JPS644789B2 - - Google Patents

Info

Publication number
JPS644789B2
JPS644789B2 JP18748586A JP18748586A JPS644789B2 JP S644789 B2 JPS644789 B2 JP S644789B2 JP 18748586 A JP18748586 A JP 18748586A JP 18748586 A JP18748586 A JP 18748586A JP S644789 B2 JPS644789 B2 JP S644789B2
Authority
JP
Japan
Prior art keywords
blood
header
hollow fiber
processing device
continuous helical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP18748586A
Other languages
Japanese (ja)
Other versions
JPS6343670A (en
Inventor
Susumu Yoshikawa
Yasushi Fukumura
Masaru Mya
Ichiro Kawada
Akinori Sueoka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP18748586A priority Critical patent/JPS6343670A/en
Publication of JPS6343670A publication Critical patent/JPS6343670A/en
Publication of JPS644789B2 publication Critical patent/JPS644789B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • External Artificial Organs (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は改良された血液入口ヘツダを有する中
空繊維型血液処理装置に関するものである。 (従来の技術) 従来より中空繊維を用いた血液処理装置は、血
液透析装置、人工肝臓装置、血液濾過装置、血漿
分離装置、あるいは人工肺装置として広く用いら
れている。 このような血液処理装置(血液濾過装置)とし
て、通常第4図に示すような血液導入出口が軸対
称位置に設けられた装置が用いられている。 第4図において、1aは血液を中空繊維5の内
部に導き、かつ外部と隔離するための断面が円形
の血液入口ヘツダであり、血液はヘツダの上部に
設けた血液導入口20aよりヘツダ内に導入され
る。1bは中空繊維の内部を通過した血液を集合
させて血液導出口20bより導出するための断面
が円形の血液出口ヘツダである。2は血液の入口
及び出口ヘツダ1a,1bをパツキン12を介し
て、中空繊維束を固定する隔壁6に密着させるた
めの固定キヤツプである。ハウジング3は通常円
筒形であつて透明で硬質の合成樹脂(ポリプロピ
レン、ポリカーボネートなど)で作られ、その内
部には数百〜数万本程度の中空繊維5が充填され
ている。またこのハウジング3には、濾液導出口
4が設けられている。中空繊維5は、ハウジング
3内に多数本充填され、その両端はポリウレタン
樹脂などの血液適合性に優れた隔壁6で液密に固
定され、しかも中空繊維5の内部はヘツダ1a,
1bに設けられた空間と連通している。血液は血
液入口ヘツダ1aの血液導入口20aより装置内
に導入され中空繊維の壁膜を介して血液中の有害
物質をハウジング3の内部に排出した後、血液出
口ヘツダ1bの血液導出口2を経由して体内にも
どされる。一方ハウジング3の内部に排出された
有害物質は導出口4から外部へとり出される。 また最近、各中空繊維に均一に血液を導入する
ために血液入口ヘツダに設けられた空間に接線方
向から血液を導入する血液処理装置が提案されて
いる(特公昭60−5308号、特開昭57−86361号な
ど)。第5図は、かかる装置の例であり、図中共
通のものは第1図と同一番号が付されている。こ
の装置では血液は血液入口ヘツダ1aの外部から
内部へ向けて接線方向に開口した血液導入口20
aより導入されヘツダ内に設けられた空間の上端
の内壁面に沿つてラセン状に設けられた血液誘導
路10にそつて旋回しながら下降し、中空繊維束
の切断面の外周部に達し、次いで中心に向かうラ
セン流となつて切断面から各中空繊維内部に導入
されるようになつている。 (発明が解決しようとする問題点) しかしながら、このような従来の血液処理装置
には次のような欠点があり、特にヘバリンのよう
な抗血液凝固剤を全く使用しないか、あるいは使
用量を減らした血液透析(ノンヘパあるいは減ヘ
パ透析)や、持続的血液濾過(CAVH)、体外循
環肺補助(ECMO)などの数日におよぶ長期使
用の場合においては実用上種々の問題がある。す
なわち第4図に示す血液処理装置では構造上、血
液導入口20aより導入された血液は、まず中空
繊維の端面中央部に衝突し、次いで外周部の中空
繊維へ分散される。従つてヘツダの内部の空間を
流れる血液の速度は、血液の導入口の直下付近で
は大きく、周辺に向うに従つて小さくなる。その
結果、ヘツダの空間内で血液のよどみを生じ、ま
たヘツダに設けられた空間の周辺部では、血液が
停滞する恐れがある。そのため血液処理装置とし
ての性能が低下し、しかも返血する際に、返血速
度が中央部と周辺部で異なるため、周辺部に近い
中空繊維の内部や、血液がよどみをつくつた領域
に残血現象を起こす。一方、第5図に示す装置で
は、中空繊維の切断面において相対的に広い面積
を占める外周部に対して接線方向から血液が導か
れ、その後、ラセン流路の厚みが漸減するために
外周部と内周部の中空繊維内部への血液流入速度
は第4図に示す装置よりは均一に保たれ、かつ、
切断面に対して平行な血流速度も大きな値をとり
得る。しかし、ヘツダに設けられた空間での血液
の流れは、固定された流路でないため、ラセン流
路をとるものの、ハウジングに収容された中空繊
維の分布状態や、中空繊維の切断面の起伏、ヘツ
ダの血液との接触面の起伏の状態によつてかえつ
て部分的なうず流と、それに伴う血栓形成および
気泡の滞留を起し易く、しかもヘツダがかさ高く
なるため血液充填量が増加するなどの問題があつ
た。 (問題点を解決するための手段) 従つて本発明の目的は気泡の滞留や血栓、血餅
の発生が少なく、長時間連続使用しても中空繊維
の閉塞が起こらないような血液入口ヘツダを有す
る血液処理装置を提供することにある。 すなわち本発明は、一端に血液入口ヘツダと、
他端に血液出口ヘツダを備えた筒状ハウジング内
に中空繊維束が収容された中空繊維型血液処理装
置において、該血液入口ヘツダ内側に中心から周
辺部にかけて連続ラセン状溝を形成するととも
に、該連続ラセン状壁と中空繊維束の切断面との
間に、間隙を設け、該連続ラセン状溝の端部に外
部に向けて接線方向に開口する血液導入口を設け
たことを特徴とする中空繊維型血液処理装置であ
る。 (作用) 本発明の血液処理装置は、血液入口ヘツダ内側
に連続ラセン状溝が設けられているので、血液導
入口からヘツダ内に導かれた血液は、該連続ラセ
ン状溝に沿つてラセン状に回りつつ、また、連続
ラセン壁の頂部が、中空繊維束の切断面に密着し
ていないため、中空繊維束の切断面上、すなわち
全ての中空繊維の内部に導入される。その際、血
液圧は各中空繊維切断面上に均一に加わるので、
血液は一様に中空繊維内部に導入される。そのた
め、中空繊維束の開口端面上における気泡の滞留
や血栓形成の原因となるよどみ、血小板の粘着の
抑止や、中空糸の閉塞を解消できるものと推測さ
れる。 (実施例) 次に本発明の血液処理装置の一実施例を図面に
よつて説明する。第1図は本発明装置の一部断面
図、第2図は連続ラセン状溝の溝の深さがヘツダ
中心部に向つて漸減している場合の血液入口ヘツ
ダ1aの断面図であり、図中共通のものは第4図
と同一番号が付されている。また、第3図はヘツ
ダ部形状を拡大した斜視図である。第1図の装置
はヘツダ部分を中心とした構造に特徴がある。本
発明装置では血液入口ヘツダ1aの血液導入口2
0aより導入された血液は、ヘツダ内側の中心か
ら周辺部に延在する連続ラセン状壁7で形成され
た連続ラセン状溝8の端部へ接線方向から導入さ
れる。該連続ラセン状壁7の頂部と中空繊維束の
切断面との間には、第1図に示すように、中空繊
維の切断面に対し、連続ラセン状溝に沿つてラセ
ン状に回る流れが損なわれない程度の間隙、すな
わちシヨートパスしない程度の間隙が設けられて
いるので、血液導入口20aよりヘツダ内に導入
された血液は、連続ラセン状溝8を移動しなが
ら、中空繊維内部に導入される。ここで、処理液
体流量とシヨートパスしない間隙は、本発明者ら
の研究結果によれば、処理液体を牛新鮮血とし、
血液流速をQml/minとし、間隙をHmmとすれ
ば、通常50≦Q≦200であるので、 0.1≦H≦0.01×Q の関係を満たすことが好ましいことを見いだし
た。すなわち、Hがこれより大きいとシヨートパ
スが起こりやすくなり、連続ラセン状溝に沿つて
処理液体が流れにくい傾向がある。また、Hがこ
の範囲より小さいと連続ラセン状壁頂部と中空繊
維束切断面との間に血栓が生じたり、中空糸内に
均一に血液が流れにくくなる。上記ラセン状溝の
深さを第2図に示すように徐々に小さくすること
は、連続ラセン状溝の全ての場所において血液の
速度を一定とすることができるため好ましい。 また、血液出口ヘツダ1bも入口ヘツダ1aと
同様に、血液導出口20bをヘツダの接線方向に
設けると、装置の長さ方向の寸法を小とすること
ができるので、コンパクトになり、望ましい。そ
の際には血液出口ヘツダ1bの凹所にはラセン状
壁を設けないほうが好ましい。 次に本発明装置と従来装置との性能の比較を行
う。 本発明装置として血液入口ヘツダに第1図に示
すような連続ラセン状溝を有し、血液出口ヘツダ
にはラセン状溝を設けない装置を用いた。一方、
従来装置として第4図と第5図に示す装置を用い
た。(内径235μmのポリスルホン膜を使用、中空
糸本数4300本、有効膜面積0.5m2) 上記各血液処理装置に牛新鮮血(ヘマトクリツ
ト値38%、全蛋白質濃度6g/dl)を用い、血液
流速200ml/min、膜間圧力差100mmHgの条件で
血液濾過試験を行つた。80時間血液濾過後の限外
濾過量および返血後の残血本数について測定した
結果を表1に示す。
INDUSTRIAL APPLICATION This invention relates to a hollow fiber blood processing device having an improved blood inlet header. (Prior Art) Blood processing devices using hollow fibers have conventionally been widely used as hemodialysis devices, artificial liver devices, blood filtration devices, plasma separation devices, or artificial lung devices. As such a blood processing device (blood filtration device), a device in which blood inlet ports are provided at axially symmetrical positions as shown in FIG. 4 is usually used. In FIG. 4, reference numeral 1a denotes a blood inlet header with a circular cross section for guiding blood into the inside of the hollow fiber 5 and isolating it from the outside. be introduced. Reference numeral 1b denotes a blood outlet header having a circular cross section for collecting blood that has passed through the hollow fibers and leading it out from the blood outlet 20b. Reference numeral 2 designates a fixing cap for bringing the blood inlet and outlet headers 1a and 1b into close contact with the partition wall 6, which fixes the hollow fiber bundle, through the packing 12. The housing 3 is usually cylindrical and made of transparent, hard synthetic resin (polypropylene, polycarbonate, etc.), and its interior is filled with hundreds to tens of thousands of hollow fibers 5. The housing 3 is also provided with a filtrate outlet 4. A large number of hollow fibers 5 are packed in the housing 3, and both ends of the hollow fibers 5 are fixed liquid-tightly with partition walls 6 made of polyurethane resin or the like having excellent blood compatibility.
It communicates with the space provided in 1b. Blood is introduced into the device through the blood inlet port 20a of the blood inlet header 1a, and harmful substances in the blood are discharged into the housing 3 through the wall membrane of the hollow fibers. It is returned to the body via On the other hand, harmful substances discharged into the interior of the housing 3 are taken out from the outlet 4. Recently, a blood processing device has been proposed that introduces blood tangentially into a space provided in a blood inlet header in order to introduce blood uniformly into each hollow fiber (Japanese Patent Publication No. 60-5308, 57-86361 etc.). FIG. 5 shows an example of such a device, and common parts in the figure are given the same numbers as in FIG. 1. In this device, blood is passed through a blood inlet 20 which opens tangentially from the outside of the blood inlet header 1a to the inside.
a, descends while turning along the blood guide path 10 provided in a spiral shape along the inner wall surface of the upper end of the space provided in the header, and reaches the outer periphery of the cut surface of the hollow fiber bundle; Then, it becomes a spiral flow toward the center and is introduced into each hollow fiber from the cut surface. (Problems to be Solved by the Invention) However, such conventional blood processing devices have the following drawbacks. There are various practical problems in the case of long-term use over several days, such as hemodialysis (non-hepadialysis or reduced hepadialysis), continuous hemofiltration (CAVH), and extracorporeal circulation pulmonary support (ECMO). That is, in the blood processing apparatus shown in FIG. 4, due to the structure, blood introduced from the blood inlet 20a first collides with the center of the end face of the hollow fiber, and then is dispersed into the hollow fiber at the outer periphery. Therefore, the velocity of blood flowing through the internal space of the header is high near the area immediately below the blood inlet, and decreases toward the periphery. As a result, blood may stagnate within the space of the header, and blood may stagnate around the space provided in the header. As a result, the performance of the blood processing device deteriorates, and when blood is returned, the speed of blood return differs between the center and the periphery, so blood remains inside the hollow fibers near the periphery or in areas where blood stagnates. Causes blood phenomena. On the other hand, in the device shown in FIG. 5, blood is guided from the tangential direction to the outer periphery that occupies a relatively large area on the cut surface of the hollow fiber, and then the thickness of the helical flow path gradually decreases. The velocity of blood flowing into the hollow fibers at the inner circumference is kept more uniform than in the device shown in FIG. 4, and
The blood flow velocity parallel to the cutting plane can also take large values. However, the flow of blood in the space provided in the header is not a fixed flow path, and although it takes a helical flow path, the distribution of the hollow fibers accommodated in the housing and the undulations of the cut surface of the hollow fibers, Depending on the undulations of the contact surface of the header with the blood, local eddy flow and accompanying thrombus formation and air bubble retention are likely to occur, and the volume of blood filling increases as the header becomes bulkier. There was a problem. (Means for Solving the Problems) Therefore, the object of the present invention is to provide a blood inlet header which has less accumulation of air bubbles, less occurrence of thrombi, and less blood clots, and which does not cause blockage of hollow fibers even when used continuously for a long time. An object of the present invention is to provide a blood processing device having the following features. That is, the present invention includes a blood inlet header at one end;
In a hollow fiber type blood processing device in which a hollow fiber bundle is housed in a cylindrical housing having a blood outlet header at the other end, a continuous helical groove is formed inside the blood inlet header from the center to the periphery; A hollow space characterized in that a gap is provided between the continuous helical wall and the cut surface of the hollow fiber bundle, and a blood inlet opening tangentially toward the outside is provided at the end of the continuous helical groove. This is a fiber type blood processing device. (Function) In the blood processing device of the present invention, a continuous helical groove is provided inside the blood inlet header, so that the blood guided from the blood inlet into the header flows in a helical shape along the continuous helical groove. Since the top of the continuous helical wall is not in close contact with the cut surface of the hollow fiber bundle, it is introduced onto the cut surface of the hollow fiber bundle, that is, into the inside of all the hollow fibers. At that time, blood pressure is applied uniformly to each hollow fiber cut surface, so
Blood is uniformly introduced inside the hollow fiber. Therefore, it is presumed that stagnation that causes accumulation of air bubbles and thrombus formation on the open end surface of the hollow fiber bundle, inhibition of platelet adhesion, and occlusion of the hollow fibers can be eliminated. (Example) Next, an example of the blood processing apparatus of the present invention will be described with reference to the drawings. FIG. 1 is a partial sectional view of the device of the present invention, and FIG. 2 is a sectional view of the blood inlet header 1a in which the depth of the continuous spiral groove gradually decreases toward the center of the header. Common parts inside are numbered the same as in Fig. 4. Further, FIG. 3 is an enlarged perspective view of the shape of the header portion. The device shown in FIG. 1 is characterized by its structure centered around the header portion. In the device of the present invention, the blood inlet 2 of the blood inlet header 1a
Blood introduced from Oa is introduced tangentially to the end of a continuous helical groove 8 formed by a continuous helical wall 7 extending from the center inside the header to the periphery. Between the top of the continuous helical wall 7 and the cut surface of the hollow fiber bundle, as shown in FIG. Since a gap is provided that does not cause damage, that is, a gap that does not cause the blood to pass, the blood introduced into the header from the blood introduction port 20a is introduced into the hollow fiber while moving in the continuous helical groove 8. Ru. Here, according to the research results of the present inventors, the processing liquid flow rate and the gap at which no shot passes are determined when the processing liquid is fresh bovine blood,
If the blood flow rate is Qml/min and the gap is Hmm, then usually 50≦Q≦200, so it has been found that it is preferable to satisfy the relationship 0.1≦H≦0.01×Q. That is, if H is larger than this, short passes are likely to occur, and the processing liquid tends to be difficult to flow along the continuous helical groove. Furthermore, if H is smaller than this range, a blood clot may occur between the top of the continuous spiral wall and the cut surface of the hollow fiber bundle, or blood may become difficult to flow uniformly within the hollow fibers. It is preferable to gradually reduce the depth of the helical groove as shown in FIG. 2 because the blood velocity can be kept constant at all locations in the continuous helical groove. Further, it is preferable that the blood outlet header 1b is also provided with the blood outlet 20b in the tangential direction of the header, as in the case of the inlet header 1a, since this makes it possible to reduce the lengthwise dimension of the apparatus, thereby making it more compact. In this case, it is preferable not to provide a helical wall in the recess of the blood outlet header 1b. Next, the performance of the device of the present invention and the conventional device will be compared. As the device of the present invention, a device was used in which the blood inlet header had a continuous helical groove as shown in FIG. 1, and the blood outlet header had no helical groove. on the other hand,
As a conventional device, the devices shown in FIGS. 4 and 5 were used. (A polysulfone membrane with an inner diameter of 235 μm is used, the number of hollow fibers is 4300, and the effective membrane area is 0.5 m 2 ) Fresh bovine blood (hematocrit value 38%, total protein concentration 6 g/dl) is used in each of the above blood processing devices, and the blood flow rate is 200 ml. A hemofiltration test was conducted under the conditions of 100 mmHg/min and a transmembrane pressure difference of 100 mmHg. Table 1 shows the results of measuring the amount of ultrafiltration after 80 hours of hemofiltration and the number of blood remaining after blood return.

【表】 以上の結果から、本発明の装置は従来装置に比
較して、限外濾過量は多く、また残血本数は極度
に少ないことが明らかである。さらに、肉眼での
観察の結果、本発明の血液処理装置ではヘツダに
導入された血液が、ほぼ均一に各中空繊維に導入
されていることが確認された。 従つて、本発明の血液処理装置は長時間連続し
て使用される体外循環肺補助や持続的血液濾過、
あるいは減ヘパリン透析などに好適に用いられ
る。 (発明の効果) 以上のように、本発明の血液処理装置は、ヘツ
ダ内側に血液を誘導する連続ラセン状溝が中空繊
維束の切断面との間に間隙を保つて設けられてい
るので、中空繊維束の開口端面に平行な血液速度
を好適に維持することができる。かかる構造は中
空繊維内部への血液流入速度に与える影響を少な
くすることができ、従つて、本発明の血液処理装
置においては、ほぼ均一な流入速度が得られるた
め、ヘツダ内凹所での気泡の滞留、全栓や血餅の
発生の抑止効果が強く発現し、従来装置では不可
能であつた長時間連続使用や、ノンヘパ、減ヘパ
透析が可能である。
[Table] From the above results, it is clear that the device of the present invention has a larger amount of ultrafiltration and an extremely smaller number of residual blood tubes than the conventional device. Furthermore, as a result of visual observation, it was confirmed that in the blood processing apparatus of the present invention, the blood introduced into the header was almost uniformly introduced into each hollow fiber. Therefore, the blood processing device of the present invention can be used for extracorporeal circulation pulmonary support or continuous hemofiltration that is used continuously for a long time.
Alternatively, it is suitably used for reduced heparin dialysis. (Effects of the Invention) As described above, in the blood processing device of the present invention, since the continuous helical groove for guiding blood inside the header is provided with a gap maintained between it and the cut surface of the hollow fiber bundle, Blood velocity parallel to the open end surface of the hollow fiber bundle can be suitably maintained. Such a structure can reduce the influence on the blood inflow speed into the hollow fibers, and therefore, in the blood processing device of the present invention, a substantially uniform inflow speed can be obtained, so that air bubbles in the recesses in the header can be reduced. It has a strong effect of inhibiting the accumulation of blood and the formation of total plugs and clots, and enables continuous use for long periods of time, as well as non-hepatodialysis and reduced-hepadialysis, which were impossible with conventional devices.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の血液処理装置の一部断面図で
あり、第2図は連続ラセン状溝の溝の深さがヘツ
ダ中心部に向つて漸減している場合のヘツダの断
面図であり、第3図は本発明の装置のヘツダ部形
状を拡大した斜視図であり、第4図及び第5図は
従来の血液処理装置の一部断面図である。 1a,1b…血液入口、出口ヘツダ、2…固定
キヤツプ、3…ハウジング、4…濾液導出口、5
…中空繊維、6…隔壁、7…連続ラセン状壁、8
…連続ラセン状溝。
FIG. 1 is a partial sectional view of the blood processing device of the present invention, and FIG. 2 is a sectional view of a header in which the depth of the continuous spiral groove gradually decreases toward the center of the header. , FIG. 3 is an enlarged perspective view of the shape of the header portion of the device of the present invention, and FIGS. 4 and 5 are partial sectional views of a conventional blood processing device. 1a, 1b...Blood inlet, outlet header, 2...Fixed cap, 3...Housing, 4...Filtrate outlet, 5
...Hollow fiber, 6...Partition wall, 7...Continuous helical wall, 8
...Continuous spiral groove.

Claims (1)

【特許請求の範囲】 1 一端に血液入口ヘツダと、他端に血液出口ヘ
ツダを備えた筒状ハウジング内に中空繊維束が収
容された中空繊維型血液処理装置において、該血
液入口ヘツダ内側に中心から周辺部にかけて連続
ラセン状溝を形成するとともに、該連続ラセン状
壁の頂部と中空繊維束の切断面との間に、間隙を
設け、該連続ラセン状溝の端部に外部に向けて接
線方向に開口する血液導入口を設けたことを特徴
とする中空繊維型血液処理装置。 2 該間隙(Hmm)が、血液流速をQml/minと
した場合、0.1≦H≦0.01×Qである特許請求の
範囲第1項記載の血液処理装置。 3 該ラセン状溝の溝の深さがヘツダ中心部に向
つて漸減している特許請求の範囲第1項または第
2項記載の血液処理装置。
[Scope of Claims] 1. A hollow fiber blood processing device in which a hollow fiber bundle is housed in a cylindrical housing having a blood inlet header at one end and a blood outlet header at the other end, in which a hollow fiber bundle is housed inside the blood inlet header. A continuous helical groove is formed from the wall to the periphery, and a gap is provided between the top of the continuous helical wall and the cut surface of the hollow fiber bundle, and a tangential line is formed at the end of the continuous helical groove toward the outside. A hollow fiber type blood processing device characterized by being provided with a blood introduction port that opens in the direction. 2. The blood processing device according to claim 1, wherein the gap (Hmm) satisfies 0.1≦H≦0.01×Q, where the blood flow rate is Qml/min. 3. The blood processing device according to claim 1 or 2, wherein the depth of the spiral groove gradually decreases toward the center of the header.
JP18748586A 1986-08-08 1986-08-08 Hollow fiber type blood treatment apparatus Granted JPS6343670A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18748586A JPS6343670A (en) 1986-08-08 1986-08-08 Hollow fiber type blood treatment apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18748586A JPS6343670A (en) 1986-08-08 1986-08-08 Hollow fiber type blood treatment apparatus

Publications (2)

Publication Number Publication Date
JPS6343670A JPS6343670A (en) 1988-02-24
JPS644789B2 true JPS644789B2 (en) 1989-01-26

Family

ID=16206892

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18748586A Granted JPS6343670A (en) 1986-08-08 1986-08-08 Hollow fiber type blood treatment apparatus

Country Status (1)

Country Link
JP (1) JPS6343670A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015100288A1 (en) * 2013-12-23 2015-07-02 University Of Maryland, Baltimore Blood oxygenator

Also Published As

Publication number Publication date
JPS6343670A (en) 1988-02-24

Similar Documents

Publication Publication Date Title
KR100649260B1 (en) Dual-stage filtration cartridge
KR101099962B1 (en) Fluid distribution module and extracorporeal blood circuit including such a module
EP1532994B1 (en) Degassing device and end-cap assembly for a filter
US4125468A (en) Hollow-fiber permeability apparatus
JPH01148266A (en) Blood filter
CA1089370A (en) Hollow fiber permeability apparatus
US4231877A (en) Blood dialyzer
US3373876A (en) Artificial body organ apparatus
US4082670A (en) Hollow fiber permeability apparatus
JPH0217179B2 (en)
JPS644789B2 (en)
JPH0217181B2 (en)
JPH0217180B2 (en)
JPS6030224B2 (en) Blood processing device with hollow fiber membrane bundle
US5238561A (en) Hollow fiber mass transfer apparatus
JPS605308B2 (en) Blood processing device consisting of hollow fiber membrane bundle
JPH10165777A (en) Hollow yarn module and its production
JPS6323099Y2 (en)
JP4807912B2 (en) Hollow fiber membrane module and manufacturing method thereof
JP2005118506A (en) On-line massive fluid replacement type hemodialyzer
JPH09108338A (en) Blood port and blood processing device using the same
JPH0550299B2 (en)
JP2000042100A (en) Hollow fiber membrane type liquid treatment apparatus
JPH0550300B2 (en)
EP0477966A1 (en) Hollow fiber mass transfer apparatus

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term