A/dm2の条件で70分陽極酸化を行い30μmの
厚さの酸化皮膜を生成させた。 ついでこの酸化皮膜上にメラミン樹脂を10μm
の厚さとなるように付着させ、その上にシリコン
樹脂を20μmの厚さとなるよう付着させた。この
熱硬化性樹脂が固化した後、その表面をスパツタ
クリーニングし、1×10-5Torrの真空下での真
空蒸着法により、この熱硬化性樹脂膜上に0.1μm
の厚さとなるようTiを付着させた。さらに同様
な方法により、Alを3μm付着させた。このよう
に表面処理したMg板を実施例試料6と名付け
た。 〔実施例 7〕 3wt%Al―1wt%Zn―Mgからなる組成の合金
板をNa2Cr2O7120g、CaF212g、MgF212gを1
の水に溶かした混合水溶液中に60分浸し、いわゆ
る化成処理により、20Å厚さの酸化皮膜を生成さ
せた。 こ酸化皮膜上に、エポキシ樹脂を厚さ5μmとな
るよう付着させ、その上にユリア樹脂を25μm付
着させた。この熱硬化性樹脂が固化した後、その
表面をスパツタクリーニングし、Arガス圧4×
10-4Torr、バイアス電圧−70Vの条件で、Tiを
0.05μmの厚さとなるようイオンプレーテイング
を行い、ひきつづきAuを3μmの厚さとなるよう
イオンプレーテイングを行つた。このように表面
処理した合金板を実施例試料7と名付けた。 〔比較例 1〕 3wt%Al―1wt%Zn―Mgからなる組成の合金
板に電極リード線を接続させた後、この合金板を
KOH165g、KF35g、Na3PO435g、Al(OH)335g、
KMnO4、10g、MnO410gを水1に溶かした混
合水溶液中に浸し、電圧AC50V、電流密度
2.0A/dm2にて15分間陽極酸化を行い、合金板
表面に厚さ20μmの酸化皮膜を生成させた。 ついで、この酸化皮膜上に実施例1と同様にイ
オンプレーテイング法により厚さ5μmのAu膜を
形成させた。 このように表面処理した合金板試料を比較例試
料1と名付けた。 〔比較例 2〕 3wt%Al―1wt%Zn―Mgからなる合金板上に
厚さ40μmのメラミン樹脂を塗布した後、この合
金板を大気中湿度30%、温度35℃のもとで72時間
放置し、塗布したメラミン樹脂を乾燥させた。 ついで、乾燥させたメラミン樹脂膜表面をスパ
ツタクリーニングし、その上に、イオンプレーテ
イング法により、厚さ5μmのAu膜を生成させた。 このように表面処理した合金板試料を比較例試
料2と名付けた。 〔比較例 3〕 3wt%Al―1wt%Zn―Mgの合金板を
Na2Cr2O7120g、CaF21.2gを1の水に溶かした
水溶液中に60分浸し、いわゆる化成処理を施すこ
とにより、この合金表面上に厚さ20Åの酸化皮膜
を生成させた。 ついで、この酸化皮膜上に実施例1と同様にイ
オンプレーテイング法により厚さ5μmのAu膜を
形成させた。 このように表面処理した合金板試料を比較例試
料3と名付けた。 〔比較例 4〕 3wt%Al―1wt%Zn―Mgの組成の合金板の上
に厚さ40μmのメラミン樹脂を塗布した後、この
合金板を大気中湿度30%、温度35℃の条件で72時
間放置し、塗布したメラミン樹脂を完全に乾燥さ
せた。 ついで、この熱硬化性樹脂表面をスパツタクリー
ニングし、その上に実施例1と同様にイオンプレ
ーテイング法により、厚さ1.5μmのAu膜を被着
させた。 このように表面処理した合金板試料を比較例試
料4と名付けた。 〔比較例 5〕 純Mg板に実施例1と同じ条件で陽極酸化処理
を施し、合金表面上に厚さ20μmの酸化皮膜を形
成した。その後、実施例1と同様なイオンプレー
テイング条件で、この酸化皮膜上にNiを0.04μm
厚さ、さらにAuを5μmの厚さとなるよう付着さ
せた。このように表面処理したMg板を比較例試
料5と名付けた。 〔比較例 6〕 6wt%Zn―0.5wt%Zr―Mgからなる組成の合金
板に酸化皮膜を設けず、直接フエノール樹脂
7μm、アクリル樹脂20μmを付着させ、この熱硬
化性樹脂膜が固化した後、その表面をスパツタク
リーニングし、実施例5と同様なスパツタリング
条件で、この熱硬化性樹脂膜上にAlを0.1μm厚
さ、Agを5μm厚さとなるよう付着させた。この
ように表面処理した合金板を比較例試料6と名付
けた。 〔比較例 7〕 3wt%Al―1wt%Zn―Mgからなる組成の合金
板上に実施例1と同じ条件で陽極酸化処理を施
し、厚さ20μmの酸化皮膜を形成した。この酸化
皮膜上にエポキシ樹脂を10μm厚さとなるように
塗布し、その上にウレタン樹脂を15μm厚さとな
るように塗布した。このように表面処理した合金
板を比較例試料7と名付けた。 実施例試料1―7、比較例試料1―7につい
て、塩水噴霧試験、抵触抵抗試験、熱衝撃試験を
行なつた結果を表―1に示す。
[Industrial Application Field] The present invention provides a surface treatment with improved corrosion resistance, surface conductivity, abrasion resistance, and thermal shock resistance, which is suitable for use in aerospace equipment, precision electrical machinery equipment, and automobile parts, for example. This article relates to applied magnesium (Mg) or Mg alloy and its surface treatment method. [Summary of the Disclosure] The present invention provides a surface-treated Mg or Mg alloy and a surface treatment method thereof.
An oxide film, a thermosetting resin film, and a conductive film are sequentially provided on the surface of the alloy, and at least one of the thermosetting resin film and the conductive film is made of a plurality of layers made of different materials. , discloses a technique that not only can significantly improve corrosion resistance but also ensure surface conductivity and further improve thermal shock resistance and abrasion resistance. Note that this summary is provided solely for the purpose of quickly accessing the technical content of the present invention, and does not have any influence on the technical scope of the present invention or the interpretation of rights. [Prior art] Metal materials used for aerospace equipment, precision electrical equipment, and automobile parts are lightweight,
Light alloys such as aluminum (Al) are often used to reduce energy consumption and improve performance. For example, in cases containing electrical/electronic components or circuits, such as those seen in satellite repeater cases, surface conductivity is required to ensure stable grounding and resistance to electromagnetic interference. be done. In the case of Al alloys that have traditionally been used for these casings,
Since it has excellent corrosion resistance, there is no need to form a thick corrosion-resistant insulating film on the surface. Recently, there has been a tendency to use Mg alloys, which have a specific gravity 30% or more lower than Al alloys, in place of Al alloys for the above-mentioned devices. Mg is the most chemically active of all practical metals, and in practical use it is necessary to form a rust-preventing film on the surface of Mg or Mg alloys. Corrosion protection methods for Mg alloys include, for example, Spencer, L.
The paper “Chemical Coatings for Magnesium” by F.
Alloys” (Metal Finishing; Sept., 1970, 63―
66 and the same journal, Oct. 1970, 52-57), a corrosion prevention technology for Mg alloys has not yet been established. Even if a rust-preventing film is attached to the magnesium surface by normal chemical conversion treatment, anodizing treatment, wet plating, dry plating, or painting, there are microscopic pinholes in the film, so the underlying layer cannot be coated. Magnesium cannot be prevented from diffusing to the surface, resulting in deterioration of corrosion resistance. Furthermore, in order to provide surface conductivity, if a conductive metal film such as Au, silver (Ag), etc. is provided on the anticorrosive oxide film, there will be a gap between Mg or Mg alloy and the conductive metal film in a humid environment. There is a problem that batteries are formed and corrosion of Mg or Mg alloy progresses. As described above, no effective corrosion protection method has been established for Mg or Mg alloys, and even more so, no Mg or Mg alloy has been realized that has both corrosion resistance and surface conductivity. Like Mg
Furthermore, there has been no surface treatment method for Mg alloys. [Problems to be Solved by the Invention] As mentioned above, the conventional surface treatment methods for Mg or Mg alloys not only do not provide sufficient corrosion resistance and surface conductivity of Mg or Mg alloys, but also degrade thermal shock resistance and wear resistance. It wasn't enough either. The present invention has been made in order to improve the shortcomings of such conventional surface treatment methods for Mg or Mg alloys, and in particular to provide a surface with excellent corrosion resistance, surface conductivity, thermal shock resistance, and abrasion resistance. The object of the present invention is to provide treated Mg or Mg alloy, and to provide a surface treatment method therefor. [Means for solving the problem] In order to achieve the above object, in the present invention, an oxide film, a thermosetting resin film, and a conductive film are sequentially provided on the surface of Mg or Mg alloy,
At least one of the thermosetting resin film and the conductive film is made of a plurality of different materials. [Function] As described above, Mg and Mg alloys subjected to the surface treatment according to the present invention have an oxide film, a thermosetting resin film, and a conductive film sequentially deposited on the Mg and Mg alloy surfaces, and are then thermoset. Since at least one of the electrically conductive resin film and the conductive film is a multi-layer structure made of different materials, it has both corrosion resistance and surface conductivity, and the film has strong adhesion. Furthermore, even if part of the conductive film or thermosetting resin film is damaged, the hard oxide film protects the underlying Mg or Mg alloy, resulting in extremely high wear resistance and corrosion resistance. [Example] The contents of the present invention will be explained in detail based on Examples and Comparative Examples. For comparison, oxide film, thermosetting resin film, and conductive film were sequentially formed on the Mg or Mg alloy surface, and Mg or Mg alloy was subjected to seven types of surface treatments. Seven types of Mg or Mg alloys without one of the conductive films were prepared by the method shown below. [Example 1] After connecting an electrode lead wire to an alloy plate having a composition of 3wt%Al-1wt%Zn-Mg for anodizing treatment,
This alloy plate was mixed with KOH165g, KF35g, Na 3 PO 4 35g,
Immerse 35g of Al(OH) 3 and 20g of KMnO 4 in a mixed aqueous solution of 1 part of water, apply voltage AV40V, current density.
Anodic oxidation was performed at 2.0 A/dm 2 for 15 minutes to form an oxide film with a thickness of 20 μm on the surface of the alloy plate. Next, epoxy resin was adhered to a thickness of 10 μm on the oxide film, and then urethane was applied on top of it. 15μm resin
It was attached to a thickness of . After this thermosetting resin has solidified, spatter cleaning is performed under the conditions of Ar gas pressure of 5 × 10 -5 Torr and bias voltage of -20V to clean the surface of the thermosetting resin film.
The surface of this membrane was activated. Next, under the conditions of Ar gas pressure of 2 × 10 -4 Torr and bias voltage of -200V.
Ion plating of Au was performed to a thickness of 5 μm. When forming a conductive film, it is important to keep the temperature of the thermosetting resin below the temperature at which the resin thermally decomposes, so as not to weaken the strength of the thermosetting resin and to increase the adhesion between the resin and the conductive film. It is necessary. The alloy plate surface-treated in this manner was named Example Sample 1. [Example 2] The surface of an alloy having a composition of 3 wt% Al-1 wt% Zn-Mg was anodized under the same conditions as in Example 1 to form an oxide film with a thickness of 20 μm. Then, epoxy resin was deposited on the oxide film to a thickness of 10 μm. After this thermosetting resin was solidified, spatter cleaning was performed in the same manner as in Example 1 to clean the surface of the thermosetting resin film and activate the surface of this film. Then, Ar gas pressure 2×
Ni under the conditions of 10 -4 Torr and bias voltage of -200V.
Ion plating was performed to a thickness of 0.04 μm, followed by ion plating of Au to a thickness of 5 μm. The alloy plate surface-treated in this manner was named Example Sample 2. [Example 3] Pure Mg plate was mixed with 120g of Na 2 Cr 2 O 7 , 12g of CaF 2 ,
In a mixed aqueous solution of 12g of MgF 2 dissolved in 1 part of water
After soaking for 60 minutes, an oxide film with a thickness of 20 Å was formed by so-called chemical conversion treatment. Epoxy resin is adhered to a thickness of 5μm on this oxide film, and urea resin is applied to a thickness of 25μm on top of it.
Attached. After this thermosetting resin has solidified, there is no need to spatter clean the surface.
Under the conditions of Ar gas pressure of 4 x 10 -4 Torr and bias voltage of -70V, ion plating of Ti was performed to a thickness of 0.05 μm, followed by ion plating of Au to a thickness of 3 μm. The Mg plate surface-treated in this way was named Example Sample 3. [Example 4] This example will be described with reference to FIG. In the figure, 1 is an Mg alloy plate, 2 is an anodized film, and 3 is a thermosetting resin film, which consists of two layers 3A and 3B. 4 is a conductive film consisting of two layers 4A and 4B. The surface of the alloy plate 1 having a composition of 3 wt% Al-1 wt% Zn-Mg was anodized under the same conditions as in Example 1 to form an oxide film 2 with a thickness of 20 μm. Next, epoxy resin 3A is deposited on the oxide film 2 to a thickness of 10 μm, and urethane resin 3A is applied on top of it to a thickness of 10 μm.
A thermosetting resin layer 3 was prepared by adhering B to a thickness of 15 μm. After the thermosetting resin layer 3 has solidified, the surface of the urethane resin 3B is spatter cleaned, and the Ar gas pressure is 2×10 -4 Torr and the bias voltage is -
Conductive film 4 was obtained by ion plating Ni4A to a thickness of 0.04 μm under the conditions of 260 V and further ion plating Au4B to a thickness of 5 μm under the same conditions as in Example 1. The alloy plate surface-treated in this manner was named Example Sample 4. [Example 5] An alloy plate having a composition of 6wt%Zn-0.5wt%Zr-Mg was prepared by adding 120g of Na 2 Cr 2 O 7 , 12g of CaF 2 , and 12g of MgF 2 to 1
An oxide film with a thickness of 20 Å was formed by immersing it in a mixed aqueous solution of water for 70 minutes and performing a so-called chemical conversion treatment. Phenol resin is adhered to a thickness of 7μm on this oxide film, and acrylic resin is applied on top of it.
It was deposited to a thickness of 20 μm. After this thermosetting resin had solidified, its surface was sputter cleaned, and Al was sputtered to a thickness of 0.1 μm under the conditions of Ar gas pressure of 3×10 −3 Torr and bias voltage of −300 V. Furthermore, Ar gas pressure 5
Ag
was deposited to a thickness of 5 μm. The alloy plate surface-treated in this manner was named Example Sample 5. [Example 6] After attaching an electrode lead wire to a pure Mg plate, this
Mg plate with KOH165g, KF35g, Na 3 PO 4 35g, Al
(OH) 3 35g, KMnO 4 20g dissolved in 1 part water, immersed in a mixed aqueous solution, voltage AC 80V, current density.
Anodic oxidation was performed for 70 minutes at 2.0 A/dm 2 to form an oxide film with a thickness of 30 μm. Next, 10 μm of melamine resin was applied on this oxide film.
On top of that, silicone resin was deposited to a thickness of 20 μm. After this thermosetting resin has solidified, its surface is spatter cleaned, and a 0.1 μm thick film is deposited on this thermosetting resin film by vacuum evaporation method under a vacuum of 1×10 -5 Torr.
Ti was deposited to a thickness of . Furthermore, 3 μm of Al was deposited using the same method. The Mg plate surface-treated in this way was named Example Sample 6. [Example 7] An alloy plate having a composition of 3wt%Al-1wt%Zn-Mg was prepared by adding 120g of Na 2 Cr 2 O 7 , 12g of CaF 2 , and 12g of MgF 2 to 1
The material was immersed in a mixed aqueous solution of water for 60 minutes, and an oxide film with a thickness of 20 Å was formed through so-called chemical conversion treatment. Epoxy resin was deposited on the oxidized film to a thickness of 5 μm, and urea resin was deposited on top of it to a thickness of 25 μm. After this thermosetting resin has solidified, its surface is spatter cleaned and Ar gas pressure 4×
Ti under the conditions of 10 -4 Torr and bias voltage of -70V.
Ion plating was performed to a thickness of 0.05 μm, followed by ion plating of Au to a thickness of 3 μm. The alloy plate surface-treated in this manner was named Example Sample 7. [Comparative Example 1] After connecting an electrode lead wire to an alloy plate having a composition of 3wt%Al-1wt%Zn-Mg, this alloy plate was
KOH165g, KF35g, Na3PO435g , Al (OH) 335g ,
KMnO 4 , 10g, MnO 4 10g dissolved in 1 part water, immersed in a mixed aqueous solution, voltage AC 50V, current density.
Anodic oxidation was performed at 2.0 A/dm 2 for 15 minutes to form an oxide film with a thickness of 20 μm on the surface of the alloy plate. Then, a 5 μm thick Au film was formed on this oxide film by the ion plating method in the same manner as in Example 1. The alloy plate sample surface-treated in this manner was named Comparative Example Sample 1. [Comparative Example 2] After coating a melamine resin with a thickness of 40 μm on an alloy plate consisting of 3 wt% Al-1 wt% Zn-Mg, this alloy plate was exposed to air at a humidity of 30% and a temperature of 35°C for 72 hours. The applied melamine resin was left to dry. Next, the surface of the dried melamine resin film was sputter cleaned, and a 5 μm thick Au film was formed thereon by ion plating. The alloy plate sample surface-treated in this manner was named Comparative Example Sample 2. [Comparative Example 3] 3wt%Al-1wt%Zn-Mg alloy plate
An oxide film with a thickness of 20 Å was formed on the surface of this alloy by immersing it in an aqueous solution of 120 g of Na 2 Cr 2 O 7 and 1.2 g of CaF 2 dissolved in 1 part water for 60 minutes to perform a so-called chemical conversion treatment. Then, a 5 μm thick Au film was formed on this oxide film by the ion plating method in the same manner as in Example 1. The alloy plate sample surface-treated in this manner was named Comparative Example Sample 3. [Comparative Example 4] After coating a melamine resin with a thickness of 40 μm on an alloy plate with a composition of 3wt%Al-1wt%Zn-Mg, this alloy plate was heated at 72°C under atmospheric humidity of 30% and temperature of 35°C. The coated melamine resin was left to stand for a while to completely dry. Next, the surface of this thermosetting resin was sputter cleaned, and a 1.5 μm thick Au film was deposited thereon by the ion plating method as in Example 1. The alloy plate sample surface-treated in this manner was named Comparative Example Sample 4. [Comparative Example 5] A pure Mg plate was anodized under the same conditions as in Example 1 to form an oxide film with a thickness of 20 μm on the alloy surface. Then, under the same ion plating conditions as in Example 1, Ni was deposited to a thickness of 0.04 μm on this oxide film.
Further, Au was deposited to a thickness of 5 μm. The Mg plate surface-treated in this manner was named Comparative Example Sample 5. [Comparative Example 6] Phenol resin was applied directly to an alloy plate with a composition of 6wt%Zn-0.5wt%Zr-Mg without providing an oxide film.
After this thermosetting resin film has solidified, its surface is sputter cleaned, and under the same sputtering conditions as in Example 5, 0.1 μm of Al is deposited on this thermosetting resin film. Ag was deposited to a thickness of 5 μm. The alloy plate surface-treated in this manner was named Comparative Example Sample 6. [Comparative Example 7] An alloy plate having a composition of 3 wt% Al-1 wt% Zn-Mg was anodized under the same conditions as in Example 1 to form an oxide film with a thickness of 20 μm. Epoxy resin was applied to a thickness of 10 μm on this oxide film, and urethane resin was applied thereon to a thickness of 15 μm. The alloy plate surface-treated in this manner was named Comparative Example Sample 7. Table 1 shows the results of a salt spray test, a collision resistance test, and a thermal shock test for Example Sample 1-7 and Comparative Example Sample 1-7.

【表】【table】

【表】 各試験法の詳細は以下のとおりである。 塩水噴霧試験: 35℃に加熱したMgまたはMg合金板試料に対
し、5%のNaCl溶液を噴霧し、MgまたはMg合
金に腐食を生じるまでの時間から耐食性を判定し
た。 接触抵抗: 表面処理を施したMgまたはMg合金板試料の
表面に、Au製の接触子を10gの荷重で押しつけて
接触子と試料との間の電気抵抗をミリオームメー
タで測定し、表面導電性能を判定した。 熱衝撃試験: MgまたはMg合金板試料を、−190℃と+100℃
で30分づつ保持して繰り返し熱サイクルせしめ、
膜の剥離、ひび割れなどの変質がおきるまでの回
数により耐熱衝撃性の良否を判定した。 表―1に示した結果から明らかなように、Mg
またはMg合金上に酸化皮膜を設け、その上に単
層または複層の熱硬化樹脂膜と単層または複層の
導電膜を設けた本発明の実施例試料1―7は、す
ぐれた耐食性、表面導電性、および耐熱衝撃性を
示す。これに対し、酸化皮膜と単層または複層の
導電膜を有するが、熱硬化性樹脂膜をもたない比
較例試料1,3,5はMgまたはMg合金の腐食
の発生が早く、また酸化皮膜と導電性皮膜の熱膨
張の差を緩衝させる樹脂膜がないので、熱衝撃に
対して弱い。Mg合金表面上に酸化皮膜を形成せ
ずに直接単層または複層の熱硬化性樹脂および単
層または複層の導電膜を設けた比較例試料2,
4,6はやはりMg合金に腐食が発生し易く、ま
たMg合金と熱硬化性樹脂との接着が悪いので耐
熱衝撃性が悪い。比較例試料7は、Mg合金表面
に酸化皮膜を形成し、その上に複層の熱硬化樹脂
膜を設けてあるので、耐食性、耐熱衝撃性はすぐ
れているが、導電性皮膜を有しないので、比較例
試料3とともに表面導電性が劣つている。 上に述べた表面に酸化皮膜を形成した後、単層
または複層の熱硬化性樹脂膜および単層または複
層の導電膜を設けたMgまたはMg合金の皮膜の
付着力を試験した。試験方法はピーリング試験と
呼ばれるものである。表面処理を施したMgまた
はMg合金試料の表面に、鋭い刃物によつて1mm
の間隔でそれぞれ直交する10本づつの切込みを入
れ、合計100個の一辺1mmの正方形を形成する。
切込みを加えた試料の表面に粘着テープを強く押
つけた後、粘着テープを試料表面に垂直方向に引
張つてはがす。この時、試料表面の皮膜が100個
の正方形のうち、何個粘着テープに付着してMg
またはMg合金から剥離したかによつて皮膜の付
着力を評価する。代表的な例として、実施例試料
1,2,4および比較例試料5,6,8について
の試験結果を表―2に示す。比較例試料8は次に
述べるようにして作られたものである。
[Table] Details of each test method are as follows. Salt water spray test: A 5% NaCl solution was sprayed onto a Mg or Mg alloy plate sample heated to 35°C, and corrosion resistance was determined from the time until corrosion occurred in the Mg or Mg alloy. Contact resistance: An Au contact is pressed against the surface of a surface-treated Mg or Mg alloy plate sample with a load of 10 g, and the electrical resistance between the contact and the sample is measured with a milliohmmeter to determine the surface conductivity. was determined. Thermal shock test: Mg or Mg alloy plate sample at -190℃ and +100℃
Hold for 30 minutes at a time and heat cycle repeatedly.
The quality of thermal shock resistance was determined based on the number of times until deterioration such as peeling or cracking of the film occurred. As is clear from the results shown in Table 1, Mg
Alternatively, Example samples 1-7 of the present invention, in which an oxide film is provided on the Mg alloy, and a single-layer or multi-layer thermosetting resin film and a single-layer or multi-layer conductive film are provided thereon, have excellent corrosion resistance, Shows surface conductivity and thermal shock resistance. On the other hand, in Comparative Samples 1, 3, and 5, which have an oxide film and a single-layer or multi-layer conductive film, but do not have a thermosetting resin film, corrosion of Mg or Mg alloy occurs quickly, and oxidation Since there is no resin film to buffer the difference in thermal expansion between the film and the conductive film, it is vulnerable to thermal shock. Comparative example sample 2, in which a single-layer or multi-layer thermosetting resin and a single-layer or multi-layer conductive film were directly provided on the Mg alloy surface without forming an oxide film;
In Nos. 4 and 6, corrosion is likely to occur in the Mg alloy, and the adhesion between the Mg alloy and the thermosetting resin is poor, resulting in poor thermal shock resistance. Comparative Example Sample 7 has an oxide film formed on the Mg alloy surface and a multilayer thermosetting resin film on top of it, so it has excellent corrosion resistance and thermal shock resistance, but it does not have a conductive film. , and Comparative Example Sample 3, the surface conductivity is inferior. After forming an oxide film on the surface described above, the adhesion of the Mg or Mg alloy film provided with a single-layer or multi-layer thermosetting resin film and a single-layer or multi-layer conductive film was tested. The test method is called a peeling test. The surface of the surface-treated Mg or Mg alloy sample is 1 mm cut with a sharp knife.
Make 10 perpendicular cuts at intervals of , forming a total of 100 squares with sides of 1 mm.
After pressing the adhesive tape firmly against the surface of the sample where the cut has been made, remove the adhesive tape by pulling it in a direction perpendicular to the sample surface. At this time, out of 100 squares, how many of the film on the sample surface is attached to the adhesive tape and the Mg
Or evaluate the adhesion of the film based on whether it peels off from the Mg alloy. As representative examples, test results for Example Samples 1, 2, and 4 and Comparative Example Samples 5, 6, and 8 are shown in Table 2. Comparative Example Sample 8 was produced as described below.

【表】【table】

〔比較例 8〕[Comparative example 8]

3wt%Al―1wt%Zn―Mgからなる組成の合金
板に陽極酸化処理用の電極リード線を接続させた
後、この合金板をKOH165g、KF35g、
Na3PO435g、Al(OH)335g、KMnO410g、
MnO410gを水に溶かした混合水溶液中に浸し、
電圧AC50V、電流密度2.0A/dm2にて15分間陽
極酸化を行い、合金板表面に厚さ20μmの酸化皮
膜を生成させた。 ついで、酸化皮膜上にメラミン樹脂を40μm厚
さに塗布した後、この合金板を大気中湿度30%、
温度35℃のもとで72時間放置し、塗布したメラミ
ン樹脂を完全に乾燥させた。 その後、Arガス圧5×10-5Torr、バイアス電
圧−20Vの条件で、メラミン樹脂表面のスパツタ
クリーニングを行ない、同時にその表面を活性化
させた。このメラミン樹脂表面上に、Arガス圧
2×10-4Torr、バイアス電圧−200Vの条件で、
Auを5μmの厚さとなるようにイオンプレーテイ
ングを行なつた。 このように表面処理した合金板を比較例試料8
と名付けた。 表―2に見られるように陽極酸化処理を行なつ
たMg合金表面に2層の熱硬化性樹脂膜を設け、
その上にNiとAuの2層の導電性皮膜を設けた本
発明の実施例試料4は全く剥離が生じない。これ
は、酸化皮膜とエポキシ樹脂との接着力が強く、
またウレタン樹脂とNiとの接着力が強いためで
ある。高い導電性のAuの下地にNiやTi、実施例
5のようにAgの下地にAl、実施例6のようにAl
の下地にTiと、それぞれ活性な金属Ni、Al、Ti
またはCrなどの層を下地層として設けると、熱
硬化性樹脂膜と導電性皮膜との接着力が強くな
る。また樹脂の表面をスパツタクリーニングする
ことも接着力を高める上で有効である。熱硬化性
樹脂膜が1層の実施例試料2が実施例試料4につ
ぐ高い付着力を示す。Niを下地層としても熱硬
化性樹脂膜のない比較例試料5は、導電性皮膜の
酸皮化膜への付着力が弱いので、導電性皮膜のほ
とんどが剥離する。また下地層としてAl膜を有
する比較例試料6は、Mg合金の表面を酸化処理
していないので、熱硬化性樹脂のMg合金への付
着力が弱く、樹脂膜が全て剥離する。陽極酸化処
理をしたMg合金上に複層の樹脂膜と単層のAu導
電膜を設けた実施例試料1が、実施例試料2につ
ぐすぐれた付着力を示している。 以上のように、本発明にかかる表面処理を施し
たMg又はMg合金は、Mg又はMg合金上に、順
次酸化被膜、1種又は複数種の熱硬化性樹脂膜、
1種又は複数種の導電性皮膜が形成されているの
で、表面導電性が優れていることは無論のこと、
導電性皮膜の下に存在する熱硬化性樹脂膜、さら
にはその下に存在する硬い酸化皮膜の存在によ
り、耐食性および、耐摩耗性が著しく向上してい
る。導電性皮膜、熱硬化性樹脂の一部が損傷して
も、酸化皮膜によつてMgまたはMg合金は保護
される。熱硬化性樹脂膜の存在は耐食性や耐摩耗
性を向上させるばかりでなく、高分子材料特有の
弾力性を有しており、この熱硬化性樹脂が最下層
の酸化皮膜と最上層の導電性皮膜間に介在してい
るために酸化皮膜と導電性皮膜の熱膨張差を緩衝
する役割を果し、耐熱衝撃性を向上させている。
さらに熱硬化性樹脂膜の存在は、もともと振動吸
収性の優れたMgまたはMg合金の長所をさらに
助長する効果を有しているので、衛星搭載用筐体
で内部に電子回路等を内蔵する場合等には、内部
の電子回路が打上げ時の激しい振動から、確実に
保護され、衛星搭載用機器の信頼性が著しく向上
することになる。 酸化皮膜の凹凸部やピンホール中にくいこんだ
熱硬化性樹脂は、酸化皮膜と熱硬化性樹脂との密
着力を強化する効果を有する。また、有機薄膜上
に金、銀、銅、アルミ、ニツケル等の導電性皮膜
を、イオンプレーテイングやスパツタ等により付
着させる場合、熱硬化性樹脂の温度が、その熱硬
化性樹脂の熱分解温度を越えないようにすること
により、熱硬化性樹脂膜と表面の導電性皮膜との
密着力を大きくすることができる。さらに表面皮
膜の密着力を高める必要がある場合には、酸化皮
膜上に酸化皮膜と親和力の高い熱硬化性樹脂を付
着させ、さらにその熱硬化性樹脂の上に、表面の
導電性皮膜と親和力の高い熱硬化性樹脂を付着さ
せ、その上に導電性皮膜を付着させることによ
り、目的が達成される。 酸化皮膜の形成に用いる陽極酸化法は電流密度
および通電時間等を制御することにより膜厚制御
が容易である。電解液としてNaOH、(HO・
CH2・CH22O、Na2C2O4の混合水溶液その他の
も利用できる。また、化成処理による酸化皮膜は
密に生成されるので、膜厚が薄くとも耐食性、耐
摩耗性の高い皮膜が得られる。化成処理液として
NaOH、(HO・CH2・CH22O、Na2C2O4の混合
水溶液その他も利用できる。化成処理において
も、溶液組成、処理温度をかえて膜厚を制御する
ことができる。 酸化皮膜上に形成する熱硬化性樹脂材料とし
て、メラミン樹脂、エポキシ樹脂、フエノール樹
脂、ユリア樹脂、キシレン樹脂、シリコン樹脂、
ポリイミド樹脂、アクリル樹脂、ポリウレタン樹
脂、メタクリル樹脂、ポリビニルホルマール樹
脂、ナイロン樹脂、ポリエステル樹脂の1種また
は2種以上よりなる膜を用いることができる。 導電層を形成する金属としてはAu、Ag、Cu、
Al、Ni、Snその他の金属又は合金を用いること
ができる。金属層の形成には無電解メツキその他
の方法も可能である。 〔発明の効果〕 以上説明したように、本発明の表面処理を施し
たMgまたはMg合金はMgまたはMg合金の欠点
である耐食性を著しく向上させることができるの
みでなく、表面導電性を確保できること、さらに
は耐熱衝撃性、耐摩耗性を向上させることができ
るから、航空宇宙機器、精密電機機器、自動車部
品への広範なMgまたはMg合金の普及を可能な
らしめる。
After connecting an electrode lead wire for anodizing treatment to an alloy plate with a composition of 3wt%Al-1wt%Zn-Mg, this alloy plate was heated to 165g of KOH, 35g of KF,
Na 3 PO 4 35g, Al(OH) 3 35g, KMnO 4 10g,
Soak 10g of MnO 4 in a mixed aqueous solution,
Anodic oxidation was performed for 15 minutes at a voltage of 50 V AC and a current density of 2.0 A/dm 2 to form an oxide film with a thickness of 20 μm on the surface of the alloy plate. Next, after applying melamine resin to a thickness of 40 μm on the oxide film, this alloy plate was exposed to an atmospheric humidity of 30%.
The coated melamine resin was left to stand for 72 hours at a temperature of 35°C to completely dry. Thereafter, the melamine resin surface was spatter cleaned under conditions of an Ar gas pressure of 5×10 −5 Torr and a bias voltage of −20 V, and at the same time the surface was activated. On this melamine resin surface, under the conditions of Ar gas pressure of 2 × 10 -4 Torr and bias voltage of -200V,
Ion plating of Au was performed to a thickness of 5 μm. Comparative Example Sample 8
It was named. As shown in Table 2, a two-layer thermosetting resin film is applied to the anodized Mg alloy surface.
In Example Sample 4 of the present invention, in which a two-layer conductive film of Ni and Au was provided thereon, no peeling occurred at all. This is due to the strong adhesion between the oxide film and the epoxy resin.
This is also due to the strong adhesive force between the urethane resin and Ni. Ni or Ti on a highly conductive Au base, Al on an Ag base as in Example 5, and Al as in Example 6.
with Ti as the base and active metals Ni, Al, and Ti, respectively.
Alternatively, if a layer such as Cr is provided as a base layer, the adhesive force between the thermosetting resin film and the conductive film becomes stronger. Spatter cleaning the surface of the resin is also effective in increasing adhesive strength. Example sample 2, which has one layer of thermosetting resin film, exhibits the second highest adhesion force than example sample 4. In Comparative Example Sample 5, which has Ni as an underlayer but does not have a thermosetting resin film, most of the conductive film peels off because the adhesion of the conductive film to the oxidized film is weak. Furthermore, in Comparative Example Sample 6 having an Al film as an underlayer, the surface of the Mg alloy was not oxidized, so the adhesion of the thermosetting resin to the Mg alloy was weak, and the resin film was completely peeled off. Example Sample 1, in which a multi-layer resin film and a single-layer Au conductive film were provided on an anodized Mg alloy, exhibited superior adhesion to Example Sample 2. As described above, Mg or Mg alloy subjected to the surface treatment according to the present invention has an oxide film, one or more types of thermosetting resin film,
Since one or more types of conductive films are formed, it goes without saying that the surface conductivity is excellent.
Corrosion resistance and abrasion resistance are significantly improved due to the presence of the thermosetting resin film under the conductive film and the hard oxide film below it. Even if part of the conductive film or thermosetting resin is damaged, the Mg or Mg alloy is protected by the oxide film. The presence of a thermosetting resin film not only improves corrosion resistance and abrasion resistance, but also has elasticity unique to polymer materials. Since it is interposed between the films, it plays the role of buffering the difference in thermal expansion between the oxide film and the conductive film, improving thermal shock resistance.
Furthermore, the presence of a thermosetting resin film has the effect of further enhancing the advantages of Mg or Mg alloy, which already has excellent vibration absorption properties, so when a satellite casing has electronic circuits etc. built into it, etc., the internal electronic circuits will be reliably protected from the intense vibrations that occur during launch, significantly improving the reliability of satellite equipment. The thermosetting resin embedded in the uneven parts and pinholes of the oxide film has the effect of strengthening the adhesion between the oxide film and the thermosetting resin. In addition, when attaching a conductive film of gold, silver, copper, aluminum, nickel, etc. to an organic thin film by ion plating or sputtering, the temperature of the thermosetting resin is the thermal decomposition temperature of the thermosetting resin. By not exceeding , it is possible to increase the adhesion between the thermosetting resin film and the conductive film on the surface. If it is necessary to further increase the adhesion of the surface film, a thermosetting resin that has a high affinity with the oxide film is attached to the oxide film, and then a thermosetting resin that has a high affinity with the surface conductive film is attached on top of the thermosetting resin. The objective is achieved by depositing a high thermosetting resin and depositing a conductive coating thereon. In the anodic oxidation method used to form the oxide film, the film thickness can be easily controlled by controlling the current density, current application time, and the like. NaOH, (HO・
A mixed aqueous solution of CH 2・CH 2 ) 2 O, Na 2 C 2 O 4 and others can also be used. Further, since the oxide film formed by the chemical conversion treatment is dense, a film with high corrosion resistance and wear resistance can be obtained even if the film thickness is small. As a chemical treatment liquid
Mixed aqueous solutions of NaOH, (HO・CH 2・CH 2 ) 2 O, Na 2 C 2 O 4 and others can also be used. Even in chemical conversion treatment, the film thickness can be controlled by changing the solution composition and treatment temperature. Thermosetting resin materials formed on the oxide film include melamine resin, epoxy resin, phenol resin, urea resin, xylene resin, silicone resin,
A film made of one or more of polyimide resin, acrylic resin, polyurethane resin, methacrylic resin, polyvinyl formal resin, nylon resin, and polyester resin can be used. The metals forming the conductive layer include Au, Ag, Cu,
Al, Ni, Sn and other metals or alloys can be used. Electroless plating and other methods are also possible for forming the metal layer. [Effects of the Invention] As explained above, Mg or Mg alloy subjected to the surface treatment of the present invention can not only significantly improve corrosion resistance, which is a drawback of Mg or Mg alloy, but also ensure surface conductivity. Furthermore, since thermal shock resistance and abrasion resistance can be improved, Mg or Mg alloys can be widely used in aerospace equipment, precision electrical equipment, and automobile parts.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の表面処理を施したMg合金の
一実施例の断面図である。 1…Mg合金、2…酸化皮膜、3…熱硬化性樹
脂膜、4…導電性皮膜。
FIG. 1 is a cross-sectional view of an embodiment of a Mg alloy subjected to the surface treatment of the present invention. DESCRIPTION OF SYMBOLS 1... Mg alloy, 2... Oxide film, 3... Thermosetting resin film, 4... Conductive film.

Claims (1)

【特許請求の範囲】 1 マグネシウムまたはマグネシウム合金の表面
に酸化皮膜、熱硬化性樹脂膜、導電性皮膜が順次
設けられてなり、前記熱硬化性樹脂膜および前記
導電性皮膜のうちの少なくとも一つが材質の異な
る複数の層からなることを特徴とする表面処理を
施したマグネシウムまたはマグネシウム合金。 2 マグネシウムまたはマグネシウム合金の表面
に酸化皮膜を形成する第1の工程と、前記第1の
工程によつて形成された酸化皮膜上に複数種の熱
硬化性樹脂膜を形成する第2の工程と、前記第2
の工程により形成された熱硬化性樹脂膜上に導電
性皮膜を形成する第3の工程を含むことを特徴と
するマグネシウムまたはマグネシウム合金の表面
処理方法。 3 マグネシウムまたはマグネシウム合金の表面
に酸化皮膜を形成する第1の工程と、前記第1の
工程によつて形成された酸化皮膜上に熱硬化性樹
脂膜を形成する第2の工程と、前記第2の工程に
より形成された熱硬化性樹脂膜上に複数種の導電
性皮膜を形成する第3の工程を含むことを特徴と
するマグネシウムまたはマグネシウム合金の表面
処理方法。 4 マグネシウムまたはマグネシウム合金の表面
に酸化皮膜を形成する第1の工程と、前記第1の
工程によつて形成された酸化皮膜上に複数種の熱
硬化性樹脂膜を形成する第2の工程と、前記第2
の工程により形成された熱硬化性樹脂膜上に複数
種の導電性皮膜を形成する第3の工程を含むこと
を特徴とするマグネシウムまたはマグネシウム合
金の表面処理方法。
[Scope of Claims] 1. An oxide film, a thermosetting resin film, and a conductive film are sequentially provided on the surface of magnesium or a magnesium alloy, and at least one of the thermosetting resin film and the conductive film is Magnesium or magnesium alloy with a surface treatment that consists of multiple layers of different materials. 2. A first step of forming an oxide film on the surface of magnesium or magnesium alloy, and a second step of forming multiple types of thermosetting resin films on the oxide film formed in the first step. , said second
A method for surface treatment of magnesium or a magnesium alloy, comprising a third step of forming a conductive film on the thermosetting resin film formed by the step. 3. A first step of forming an oxide film on the surface of magnesium or a magnesium alloy, a second step of forming a thermosetting resin film on the oxide film formed in the first step, and a second step of forming a thermosetting resin film on the oxide film formed in the first step. A method for surface treatment of magnesium or a magnesium alloy, comprising a third step of forming a plurality of types of conductive films on the thermosetting resin film formed in step 2. 4. A first step of forming an oxide film on the surface of magnesium or a magnesium alloy, and a second step of forming multiple types of thermosetting resin films on the oxide film formed in the first step. , said second
A method for surface treatment of magnesium or magnesium alloy, comprising a third step of forming a plurality of types of conductive films on the thermosetting resin film formed by the step.
JP22483585A 1984-10-16 1985-10-11 Magnesium or magnesium alloy subjected to surface treatment and surface treatment thereof Granted JPS6286180A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP22483585A JPS6286180A (en) 1985-10-11 1985-10-11 Magnesium or magnesium alloy subjected to surface treatment and surface treatment thereof
US06/865,034 US4770946A (en) 1984-10-16 1985-10-14 Surface-treated magnesium or magnesium alloy, and surface treatment process therefor
PCT/JP1985/000571 WO1986002388A1 (en) 1984-10-16 1985-10-14 Surface-treated magnesium or its alloy, and process for the surface treatment
DE8585905112T DE3576834D1 (en) 1984-10-16 1985-10-14 SURFACE TREATED MAGNESIUM OR ITS ALLOYS AND METHOD FOR TREATING TREATMENT.
EP19850905112 EP0198092B1 (en) 1984-10-16 1985-10-14 Surface-treated magnesium or its alloy, and process for the surface treatment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22483585A JPS6286180A (en) 1985-10-11 1985-10-11 Magnesium or magnesium alloy subjected to surface treatment and surface treatment thereof

Publications (2)

Publication Number Publication Date
JPS6286180A JPS6286180A (en) 1987-04-20
JPS647154B2 true JPS647154B2 (en) 1989-02-07

Family

ID=16819924

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22483585A Granted JPS6286180A (en) 1984-10-16 1985-10-11 Magnesium or magnesium alloy subjected to surface treatment and surface treatment thereof

Country Status (1)

Country Link
JP (1) JPS6286180A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4808374B2 (en) * 2003-11-13 2011-11-02 富士通株式会社 Surface treatment method for metal molded products
JP2006150261A (en) * 2004-11-30 2006-06-15 Fukuda Corporation:Kk Coating method of magnesium alloy molded product
JP2010121180A (en) * 2008-11-20 2010-06-03 Achilles Corp Plated article using magnesium alloy as base material
JP2011012293A (en) * 2009-06-30 2011-01-20 Daiwa Fine Chemicals Co Ltd (Laboratory) Plating method for magnesium or magnesium alloy

Also Published As

Publication number Publication date
JPS6286180A (en) 1987-04-20

Similar Documents

Publication Publication Date Title
US4770946A (en) Surface-treated magnesium or magnesium alloy, and surface treatment process therefor
JP3295404B2 (en) Coating for improved resin dust resistance
KR900000865B1 (en) Copper-chromium-polyimide composite and its manufaturiring process
US5861076A (en) Method for making multi-layer circuit boards
KR100613958B1 (en) Surface-treated copper foil and copper-clad laminate for higher frequency applications
JP2010126801A (en) Tin-coated aluminum material
JP2620573B2 (en) Electronic package manufacturing method
JP4101705B2 (en) Metal layer forming method
TWI547600B (en) Electrolytic copper-alloy foil and electrolytic copper-alloy foil with carrier foil
JPS647154B2 (en)
JPH05271986A (en) Aluminum-organic polymer laminate
KR100299156B1 (en) Copper foil for printed circuit boards and its manufacturing method and lamination and printed circuit boards using copper foil
JP3520285B1 (en) Aluminum stabilized laminate
EP0879901B1 (en) Protective coating for metal pieces with a good resistance against corrosion in a saline atmosphere and metal pieces with such a protective coating
WO1998034278A1 (en) Lead frame material
JP4762533B2 (en) Copper metallized laminate and method for producing the same
JPH10102239A (en) Surface coating for insulating material, method for obtaining the same and application to protection of insulating container
JPS6342703B2 (en)
JPS6213065B2 (en)
JPH02149666A (en) Manufacture of polyimide film with metallic gilt
JP2994473B2 (en) Magnesium alloy plating film structure
CA2327801A1 (en) Copper on polymer component having improved adhesion
JP2708130B2 (en) Rough surface forming method of copper foil for printed circuit
JP3352774B2 (en) Trolley wire and rigid trolley wire
JPH01169990A (en) Substrate for mounting surface