JPS628715B2 - - Google Patents

Info

Publication number
JPS628715B2
JPS628715B2 JP56175396A JP17539681A JPS628715B2 JP S628715 B2 JPS628715 B2 JP S628715B2 JP 56175396 A JP56175396 A JP 56175396A JP 17539681 A JP17539681 A JP 17539681A JP S628715 B2 JPS628715 B2 JP S628715B2
Authority
JP
Japan
Prior art keywords
heat
heat storage
electrodes
temperature
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56175396A
Other languages
Japanese (ja)
Other versions
JPS5875672A (en
Inventor
Tokio Hashimoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Synthetic Chemical Industry Co Ltd
Original Assignee
Nippon Synthetic Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Synthetic Chemical Industry Co Ltd filed Critical Nippon Synthetic Chemical Industry Co Ltd
Priority to JP56175396A priority Critical patent/JPS5875672A/en
Publication of JPS5875672A publication Critical patent/JPS5875672A/en
Publication of JPS628715B2 publication Critical patent/JPS628715B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/02Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat
    • F28D20/028Control arrangements therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D11/00Central heating systems using heat accumulated in storage masses
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Thermotherapy And Cooling Therapy Devices (AREA)
  • Central Heating Systems (AREA)

Description

【発明の詳細な説明】 本発明は太陽熱を利用する冷暖房器に使用され
る蓄熱装置の改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to improvements in heat storage devices used in air conditioners that utilize solar heat.

従来、冷暖房等の比較的低い温度領域で蓄熱す
る場合、水等の顕熱を利用することが行われて来
たが、最近無機塩又は有機塩特にその水和塩の融
解熱を利用する方法が試みられている。
Conventionally, when storing heat in a relatively low temperature range such as in air conditioning or heating, the sensible heat of water, etc. has been used, but recently methods have been developed that utilize the heat of fusion of inorganic salts or organic salts, especially their hydrated salts. is being attempted.

しかし、無機塩又は有機塩を蓄熱材料とする場
合は蓄熱密度が大であると共に所定の温度で放熱
出来るという利点を有するものの、上記蓄熱材料
は一般に過冷却が著しく、融解蓄熱後、適当な温
度で凝固せず放熱が効率良く出来ない難点があ
る。
However, when an inorganic salt or an organic salt is used as a heat storage material, it has the advantage of having a high heat storage density and being able to radiate heat at a predetermined temperature. It has the disadvantage that it does not solidify and does not dissipate heat efficiently.

かかる過冷却防止の対策として該生成助剤を添
加したり、機械的刺激を与える付属装置を蓄熱装
置に備え付けることが行われているが、その効果
は必ずしも充分でない。
As measures to prevent such supercooling, the addition of the generation aid or the provision of an accessory device for applying mechanical stimulation to the heat storage device have been carried out, but the effects thereof are not always sufficient.

そこで本発明者は無機塩又は有機塩を主剤とす
る蓄熱材料の過冷却を小さく抑え蓄熱―放熱サイ
クルを効率良く行ない得る手段を見出すべく鋭意
研究を行つたところ、任意の形状の容器に無機塩
又は有機塩を収納し、且つ少くとも一対の電極を
具備してなる蓄熱装置を用いる場合かかる目的を
容易に達成し得ることを見出し先に特許出願を行
つた。
Therefore, the present inventor conducted intensive research to find a means to minimize supercooling of heat storage materials based on inorganic salts or organic salts, and efficiently carry out the heat storage-heat release cycle. Alternatively, the inventors have found that this object can be easily achieved by using a heat storage device containing an organic salt and having at least one pair of electrodes, and have filed a patent application.

本発明者は前記装置を改良し、より実用性の高
い蓄熱装置を開発するために、更に研究を続けた
ところ、少なくとも一対の電極を具備した容器に
無機塩又は有機塩を収納し、且つ前記電極を結ぶ
回路に電圧印加自動制御機構を設けてなる蓄熱装
置を用いる場合、蓄熱―放熱のサイクルを自動化
し得て容易にその目的が達成出来ることを見出し
本発明を完成した。
In order to improve the above-mentioned device and develop a more practical heat storage device, the present inventor continued research and found that an inorganic salt or an organic salt is stored in a container equipped with at least one pair of electrodes, and the above-mentioned When using a heat storage device in which a circuit connecting electrodes is provided with an automatic voltage application control mechanism, the inventors have found that the heat storage-heat release cycle can be automated and the objective can be easily achieved, and the present invention has been completed.

本発明の装置の概略は第1図に示す通りであ
る。1は無機塩又は有機塩の収納された容器、2
は電極、3は電源、4は電極を結ぶ回路内に設け
られた電圧印加自動制御機構である。
An outline of the apparatus of the present invention is shown in FIG. 1 is a container containing inorganic salt or organic salt; 2
3 is an electrode, 3 is a power source, and 4 is an automatic voltage application control mechanism provided in a circuit connecting the electrodes.

1の内部の塩類が過冷却状態に至つた時、それ
を検出した制御機構4が作動して電極間に電圧が
印加され、それによつて過冷却が破壊され塩類の
凝固即ち放熱が開始されるのである。
When the salts inside 1 reach a supercooled state, the control mechanism 4 that detects this is activated and applies a voltage between the electrodes, thereby destroying the supercooling and starting solidification of the salts, that is, heat radiation. It is.

第2図は更に具体的に本発明の装置を示すもの
である。
FIG. 2 shows the apparatus of the present invention more specifically.

5は温度検出器、6は電源開閉器である。4は
容器内の温度が過冷却温度(例えば酢酸ナトリウ
ム3水塩を用いる場合は約53℃程度)に至つた時
6を閉鎖し、その後過冷却が破壊されて発熱が始
まり少し昇温(例えば1〜5℃程度)した時に6
を開放する様に設定しておけば、自動的に蓄熱―
放熱を無限にくり返すことが可能である。
5 is a temperature detector, and 6 is a power switch. 4 closes 6 when the temperature inside the container reaches the supercooling temperature (for example, about 53 degrees Celsius when using sodium acetate trihydrate), and then the supercooling is destroyed and heat generation begins and the temperature rises slightly (for example, 6 when the temperature is 1~5℃)
If you set it to open, it will automatically store heat.
It is possible to repeat heat dissipation infinitely.

温度検出器は必ずしも塩類を収納した容器内に
付設する必要はなく、要は塩類の過冷却が検知出
来る場所であればいずれの場所でも良い。例えば
熱媒体中、熱交換器等任意の場所が選ばれる。
The temperature detector does not necessarily need to be attached to the container containing the salts, but may be placed anywhere as long as supercooling of the salts can be detected. For example, an arbitrary location such as in a heat medium or a heat exchanger is selected.

又、温度検出器のみに限らずタイムスイツチ等
を付設して指定時間に指定期間電圧を印加出来る
様に4を制御する等、適宜変更が可能である。
Further, it is possible to make appropriate changes, such as adding not only a temperature detector but also a time switch or the like to control 4 so that a voltage can be applied at a specified time for a specified period.

上記した蓄熱装置は1個あるいは普通は複数個
を直列および/又は並列に組み合せて蓄熱槽とし
て用いられる。
One or more of the above-mentioned heat storage devices are used as a heat storage tank by combining them in series and/or in parallel.

第3図は最も簡単なモデル蓄熱器の1例を示し
たもので、(勿論本発明がかかる例のみに限定さ
れるものではない)1には無機塩又は有機塩が充
填収納されている。2は電極、3は電源、4は電
圧印加自動制御機構、5は温度検出器、6は電源
開閉器、7は銅製のパイプをコイル状にした熱交
換器、pはポンプ、8は水槽で水が充填されてお
りポンプにより熱交換器と水槽及び放熱器9を循
環するようになつている。又、10は循環水切替
えのコツクである。
FIG. 3 shows one example of the simplest model heat storage device (of course, the present invention is not limited to such an example), and 1 is filled with an inorganic salt or an organic salt. 2 is an electrode, 3 is a power source, 4 is an automatic voltage application control mechanism, 5 is a temperature detector, 6 is a power switch, 7 is a heat exchanger made of a coiled copper pipe, p is a pump, and 8 is a water tank. It is filled with water and circulated through the heat exchanger, water tank, and radiator 9 by a pump. Further, 10 is a switch for switching the circulating water.

まず昼間、太陽熱によつて加熱された8中の水
はパイプを通じて1中に送られる。熱交換器7に
より1中の蓄熱材料が溶融され蓄熱される。熱交
換した水は8に循環され、加熱後再び1中な導入
される。夜間、コツク10を切り替えて循環水が
放熱器に流れる様にする。1中の蓄熱材料が放熱
を始め、熱交換器7により循環水が加温され、こ
れが放熱器に入り暖房用に使用される。放熱が進
み冷却が認められ凝固熱の発生がない時点を5の
温度検出器が発見し、制御機構4に伝達されて6
の開閉器を閉じて電極2の間に電圧がかかる。す
ると数秒後には過冷却が破壊されて凝固が始ま
り、凝固熱の発生により、引きつづき循環水の加
温が行われる。発熱が始まつて1内の温度が設定
温度以上になれば6の開閉器は開放され電圧印加
は停止する。
First, during the day, the water heated by the sun's heat in 8 is sent into 1 through a pipe. The heat exchanger 7 melts the heat storage material in 1 and stores heat. The heat-exchanged water is circulated to 8, and after being heated, it is introduced into 1 again. At night, switch the Kotoku 10 so that the circulating water flows to the radiator. The heat storage material in 1 begins to radiate heat, and the heat exchanger 7 warms the circulating water, which enters the radiator and is used for heating. The temperature detector 5 discovers the point at which heat dissipation progresses and cooling is recognized and no solidification heat is generated, and this is transmitted to the control mechanism 4 and
When the switch is closed, a voltage is applied between the electrodes 2. Then, after a few seconds, supercooling is broken and solidification begins, and the circulating water continues to be heated by the generation of solidification heat. When heat generation starts and the temperature inside 1 reaches or exceeds the set temperature, switch 6 is opened and voltage application is stopped.

上記の如き蓄熱装置には、電圧を調節するため
電圧調整器、周波数変換器等の任意の付属装置を
取り付けることが可能である。
A heat storage device such as the one described above can be equipped with any accessory devices such as a voltage regulator, a frequency converter, etc. to adjust the voltage.

本発明の蓄熱装置の構成部品について具体的に
説明する。
The components of the heat storage device of the present invention will be specifically explained.

まず本発明における容器はその材質あるいは形
状に限定はなく、任意のものであつて良く、要は
無機塩又は有機塩を収納出来さえすれば良い。材
質はプラスチツク、金属、炭素材、ガラス、コン
クリート、レンガ等が例示される。形状としては
第4〜9図に示される様に立方体型、長方体型、
球型、パイプ状型、ソーセージ型、パネル型等任
意の型が挙げられる。但し本発明はこれらの形状
のみに限定されない。
First, the container in the present invention is not limited to its material or shape, and may be of any type, as long as it can contain an inorganic salt or an organic salt. Examples of the material include plastic, metal, carbon material, glass, concrete, and brick. As shown in Figures 4 to 9, the shapes are cubic, rectangular,
Any type may be used, such as a spherical type, a pipe type, a sausage type, and a panel type. However, the present invention is not limited to only these shapes.

又、装置には少くとも一対の電極が付設され、
その間に電圧が印加出来る様に設計されることが
下可欠である。
Also, the device is provided with at least one pair of electrodes,
It is essential that the design be such that a voltage can be applied between them.

該装置を組み入れることによつて、蓄熱材料の
過冷却が防止出来、望ましい温度で溶融液の結晶
化即ち凝固が始まり、効率の良い放熱を発現させ
得るのである。
By incorporating this device, overcooling of the heat storage material can be prevented, crystallization or solidification of the molten liquid begins at a desired temperature, and efficient heat dissipation can be realized.

電極は少くとも一対付設されておれば良い。容
器のどの位置でも良く、容器自体が一方又は両方
の電極を形成していても差支えない。但し、いず
れの場合であつても蓄熱材料と該電極とは必らず
接触させておかなければならない。
It is sufficient that at least one pair of electrodes be provided. It may be located anywhere on the container, and the container itself may form one or both electrodes. However, in any case, the heat storage material and the electrode must be kept in contact.

電極の材質は特定されないが水素過電圧の大き
いものが好ましい。無定形炭素、人造黒鉛、珪化
銅、鉛、鉛アンチモン合金、鉛銀合金、鉄、鉄珪
素合金、熔融マグネタイト、白金、銀、アルミニ
ウム合金、銅、各種銅合金、亜鉛、アンチモン、
スズ、ニツケル及びその合金、各種アマルガム、
クロム、カドミウム等が例示される。
Although the material of the electrode is not specified, it is preferably one with a large hydrogen overvoltage. Amorphous carbon, artificial graphite, copper silicide, lead, lead-antimony alloy, lead-silver alloy, iron, iron-silicon alloy, fused magnetite, platinum, silver, aluminum alloy, copper, various copper alloys, zinc, antimony,
Tin, nickel and its alloys, various amalgams,
Examples include chromium and cadmium.

かかる電極の中でも銅アマルガムが有効であ
る。特にその組成において水銀/銅の割合が重量
基準で9/1〜2/8望ましくは8/2〜4/6のアマルガム
が特に好適である。
Among such electrodes, copper amalgam is effective. Particularly suitable is an amalgam whose composition has a mercury/copper ratio of 9/1 to 2/8, preferably 8/2 to 4/6, on a weight basis.

一対の電極においてその形状は同一であつても
異形であつても良い。又電極材料は異種電極の組
合せであつても差支えない。
The shape of the pair of electrodes may be the same or different. Further, the electrode materials may be a combination of different types of electrodes.

過冷却の防止のために電圧をかけるが、その電
圧は1μV〜10V好ましくは0.2〜3Vが適当であ
る。電源の種類は直流、交流(低周波、高周
波)、パルスのいずれであつても差支えない。
A voltage is applied to prevent overcooling, and the appropriate voltage is 1 μV to 10V, preferably 0.2 to 3V. The type of power source may be direct current, alternating current (low frequency, high frequency), or pulse.

次に蓄熱材料として容器に収納される無機塩又
は有機塩としては、その目的とする温度範囲によ
つて多少差はあるが、例えば30〜60℃用の蓄熱材
料としては塩化カルシウム6水塩、硫酸ナトリウ
ム10水塩、炭酸ナトリウム10水塩、リン酸水素2
ナトリウム12水塩、硝酸カルシウム4水塩、チオ
硫酸ナトリウム5水塩、酢酸ナトリウム3水塩等
が、80〜120℃用の蓄熱材料としては、硝酸マグ
ネシウム6水塩、カリ明バン(12水塩)、アンモ
ニウム明バン(12水塩)、塩化マグネシウム6水
塩、硝酸カリウム/硝酸リチウム、硝酸カリウ
ム/硝酸リチウム/硝酸ナトリウム等がそれぞれ
挙げられる。
Next, the inorganic salt or organic salt to be stored in the container as a heat storage material varies somewhat depending on the intended temperature range, but for example, as a heat storage material for 30 to 60°C, calcium chloride hexahydrate, Sodium sulfate decahydrate, sodium carbonate decahydrate, hydrogen phosphate 2
Sodium dodecahydrate, calcium nitrate tetrahydrate, sodium thiosulfate pentahydrate, sodium acetate trihydrate, etc. are used as heat storage materials for temperatures between 80 and 120°C, such as magnesium nitrate hexahydrate, potassium alum (decahydrate), etc. ), ammonium alum (12 hydrate), magnesium chloride hexahydrate, potassium nitrate/lithium nitrate, potassium nitrate/lithium nitrate/sodium nitrate, and the like.

以下、実例を挙げて本発明を更に詳しく説明す
る。
Hereinafter, the present invention will be explained in more detail by giving examples.

実例 1 内径5cmの大型試験管に酢酸ナトリウム3水塩
を充填し、更に水分蒸発防止剤として少量の流動
パラフインを添加した。この充填物に接触する様
に試験管の上部より一対の銅アマルガム(水銀/
銅=6/4重量比)電極及び温度計を挿入した。
Example 1 A large test tube with an inner diameter of 5 cm was filled with sodium acetate trihydrate, and a small amount of liquid paraffin was added as a water evaporation inhibitor. A pair of copper amalgams (mercury/
Copper = 6/4 weight ratio) electrode and thermometer were inserted.

温度計は電極間を結ぶ回路内に付設された電圧
印加自動制御機構に接続した。そして、該制御機
構は試験管内の温度が51℃になると回路の開閉ス
イツチをオンにして電極間に電圧(1.7V、60Hz
の交流)を印加し、内温が52℃になると開閉スイ
ツチをオフにして電圧の印加を停止する様にセツ
トした。
The thermometer was connected to an automatic voltage application control mechanism attached to the circuit connecting the electrodes. Then, when the temperature inside the test tube reaches 51℃, the control mechanism turns on the on/off switch of the circuit and applies a voltage (1.7V, 60Hz) between the electrodes.
AC) was applied, and when the internal temperature reached 52°C, the on/off switch was turned off and voltage application was stopped.

まず、試験管を80℃に加熱して酢酸ナトリウム
3水塩を溶融し蓄熱した。次に放冷を開始させ内
温が51℃になつた時(過冷却状態)、電圧が印加
された。10秒後酢酸ナトリウム3水塩の結晶が折
出し始め凝固がおこり昇温が認られた。内温が52
℃に達した時電圧の印加は停止した。その後も昇
温はつづき58℃まで上昇した。
First, a test tube was heated to 80°C to melt sodium acetate trihydrate and store heat. Next, cooling was started, and when the internal temperature reached 51°C (supercooled state), a voltage was applied. After 10 seconds, crystals of sodium acetate trihydrate began to precipitate, solidification occurred, and a rise in temperature was observed. Internal temperature is 52
When the temperature was reached, the voltage application was stopped. After that, the temperature continued to rise to 58℃.

実例 2 電極を鉛―銅アマルガム対に代えた以外、実例
1と同一の試験を行つたところ同様の結果を得
た。
Example 2 The same test as in Example 1 was conducted, except that the electrodes were replaced with lead-copper amalgam pairs, and the same results were obtained.

実例 3 実例1において直流に代え、3V、0.1Hzの矩形
波電圧をかけたところ、3秒後に結晶が析出し始
めた。
Example 3 In Example 1, when a 3V, 0.1Hz square wave voltage was applied instead of direct current, crystals began to precipitate after 3 seconds.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図は本発明の蓄熱装置の概略図で
ある。第3図は本発明の蓄熱装置を用いて冷暖房
を行なう場合の説明用略線図である。第4〜9図
は無機塩又は有機塩を収納する容器を示すもの
で、各容器の上下の突起は一対の電極である。
1 and 2 are schematic diagrams of the heat storage device of the present invention. FIG. 3 is a schematic diagram for explaining the case where heating and cooling is performed using the heat storage device of the present invention. Figures 4 to 9 show containers for storing inorganic or organic salts, and the upper and lower projections of each container are a pair of electrodes.

Claims (1)

【特許請求の範囲】 1 少なくとも一対の電極を具備した容器に無機
塩又は有機塩を収納し、且つ前記電極を結ぶ回路
に無機塩又は有機塩が過冷却状態に至つた時点で
作動する電圧印加自動制御機構を設けてなる蓄熱
装置。 2 電圧印加自動制御機構が装置内に付設された
温度検出器によつて検出された温度により作動し
てなる特許請求の範囲第1項記載の蓄熱装置。
[Claims] 1. An inorganic salt or an organic salt is stored in a container equipped with at least one pair of electrodes, and a voltage is applied to a circuit connecting the electrodes, which is activated when the inorganic salt or organic salt reaches a supercooled state. A heat storage device equipped with an automatic control mechanism. 2. The heat storage device according to claim 1, wherein the automatic voltage application control mechanism is activated by the temperature detected by a temperature detector installed in the device.
JP56175396A 1981-10-30 1981-10-30 Heat accumulator Granted JPS5875672A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56175396A JPS5875672A (en) 1981-10-30 1981-10-30 Heat accumulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56175396A JPS5875672A (en) 1981-10-30 1981-10-30 Heat accumulator

Publications (2)

Publication Number Publication Date
JPS5875672A JPS5875672A (en) 1983-05-07
JPS628715B2 true JPS628715B2 (en) 1987-02-24

Family

ID=15995354

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56175396A Granted JPS5875672A (en) 1981-10-30 1981-10-30 Heat accumulator

Country Status (1)

Country Link
JP (1) JPS5875672A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02236691A (en) * 1989-03-10 1990-09-19 Mitsubishi Electric Corp One-chip microcomputer device
JPH054846B2 (en) * 1986-09-03 1993-01-21 Nippon Electric Co

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014099510A (en) * 2012-11-14 2014-05-29 Toshiba Corp Photovoltaic power generator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH054846B2 (en) * 1986-09-03 1993-01-21 Nippon Electric Co
JPH02236691A (en) * 1989-03-10 1990-09-19 Mitsubishi Electric Corp One-chip microcomputer device

Also Published As

Publication number Publication date
JPS5875672A (en) 1983-05-07

Similar Documents

Publication Publication Date Title
US4154292A (en) Heat exchange method and device therefor for thermal energy storage
US4491172A (en) Energy storage apparatus
JPS63101473A (en) Heat energy storage composition
US4295517A (en) Reusable heat devices containing xylitol as the heat-storage material
JPS628715B2 (en)
US4529488A (en) Process for depositing salts
JPS645239B2 (en)
JPS5945917B2 (en) heat storage device
US4296801A (en) Reusable heat devices containing xylitol as the heat-storage material
JPH0135278B2 (en)
US4189393A (en) Heat storage material comprising lithium chlorate-trihydrate and a nucleating agent
AU2018276134B2 (en) Active crystallisation control in phase change material thermal storage systems
JP3857781B2 (en) Heat storage device capable of controlling heat dissipation and heat dissipation control method for heat storage device
JP2800039B2 (en) Latent heat storage material
JPS648260B2 (en)
JPH0362882A (en) Method for releasing supercooling of thermal energy storing agent having supercooling property
CN108050544A (en) A kind of latent heat of phase change intermittent burning handwarmer
JPS617379A (en) Production of thermal energy storage element
JP2000116692A (en) Warmer, warmer for heating, and warmer for defrosting and use therefor
JPH0611145A (en) Heat storage board for floor heating
JPS58180579A (en) Heat storage material
JPH026587A (en) Release of supercooling heat-storage material from supercooled state
JPS63309582A (en) Heat storage device
JPH0134475B2 (en)
JPS58215480A (en) Heat storage material