JPS64323B2 - - Google Patents

Info

Publication number
JPS64323B2
JPS64323B2 JP58124163A JP12416383A JPS64323B2 JP S64323 B2 JPS64323 B2 JP S64323B2 JP 58124163 A JP58124163 A JP 58124163A JP 12416383 A JP12416383 A JP 12416383A JP S64323 B2 JPS64323 B2 JP S64323B2
Authority
JP
Japan
Prior art keywords
silicon carbide
substrate
film
gas
methylhydrodiene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58124163A
Other languages
Japanese (ja)
Other versions
JPS6016810A (en
Inventor
Minoru Takamizawa
Susumu Ueno
Tatsuhiko Motomya
Tamaki Iida
Fujitsugu Fujino
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP58124163A priority Critical patent/JPS6016810A/en
Publication of JPS6016810A publication Critical patent/JPS6016810A/en
Publication of JPS64323B2 publication Critical patent/JPS64323B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/32Carbides
    • C23C16/325Silicon carbide

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Chemical Vapour Deposition (AREA)
  • Surface Treatment Of Glass (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は表面被覆膜、特には耐久性、耐摩耗
性、耐熱性、耐蝕性、接着性、ガス不透過性のす
ぐれた炭化けい素被覆膜の製造方法に関するもの
である。 近年、各種電気機器のハウジングや表示器、各
種機能フイルム、建材、化粧板、玩具、装飾品な
どには多くのプラスチツク材が使用されている
が、このプラスチツク材はその表面がいわゆる有
機結合をした高分子量体とされていることから、
耐久性、耐摩耗性、耐熱性、耐蝕性、接着性、ガ
ス不透過性に劣るという本質的な欠点があつた。
また、窓ガラス、各種ウインドウ、メガネ、各種
電気機器の保護材として使用されているガラス質
材料には耐摩耗性(硬度)が劣り、強度にも限界
があるという不利があり、鉄、アルミニウム、銅
など各種方面に広く使用されている金属材料には
耐摩耗性、接着性、耐蝕性、耐薬品性に劣るとい
う欠点がある。 したがつて、これらの素材については各種の保
護方法が採られており、プラスチツクについては
その素材に各種の添加剤を添加して成形するか、
その成形品に塗料を塗布したり、異種のフイルム
を接着あるいはサンドイツチする方法が、またガ
ラス質物、セラミツクス系についてはプラスチツ
クフイルムを接着またはサンドイツチするか、塗
料の塗布という方法が行なわれており、金属の保
護については塗料の塗布、その表面を化学的にま
たは物理的に処理するか、その表面に保護材を溶
射するという方法が採られているが、これらは必
ずしも充分満足すべき結果を与えるものではなか
つた。 そのため、これら基材の表面保護は耐酸化性、
耐蝕性、耐熱性、耐熱衝撃性、低熱膨張性で、そ
れ自体が高硬度(高密度)である炭化けい素で被
覆するという方法が提案されており、例えばシ
リコン結晶をターゲツトとして炭素源に炭化水素
ガスを用いたスパツタリング方法(特公昭56−
26640号公報、特開昭56−40284号公報参照)、
シリコン蒸気をイオン化し、炭素基体の表面に膜
を形成させるイオンブレーテイング法(特公昭55
−18678号公報参照)、シランまたはハロゲン化
シランガスと炭化水素ガスとの混合ガスを熱分解
させる方法(特開昭57−116200号公報、特開昭57
−118082号公報参照)、炭素表面上で前記シラ
ンガスを熱分解させる方法(特公昭47−48120号
公報参照)、シリコン基板上で炭化水素ガスを
分解反応させる方法(特公昭56−26640号公報参
照)、さらには水素化シラン、アルキルシラン
またはハロゲン化シランと炭化水素ガスとをプラ
ズマ気相沈積法(以下CVD法という)で処理す
る方法(特開昭57−27914号公報、特開昭57−
22112号公報、特開昭57−200215号公報参照)な
どが知られている。しかし、この〜の方法は
高温が必要とされ、各元素のクラスターができや
すいし、均質な膜が得られにくく、成膜速度も遅
いという不利があるほか、熱膨張の相違によつて
室温に戻したときに皮膜にクラツクが発生し易
く、接着強度も劣るという欠点があり、このの
プラズマCVD法にはその始発原料としてモノシ
ラン(SiH4)を使用するとそれが非常に発火性
の高いものであるため取扱いに厳重な注意が必要
とされるほか、コストが高くなるという不利があ
るし、ハロゲン化シランを使用するとプラズマに
よつて塩酸や塩素が発生するためその処理に難点
が生じるほか反応速度が遅いという欠点があり、
またシリコン源と炭素源が異なるためにこの推積
速度を早めるとこれらの反応速度の相違からSiお
よびCのクラスターが発生し、均質な膜が得られ
ないという不都合があつた。 本発明はこのような不利を解決した基体表面に
炭化けい素皮膜の形成させる方法に関するもので
あり、これは一般式(CH3aSibHc(こゝに1<b
<4、2b+1≧a≧1、2b+1≧c≧1、a+
c=2b+2)で示されるメチルハイドロジエン
ポリシラン類の少なくとも1種の分解により発生
する炭化けい素を基体上に堆積させることを特徴
とするものである。 これを説明すると、本発明者らはさきにメチル
ハイドロジエンシラン化合物を始発材料とし、プ
ラズマCVD法で処理すれば高純度で均一な炭化
けい素膜を得ることができるということを見出す
と共に、特にメチルハイドロジエンジシラン、ま
たは−トリシランを使用すれば非常に大きい生長
速度で均質な炭化けい系膜を得ることができると
いうことを確認した(特願昭58−4695号参照)。
本発明はこの知見にもとづいて、メチルハイドロ
ジエンポリシランを始発材料とし、これをプラズ
マCVD法で処理し、こゝに発生した炭化けい素
を基体上に堆積させると、耐久性、耐摩耗性、耐
熱性、耐蝕性、接着性、ガス不透過性のすぐれた
表面被覆膜が得られるという本発明者らの確認に
よりなされたものである。 本発明に使用されるメチルハイドロジエンポリ
シランは前記した一般式(CH3aSibHcで示され
るものであり、これには
The present invention relates to a method for producing a surface coating film, particularly a silicon carbide coating film having excellent durability, abrasion resistance, heat resistance, corrosion resistance, adhesiveness, and gas impermeability. In recent years, many plastic materials have been used for the housings and displays of various electrical devices, various functional films, building materials, decorative laminates, toys, decorations, etc., but these plastic materials have so-called organic bonds on their surfaces. Since it is considered to be a high molecular weight substance,
It had the essential disadvantage of being inferior in durability, abrasion resistance, heat resistance, corrosion resistance, adhesiveness, and gas impermeability.
In addition, glass materials used as protective materials for window glass, various windows, glasses, and various electrical devices have the disadvantage of poor abrasion resistance (hardness) and limited strength. Metal materials such as copper, which are widely used in various fields, have the disadvantage of being inferior in wear resistance, adhesion, corrosion resistance, and chemical resistance. Therefore, various protection methods are adopted for these materials, such as adding various additives to plastics and molding them, or
For molded products, methods include applying paint, gluing or sandwiching different types of films, and for glassy and ceramic materials, gluing or sandwiching plastic films, or applying paint. For protection, methods are used such as applying paint, treating the surface chemically or physically, or thermally spraying a protective material on the surface, but these methods do not always give fully satisfactory results. It wasn't. Therefore, the surface protection of these base materials is oxidation resistant,
A method has been proposed in which silicon carbide is coated with silicon carbide, which has corrosion resistance, heat resistance, thermal shock resistance, low thermal expansion, and is itself highly hard (high density). Sputtering method using hydrogen gas
26640, JP-A-56-40284),
Ion blating method (Special Publication Act 1987) in which silicon vapor is ionized and a film is formed on the surface of a carbon substrate.
-18678 Publication), a method of thermally decomposing a mixed gas of silane or halogenated silane gas and hydrocarbon gas (Japanese Unexamined Patent Application Publication No. 116200/1983,
-118082), a method of thermally decomposing the silane gas on a carbon surface (see Japanese Patent Publication No. 47-48120), a method of decomposing hydrocarbon gas on a silicon substrate (see Japanese Patent Publication No. 56-26640) ), and a method of treating hydrogenated silane, alkylsilane, or halogenated silane with hydrocarbon gas by plasma vapor deposition method (hereinafter referred to as CVD method) (JP-A-57-27914, JP-A-57-
22112, JP-A-57-200215, etc.) are known. However, this method requires high temperatures, tends to form clusters of each element, makes it difficult to obtain a homogeneous film, and has a slow film formation rate. The drawback is that the film tends to crack when it is put back together, and its adhesive strength is poor.The plasma CVD method uses monosilane (SiH 4 ) as its starting material because it is highly flammable. Because of this, strict care is required when handling it, and it also has the disadvantage of higher costs.When halogenated silanes are used, the plasma generates hydrochloric acid and chlorine, which makes processing difficult and slows down the reaction rate. The disadvantage is that it is slow,
Further, since the silicon source and the carbon source are different, if the estimated rate is accelerated, clusters of Si and C will be generated due to the difference in reaction rate, making it impossible to obtain a homogeneous film. The present invention relates to a method for forming a silicon carbide film on the surface of a substrate that solves these disadvantages, and is based on the general formula (CH 3 ) a Si b H c (where 1<b
<4, 2b+1≧a≧1, 2b+1≧c≧1, a+
The method is characterized in that silicon carbide generated by the decomposition of at least one type of methylhydrodiene polysilane represented by c=2b+2) is deposited on a substrate. To explain this, the present inventors first discovered that a highly pure and uniform silicon carbide film could be obtained by using a methylhydrogensilane compound as a starting material and treating it with a plasma CVD method. It has been confirmed that a homogeneous silicon carbide film can be obtained at a very high growth rate by using methylhydrodiene disilane or -trisilane (see Japanese Patent Application No. 1983-4695).
Based on this knowledge, the present invention uses methylhydrodienepolysilane as a starting material, processes it by plasma CVD, and deposits the silicon carbide generated on the substrate to improve durability, wear resistance, This was made based on the inventors' confirmation that a surface coating film with excellent heat resistance, corrosion resistance, adhesiveness, and gas impermeability can be obtained. The methylhydrodiene polysilane used in the present invention is represented by the above-mentioned general formula (CH 3 ) a Si b H c , which includes:

【式】【formula】

【式】【formula】

【式】 などが例示されるが、これはその単独または2種
以上の混合物であつてもよい。このメチルハイド
ロジエンポリシランは1分子中にけい素原子と炭
素原子とを同時に含有するものであるため、この
分解により発生する炭化けい素を堆積させた皮膜
は均質であり、その膜の成長速度がモノシランを
使用した場合にくらべて数倍以上早いという有利
性が与えられる。なお、このメチルハイドロジエ
ンポリシランの製造法は公知であり、これはポリ
ジメチルシランを350℃以上で熱分解するか、ま
たはメチルクロライドと金属けい素との反応によ
るメチルクロロシランの直接合成時に副生するメ
チルクロロジシランの還元によつて得ることがで
きる。 本発明方法の実施にはこのメチルハイドロジエ
ンポリシランをプラズマCVD法で処理すればよ
いが、これにはまず処理すべき基体を反応室内に
載置したのち、この反応室内を0.01〜5トルに減
圧し、こゝにキヤリヤーガスとしての水素、ヘリ
ウム、アルゴンガスと共にメチルハイドロジエン
ポリシランを導入してから、この系内に高周波電
力を印加してプラズマを発生させればよい。この
反応温度は基体の耐熱温度によつて調節する必要
があるが、これは100℃以上、好ましくは150℃以
上とすることがよい。しかし、これを150℃以下
とすると得られる炭化けい素被膜中にSiH2結合
に起因する2090cm-1の吸収が生じ、耐久性、耐熱
性の点で問題となるおそれがあるので、この場合
にはキヤリヤーガスと原料としてのメチルハイド
ロジエンポリシランの供給を停止して、炭素源、
窒素源、酸素源となるガス体だけを供給し、この
温度で20分以上エージングすることがよく、これ
によればかゝる不利を除去することができる。な
お、この反応温度の上限は700℃以下とすること
がよいが、経済的見地とこれが高すぎると基体と
被覆膜との熱膨張係数の差で均一で稠密な膜が得
られなくなるおそれがあるので、基材の種類にも
よるが500℃以下とすることが好ましい。 本発明の方法では、前記したようにこのメチル
ハイドロジエンポリシランが炭素原子とけい素原
子を同時に保有しており、その比率も変化させる
ことができるので、この反応系に他の炭素源、け
い素源となるガス体を添加する必要はないが、上
記したエージング用などに使用する炭素源として
はメタン、エタンなど、窒素源としては窒素ガ
ス、アンモニアガス、N2H4などが、また酸素源
としては酸素ガス、水蒸気などを、さらにこれら
の混合ガスとしてはCO、CO2、N2O、CH3OHな
どを使用すればよい。 本発明の方法による炭化けい素被覆膜の膜厚は
目的によつて異なるけれども、被覆膜に強度が必
要とされるときにはこれを数ミクロンから数十ミ
クロンとし、強度を必要とせず耐久性、表面硬
度、ガス不透過性、接着性などの改良が目的とさ
れる場合には数ミクロン以下としてもよい。ま
た、この炭化けい素被覆の炭素とけい素の原子比
は始発材料として使用するメチルハイドロジエン
ポリシランの構造、すなわちそのけい素原子と炭
素原子の総合比により変化するが、これは本発明
の目的からは任意とされ、どのような比であつて
もよい。 本発明の方法で形成される炭化けい素被覆膜は
各種素材の改質に有用とされるものであり、これ
は例えば窒化けい素、サイアロン、ムライトなど
のセラミツクの潤滑性改良、表面保護用として、
鉄鉱、非鉄金属類、合金製品などの防錆、表面強
化のための表面処理用として、また太陽熱コレク
ター、太陽光発電用表管、板、各種ICなどのよ
うな電機、電子部品の表面保護用として利用する
ことができるほか、各種プラスチツク、ガラス類
の強化、接着性改良、ガス透過性改良などを目的
とする表面処理にも広く使用することができる。
つぎに本発明方法の実施例をあげる。 実施例 1 反応装置内に100mm×50mm×1mmの第1表に掲
記した基体を載置してから系内を5×10-2トルに
まで減圧し、ついでヒーターを使用して基体を第
2表に示した温度にまで加熱した。 つぎに、この反応室内に所定の温度に予熱した
第1表に掲記した各種のメチルハイドロジエンポ
リシランをキヤリヤーガスとしてのアルゴンと水
素との3:1の混合ガスと共に導入し、こゝに
13.56MHzの高周波電力(50W)を印加してプラ
ズマを発生させてこのポリシランの分解により生
成した炭化けい素を基体上に堆積させたのち、
こゝに得られた基体について耐蝕性、耐摩耗性、
耐熱性を下記の方法で測定したところ、第1表に
併記したとおりの結果が得られた。 なお、この第1表には比較のため、始発材料と
してモノシランとメタンの混合ガスを使用して同
様に処理したもの、また未処理の各基材について
の試験結果を併記した。 (耐蝕性) 濃フツ酸と濃硝酸の1:1の混合液に室温で2
時間浸漬後、その状態をしらべた。 (耐摩耗性) 表面状態がビツカース硬度で1500Kg/mm2以上で
あるかどうかをしらべた。 (耐熱性) 400℃で8時間加熱したのちの膜の状態を電子
顕微鏡で観察した。
[Formula] is exemplified, but it may be used alone or as a mixture of two or more thereof. Since this methylhydrodiene polysilane contains both silicon atoms and carbon atoms in one molecule, the film deposited with silicon carbide generated by this decomposition is homogeneous, and the growth rate of the film is slow. This has the advantage of being several times faster than when monosilane is used. The method for producing methylhydrodiene polysilane is known, and is produced by thermally decomposing polydimethylsilane at 350°C or higher, or by producing methylchlorosilane as a by-product during the direct synthesis of methylchlorosilane by reacting methyl chloride with metal silicon. It can be obtained by reduction of methylchlorodisilane. To carry out the method of the present invention, this methylhydrodiene polysilane may be treated by the plasma CVD method, but first, the substrate to be treated is placed in a reaction chamber, and then the pressure in the reaction chamber is reduced to 0.01 to 5 torr. However, after introducing methylhydrogenpolysilane together with hydrogen, helium, and argon gases as carrier gases, high-frequency power is applied to the system to generate plasma. This reaction temperature needs to be adjusted depending on the heat resistance temperature of the substrate, and is preferably 100°C or higher, preferably 150°C or higher. However, if the temperature is lower than 150℃, absorption of 2090cm -1 due to SiH 2 bonds will occur in the resulting silicon carbide film, which may cause problems in terms of durability and heat resistance. The carrier gas and the supply of methylhydrodiene polysilane as a raw material are stopped, and the carbon source,
It is preferable to supply only gases serving as nitrogen and oxygen sources and to perform aging at this temperature for 20 minutes or more, thereby eliminating such disadvantages. Note that the upper limit of this reaction temperature is preferably 700°C or less, but from an economic standpoint, if this is too high, there is a risk that a uniform and dense film may not be obtained due to the difference in thermal expansion coefficient between the substrate and the coating film. Therefore, the temperature is preferably 500°C or less, although it depends on the type of substrate. In the method of the present invention, as mentioned above, this methylhydrodiene polysilane simultaneously contains carbon atoms and silicon atoms, and the ratio can be changed, so other carbon sources and silicon sources are added to the reaction system. Although it is not necessary to add gases that will be Oxygen gas, water vapor, etc. may be used, and CO, CO 2 , N 2 O, CH 3 OH, etc. may be used as the mixed gas. Although the thickness of the silicon carbide coating film obtained by the method of the present invention varies depending on the purpose, when strength is required for the coating film, the thickness is set from several microns to several tens of microns, and durability is not required. If the purpose is to improve surface hardness, gas impermeability, adhesion, etc., the thickness may be several microns or less. In addition, the atomic ratio of carbon to silicon in this silicon carbide coating varies depending on the structure of the methylhydrodiene polysilane used as the starting material, that is, the overall ratio of silicon atoms to carbon atoms. is arbitrary and may be any ratio. The silicon carbide coating film formed by the method of the present invention is said to be useful for modifying various materials, such as improving the lubricity of ceramics such as silicon nitride, sialon, and mullite, and for surface protection. As,
For surface treatment to prevent rust and strengthen the surface of iron ore, non-ferrous metals, alloy products, etc., and for surface protection of electrical and electronic components such as solar collectors, solar power generation tubes, plates, and various ICs. In addition, it can be widely used in surface treatments for the purpose of strengthening various plastics and glasses, improving adhesion, and improving gas permeability.
Next, examples of the method of the present invention will be given. Example 1 A substrate of 100 mm x 50 mm x 1 mm listed in Table 1 was placed in a reactor, the pressure inside the system was reduced to 5 x 10 -2 torr, and then a heater was used to transfer the substrate to a second reactor. It was heated to the temperature indicated in the table. Next, various methylhydrodiene polysilanes listed in Table 1, which had been preheated to a predetermined temperature, were introduced into the reaction chamber together with a 3:1 mixed gas of argon and hydrogen as a carrier gas.
After applying 13.56MHz high frequency power (50W) to generate plasma and depositing silicon carbide produced by decomposition of this polysilane on the substrate,
The obtained substrate has corrosion resistance, abrasion resistance,
When the heat resistance was measured by the method below, the results shown in Table 1 were obtained. For comparison, Table 1 also shows test results for base materials treated in the same manner using a mixed gas of monosilane and methane as the starting material, and for untreated base materials. (Corrosion resistance) Add 2 ml to a 1:1 mixture of concentrated hydrofluoric acid and concentrated nitric acid at room temperature.
After soaking for a period of time, the condition was examined. (Abrasion resistance) We checked whether the surface condition had a Bitkers hardness of 1500 Kg/mm 2 or more. (Heat resistance) After heating at 400°C for 8 hours, the state of the film was observed using an electron microscope.

【表】 (注) ○…良、△…やゝ良、×…不良
実施例 2 実施例1と同じ方法で第2表に掲記した基体を
処理し、基体上に2μmの膜厚の炭化けい素被覆
膜を作つてから、これらについての耐蝕性、耐摩
耗性、接着性、ガス不透過性を下記の方法でしら
べたところ、第2表に示すとおりの結果が得られ
た。 なお、この第2表にはこのような処理を施して
いない基体についての物性を併記した。 (耐蝕性)…実施例1と同じ (耐摩耗性) 表面状態をビツカース硬度が1000Kg/mm2以上で
あるかどうかをしらべた。 (接着性) エポキシ樹脂を使用して、接着強度が60Kg/cm2
以上であるかどうかをしらべた。 (ガス不透過性) 酸素の透過率を測定し、ガス透過度が10c.c./
m2・24時間・気圧以下であるかどうかをしらべ
た。
[Table] (Note) ○...good, △...good, ×...bad Example 2 The substrate listed in Table 2 was treated in the same manner as in Example 1, and a silicon carbide film with a thickness of 2 μm was deposited on the substrate. After the raw coating films were prepared, their corrosion resistance, abrasion resistance, adhesion, and gas impermeability were examined using the methods described below, and the results shown in Table 2 were obtained. Note that Table 2 also lists the physical properties of the substrates that were not subjected to such treatment. (Corrosion resistance) Same as Example 1 (Abrasion resistance) The surface condition was examined to see if the Vickers hardness was 1000 Kg/mm 2 or more. (Adhesiveness) Adhesive strength is 60Kg/cm 2 using epoxy resin.
I checked to see if the above is true. (Gas impermeability) The oxygen permeability was measured and the gas permeability was 10c.c./
I checked whether it was below m 2 / 24 hours / atmospheric pressure.

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】 1 一般式(CH3aSibHc(こゝに1<b<4、2b
+1≧a≧1、2b+1≧c≧1、a+c=2b+
2)で示されるメチルハイドロジエンポリシラン
類の少なくとも1種の分解により発生する炭化け
い素を基体上に堆積させることを特徴とする表面
被覆膜の製造方法。 2 炭化けい素の被膜がプラズマ気相沈積法で堆
積される特許請求の範囲第1項記載の表面被覆膜
の製造方法。 3 ガラス、金属、セラミツク、プラスチツク、
木材などの基材上にプラズマ気相沈積法で炭化け
い素被膜が堆積される特許請求の範囲第1項記載
の表面被覆膜の製造方法。
[Claims] 1 General formula (CH 3 ) a Si b H c (where 1<b<4, 2b
+1≧a≧1, 2b+1≧c≧1, a+c=2b+
2) A method for producing a surface coating film, which comprises depositing silicon carbide generated by the decomposition of at least one methylhydrodiene polysilane on a substrate. 2. The method for producing a surface coating film according to claim 1, wherein the silicon carbide film is deposited by plasma vapor deposition. 3 Glass, metal, ceramic, plastic,
2. The method for producing a surface coating film according to claim 1, wherein the silicon carbide film is deposited on a substrate such as wood by plasma vapor deposition.
JP58124163A 1983-07-08 1983-07-08 Formation of surface coating film Granted JPS6016810A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58124163A JPS6016810A (en) 1983-07-08 1983-07-08 Formation of surface coating film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58124163A JPS6016810A (en) 1983-07-08 1983-07-08 Formation of surface coating film

Publications (2)

Publication Number Publication Date
JPS6016810A JPS6016810A (en) 1985-01-28
JPS64323B2 true JPS64323B2 (en) 1989-01-06

Family

ID=14878499

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58124163A Granted JPS6016810A (en) 1983-07-08 1983-07-08 Formation of surface coating film

Country Status (1)

Country Link
JP (1) JPS6016810A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5041303A (en) * 1988-03-07 1991-08-20 Polyplasma Incorporated Process for modifying large polymeric surfaces
JP2932604B2 (en) * 1990-05-15 1999-08-09 東亞合成株式会社 Method for manufacturing article having silicon carbide film
GB0509648D0 (en) * 2005-05-12 2005-06-15 Dow Corning Ireland Ltd Plasma system to deposit adhesion primer layers

Also Published As

Publication number Publication date
JPS6016810A (en) 1985-01-28

Similar Documents

Publication Publication Date Title
US5843526A (en) Protective compositions and methods of making the same
US4472476A (en) Composite silicon carbide/silicon nitride coatings for carbon-carbon materials
US4425407A (en) CVD SiC pretreatment for carbon-carbon composites
US3784402A (en) Chemical vapor deposition coatings on titanium
CN1210899A (en) Silicon dioxide deposition by plasma activated evaporation process
US3846162A (en) Metal carbonitride coatings
US3368914A (en) Process for adherently depositing a metal carbide on a metal substrate
EP0774533A1 (en) Method for depositing Si-O containing coatings
US3807008A (en) Chemical vapor deposition coatings on titanium
IL144500A0 (en) A method for coating a substrate using a medium temperature chemical vapor deposition process
JP4705572B2 (en) Method for depositing a silica coating on a substrate
WO1992001084A1 (en) Chemical vapor deposition (cvd) process for plasma depositing silicon carbide films onto a substrate
JPS64323B2 (en)
US5053255A (en) Chemical vapor deposition (CVD) process for the thermally depositing silicon carbide films onto a substrate
US4869929A (en) Process for preparing sic protective films on metallic or metal impregnated substrates
JP4736076B2 (en) SiC film-covered glassy carbon material and method for producing the same
Bahlawane A high-temperature oxidation-resistant coating, for graphite, prepared by atmospheric pressure chemical vapor deposition
US4273828A (en) Bulk glass having improved properties
JPH04301084A (en) Wear-resistant member and its manufacture
JPS6221868B2 (en)
GB2161151A (en) Composite SiC/Si3N4 coating for carbon-carbon materials
JPH05125660A (en) Thermally decomposed carbon composite material and heat insulating material for high-temperature furnace
JPH0692761A (en) Sic-cvd coated and si impregnated sic product and its manufacture
JPS6054911A (en) Ultraviolet light cutting membrane
JPS6324068B2 (en)