JPS6412037B2 - - Google Patents

Info

Publication number
JPS6412037B2
JPS6412037B2 JP56137036A JP13703681A JPS6412037B2 JP S6412037 B2 JPS6412037 B2 JP S6412037B2 JP 56137036 A JP56137036 A JP 56137036A JP 13703681 A JP13703681 A JP 13703681A JP S6412037 B2 JPS6412037 B2 JP S6412037B2
Authority
JP
Japan
Prior art keywords
magnet plate
magnetic
bubble memory
plate block
magnetic bubble
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56137036A
Other languages
Japanese (ja)
Other versions
JPS5841480A (en
Inventor
Yoshuki Tsujita
Masaru Kawaguchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP56137036A priority Critical patent/JPS5841480A/en
Publication of JPS5841480A publication Critical patent/JPS5841480A/en
Publication of JPS6412037B2 publication Critical patent/JPS6412037B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Description

【発明の詳細な説明】 本発明は高速で駆動でき、薄形かつ放熱性の良
い高信頼性の磁気バブルメモリデバイスを得るた
めの製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a manufacturing method for obtaining a highly reliable magnetic bubble memory device that can be driven at high speed, is thin, and has good heat dissipation.

第1図は従来のDIP(Dual Inline Package)
型の磁気バブルメモリデバイスの一例を示す断面
構成図である。同図において、例えばセラミツク
などにより形成された絶縁性基板1の中央部には
キヤビテイ1aが形成され、このキヤビテイ1a
内に磁気バブルメモリチツプ2が接着して固定さ
れている。また図示されていないが、この磁気バ
ブルメモリチツプ2上の電極と基板1上の電極間
はボンデイングワイヤ3で電気的に接続され、こ
の基板1のキヤビテイ1a内には磁気バブルメモ
リチツプ2とボンデイワイヤ3とを保護する目的
で応力緩和効果を有するチツプコートレジン4が
注入して硬化されている。又、磁気バブルメモリ
チツプ2がチツプコートレジン4で固着された基
板1の外周部には回転磁界発生用の内コイル5、
外コイル6が互に直交して組込まれている。図示
していないが基板1上の電極とリードフレーム7
とは電気的および機械的に接続固定されている。
そして、基板1全体とリードフレーム7の外部リ
ードを除く中央部分とがモールドレジン8で覆う
ように成形されている。この場合の成形法として
は、一般に作業性および量産性の優れたトランス
フアーモールド法が用いられる。この後、整磁板
9と磁石板10とを接着剤で貼合せた磁石板ブロ
ツク2組を互いに平行にして向い合うように、モ
ールドレジン8の外表面11に接着剤で固着す
る。この後、外乱磁界からチツプを守るシールド
ケース12の中に入れる。磁石板ブロツク取付け
部分の詳細は第2図に示すようになつている。磁
石板ブロツクと平行に向い合うモールドレジン面
は、モールド部分全体がトランスフアーモールド
用金型にある場合には、図の点線13の位置にあ
るが金型取外し後に図の実線11のように外側に
凸になるように変形する。この変形は、トランス
フアモールド時に生じたモールドレンジ内部の圧
縮応力が金型取り外し直後に解放されて生じるも
のである。そこで、磁石板取付け部分の端部には
予め平行出し用段部14を設けておき、磁石板ブ
ロツクがチツプ面と平行になるようにしている。
なお、磁石板ブロツクがチツプ面と平行でない場
合には、磁石板によつて作られる磁界分布が乱さ
れ、磁気バブルメモリとしての十分な特性が得ら
れなくなる。上記のように磁石板ブロツクを取り
付けた構造の磁気バブルメモリデバイスにおいて
は、磁石板ブロツクとモールドレジン面に接着剤
15や隙間16があるため全体の厚さが大きくな
り放熱性が悪いという問題がある。したがつて、
大メモリ容量のバブルメモリチツプを搭載した磁
気バブルメモリデバイスを高速で動作させた場
合、回転磁界発生用の外コイル及び内コイルの発
熱が大きくなり、チツプと磁石板ブロツク間の温
度差が大きくなる。このため、磁石板の磁束密度
が変化しチツプ内のバルブが動作するに必要な適
正バイアス磁界が得られなくなる。
Figure 1 shows the conventional DIP (Dual Inline Package)
1 is a cross-sectional configuration diagram showing an example of a type of magnetic bubble memory device. In the figure, a cavity 1a is formed in the center of an insulating substrate 1 made of, for example, ceramic.
A magnetic bubble memory chip 2 is glued and fixed inside. Although not shown, the electrodes on the magnetic bubble memory chip 2 and the electrodes on the substrate 1 are electrically connected by a bonding wire 3, and the magnetic bubble memory chip 2 and the bonding wire are connected in the cavity 1a of the substrate 1. A chip coat resin 4 having a stress relieving effect is injected and hardened for the purpose of protecting the parts 3 and 3. Further, on the outer periphery of the substrate 1 to which the magnetic bubble memory chip 2 is fixed with a chip coat resin 4, an inner coil 5 for generating a rotating magnetic field,
Outer coils 6 are installed orthogonally to each other. Although not shown, the electrodes on the substrate 1 and the lead frame 7
are electrically and mechanically connected and fixed.
The entire substrate 1 and the central portion of the lead frame 7 excluding the external leads are covered with a mold resin 8. As a molding method in this case, transfer molding is generally used because of its excellent workability and mass productivity. Thereafter, two sets of magnet plate blocks in which the magnetic shunt plate 9 and the magnet plate 10 are bonded together with an adhesive are fixed to the outer surface 11 of the mold resin 8 with an adhesive so as to be parallel to each other and face each other. Thereafter, the chip is placed in a shield case 12 that protects the chip from disturbance magnetic fields. The details of the part where the magnet plate block is attached are shown in FIG. The mold resin surface facing parallel to the magnet plate block is located at the dotted line 13 in the figure when the entire mold part is in the transfer molding die, but after the mold is removed it is located outside as shown by the solid line 11 in the figure. It deforms so that it becomes convex. This deformation occurs when the compressive stress inside the mold range generated during transfer molding is released immediately after the mold is removed. Therefore, a parallelizing step 14 is provided in advance at the end of the magnet plate mounting portion so that the magnet plate block is parallel to the chip surface.
Note that if the magnet plate block is not parallel to the chip surface, the magnetic field distribution created by the magnet plate will be disturbed, making it impossible to obtain sufficient characteristics as a magnetic bubble memory. In a magnetic bubble memory device having a structure in which a magnetic plate block is attached as described above, there is a problem that the overall thickness is large and heat dissipation is poor because there is an adhesive 15 and a gap 16 between the magnetic plate block and the mold resin surface. be. Therefore,
When a magnetic bubble memory device equipped with a bubble memory chip with a large memory capacity is operated at high speed, the outer and inner coils for generating the rotating magnetic field generate a large amount of heat, resulting in a large temperature difference between the chip and the magnetic plate block. . As a result, the magnetic flux density of the magnet plate changes, making it impossible to obtain the proper bias magnetic field necessary to operate the valves within the chip.

この問題を解決する方法としては、第3図に示
すように前述の平行出し用段部を廃止し、レジン
モールドをする際に磁石板ブロツクも同時にモー
ルドする方法があ。しかし、この場合には、金型
取り外し直後に、磁石板ブロツクに比較して熱膨
張係数の大きいモールドレジンが熱収縮して磁石
板ブロツクは周辺から中央部の方向に圧縮力17
を受ける。このため、磁石板ブロツクが外側を凸
にして変形し、磁石板は一般にフエライトででき
ているために磁石板及び整磁板は脆性が大きくク
ラツク18を生じ易い。このようにクラツクが生
じた場合には、バイアス磁界分布が不均一になつ
てバブルメモリとしての十分な特性が得られなく
なる。なお、モールド方式としてはトランスフア
ーモールド方式およ也び注型方式で行う場合があ
るが、いずれも磁石板ブロツクにクラツクが生じ
易い。
As a method to solve this problem, as shown in FIG. 3, there is a method of eliminating the above-mentioned parallelizing step and molding the magnet plate block at the same time when resin molding is done. However, in this case, immediately after the mold is removed, the mold resin, which has a larger coefficient of thermal expansion than the magnet plate block, heat-shrinks, and the magnet plate block is subjected to a compressive force of 17 cm in the direction from the periphery to the center.
receive. As a result, the magnet plate block is deformed with its outer side convex, and since the magnet plate is generally made of ferrite, the magnet plate and the magnetic shunt plate are highly brittle and easily cause cracks 18. When cracks occur in this manner, the bias magnetic field distribution becomes non-uniform, making it impossible to obtain sufficient characteristics as a bubble memory. The molding method may be a transfer molding method or a casting method, but either method tends to cause cracks in the magnet plate block.

本発明の目的は、上記従来技術の問題を解決
し、型で放熱性の優れた高速で駆動できる磁気バ
ブルメモリの製造方法を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to solve the problems of the prior art described above and to provide a method for manufacturing a magnetic bubble memory that has excellent heat dissipation properties and can be driven at high speed.

このような目的を達成するために本発明は、少
なくとも周辺の4側面に弾性を有する物質をコー
テイングなどして取付けた磁石板ブロツクを用い
て、他の磁気バブルメモリデバイス用部品と一緒
にレジンモールドすることにある。この弾性を有
する物質としては、ジエン系合成ゴム、オレフイ
ン系合成ゴム、ポリウレタン系合成ゴム及びシリ
コーンゴム等が使用可能であるが、耐熱及び耐寒
性に優れかつ熱膨張係数がモールドレジンより大
きいものが本発明の磁気バブルメモリデバイス用
として最も適している。
In order to achieve such an object, the present invention utilizes a magnetic plate block coated with an elastic material on at least four peripheral sides, and molded together with other parts for magnetic bubble memory devices. It's about doing. Diene-based synthetic rubber, olefin-based synthetic rubber, polyurethane-based synthetic rubber, silicone rubber, etc. can be used as materials with this elasticity, but materials with excellent heat and cold resistance and a coefficient of thermal expansion larger than that of mold resin are preferred. It is most suitable for use in the magnetic bubble memory device of the present invention.

以下、本発明の内容を実施例を用いて説明す
る。
Hereinafter, the content of the present invention will be explained using examples.

実施例 1 第4図にてこの実施例を説明する。フエライト
でできている正方形の磁石板10と整磁板9とを
接着剤で貼合せた磁石板ブロツクの周辺の4側面
に熱硬化型の未硬化シリコーンゴム液を塗布し、
120℃の炉に入れて60分間加熱して熱硬化させた。
熱硬化後のシリコーンゴム19の厚さは約100μm
であつた。このようにして周側面にシリコーンゴ
ム19を取り付けた磁石板ブロツクを磁気バブル
メモリデバイス1個について2組づつ準備し、他
の部品と一緒にトランスフアーモールド法でレジ
ンモールドを行つた。この場合には、金型を取り
外して室温に冷却後も磁石板ブロツクにクラツク
の発生がなかつた。また、このようにして作製し
た磁気バブルメモリデバイスを回転磁界駆動周波
数400KHzで駆動させても、チツプと磁石板ブロ
ツク間の温度差は5℃以下であつた。すなわち、
本発明の製造方法により、磁石板ブロツクとモー
ルドレジン面との間に隙間をつくることなく、極
めて放熱性に優れた薄型の磁気バブルメモリデバ
イスを提供できた。このようにして作製した磁気
バブルメモリデバイスの信頼性試験を行つた結
果、20年以上の使用でも磁石板ブロツクのクラツ
ク発生がなく十分な信頼性を有することがわかつ
た。なお、以上の実施例により磁石板ブロツクに
クラツクが生じない理由は次の通りである。
Example 1 This example will be explained with reference to FIG. A thermosetting uncured silicone rubber liquid is applied to the four peripheral sides of a magnet plate block in which a square magnet plate 10 made of ferrite and a magnetic shunt plate 9 are bonded together with an adhesive.
It was placed in a 120°C oven and heated for 60 minutes to heat cure it.
The thickness of silicone rubber 19 after heat curing is approximately 100μm
It was hot. In this way, two sets of magnet plate blocks with silicone rubber 19 attached to the circumferential side were prepared for each magnetic bubble memory device, and resin molded together with other parts by transfer molding. In this case, no cracks occurred in the magnet plate block even after the mold was removed and cooled to room temperature. Furthermore, even when the magnetic bubble memory device thus produced was driven at a rotating magnetic field drive frequency of 400 KHz, the temperature difference between the chip and the magnet plate block was 5° C. or less. That is,
By the manufacturing method of the present invention, it was possible to provide a thin magnetic bubble memory device with extremely excellent heat dissipation without creating a gap between the magnet plate block and the molded resin surface. As a result of conducting reliability tests on the magnetic bubble memory device produced in this manner, it was found that the device had sufficient reliability with no cracks occurring in the magnetic plate block even after more than 20 years of use. The reason why no cracks occur in the magnet plate block in the above embodiments is as follows.

(1) モールド後の冷却過程でのレジンの熱収縮力
は、シリコーンゴム自体のゴム弾性のため緩
和,分散され、磁石板ブロツクに集中的な力が
加わらなくなる。
(1) The thermal contraction force of the resin during the cooling process after molding is relaxed and dispersed due to the rubber elasticity of the silicone rubber itself, and no concentrated force is applied to the magnet plate block.

(2) モールド後の冷却過程で、シリコーンゴム自
身の熱膨張係数がモールドレジンのそれよりも
はるかに大きいため、ゴム自身がモールドレジ
ンよりも大きく収縮してモールドレジンの熱収
縮力を吸収し、磁石板ブロツクに力が加わらく
なる。
(2) During the cooling process after molding, the thermal expansion coefficient of the silicone rubber itself is much larger than that of the mold resin, so the rubber itself contracts more than the mold resin and absorbs the thermal contraction force of the mold resin. No force is applied to the magnetic plate block.

実施例 2 末端にメタクリル基又はアクリル基を有するポ
リブタジエンプレポリマを主成分とする紫外線硬
化レジンの未硬化物を磁石板ブロツク周側面に塗
布し、四方から紫外線を照射して硬化させた。こ
のようにして周辺にポリブタジエン系ゴムを取り
付けた磁石板ブロツクを実施例1と同じ方法で他
の部品と一緒にレジンモールドした。このように
してできた磁気バブルメモリデバイスは、実施例
1と同様に薄型で優れた放熱性を有し、かつ十分
な信頼性をもつていることが確認された。
Example 2 An uncured ultraviolet curable resin whose main component was a polybutadiene prepolymer having a methacrylic or acrylic group at the end was applied to the circumferential surface of a magnet plate block and cured by irradiating ultraviolet rays from all sides. The magnet plate block having the polybutadiene rubber attached to its periphery in this way was resin molded together with other parts in the same manner as in Example 1. It was confirmed that the magnetic bubble memory device thus produced was thin, had excellent heat dissipation properties, and had sufficient reliability as in Example 1.

以上の実施例においては、磁石板ブロツクに取
り付けた弾性を有する物質の厚さは約100μmであ
つたが、10μm以上の厚さで目的効果が得られる
ことが分つている。
In the above embodiments, the thickness of the elastic material attached to the magnetic plate block was about 100 μm, but it has been found that the desired effect can be obtained with a thickness of 10 μm or more.

又、弾性を有する物質は、上記の2実施例に限
定されるものではなく、同様の特性を有する他の
各種物質も使用可能であることは言うまでもな
い。
Furthermore, it goes without saying that the elastic material is not limited to the above two embodiments, and various other materials having similar characteristics can also be used.

又、弾性を有する物質は磁石板ブロツクの周側
面以外にも必要に応じて取り付けることができ
る。
Further, the elastic material can be attached to other parts than the peripheral side of the magnet plate block as required.

本発明によれば、薄型で放熱の優れた磁気バブ
ルメモリデバイス、すなわち大容量のチツプを搭
載し、極めて高速で駆動できる高性能でかつ高信
頼性の磁気バブルメモリデバイスを提供できる。
According to the present invention, it is possible to provide a magnetic bubble memory device that is thin and has excellent heat dissipation, that is, a high-performance and highly reliable magnetic bubble memory device that is equipped with a large-capacity chip and can be driven at extremely high speed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の磁気バブルメモリデバイスの構
造を示す断面図、第2図は第1図の磁石板取付け
部分を詳細に説明する断面図、第3図は別の従来
の磁石板取付け方法を示す断面図、第4図は本発
明の磁気バブルメモリデバイスの製造方法の一実
施例による磁石板取付け部分の断面図である。 1……基板、2……磁気バブルメモリチツプ、
3……ボンデイングワイヤ、5……内コイル、6
……外コイル、7……リードフレーム、8……モ
ールドレジン、9……整磁板、10……磁石板、
12……シールドケース、19……シリコーンゴ
ム。
Fig. 1 is a sectional view showing the structure of a conventional magnetic bubble memory device, Fig. 2 is a sectional view illustrating the magnet plate mounting part of Fig. 1 in detail, and Fig. 3 is a sectional view showing another conventional magnet plate mounting method. The sectional view shown in FIG. 4 is a sectional view of a portion where a magnet plate is attached according to an embodiment of the method for manufacturing a magnetic bubble memory device of the present invention. 1...Substrate, 2...Magnetic bubble memory chip,
3... Bonding wire, 5... Inner coil, 6
... Outer coil, 7 ... Lead frame, 8 ... Molded resin, 9 ... Magnetic shunt plate, 10 ... Magnet plate,
12... Shield case, 19... Silicone rubber.

Claims (1)

【特許請求の範囲】[Claims] 1 整磁板と磁石板とを貼合せた磁石板ブロツク
の少なくとも周側面に弾性を有する物質を取り付
けた後、デバイスの他の部品とともにレジンモー
ルドすることを特徴とする磁気バブルメモリデバ
イスの製造方法。
1. A method for producing a magnetic bubble memory device, which comprises attaching an elastic substance to at least the circumferential side of a magnet plate block in which a magnetic shunt plate and a magnet plate are laminated together, and then resin-molding the block together with other parts of the device. .
JP56137036A 1981-09-02 1981-09-02 Manufacture for magnetic bubble memory device Granted JPS5841480A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56137036A JPS5841480A (en) 1981-09-02 1981-09-02 Manufacture for magnetic bubble memory device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56137036A JPS5841480A (en) 1981-09-02 1981-09-02 Manufacture for magnetic bubble memory device

Publications (2)

Publication Number Publication Date
JPS5841480A JPS5841480A (en) 1983-03-10
JPS6412037B2 true JPS6412037B2 (en) 1989-02-28

Family

ID=15189345

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56137036A Granted JPS5841480A (en) 1981-09-02 1981-09-02 Manufacture for magnetic bubble memory device

Country Status (1)

Country Link
JP (1) JPS5841480A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4096302B2 (en) * 2002-12-16 2008-06-04 ソニー株式会社 Magnetic memory device

Also Published As

Publication number Publication date
JPS5841480A (en) 1983-03-10

Similar Documents

Publication Publication Date Title
JP2003086442A (en) Method for manufacturing wound coil component and coil component
JPS6412037B2 (en)
JPH10116934A (en) Resin-sealed semiconductor device and manufacturing method thereof
US3228092A (en) Magnetic heads with bonding gap spacers
JPS60113931A (en) Semiconductor device
JPS6153798B2 (en)
JPS6213005A (en) Manufacture of magnetic substance
US3947953A (en) Method of making plastic sealed cavity molded type semi-conductor devices
JPS5930501Y2 (en) Integrated core molded ignition coil
US3710355A (en) Unitized plate wire memory plane
JPH0258804B2 (en)
JPS59119814A (en) Manufacture of resin sealed coil
JPS6168376A (en) Method of bonding ferrite magnet and metal material
JPS5884449A (en) Magnetic bubble memory device and manufacture thereof
JPH065450A (en) Manufacture of coiled device
JP2019521517A (en) Inductive component, component system, and method of manufacturing inductive component and / or component system
JPH0583187B2 (en)
JPH10294404A (en) Resin sealed electronic device and its manufacture
JP3014873B2 (en) Method for manufacturing semiconductor device
JPH07249714A (en) Composite semiconductor device
JPS63314908A (en) Surface acoustic wave device
JPH04324605A (en) Manufacture of superconducting coil
JPS6360479B2 (en)
JPS5940417A (en) Method of producing bushing
JPS60163220A (en) Production of thin film magnetic head