JPS642227B2 - - Google Patents

Info

Publication number
JPS642227B2
JPS642227B2 JP56086491A JP8649181A JPS642227B2 JP S642227 B2 JPS642227 B2 JP S642227B2 JP 56086491 A JP56086491 A JP 56086491A JP 8649181 A JP8649181 A JP 8649181A JP S642227 B2 JPS642227 B2 JP S642227B2
Authority
JP
Japan
Prior art keywords
conductor
buried
line
magnetic field
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56086491A
Other languages
Japanese (ja)
Other versions
JPS57200802A (en
Inventor
Yasuo Koyanagi
Takeo Yamada
Hiroyuki Hojo
Akio Nagamune
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kokan Ltd filed Critical Nippon Kokan Ltd
Priority to JP56086491A priority Critical patent/JPS57200802A/en
Publication of JPS57200802A publication Critical patent/JPS57200802A/en
Publication of JPS642227B2 publication Critical patent/JPS642227B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V3/00Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
    • G01V3/02Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation operating with propagation of electric current
    • G01V3/06Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation operating with propagation of electric current using ac

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geology (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Geophysics (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Geophysics And Detection Of Objects (AREA)

Description

【発明の詳細な説明】 この発明はガス導管、水道管、電力ケーブル、
パイプライン等の地下埋設導体の埋設位置検出方
法に関する。
[Detailed Description of the Invention] This invention relates to gas pipes, water pipes, power cables,
This invention relates to a method for detecting the buried position of underground conductors such as pipelines.

地下に埋設されているガス管や水道管などの埋
設位置を地表上から検出する計測技術は掘削工事
や建設工事などの際に管体の破損を避けるために
必要不可欠となつている。従来このような地下埋
設導体の検出方法としては電磁誘導を使用したも
のが知られている。これは第1図に示すように送
信器1および受信器2を設け、上記送信器1を接
地するとともにリード線3,4を介して埋設導体
5に接続して閉ループを形成し、その閉ループに
送信器1から交流電流を流すことによつて埋設導
体5の周囲に交番磁界Hを発生させ、その交番磁
界をコイルを有する検知棒6で検知して上記受信
器2に入力するようにした直接通電方式といわれ
るものである。これは埋設導体5に流れる交流電
流によつて発生する交番磁界が埋設導体5を中心
に同心円状になるものと仮定し、磁界の方向が検
知棒6内のコイルと平行になると検知コイルに発
生する誘導起電力がゼロになることを利用したも
ので、検知棒6を90゜にして誘導起電力がゼロと
なる地点を捜し、その地点を埋設導体5の真上と
仮定し、また検知棒6を45゜に傾けて誘導起電力
がゼロとなる地点を捜し、その両地点間距離と角
度45゜から三角法により埋設導体5の埋設深さを
検出するようにしている。しかし実際は埋設導体
5と接地ラインとの間に大地の静電容量を介して
帰路電流が流れるため発生する交番磁界は埋設導
体を中心とした同心円状になることはない。この
ためこの方法ではかならず測定誤差が生じ、その
誤差も場合によつては20〜50%にもなり、埋設位
置を精度よく計測することが求められるものには
使用することができない欠点があつた。
Measurement technology that detects the location of gas pipes, water pipes, etc. buried underground from above the ground has become essential to avoid damage to pipe bodies during excavation and construction work. Conventionally, a method using electromagnetic induction is known as a method for detecting such underground conductors. As shown in Fig. 1, a transmitter 1 and a receiver 2 are provided, and the transmitter 1 is grounded and connected to a buried conductor 5 via lead wires 3 and 4 to form a closed loop. An alternating magnetic field H is generated around the buried conductor 5 by passing an alternating current from the transmitter 1, and the alternating magnetic field is detected by a detection rod 6 having a coil and inputted to the receiver 2. This is called the energizing method. This assumes that the alternating magnetic field generated by the alternating current flowing through the buried conductor 5 is concentric with the buried conductor 5, and when the direction of the magnetic field becomes parallel to the coil in the detection rod 6, it is generated in the detection coil. This method takes advantage of the fact that the induced electromotive force becomes zero when the detection rod 6 is turned to 90 degrees, searches for a point where the induced electromotive force becomes zero, assumes that point is directly above the buried conductor 5, and 6 is tilted at 45 degrees to find a point where the induced electromotive force becomes zero, and the buried depth of the buried conductor 5 is detected by trigonometry from the distance between the two points and the 45 degree angle. However, in reality, since a return current flows between the buried conductor 5 and the ground line via the ground capacitance, the generated alternating magnetic field does not form concentric circles around the buried conductor. For this reason, this method always has a measurement error, and in some cases, the error is as high as 20 to 50%, making it unsuitable for applications that require accurate measurement of buried locations. .

この発明はこのような欠点を除去するために為
されたもので、地下埋設導体の埋設位置を精度良
く測定することができ、しかも測定に必要なスペ
ースが少なくてよく実用性が高い地下埋設導体の
埋設位置検出方法を提供することを目的とする。
This invention was made in order to eliminate these drawbacks, and it is possible to accurately measure the buried position of an underground conductor, and moreover, it requires less space for measurement and is highly practical. The purpose of this invention is to provide a method for detecting the buried position of

この発明は電磁誘導型直接通電方式をその基本
としつつ帰路電流用線路を設けて帰路電流の経路
を明確にするとともに、その帰路電流用線路の敷
設位置を変えたときの導体と線路から発生する磁
界の合成磁界の方向の変化を導体の片側面外側に
位置する地表上の垂直方向又は水平方向にずれた
2点において計測することにより導体の埋設位置
を検出するものである。
This invention is based on an electromagnetic induction type direct energization method, and also provides a return current line to clarify the path of the return current, and also to reduce the amount of electricity generated from the conductor and line when the return current line is relocated. The buried position of the conductor is detected by measuring changes in the direction of the composite magnetic field at two points on the ground surface located outside one side of the conductor and shifted in the vertical or horizontal direction.

次にこの発明の検出原理について述べる。第2
図に示すように互に距離Lだけ離れた線路l1,l2
に互に等しくかつ方向の異なる交流電流が流れた
場合に、線路l1からx方向に距離X、y方向に距
離Y離れたP点の磁界の強さHのx成分、y成分
は次式で与えられることが知られている。
Next, the detection principle of this invention will be described. Second
As shown in the figure, the lines l 1 and l 2 are separated by a distance L from each other.
When alternating currents that are equal and have different directions flow through the lines, the x and y components of the magnetic field strength H at point P , which is a distance X in the x direction and a distance Y in the y direction from the line l1, are calculated by the following equations. It is known that it is given by

HX=−1/2π(Y/R1−L+Y/R2)……(1) HY=1/2π(X/R1−X/R2) ……(2) 但し、R1=X2+Y1、R2=X2+(L+Y)2 Iは電流値 そしてP点における磁界の方向θは θ=tan-1(Hy/Hx) ……(3) となる。これは換言すればP点の座標(X、Y)
及びP点の磁界の方向θを計測すれば線路l1,l2
間の距離Lを求めることができる。したがつて第
3図に示すように埋設導体11に枝管12や防食
用ターミナル13等を使用して地表上に配置され
る帰路電流用線路14および増幅機能付発信器1
5を接続して閉ループを形成すれば導体11と線
路14は往復電流路となる。したがつて図中P点
における磁界方向を計測すれば前記(1)、(2)、(3)式
によつて帰路電流用線路14と埋設導体11との
距離、すなわち導体11の埋設深さDを求めるこ
とができる。特に第2図におけるYが「0」、即
ち磁界の計測点Pが地表面にある場合、上記第(3)
式は θ=tan-1(L/X) ………(3a) となる。つまり、この式は合成磁界のベクトルの
向きが埋設された導体から計測点Pに向つた方向
であることを表わしている。しかるに、合成磁界
の方向に対して180゜の方向でかつ帰路電流線路の
真下に埋設導体が位置することがわかる。
H _ _ _ _ _ _ X 2 +Y 1 , R 2 =X 2 +(L+Y) 2 I is the current value, and the direction θ of the magnetic field at point P is θ=tan -1 (H y /H x )...(3). In other words, the coordinates of point P (X, Y)
And if the direction θ of the magnetic field at point P is measured, the lines l 1 , l 2
The distance L between them can be found. Therefore, as shown in FIG. 3, a return current line 14 and an amplification function oscillator 1 are installed on the ground surface using branch pipes 12, anti-corrosion terminals 13, etc. on the buried conductor 11.
If the conductor 11 and the line 14 are connected to form a closed loop, the conductor 11 and the line 14 become a reciprocating current path. Therefore, if the direction of the magnetic field at point P in the figure is measured, the distance between the return current line 14 and the buried conductor 11, that is, the buried depth of the conductor 11, can be determined by equations (1), (2), and (3) above. D can be found. In particular, when Y in Figure 2 is "0", that is, the magnetic field measurement point P is on the ground surface, the above (3)
The formula is θ=tan -1 (L/X) (3a). In other words, this equation indicates that the direction of the vector of the composite magnetic field is the direction from the buried conductor to the measurement point P. However, it can be seen that the buried conductor is located at a direction of 180° to the direction of the composite magnetic field and directly below the return current line.

このように本発明における第1の特徴は帰路電
流用線路を設けることにより帰路電流の経路を明
確にして導体11の埋設深さを検出するようにし
たことである。
As described above, the first feature of the present invention is that by providing a return current line, the path of the return current is made clear and the buried depth of the conductor 11 is detected.

前記(1)、(2)、(3)式によつて埋設導体11の埋設
深さを正確に検出するには帰路電流用線路14が
埋設導体11の真上に位置する必要があり、これ
がずれると誤差が生じる。例えば第4図に示すよ
うに埋設導体11の中心から横に2m離れた位置
の真上になる地表上を測定点P0とし、線路14
が導体11の真上になる地表上の点より測定点
P0側に20mm(+20mm)ずれた位置に配置された
ときの埋設深さDと誤差ΔDとの関係を示すと第
5図のグラフのようになり、また非測定点側に
20mm((−20mm)ずれた位置に配置されたときの
埋設深さDと誤差ΔDとの関係を示すと第5図の
グラフのようになる。本発明における第2の特
徴はこの誤差を利用したことである。この点につ
いて以下第6図及び第7図を用いて詳細に説明す
る。なお、以下の説明においては簡単のために第
2図におけるYを「0」、即ち磁界の計測点Pを
地表面にあるものとして説明する。Y≠0の場合
は、式が複雑になり数値計算が必要となるが結論
は変わらない。又、測定において実際の埋設導体
の位置は不明であるので、常に埋設導体が帰路電
流線路の真下にあるものと仮定して測定を行なう
こととする。しかるに、上述したようにこのよう
な条件の下に測定を行えば、合成磁界の方向に対
して180゜の方向でかつ帰路電流線路の真下に埋設
導体が位置するものとして埋設導体の位置測定が
できる。第6図に示すように深さD0の位置に埋
設した導体11の真上として仮定した地表上の
O′点の片側におけるP1,P2の2点を測定点とし、
そのO′点から距離aの位置に線路14を配置し、
その線路14が導体11の真上に位置するO点よ
りも距離lだけ離れ、かつP1点がO点よりもl1
れているとともにP2点がO点よりもl2離れている
とするとP1点、P2点における磁界方向θ10、θ20は θ10=tan-1l1・l+D0 2/D0(l1−l) ……(4) θ20=tan-1l2・l+D0 2/D0(l2−l) ……(5) となり、P1点、P2点における測定埋設深さDp1
Dp2は Dp1=(l1−l)tanθ10 ……(6) Dp2=(l2−l)tanθ20 ……(7) となる。
In order to accurately detect the buried depth of the buried conductor 11 using equations (1), (2), and (3) above, the return current line 14 must be located directly above the buried conductor 11. If it deviates, an error will occur. For example , as shown in FIG.
The measurement point is from the point on the ground surface where is directly above the conductor 11.
The relationship between the burial depth D and the error ΔD when placed at a position shifted by 20 mm (+20 mm) toward the P 0 side is shown in the graph in Figure 5.
The relationship between the burial depth D and the error ΔD when placed at a position shifted by 20 mm ((-20 mm) is shown in the graph in Figure 5. The second feature of the present invention is to utilize this error. This point will be explained in detail below using Figs. 6 and 7. In the following explanation, for the sake of simplicity, Y in Fig. 2 is set to "0", that is, the measurement point of the magnetic field. We will explain P as being on the ground surface.If Y≠0, the formula becomes complicated and numerical calculations are required, but the conclusion remains the same.Also, since the actual location of the buried conductor is unknown during measurement, , the buried conductor is always assumed to be directly below the return current line.However, if measurements are made under these conditions as described above, the direction of the combined magnetic field is 180°. The position of the buried conductor can be measured assuming that the buried conductor is located directly below the return current line in the direction of on the ground
Two points P 1 and P 2 on one side of point O′ are the measurement points,
Place the track 14 at a distance a from the point O',
If the line 14 is separated by a distance l from the point O located directly above the conductor 11, and the point P1 is separated by l1 from the point O, and the point P2 is separated by l2 from the point O. Then, the magnetic field directions θ 10 and θ 20 at points P 1 and P 2 are θ 10 = tan -1 l 1 · l + D 0 2 /D 0 (l 1 - l) ...(4) θ 20 = tan -1 l 2・l+D 0 2 /D 0 (l 2 −l) ...(5), and the measured burial depth D p1 at point P 1 and point P 2 ,
D p2 becomes D p1 = (l 1 - l) tan θ 10 ... (6) D p2 = (l 2 - l) tan θ 20 ... (7).

この測定を線路14の敷設位置を変化させてす
なわち距離aを変化させて複数回行なう。例えば
実際の深さが2.0mでOO′間の距離が0.1mのとき
においてaを0.2m〜−0.3mにして測定点P1,P2
において測定した埋設深さの変化をグラフに示す
と第7図に示すようなグラフ○イ、○ロが得られた。
このことから両測定点P1,P2において測定した
埋設深さがDp1=Dp2となる交点Cにおいて真の
深さ2.0mが得られることがわかる。すなわちグ
ラフ○イ、○ロの交点CはDp1=Dp2のときであるか
ら上記(4)、(5)、(6)、(7)の各式より l1・l+D0 2=l2・l+D0 2 l(l1−l2)=O ……(8) ここでl1≠l2であるから上記(8)式が成り立つた
めにはl=Oである。このときDp1=Dp2=D0
なる。したがつてグラフの交叉点Cは埋設物の水
平、垂直位置となる。なお、グラフ○ハはP2′点に
おいて測定した埋設深さであり、またグラフ○ニは
P1′点において測定した埋設深さである。
This measurement is performed multiple times by changing the laying position of the line 14, that is, by changing the distance a. For example, when the actual depth is 2.0 m and the distance between OO' is 0.1 m, set a to 0.2 m to -0.3 m and measure points P 1 and P 2
When the changes in the buried depth measured in the above are shown in a graph, graphs ○A and ○B as shown in FIG. 7 were obtained.
From this, it can be seen that a true depth of 2.0 m is obtained at the intersection C where the buried depth measured at both measurement points P 1 and P 2 is D p1 =D p2 . In other words, the intersection C of graphs ○A and ○B is when D p1 = D p2 , so from the above equations (4), (5), (6), and (7), l 1 · l + D 0 2 = l 2・l+D 0 2 l(l 1 −l 2 )=O (8) Here, since l 1 ≠ l 2 , l=O in order for the above equation (8) to hold true. At this time, D p1 =D p2 =D 0 . Therefore, the intersection point C of the graph is the horizontal and vertical position of the buried object. In addition, graph ○C is the burial depth measured at point P 2 ′, and graph ○D is the burial depth measured at point P 2 ′.
This is the burial depth measured at point P 1 ′.

このように本発明によれば、地下に埋設された
導体11と略平行するように帰路電流用線路14
を地表上に配設して導体11及び線路14を対向
辺とする方形状の閉ループを形成し、この閉ルー
プに交流電流を通流させて交番磁界を発生させ、
導体11による磁界と線路14による磁界との合
成磁界の方向を導体11の片側に位置する地表上
の2点P1,P2(又はP1′,P2′)において計測し、
導体11が線路14の真下にあると仮定して合成
磁界の方向の計測値より導体11の埋設深さを測
定し、この合成磁界の方向の計測と埋設深さの測
定とを線路14の配設位置を変化させて複数回行
い、このときの2点P1,P2(又はP1′,P2′)にお
ける埋設深さの各測定値が一致する値の線路14
の位置及び導体11の埋設深さの計測値から導体
11の地下埋設位置が正確に検出できる。
As described above, according to the present invention, the return current line 14 is arranged substantially parallel to the conductor 11 buried underground.
is arranged on the ground surface to form a rectangular closed loop with the conductor 11 and the line 14 as opposite sides, and an alternating current is passed through this closed loop to generate an alternating magnetic field,
The direction of the composite magnetic field of the magnetic field due to the conductor 11 and the magnetic field due to the line 14 is measured at two points P 1 and P 2 (or P 1 ′, P 2 ′) on the ground surface located on one side of the conductor 11,
Assuming that the conductor 11 is located directly below the line 14, the buried depth of the conductor 11 is measured from the measured value of the direction of the composite magnetic field, and the measurement of the direction of the composite magnetic field and the measurement of the buried depth are combined with the direction of the line 14. The line 14 was measured several times by changing the installation position, and each measurement value of the buried depth at the two points P 1 and P 2 (or P 1 ′, P 2 ′) coincided with each other.
The underground position of the conductor 11 can be accurately detected from the measured value of the position and the buried depth of the conductor 11.

次にこの発明の実施例について図面を参照して
説明する。
Next, embodiments of the invention will be described with reference to the drawings.

第8図に示すように導体11が埋設されている
地表上に帰路電流用線路14を配設し、その線路
14の一端を立上げ線16を介して上記導体11
の一端側に接続するとともにその線路14の他端
を送信装置17および立上げ線18を介して上記
導体11の他端側に接続し閉ループを形成してい
る。前記送信装置17は第9図に示すように発信
器19から信号を電力増幅器20を介して増幅さ
せ、その増幅した信号を線路14および立上げ線
16を介して導体11に供給している。同時に線
路14に流れる電流値を電流測定器21によつて
計測し、一定値以上の電流値となるよう電力増幅
器20の増幅率を調整する。地表上のP1点およ
びこのP1点よりもhm高いP2点をそれぞれ測定
点とし、その測定点には第10図に示す検出装置
22を設置する。この検出装置22は所定の間隔
をあけて対向立設された支持部23a,23bを
有する治具24の上記支持部23a,23bの上
方に軸受25a,25bを設け、その軸受25
a,25b間に円柱状の保持機構26を回転自在
に設けている。そして前記保持機構26に検出コ
イル27を取付けている。前記検出コイル27か
ら発生する誘導起電力信号は信号増幅器28を介
して演算処理装置29に入力している。また前記
検出コイル27の地表に対する傾きはジヨイント
機構30を介して前記保持機構26とその同軸上
に結合した高精度角度計31によつて測定され前
記演算処理装置29に入力される。前記検出装置
22は検出コイル27を保持機構26を滑らかに
低速度で回転させることによつて少しずつ傾かせ
検出コイル27に発生する誘導起電力が最小にな
つたときの検出コイル27の傾きθを高精度角度
計31から得るようにしている。そして演算処理
装置29によつて角度θと測定点P1,P2の地表
上の座標(X、Y)とからDp1,Dp2を算出する
ようにしている。
As shown in FIG. 8, a return current line 14 is arranged on the ground surface where the conductor 11 is buried, and one end of the line 14 is connected to the conductor 11 through the rising line 16.
The line 14 is connected to one end of the conductor 11, and the other end of the line 14 is connected to the other end of the conductor 11 via a transmitting device 17 and a rising line 18 to form a closed loop. As shown in FIG. 9, the transmitting device 17 amplifies a signal from a transmitter 19 via a power amplifier 20, and supplies the amplified signal to the conductor 11 via a line 14 and a rising line 16. At the same time, the current value flowing through the line 14 is measured by the current measuring device 21, and the amplification factor of the power amplifier 20 is adjusted so that the current value is equal to or higher than a certain value. A point P1 on the ground surface and a point P2 hm higher than the point P1 are defined as measurement points, and a detection device 22 shown in FIG. 10 is installed at the measurement points. This detection device 22 includes bearings 25a and 25b provided above the support portions 23a and 23b of a jig 24 having support portions 23a and 23b facing each other at a predetermined interval.
A cylindrical holding mechanism 26 is rotatably provided between a and 25b. A detection coil 27 is attached to the holding mechanism 26. The induced electromotive force signal generated from the detection coil 27 is input to an arithmetic processing unit 29 via a signal amplifier 28. Further, the inclination of the detection coil 27 with respect to the ground surface is measured by a high-precision angle meter 31 coaxially connected to the holding mechanism 26 via a joint mechanism 30, and is input to the arithmetic processing unit 29. The detection device 22 tilts the detection coil 27 little by little by rotating the holding mechanism 26 smoothly at a low speed, so that the inclination θ of the detection coil 27 is determined when the induced electromotive force generated in the detection coil 27 is minimized. is obtained from a high-precision angle meter 31. Then, the arithmetic processing unit 29 calculates D p1 and D p2 from the angle θ and the coordinates (X, Y) of the measurement points P 1 and P 2 on the earth's surface.

このように構成された本発明実施例装置を使用
して例えば第11図に示すように地表GH上に立
設された金属フエンスFから距離d=3085mm離れ
た地表点下x=1803mmの深さに直径300mmで長さ
60mの鋼管Sを埋設して実験を行なつた結果鋼管
Sの水平位置については+6cmの誤差が生じ、垂
直位置については1840mmで+37mmの誤差が生じ
た。これを第1図に示す従来方式で行なつたとこ
ろ水平位置で+430mmの誤差が生じこのため垂直
位置ではさらに誤差が生じ測定が困難になつた。
このように鋼管の埋設位置(水平位置と垂直位
置)をかなり高い精度で測定することができる。
また測定点P1,P2としては埋設導体11の片側
のみに設定することができ、したがつて導体11
が道路際のように他の片側に測定点を設置するの
が困難なスペース的に限られた場所に埋設されて
いても充分に測定することができ実用性を向上で
きる。さらに測定点を導体11の片側にしたこと
により、導体11が例えば車道と歩道の境目近く
に埋まつていたり、フエンスの近くに埋まつてい
たりした場合に、車道側やフエンスの反対側に測
定点を設ける事無く測定ができる。実際の埋設管
はこのような場所に埋設されることが多いので、
これは極めて有用である。
For example, as shown in FIG. 11, using the device according to the embodiment of the present invention configured as described above, a distance d = 3085 mm from the metal fence F erected on the ground surface GH is placed at a depth of x = 1803 mm below the ground surface. Diameter 300mm in length
As a result of conducting an experiment with a 60 m steel pipe S buried, an error of +6 cm occurred in the horizontal position of the steel pipe S, and an error of +37 mm in the vertical position at 1840 mm. When this was done using the conventional method shown in FIG. 1, an error of +430 mm occurred in the horizontal position, which caused an even greater error in the vertical position, making measurement difficult.
In this way, the buried position (horizontal and vertical position) of the steel pipe can be measured with fairly high accuracy.
Moreover, the measurement points P 1 and P 2 can be set only on one side of the buried conductor 11, so that the measurement points P 1 and P 2 can be set only on one side of the buried conductor 11.
Even if the sensor is buried in a space-limited location where it is difficult to install a measuring point on the other side, such as near a road, sufficient measurements can be made, and practicality can be improved. Furthermore, by setting the measurement point to one side of the conductor 11, if the conductor 11 is buried near the boundary between the road and the sidewalk, or buried near the fence, the measurement point will be measured on the road side or the opposite side of the fence. Measurement can be performed without setting up points. Actual buried pipes are often buried in places like this, so
This is extremely useful.

なお、前記実施例では測定点P1,P2を同一垂
直面内に設けたものについて述べたがかならずし
もこれに限定されるものではなく、同一水平面内
又は垂直面と水平面との組合わせた位置に設けて
もよい。
In the above embodiment, the measurement points P 1 and P 2 were provided in the same vertical plane, but the measurement points are not limited to this, and the measurement points P 1 and P 2 may be located in the same horizontal plane or in a combination of the vertical plane and the horizontal plane. may be provided.

なお、前記実施例では測定点P1,P2のそれぞ
れに第10図に示す検出装置22を設置したもの
について述べたが、かならずしもこれに限定され
るものではなく、例えば第12図に示すように1
対の検出コイル371,372を有する検出位置
32を使用すれば上記各検出コイル371,37
2でP1点、P2点の磁界の方向を同時に計測する
ことができ作業能率の向上が図れる。前記検出装
置32は所定の間隔をあけて対向立設された支持
部331,332を有する治具34の上記支持部
331,332の上方および下方に軸受351,
352,353,354を設け、軸受351,3
52間に円柱状の保持機構361を回転自在に設
けるとともに軸受353,354間に円柱状の保
持機構362を回転自在に設けている。前記各保
持機構361,362に前記検出コイル371,
372をそれぞれ取付けている。そして前記検出
コイル371,372から発生する誘導起電力信
号を信号増幅器38を介して演算処理装置39に
入力している。前記各保持機構361,362は
それぞれ歯車40,41を介して駆動装置42に
連続され、前記検出コイル371,372を駆動
装置42によつて同相で同一面内で回転するよう
にしている。検出コイル371,372の回転角
は駆動装置42とジヨイント機構43を介して接
続されている高精度角度計44によつて測定され
前記演算処理装置39に入力される。このような
検出装置32を使用すれば同一水平面内あるいは
同一垂直面内の2点において同時に測定ができ、
作業能率が約2倍に改善できる。
In the above embodiment, the detection device 22 shown in FIG. 10 was installed at each of the measurement points P 1 and P 2 , but the detection device 22 shown in FIG. 10 is not necessarily limited to this. to 1
If the detection position 32 having a pair of detection coils 371, 372 is used, each of the detection coils 371, 37
2, the direction of the magnetic field at point P1 and point P2 can be measured simultaneously, improving work efficiency. The detection device 32 includes bearings 351, which are disposed above and below the support portions 331, 332 of the jig 34, which has support portions 331, 332 that are erected facing each other at a predetermined interval.
352, 353, 354 are provided, and bearings 351, 3 are provided.
A cylindrical holding mechanism 361 is rotatably provided between the bearings 353 and 354, and a cylindrical holding mechanism 362 is rotatably provided between the bearings 353 and 354. The detection coil 371,
372 are installed respectively. The induced electromotive force signals generated from the detection coils 371 and 372 are input to the arithmetic processing unit 39 via the signal amplifier 38. The holding mechanisms 361 and 362 are connected to a drive device 42 via gears 40 and 41, respectively, and the detection coils 371 and 372 are rotated by the drive device 42 in the same phase and within the same plane. The rotation angles of the detection coils 371 and 372 are measured by a high-precision angle meter 44 connected to a drive device 42 via a joint mechanism 43, and are input to the arithmetic processing device 39. If such a detection device 32 is used, it is possible to simultaneously measure two points within the same horizontal plane or the same vertical plane.
Work efficiency can be approximately doubled.

また、前記実施例においては1本の帰路電流用
線路14を設け、その線路14を少しずつずらせ
る方式をとつたがかならずしもこれに限定される
ものではなく例えば第13図に示すようにn本の
線路14−1,14−2,………14−nを距離
tずつ離して配設し、その各線路の両端を留具4
5,46によつて1束に束ね、その束ねた一方を
立上げ線16に接続し、他方を切換装置47を介
して送信装置17に接続してもよい。こうするこ
とによつて計測の都度線路の配設位置をずらせる
ような面倒な作業がなく切換装置47を操作すれ
ばよくさらに作業性を向上することができる。
Further, in the embodiment described above, one return current line 14 was provided and the line 14 was shifted little by little, but the present invention is not limited to this. For example, as shown in FIG. The tracks 14-1, 14-2, ......14-n are arranged at a distance t apart, and both ends of each track are connected to the fasteners 4.
5 and 46, one end of the bundle may be connected to the rising line 16, and the other end may be connected to the transmitting device 17 via the switching device 47. By doing so, there is no need for troublesome work such as shifting the arrangement position of the line every time a measurement is made, and all that is required is to operate the switching device 47, and the workability can be further improved.

以上詳述したようにこの発明によれば、地下に
埋設された導体と略平行するように帰路電流用線
路を地表上に配設して導体及び線路を対向辺とす
る方形状の閉ループを形成し、この閉ループに交
流電流を通流させて交番磁界を発生させ、導体に
よる磁界と線路による磁界との合成磁界の方向を
導体の片側に位置する地表上の2点において計測
し、導体が線路の真下にあると仮定して合成磁界
の方向の計測値より導体の埋設深さを測定し、こ
の合成磁界の方向の計測と埋設深さの測定とを線
路の配設位置を変化させて複数回行い、このとき
の2点における埋設深さの各測定値が一致する値
の線路の位置及び導体の埋設深さの計測値から導
体の地下埋設位置を検出するようにしているの
で、導体の地下埋設位置を高精度に測定すること
ができ、しかも測定に必要なスペースを少なくす
ることができて実用性を向上できる地下埋設導体
の埋設位置検出方法を提供できるものである。
As detailed above, according to the present invention, the return current line is arranged on the ground surface so as to be substantially parallel to the conductor buried underground, thereby forming a rectangular closed loop with the conductor and the line as opposite sides. Then, an alternating current is passed through this closed loop to generate an alternating magnetic field, and the direction of the composite magnetic field of the magnetic field due to the conductor and the magnetic field due to the line is measured at two points on the earth's surface located on one side of the conductor. The buried depth of the conductor is measured from the measured value of the direction of the composite magnetic field, assuming that the conductor is directly under The buried position of the conductor is detected from the measured value of the buried depth of the conductor and the position of the line where the measured values of the buried depth at the two points match. An object of the present invention is to provide a method for detecting the buried position of an underground conductor, which can measure the underground buried position with high precision, and can also reduce the space required for measurement, thereby improving practicality.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来例を示す概略構成図、第2図〜第
7図はこの発明の原理を説明するためのもので、
第2図は基本原理を示す図、第3図は斜視図、第
4図は誤差発生を説明するための図、第5図は第
4図の場合の誤差結果を示すグラフ、第6図は検
出原理を説明するための概略図、第7図は第6図
による検出結果の一例を示すグラフ、第8図〜第
11図はこの発明の実施例を示すもので、第8図
は斜視図、第9図は送信装置を示すブロツク図、
第10図は検出装置の概略構成図、第11図は実
験例を示す概略図、第12図はこの発明の他の実
施例を示す検出装置の概略構成図、第13図はこ
の発明の他の実施例を示す部分概略図である。 11……埋設導体、14……帰路電流用線路、
17……送信装置、22……検出装置。
FIG. 1 is a schematic configuration diagram showing a conventional example, and FIGS. 2 to 7 are for explaining the principle of this invention.
Figure 2 is a diagram showing the basic principle, Figure 3 is a perspective view, Figure 4 is a diagram to explain error occurrence, Figure 5 is a graph showing error results in the case of Figure 4, and Figure 6 is A schematic diagram for explaining the detection principle, FIG. 7 is a graph showing an example of the detection result according to FIG. 6, FIGS. 8 to 11 show examples of the present invention, and FIG. 8 is a perspective view. , FIG. 9 is a block diagram showing the transmitting device,
FIG. 10 is a schematic configuration diagram of a detection device, FIG. 11 is a schematic diagram showing an experimental example, FIG. 12 is a schematic configuration diagram of a detection device showing another embodiment of the present invention, and FIG. 13 is a schematic diagram of a detection device other than this invention. FIG. 2 is a partial schematic diagram showing an embodiment of the invention. 11... Buried conductor, 14... Return current line,
17... Transmitting device, 22... Detecting device.

Claims (1)

【特許請求の範囲】[Claims] 1 地下に埋設された導体と略平行するように帰
路電流用線路を地表上に配設して上記導体及び線
路を対向辺とする方形状の閉ループを形成し、こ
の閉ループに交流電流を通流させて交番磁界を発
生させ、上記導体による磁界と上記線路による磁
界との合成磁界の方向を上記導体の片側に位置す
る前記地表上の2点において計測し、上記導体が
上記線路の真下にあると仮定して上記合成磁界の
方向の計測値より上記導体の埋設深さを測定し、
この合成磁界の方向の計測と上記埋設深さの測定
とを上記線路の配設位置を変化させて複数回行
い、このときの上記2点における上記埋設深さの
各測定値が一致する値の上記線路の位置及び上記
導体の埋設深さの計測値から上記導体の地下埋設
位置を検出するようにしたことを特徴とする地下
埋設導体の埋設位置検出方法。
1 A return current line is laid out on the ground surface so as to be approximately parallel to the conductor buried underground to form a rectangular closed loop with the conductor and line as opposing sides, and an alternating current is passed through this closed loop. to generate an alternating magnetic field, and the direction of the composite magnetic field of the magnetic field by the conductor and the magnetic field by the line is measured at two points on the ground surface located on one side of the conductor, and the conductor is directly below the line. Assuming that, the buried depth of the conductor is measured from the measured value of the direction of the composite magnetic field,
The measurement of the direction of the composite magnetic field and the measurement of the buried depth are performed multiple times by changing the installation position of the line, and each measurement value of the buried depth at the two points at this time is the same value. A method for detecting a buried position of an underground conductor, characterized in that the underground position of the conductor is detected from measured values of the position of the line and the buried depth of the conductor.
JP56086491A 1981-06-05 1981-06-05 Method for detecting buried position of underground buried conductor Granted JPS57200802A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56086491A JPS57200802A (en) 1981-06-05 1981-06-05 Method for detecting buried position of underground buried conductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56086491A JPS57200802A (en) 1981-06-05 1981-06-05 Method for detecting buried position of underground buried conductor

Publications (2)

Publication Number Publication Date
JPS57200802A JPS57200802A (en) 1982-12-09
JPS642227B2 true JPS642227B2 (en) 1989-01-17

Family

ID=13888449

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56086491A Granted JPS57200802A (en) 1981-06-05 1981-06-05 Method for detecting buried position of underground buried conductor

Country Status (1)

Country Link
JP (1) JPS57200802A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2608618B2 (en) * 1990-05-09 1997-05-07 株式会社フジクラ Metal long object buried position measuring device
JP6167530B2 (en) * 2013-01-23 2017-07-26 日立金属株式会社 Measuring device and method for manufacturing differential signal transmission cable
CN103837900B (en) * 2013-09-09 2016-08-31 北京鼎臣超导科技有限公司 A kind of buried cable localization method based on Vector Magnetic Field detection and device
JP6292998B2 (en) * 2014-06-24 2018-03-14 日鉄住金パイプライン&エンジニアリング株式会社 Pipe locating method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57190284A (en) * 1981-05-20 1982-11-22 Nippon Kokan Kk <Nkk> Detection of buried position of underground conductor

Also Published As

Publication number Publication date
JPS57200802A (en) 1982-12-09

Similar Documents

Publication Publication Date Title
US3529682A (en) Location detection and guidance systems for burrowing device
WO1996029615A1 (en) Locating objects
US9939546B2 (en) Detection method and detection device of buried metal
JPS642227B2 (en)
JP3352550B2 (en) Position detection method
JP4044303B2 (en) Corrosion protection coating damage detection method for buried metal pipes using two kinds of frequency signals
JPS642226B2 (en)
US5208538A (en) Apparatus having a pair of magnetic field generating cables for measuring position of an underground excavator
JP2866078B2 (en) Excavation propulsion position detecting device and position detecting method
JPS625117A (en) Position detector of excavating machine
JP3068866B2 (en) Buried cable position measurement method
JP3461608B2 (en) How to measure the proximity distance of a double pipe
JP7312950B1 (en) Position search method for grounded AC low-voltage balanced line and position search device for grounded AC low-voltage balanced line
JP2786238B2 (en) Excavator horizontal position measurement device
JPS59163586A (en) Detecting method of buried electric conductor
JP3352547B2 (en) Position detection method
JPS6023594A (en) Horizontal displacement measuring method and apparatus of tunnel drilling machine
JPS629286A (en) Method and device for detecting underground installation
RU2234111C1 (en) Induction cable route seeker
JP2504887B2 (en) Pipeline survey method
JPS60230498A (en) Position detection apparatus of drilling machine
JP3521157B2 (en) How to measure the proximity distance of a double pipe
JPH0659048A (en) Inductive transmission type buried pipe detecter and its transmitter
MORIMITSU et al. A Study on a Position Measurement Method for Conduit Pipelines Using Cumulating Attitude
SU1730602A1 (en) Method of determination of constant current in cylindrical metal pipe-lines