JPS645239B2 - - Google Patents

Info

Publication number
JPS645239B2
JPS645239B2 JP56211889A JP21188981A JPS645239B2 JP S645239 B2 JPS645239 B2 JP S645239B2 JP 56211889 A JP56211889 A JP 56211889A JP 21188981 A JP21188981 A JP 21188981A JP S645239 B2 JPS645239 B2 JP S645239B2
Authority
JP
Japan
Prior art keywords
heat storage
supercooling
preventer
heat
salt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56211889A
Other languages
Japanese (ja)
Other versions
JPS58115297A (en
Inventor
Tokio Hashimoto
Yasuo Kotani
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Synthetic Chemical Industry Co Ltd
Original Assignee
Nippon Synthetic Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Synthetic Chemical Industry Co Ltd filed Critical Nippon Synthetic Chemical Industry Co Ltd
Priority to JP56211889A priority Critical patent/JPS58115297A/en
Publication of JPS58115297A publication Critical patent/JPS58115297A/en
Publication of JPS645239B2 publication Critical patent/JPS645239B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/02Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat
    • F28D20/028Control arrangements therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Sorption Type Refrigeration Machines (AREA)
  • Central Heating Systems (AREA)

Description

【発明の詳細な説明】 本発明は変動する熱源(太陽熱等)を利用する
冷暖房器に使用される蓄熱装置の改良に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in a heat storage device used in an air conditioner/heater that utilizes a variable heat source (such as solar heat).

従来、冷暖房等の比較的低い温度領域で蓄熱す
る場合、水等の顕熱を利用することとが行われて
来たが、最近無機塩又は有機塩特にその水和塩の
融解熱を利用する方法が試みられている。
Conventionally, when storing heat in a relatively low temperature range such as in air conditioning or heating, the sensible heat of water, etc. has been used, but recently the heat of fusion of inorganic salts or organic salts, especially their hydrated salts, has been used. methods are being tried.

しかし、無機塩又は有機塩を蓄熱材料とする場
合は蓄熱密度が大であると共に所定の温度で放熱
出来るという利点を有するものの、上記蓄熱材は
一般に過冷却が著しく、融解蓄熱後、適当な温度
で凝固せず放熱が効率良く出来ない難点がある。
However, when an inorganic salt or an organic salt is used as a heat storage material, it has the advantage of having a high heat storage density and being able to dissipate heat at a predetermined temperature. It has the disadvantage that it does not solidify and does not dissipate heat efficiently.

かかる過冷却防止の対策として核生成助剤を添
加したり、機械的刺激を与える付属装置いわゆる
過冷却防止器を蓄熱槽内に備え付けることが行わ
れているが、その効果は必ずしも充分でない。
As measures to prevent such supercooling, nucleation aids are added or an accessory device that provides mechanical stimulation, a so-called supercooling preventer, is installed in the heat storage tank, but the effects are not always sufficient.

しかるに本発明者等は無機塩又は有機塩を主剤
とする蓄熱材の過冷却を小さく抑え蓄熱−放熱サ
イクルを効率良く行ない得る手段を見出すべく鋭
意研究を行つたところ、蓄熱槽内に収納された蓄
熱材と同一の無機塩又は有機塩を、細孔をもつ容
器に封入し且つ該塩と接触させて電極を設けた過
冷却防止器を蓄熱槽内に具備してなる蓄熱装置を
用いる場合かかる目的を容易に達成し得ることを
見出し本発明を完成するに至つた。
However, the present inventors conducted intensive research to find a means to minimize supercooling of a heat storage material whose main ingredient is an inorganic salt or an organic salt, and efficiently perform the heat storage-heat release cycle. This applies when using a heat storage device in which the same inorganic salt or organic salt as the heat storage material is sealed in a container with pores, and a heat storage tank is equipped with a supercooling preventer provided with an electrode in contact with the salt. The inventors have found that the object can be easily achieved and have completed the present invention.

まず本発明で使用する過冷却防止器の構成につ
いて説明する。
First, the structure of the supercooling preventer used in the present invention will be explained.

該防止器は前述した様に細孔をもつ容器に無機
塩又は有機塩を封入し、且つ該塩に接触させて電
極を設けていなければならない。
As described above, the preventer must have an inorganic or organic salt sealed in a container with pores, and an electrode must be provided in contact with the salt.

該塩は蓄熱槽内の蓄熱材と同一であることが有
利であるが、少量の他成分を含有する場合であつ
ても実質上、蓄熱材の性能に大きな変化を与えな
い限り、単一の塩である必要はない。容器はその
材質あるいは形状の限定はなく、任意のものであ
つても良く、要は無機塩又は有機塩を収納出来さ
えすれば良い。好ましくは、イオン不透性又は選
択透過性があり、熱伝導度が良好な材質が用いら
れる。材質はプラスチツク、金属、炭素材、ガラ
ス、陶磁器等が例示される。形状としては立方体
型、長方体型、球型、パイプ状型、ソーセージ
型、パネル型等任意の型が挙げられる。但し本発
明はこれらの形状のみに限定されない。
It is advantageous for the salt to be the same as the heat storage material in the heat storage tank, but even if it contains a small amount of other components, it may be a single salt as long as it does not substantially change the performance of the heat storage material. It doesn't have to be salt. The container is not limited in its material or shape, and may be of any material as long as it can contain the inorganic salt or organic salt. Preferably, a material that is ion-impermeable or selectively permeable and has good thermal conductivity is used. Examples of the material include plastic, metal, carbon material, glass, and ceramics. Examples of the shape include arbitrary shapes such as a cubic shape, a rectangular shape, a spherical shape, a pipe shape, a sausage shape, and a panel shape. However, the present invention is not limited to only these shapes.

しかして、該容器には少くとも一個の細孔を設
けなければならない。通常その大きさは10Å〜5
mm好ましくは10μ〜1000μが適当である。かかる
細孔を通じて蓄熱槽内の塩と過冷却防止器内の塩
とが連絡出来る。
Therefore, the container must be provided with at least one pore. Usually its size is 10Å~5
mm, preferably 10μ to 1000μ. Through these pores, the salt in the heat storage tank and the salt in the supercooling preventer can communicate with each other.

又、該防止器には収納された無機塩又は有機塩
と接触して電極が付設されなければならない。電
極は少くとも一対必要であるが、一対とも防止器
内に付設しても、あるいは一方の極のみを防止器
内に付設し、他極は防止器外、例えば蓄熱槽の容
器に付設することもいずれも可能である。電極は
容器のどの位置でも良く、容器自体が一方又は両
方の電極を形成していても差支えない。しかして
一対の電極においてその間に電圧が印加出来る様
に設計されることが不可欠である。本発明ではか
かる点が最大の特徴であり、該電極を組み入れる
ことによつて、過冷却防止器の機能が発揮され、
蓄熱槽内の蓄熱材の過冷却が防止出来、望ましい
温度で溶融液の結晶化即ち凝固が始まり、効率の
良い放熱を発現させ得るのである。
Further, the preventer must be provided with an electrode in contact with the inorganic or organic salt contained therein. At least one pair of electrodes is required, but both pairs may be attached inside the preventer, or only one electrode may be attached inside the preventer and the other electrode may be attached outside the preventer, for example, in the container of the heat storage tank. Both are possible. The electrodes may be located anywhere on the container, and the container itself may form one or both electrodes. Therefore, it is essential that the pair of electrodes be designed so that a voltage can be applied between them. This is the most important feature of the present invention, and by incorporating the electrode, the function of an overcooling preventer is exhibited.
Supercooling of the heat storage material in the heat storage tank can be prevented, crystallization or solidification of the molten liquid begins at a desired temperature, and efficient heat dissipation can be achieved.

電極の材質は特定されないが水素過電圧の大き
いものが好ましい。無定形炭素、人造黒鉛、珪化
銅、鉛、鉛アンチモン合金、鉛銀合金、鉄、鉄珪
素合金、熔融マグネタイト、白金、銀、アルミニ
ウム、銅、亜鉛、アンチモン、スズ、水銀、各種
アマルガム、クロム、カドミウム等が例示され
る。特に銅アマルガム、銅合金(例えば銅と鉄、
亜鉛、スズ、ニツケル、マンガン、クロム、アル
ミニウム、モリブデン、アンチモン等の少くとも
一種の合金)アマルガムが有効に用いられる。ア
マルガム電極は上記の如く過冷却防止効果を顕著
に発揮するにとどまらず、仮に電極成分の一部が
溶出しても過冷却防止器内にとどまるので蓄熱槽
内の蓄熱材を汚染する心配が全くない点でも個有
の効果を有する。一対の電極においてその形状は
同一であつても異形であつても良い。又電極材料
は異種電極の組合せであつても差支えない。
Although the material of the electrode is not specified, it is preferably one with a large hydrogen overvoltage. Amorphous carbon, artificial graphite, copper silicide, lead, lead-antimony alloy, lead-silver alloy, iron, iron-silicon alloy, fused magnetite, platinum, silver, aluminum, copper, zinc, antimony, tin, mercury, various amalgams, chromium, Examples include cadmium. Especially copper amalgam, copper alloys (e.g. copper and iron,
Amalgam (at least one alloy of zinc, tin, nickel, manganese, chromium, aluminum, molybdenum, antimony, etc.) is effectively used. Amalgam electrodes not only exhibit a remarkable supercooling prevention effect as described above, but even if some of the electrode components elute, they remain in the supercooling preventer, so there is no need to worry about contaminating the heat storage material in the heat storage tank. It has a unique effect even though it is not. The shape of the pair of electrodes may be the same or different. Further, the electrode materials may be a combination of different types of electrodes.

過冷却の防止のために電圧をかけるが、その電
圧は1μV〜10V好ましくは0.2〜3Vが適当である。
電圧の印加時間は1n秒〜100秒程度である。電源
の種類は直流、交流(低周波、高周波)、パルス
のいずれであつても差支えない。電圧の印加時機
は過冷却状態が認められる時が最も有効である。
又過冷却防止器の内部にはゲル化剤、グラスウー
ル、活性白土等の充填剤を添加しても良い。
A voltage is applied to prevent overcooling, and the appropriate voltage is 1 μV to 10V, preferably 0.2 to 3V.
The voltage application time is about 1 ns to 100 seconds. The type of power source may be direct current, alternating current (low frequency, high frequency), or pulse. The timing of voltage application is most effective when a supercooled state is recognized.
Further, fillers such as a gelling agent, glass wool, and activated clay may be added to the inside of the supercooling preventer.

本発明で使用する過冷却防止器の代表的な例を
図に示す。該図に基いて過冷却防止機構を説明す
る。第1〜4図は本発明の過冷却防止器を蓄熱槽
内に具備した蓄熱装置である。
A typical example of the supercooling preventer used in the present invention is shown in the figure. The overcooling prevention mechanism will be explained based on this figure. Figures 1 to 4 show a heat storage device in which a heat storage tank is provided with a supercooling preventer according to the present invention.

1は蓄熱槽、2は蓄熱材、3は過冷却防止器、
4は電極、5は蓄熱材と同一の塩類、6は過冷却
防止器のフタ(絶縁体)、7は細孔をそれぞれ示
す。
1 is a heat storage tank, 2 is a heat storage material, 3 is a supercooling preventer,
4 is an electrode, 5 is the same salt as the heat storage material, 6 is a lid (insulator) of a supercooling preventer, and 7 is a pore.

加熱溶融した槽内及び過冷却防止器内の塩2及
び5は放熱しながら冷却する。冷却が進むと凝固
点付近で結晶化が始まり放熱が更に継続するはず
であるが、通常は過冷却が認められ結晶化が発現
せず放熱量が著しく低下する。
The heated and melted salts 2 and 5 in the tank and in the supercooling preventer are cooled while dissipating heat. As cooling progresses, crystallization begins near the freezing point and heat radiation should continue, but normally supercooling is observed and crystallization does not occur and the amount of heat radiation is significantly reduced.

この時、電極4間に電圧を印加するとまず過冷
却防止器内の過冷却が破壊されて塩の析出が始ま
る。結晶化が次第に進みやがて防止器壁に設けた
細孔7を通過して結晶が蓄熱槽内の塩と接触する
と、槽内の塩も過冷却が破壊され結晶化し、発熱
が再び継続する。
At this time, when a voltage is applied between the electrodes 4, the supercooling in the supercooling preventer is destroyed and salt precipitation begins. As the crystallization gradually progresses and the crystals pass through the pores 7 provided in the preventer wall and come into contact with the salt in the heat storage tank, the supercooling of the salt in the tank is destroyed, crystallization occurs, and heat generation continues again.

過冷却防止器は蓄熱槽内の任意の場所に具備出
来る。防止器は通常は1個で充分効果があるが必
要であれば複数個具備しても良い。いずれの場合
であつても防止器の細孔部が蓄熱槽内の塩と接し
ていなければならない。電極の一部は勿論、槽外
の電源と接続して配置されておかねばならない。
蓄熱槽の容器の材質あるいは形状に限定はなく任
意のものであつても良い。過冷却防止器と同一で
あつても差支えない。材質はプラスチツク、金
属、炭素材、ガラス、コンクリート、レンガ等が
例示される。形状としては立方体型、長方体型、
球型、パイプ状型、ソーセージ型、パネル型等任
意の型が挙げられる。但し本発明はこれらの形状
のみに限定されない。
The supercooling preventer can be provided at any location within the heat storage tank. One preventer is usually sufficient, but if necessary, more than one preventer may be provided. In either case, the pores of the preventer must be in contact with the salt in the heat storage tank. Of course, some of the electrodes must be connected to a power source outside the tank.
There are no limitations on the material or shape of the container of the heat storage tank, and any material or shape may be used. It may be the same as the supercooling preventer. Examples of the material include plastic, metal, carbon material, glass, concrete, and brick. The shape is cubic, rectangular,
Any type may be used, such as a spherical type, a pipe type, a sausage type, and a panel type. However, the present invention is not limited to only these shapes.

次に蓄熱材として使用される無機塩又は有機塩
としては、その目的とする温度範囲によつて多少
差はあるが、例えば30〜60℃用の蓄熱材として塩
化カルシウム6水塩、硫酸ナトリウム10水塩、炭
酸ナトリウム10水塩、リン酸水素2ナトリウム12
水塩、硝酸カルシウム4水塩、チオ硫酸ナトリウ
ム5水塩、酢酸ナトリウム3水塩等が、80〜120
℃用の蓄熱材としては、硝酸マグネシウム6水
塩、カリ明パン(12水塩)、アンモニウム明パン
(12水塩)、塩化マグネシウム6水塩、硝酸カリウ
ム/硝酸リチウム、硝酸カリウム/硝酸リチウ
ム/硝酸ナトリウム等がそれぞれ挙げられる。
Next, the inorganic salts or organic salts used as heat storage materials vary depending on the intended temperature range, but for example, calcium chloride hexahydrate, sodium sulfate 10 water salt, sodium carbonate decahydrate, dibasic sodium phosphate 12
Water salt, calcium nitrate tetrahydrate, sodium thiosulfate pentahydrate, sodium acetate trihydrate, etc.
Heat storage materials for °C include magnesium nitrate hexahydrate, potassium alumpan (12 hydrate), ammonium alumpan (12 hydrate), magnesium chloride hexahydrate, potassium nitrate/lithium nitrate, potassium nitrate/lithium nitrate/sodium nitrate. etc., respectively.

上記した蓄熱装置は1個あるいは普通は複数個
を直列および/又は並列に組み合せて用いられ
る。
One or more of the heat storage devices described above may be used in combination in series and/or in parallel.

第5図は最も簡単なモデル蓄熱器の1例を示し
たもので、(勿論本発明がかかる例のみに限定さ
れるものではない)1は本発明の蓄熱装置で内部
に無機塩又は有機塩2が充填収納されている。4
は電極、8は電源、9は電源開閉器、10は銅製
のパイプをコイル状にした熱交換器、Pはポン
プ、11は水槽で水が充填されておりポンプによ
り熱交換器と水槽及び放熱器12を循環するよう
になつている。又、13は循環水切替えのコツク
である。
FIG. 5 shows one example of the simplest model heat storage device (of course, the present invention is not limited to such an example). 1 is a heat storage device of the present invention with an inorganic or organic salt inside. 2 is filled and stored. 4
8 is an electrode, 8 is a power source, 9 is a power switch, 10 is a heat exchanger made of coiled copper pipes, P is a pump, 11 is a water tank filled with water, and the pump connects the heat exchanger, the water tank, and heat radiation. The water is circulated through the vessel 12. Further, 13 is a switch for switching the circulating water.

まず昼間、太陽熱によつて加熱された11中の
水はパイプを通じて1中に送られる。熱交換器1
0により1中の蓄熱材2が溶融され蓄熱される。
熱交換した水は11に循環され、加熱後再び1中
に導入される。夜間、コツク13を切り替えて循
環水が放熱器12に流れる様にする。1中の蓄熱
材2が放熱を始め、熱交換器10により循環水が
加温され、これが放熱器12に入り暖房用に使用
される。放熱が進み過冷却が認められ凝固熱の発
生がない時点で9の開閉器を閉じて電極4の間に
電圧をかける。すると数秒後には過冷却防止器内
において過冷却が破壊されて凝固が始まる。過冷
却防止器内で結晶化が次第に進み、やがて細孔7
を通じて蓄熱材と接触する。すると蓄熱材の過冷
却が破壊されて凝固熱の発生により、引きつづき
循環水の加温が行われる。
First, during the daytime, water heated by the sun's heat inside 11 is sent into 1 through pipes. heat exchanger 1
0 melts the heat storage material 2 in 1 and stores heat.
The heat-exchanged water is circulated to 11, heated, and then introduced into 1 again. At night, the pot 13 is switched so that circulating water flows to the radiator 12. The heat storage material 2 in 1 begins to radiate heat, and the circulating water is heated by the heat exchanger 10, which enters the radiator 12 and is used for heating. When heat dissipation progresses and supercooling is recognized and no solidification heat is generated, the switch 9 is closed and a voltage is applied between the electrodes 4. After a few seconds, the supercooling is destroyed in the supercooling preventer and solidification begins. Crystallization gradually progresses within the supercooling preventer, and eventually pores 7
through which it comes into contact with the heat storage material. Then, the supercooling of the heat storage material is destroyed and the circulating water continues to be heated by the generation of solidification heat.

上記の如き蓄熱装置には、蓄熱材料の温度を確
認するための温度検知装置、電圧を調節するため
の加電圧制御装置等、任意の付属装置を併設する
ことによつて、より実用的なものに出来る。
The heat storage device described above can be made more practical by being equipped with optional accessory devices such as a temperature detection device to check the temperature of the heat storage material and a voltage control device to adjust the voltage. I can do it.

以下、実例を挙げて本発明を更に詳しく説明す
る。
Hereinafter, the present invention will be explained in more detail by giving examples.

実例 1 過冷却防止器の作製 内径30mm、長さ100mm、厚さ0.3mmのステンレス
製試験管(底面より30mmの所に径0.2mmの細孔を
50個有する)に60gの酢酸ナトリウム3水塩を充
填し、一対の銅アマルガム電極を挿入して試験管
上部を絶縁体でフタをした。電極間には電源を接
続し、任意の時点で電圧が印加出来る様に設定し
た。
Example 1 Making a supercooling preventer A stainless steel test tube with an inner diameter of 30 mm, a length of 100 mm, and a thickness of 0.3 mm (a pore with a diameter of 0.2 mm is placed 30 mm from the bottom)
A test tube containing 50 tubes was filled with 60 g of sodium acetate trihydrate, a pair of copper amalgam electrodes were inserted, and the top of the test tube was covered with an insulator. A power supply was connected between the electrodes, and settings were made so that voltage could be applied at any time.

蓄熱装置の作製及び試験結果 たて40cm、横30cm、高さ50cmの鉄製容器に60Kg
の酢酸ナトリウム3水塩を充填し、更に水分蒸発
防止剤として流動パラフインを添加した。この酢
酸ナトリウム3水塩中に過冷却防止器の細孔が浸
漬する様に過冷却防止器を設置し蓄熱装置を組立
てた。
Production and test results of heat storage device: 60 kg in a steel container measuring 40 cm long, 30 cm wide, and 50 cm high.
of sodium acetate trihydrate was added thereto, and liquid paraffin was added as a water evaporation inhibitor. The supercooling preventer was installed so that the pores of the supercooling preventer were immersed in this sodium acetate trihydrate, and a heat storage device was assembled.

80℃に加熱して酢酸ナトリウム3水塩を溶融し
たのち放冷し、内温が50℃まで下降した時電極に
1.8Vの直流を印加したところ、10秒後に過冷却
防止器内の酢酸ナトリウム3水塩の結晶が析出し
て凝固が始まり更に5秒後には蓄熱槽内の酢酸ナ
トリウム3水塩が凝固し始め内温が58℃に上昇し
た。
After heating to 80℃ to melt sodium acetate trihydrate, let it cool and when the internal temperature drops to 50℃, the electrode
When 1.8V DC was applied, 10 seconds later, the sodium acetate trihydrate crystals in the supercooling preventer began to precipitate and solidify, and after another 5 seconds, the sodium acetate trihydrate in the heat storage tank began to solidify. Internal temperature rose to 58℃.

尚、電圧を印加しないでいると25〜30℃までに
過冷却がおこる。まれに自然的に結晶の析出がお
こることもあるが、その温度は不確定である。
Note that if no voltage is applied, supercooling will occur to 25 to 30°C. In rare cases, crystals may spontaneously precipitate, but the temperature at which this occurs is uncertain.

実例 2 電極をニツケルアマルガム対に代えた以外、実
例1と同一の実験を行つたところ同様の結果を得
た。
Example 2 The same experiment as Example 1 was conducted except that the electrodes were replaced with nickel amalgam pairs, and the same results were obtained.

実例 3 実例1において2.5V、0.1ヘルツの矩形波電圧
をかけたところ1分後には過冷却防止器内の更に
5秒後には蓄熱槽内の過冷却が破壊された。
Example 3 In Example 1, when a rectangular wave voltage of 2.5V and 0.1 Hz was applied, the supercooling in the supercooling preventer was destroyed after 1 minute, and the supercooling in the heat storage tank was destroyed after 5 seconds.

実例 4 酢酸ナトリウム3水塩に代えて塩化カルシウム
6水塩を用いて実例1と同一の実験を行つた。
Example 4 The same experiment as Example 1 was conducted using calcium chloride hexahydrate instead of sodium acetate trihydrate.

内温が21℃の点で電圧2.0Vを印加したところ
18秒後に過冷却防止器内で塩化カルシウム6水塩
の析出が、更に10秒後には蓄熱槽内に析出が認め
られた。
When a voltage of 2.0V was applied at a point where the internal temperature was 21℃
After 18 seconds, precipitation of calcium chloride hexahydrate was observed in the supercooling preventer, and after another 10 seconds, precipitation was observed in the heat storage tank.

実例 5 酢酸ナトリウム3水塩に代えてリン酸水素2ナ
トリウム10水塩を用いた以外は実例1と同じ実験
を行つた。
Example 5 The same experiment as Example 1 was conducted except that disodium hydrogen phosphate decahydrate was used in place of sodium acetate trihydrate.

内温が27℃の点で電圧1・8Vを印加したとこ
ろ45秒後に過冷却防止器内でリン酸水素2ナトリ
ウム10水塩の析出がおこり、更に8秒後には蓄熱
槽内のリン酸水素2ナトリウム10水塩の過冷却が
破壊された。
When a voltage of 1.8 V was applied at a point where the internal temperature was 27°C, 45 seconds later, disodium hydrogen phosphate decahydrate precipitated in the supercooling preventer, and after another 8 seconds, hydrogen phosphate in the heat storage tank Supercooling of disodium decahydrate was destroyed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図から第4図は本発明の蓄熱装置を示し、
蓄熱槽内に過冷却防止器を具備させたものであ
る。第5図は本発明の蓄熱装置を使用する暖房シ
ステムのモデル図である。
1 to 4 show the heat storage device of the present invention,
The heat storage tank is equipped with a supercooling preventer. FIG. 5 is a model diagram of a heating system using the heat storage device of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 1 蓄熱槽内に収納された蓄熱材と同一の無機塩
又は有機塩を、細孔をもつ容器に封入し且つ該塩
と接触させて電極を設けた過冷却防止器を蓄熱槽
内に具備してなる蓄熱装置。
1. The heat storage tank is equipped with a supercooling preventer in which the same inorganic salt or organic salt as the heat storage material stored in the heat storage tank is sealed in a container with pores, and an electrode is provided in contact with the salt. A heat storage device.
JP56211889A 1981-12-28 1981-12-28 Heat accumulating device Granted JPS58115297A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56211889A JPS58115297A (en) 1981-12-28 1981-12-28 Heat accumulating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56211889A JPS58115297A (en) 1981-12-28 1981-12-28 Heat accumulating device

Publications (2)

Publication Number Publication Date
JPS58115297A JPS58115297A (en) 1983-07-08
JPS645239B2 true JPS645239B2 (en) 1989-01-30

Family

ID=16613310

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56211889A Granted JPS58115297A (en) 1981-12-28 1981-12-28 Heat accumulating device

Country Status (1)

Country Link
JP (1) JPS58115297A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200138483A (en) * 2019-05-29 2020-12-10 현대자동차주식회사 Apparatus for controlling driving of a vehicle, a system having the same and a method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200138483A (en) * 2019-05-29 2020-12-10 현대자동차주식회사 Apparatus for controlling driving of a vehicle, a system having the same and a method thereof

Also Published As

Publication number Publication date
JPS58115297A (en) 1983-07-08

Similar Documents

Publication Publication Date Title
JPS6324555B2 (en)
US4529488A (en) Process for depositing salts
JPS645239B2 (en)
JPS628715B2 (en)
JPS5945917B2 (en) heat storage device
US6152212A (en) Heat storage system and heat release control method
Dong et al. Experimental study on the electrically-triggered crystallization behavior of supercooled copper foam-based and expanded graphite-based sodium acetate trihydrate
JP3857781B2 (en) Heat storage device capable of controlling heat dissipation and heat dissipation control method for heat storage device
US4296801A (en) Reusable heat devices containing xylitol as the heat-storage material
JPS58180579A (en) Heat storage material
JPH0135278B2 (en)
JP3390238B2 (en) Heat storage device
JPH0141672B2 (en)
JPS617379A (en) Production of thermal energy storage element
JPH0680956A (en) Heat storage composition and its production
JPH05331457A (en) Composition for heat storage
JPH0157157B2 (en)
JPH0611145A (en) Heat storage board for floor heating
KR900004231B1 (en) Latent heat agent
JPH0134475B2 (en)
JPS648260B2 (en)
JPH0362882A (en) Method for releasing supercooling of thermal energy storing agent having supercooling property
JPS588712B2 (en) Heat storage agent composition
JP2800329B2 (en) Latent heat storage material
JPH07218169A (en) Heat accumulating device