JPS6399501A - Anisotropic permanent magnet - Google Patents

Anisotropic permanent magnet

Info

Publication number
JPS6399501A
JPS6399501A JP61235481A JP23548186A JPS6399501A JP S6399501 A JPS6399501 A JP S6399501A JP 61235481 A JP61235481 A JP 61235481A JP 23548186 A JP23548186 A JP 23548186A JP S6399501 A JPS6399501 A JP S6399501A
Authority
JP
Japan
Prior art keywords
permanent magnet
rare earth
iron
anisotropy
boron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61235481A
Other languages
Japanese (ja)
Inventor
Osamu Kawamoto
修 河本
Tetsuto Yoneyama
米山 哲人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Publication of JPS6399501A publication Critical patent/JPS6399501A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0576Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together pressed, e.g. hot working

Abstract

PURPOSE:To improve the maximum energy product by plastically working a rare earth-iron-boron alloy material in the thickness direction, thereby imparting magnetic anisotropy. CONSTITUTION:A rare earth-iron-boron alloy material obtained by the molten metal quenching method is plastically worked in the thickness direction, directly or after annealing. The method for the plastic work may be an arbitrary one. Anisotropy increases as the plastic work rate represented by the thickness reduction rate becomes higher, which is preferably 30-80%. Also, the plastic work temperature is 400-850 deg.C, preferably 500-700 deg.C. By performing the plastic work by this method under this condition, an anisotropic permanent magnet is obtained. Regarding the composition of the permanent magnet, a composition that the content of the rare earth element (including Y) is 5-20 atomic% and the content of boron is 2-15 atomic% has magnetic characteristics suitable for the appliations of step motors, relays and the like.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は永久磁石に関するものであり、さらに詳しく述
べるならば製造が容易な異方性永久磁石に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a permanent magnet, and more specifically, to an anisotropic permanent magnet that is easy to manufacture.

〔従来の技術〕[Conventional technology]

希土類−鉄−ホウ素永久磁石材料は、高価なコバルト等
を必須成分とせずにまた安価な工業材料である鉄を多量
に用いることによって、優れた磁石特性を実現する。こ
れまで、より一層の磁石時性の向■−を図り、より安価
な元素を使用しつつ良好な磁石特性の達成し、あるいは
加工性を向上する等の方法によって、従来の−・射的永
久磁石である希1−類コバルト永久磁石、フェライト硼
石に代替し、これらの磁石と競合できる霜十類−鉄−ホ
ウ素系高性能永久磁石材料究を(R供するための研究が
活発になされている。
The rare earth-iron-boron permanent magnet material achieves excellent magnetic properties by not using expensive cobalt or the like as an essential component and by using a large amount of iron, which is an inexpensive industrial material. Up until now, efforts have been made to further improve magnetic properties, to achieve good magnetic properties while using cheaper elements, and to improve processability. Research is being actively conducted to develop materials for high-performance permanent magnets based on iron and boron that can replace rare cobalt permanent magnets and ferrite-boron magnets and compete with these magnets. There is.

古くは、特開昭59−46008号公報(第36頁、右
十欄)に記載されているように、希土類−鉄−ホウ素合
金の急冷リボンは磁石用途に不適切であるとの考えがあ
ったが、特開昭59−64739号公報は10kOeを
超える保磁力(iHc>を溶湯急冷時のロール周速調整
で実現している。この様な高い保磁力が得られる原因は
焼なまし効果により微結晶が析出したものと説明されて
いる(公報、第236頁、右下欄)。この磁石は等方性
磁石としては画期的性能を発揮するものである(日経マ
テリアル、1986.4−28、第79頁)。
In the past, as described in JP-A-59-46008 (page 36, right column 10), there was a belief that quenched ribbons of rare earth-iron-boron alloys were unsuitable for magnet applications. However, in JP-A No. 59-64739, a coercive force (iHc> of more than 10 kOe is achieved by adjusting the peripheral speed of the roll during rapid cooling of the molten metal.The reason why such a high coercive force is obtained is the annealing effect. (Publication, p. 236, lower right column).This magnet exhibits revolutionary performance as an isotropic magnet (Nikkei Materials, April 1986). -28, p. 79).

希土類−鉄−ホウ素永久磁石材料の原料の製法は、特開
昭59−64739号に開示された急冷リボン化法と、
特開昭59−46008号で公知の/8湯を徐淫後粉砕
j〜、焼結する方法に大別される。特開昭59−647
39号の方法は、溶湯を急冷し2て硬質微細結晶あるい
はアモルファス構造の組成物をリボン状で作製ずろ。特
開昭59−46008号は(〃場中プレスにより異方性
焼結永久仔fEiを製造する、ことを記載している。希
土類−鉄−ホウ素永久磁石の製品形態は、焼結磁石の他
に、樹脂ボンド併有、ホン1−プレス硝石などがある。
The method for producing raw materials for rare earth-iron-boron permanent magnet materials is the rapid cooling ribbon forming method disclosed in JP-A-59-64739;
The method is roughly classified into the method of crushing /8 hot water after slowing down and sintering, which is known in Japanese Patent Application Laid-Open No. 59-46008. Japanese Patent Publication No. 59-647
The method of No. 39 involves rapidly cooling the molten metal to produce a composition with a hard microcrystalline or amorphous structure in the form of a ribbon. JP-A No. 59-46008 describes the production of anisotropic sintered permanent magnets fEi by in-place pressing.The product form of rare earth-iron-boron permanent magnets is other than sintered magnets. In addition, there are resin bond combinations, Hon 1-press saltpetre, etc.

これらの磁石の原料ば急冷リボンを粉砕して得られてい
)、:6 〔発明が解決しようとする問題点〕 従来、希土類−鉄 ホウ素合金の急冷材料を磁気的に異
方性化する、二とによって最大エネルギ積を向上する手
段は知られていなかった。即()、高速急冷法では、ど
の様にして異方性化するかが高性能磁石製造のネックに
なるとの認識ばされていたく日経マテリアル前掲)が、
その具体的方法の提案までには至っていなかった。かか
る急冷リボンを異方性化できるならば、樹脂ボンド磁石
の最大エネルギ積を高めることができよう。
The raw material for these magnets is obtained by pulverizing a quenched ribbon): 6 [Problems to be solved by the invention] Conventionally, the quenching material of a rare earth-iron-boron alloy has been magnetically made anisotropic. No means have been known to improve the maximum energy product. It has been recognized that in the high-speed quenching method, the bottleneck in producing high-performance magnets is how to achieve anisotropy (Nikkei Materials, supra).
They have not yet come up with a proposal for a specific method. If such quenched ribbons could be made anisotropic, the maximum energy product of resin bonded magnets could be increased.

ホットプレスにより異方性磁石を作る方法(特開昭60
−100402号公報)によると、700〜850℃と
比較的に高い最適加工温度と1〜3トン/ crAと比
較的高い加圧力を採用しなければならない。このため金
型の耐久性が十分でなくなる。しかも、上記加工温度と
加圧力を時間と関連させて正確に制御することが異方性
を得るために必要である。
Method of making anisotropic magnets by hot pressing (Japanese Patent Laid-Open No. 1983
According to Japanese Patent No. 100402), a relatively high optimum processing temperature of 700 to 850°C and a relatively high pressing force of 1 to 3 tons/crA must be adopted. As a result, the durability of the mold becomes insufficient. Furthermore, in order to obtain anisotropy, it is necessary to accurately control the processing temperature and pressure in relation to time.

さらに、粉砕されたリボンより製造されたバルク磁石は
、温間プレスにより異方性を付与されているため、最大
エネルギ積はかなり高くなっている。しかし、粉末自体
が磁気異方性を有するならば、これを原料として磁場中
圧縮成型すればさらに高い最大エネルギ積を達成できる
可能性がある。
Furthermore, bulk magnets made from pulverized ribbons have been given anisotropy by warm pressing, so the maximum energy product is quite high. However, if the powder itself has magnetic anisotropy, it is possible to achieve an even higher maximum energy product by compression molding the powder in a magnetic field using the powder as a raw material.

〔問題点を解決するための手段〕[Means for solving problems]

従来、溶湯急冷法で得られる希土類−鉄−ホウ素合金は
、特開昭59−64739号に記載されたように構造が
アモルファスであるにせよ微結晶であるにせよ、磁気的
には実質的に等方性であった。すなわち、得られたリボ
ンのある特定方向の磁性の異方性は、形状異方性の効果
は除いたときには実質的に認められなかった。
Conventionally, rare earth-iron-boron alloys obtained by the molten metal quenching method have essentially no magnetic properties, regardless of whether the structure is amorphous or microcrystalline as described in JP-A No. 59-64739. It was isotropic. That is, the magnetic anisotropy in a particular direction of the obtained ribbon was substantially not observed when the effect of shape anisotropy was excluded.

本発明者は、溶湯急冷法で得られる希土類−鉄−ホウ素
合金に磁気的異方性を付与して、最大エネルギ積を高め
る手段について研究し、希土類−鉄−ホウ素合金材料を
厚み方向に塑性加工し、それによる磁気特性変化を研究
したところ、厚み方向に結晶の磁化容易軸が配向するこ
とを見出し、本発明を完成した。
The present inventor researched a means of increasing the maximum energy product by imparting magnetic anisotropy to a rare earth-iron-boron alloy obtained by a molten metal quenching method, and developed a rare-earth-iron-boron alloy material with plasticity in the thickness direction. After processing and studying the resulting changes in magnetic properties, it was discovered that the axis of easy magnetization of the crystal was oriented in the thickness direction, and the present invention was completed.

本発明によれば溶湯急冷法で得られた希土類鉄−ホウ素
合金材料をそのままあるいは焼鈍した後、厚み方向に塑
性加工する。塑性加圧の方法は、ロールによる圧下、プ
レス、引抜などの任意の方法であってよい。厚み減少率
で表わされる塑性加工率が高くなるほど異方性が大きく
なる。しかし、塑性加工率が80%を越える加工は困難
である。
According to the present invention, a rare earth iron-boron alloy material obtained by a molten metal quenching method is plastically worked in the thickness direction either as it is or after being annealed. The method of plastic pressing may be any method such as rolling down with a roll, pressing, or drawing. The higher the plastic working rate expressed by the thickness reduction rate, the greater the anisotropy. However, processing with a plastic working rate exceeding 80% is difficult.

また塑性加工率が低いと異方性が顕著でないため、その
下限は30%以トであることが好ましい。塑性加工温度
は400〜850°C1特に500〜700°C1が好
ましい。塑性加工温度の好ましい下限は上記塑性加工率
が1回の加工で容易に得られろ温度である。塑性加工温
度の好ましい上限は金型等の耐久性を考慮した温度であ
る。上述の方法および条件により塑性加工を行なうこと
により異方性永久磁石が得られる。その保磁力を高める
ためには加工条件を適宜選択すればよいが、一層高い保
磁力を得るには500〜800℃で時効処理を行なう。
Furthermore, since the anisotropy is not significant when the plastic working rate is low, the lower limit is preferably 30% or less. The plastic working temperature is preferably 400 to 850°C, particularly 500 to 700°C. The preferable lower limit of the plastic working temperature is a temperature at which the above plastic working rate can be easily obtained in one working process. A preferable upper limit of the plastic working temperature is a temperature that takes into consideration the durability of the mold and the like. An anisotropic permanent magnet can be obtained by plastic working according to the method and conditions described above. In order to increase the coercive force, processing conditions may be appropriately selected, but in order to obtain an even higher coercive force, aging treatment is performed at 500 to 800°C.

第1図は、本発明の永久磁石製造に使用される溶解、急
冷、圧下装置の一例を示す。高周波電源2と導通された
コイルにより内容物を誘導加熱する石英ノズル1の先端
穴1aから、溶湯3をツインロール5の間に供給する。
FIG. 1 shows an example of a melting, quenching, and rolling device used for manufacturing the permanent magnet of the present invention. The molten metal 3 is supplied between the twin rolls 5 from the tip hole 1a of the quartz nozzle 1, which heats the contents by induction by a coil connected to the high frequency power source 2.

溶湯3の液面にはアルゴンガス圧を加えて、溶湯3をツ
インロール5の間に噴出させる。ツインロール5は高炭
素クロム鋼製の水冷ロールであり、外径70〜150H
の通常の溶湯急冷用ロールが用いられる。ロールの周速
(V、l)は特に制限がないが、20〜50m/see
の範囲が好ましい。圧下刃(T、)はリボンの厚さ当た
り5〜50kg/酊の範囲が好ましい。
Argon gas pressure is applied to the liquid surface of the molten metal 3, and the molten metal 3 is jetted out between the twin rolls 5. The twin roll 5 is a water-cooled roll made of high carbon chromium steel, and has an outer diameter of 70 to 150H.
A normal molten metal quenching roll is used. There is no particular limit to the circumferential speed (V, l) of the roll, but it is 20 to 50 m/see.
A range of is preferred. The reduction blade (T) preferably has a weight in the range of 5 to 50 kg per thickness of the ribbon.

ロールの周速(■□)と圧下刃(T、)は上記範囲外で
あってもよいが、低過ぎると結晶粒が大きすぎるため、
適切なる範囲で調節することが必要である。
The circumferential speed of the roll (■□) and the rolling blade (T, ) may be outside the above range, but if it is too low, the crystal grains will be too large.
It is necessary to adjust within an appropriate range.

ツインロール5の出側には電気加熱炉6を配置して、ツ
インロール5で溶湯急冷されたリボン等を加熱して、そ
の圧下変形を容易にすることが好ましい。リボンの変形
性は主としてその組成により定まるが、変形性が優れた
リボンの場合は電気加熱炉6を省略してもよい。加熱温
度は400〜850℃であると、大きい圧下量が確保さ
れそしてC軸の配向が強化される。
It is preferable that an electric heating furnace 6 is disposed on the exit side of the twin rolls 5 to heat the ribbon or the like that has been quenched by the twin rolls 5 to facilitate rolling deformation thereof. The deformability of the ribbon is mainly determined by its composition, but in the case of a ribbon with excellent deformability, the electric heating furnace 6 may be omitted. When the heating temperature is 400 to 850°C, a large reduction amount is ensured and the orientation of the C axis is strengthened.

ツインロール5により急冷凝固され、必要により電気加
熱炉6で加熱されたリボンは多段式圧下ロール10によ
り圧下されそして磁気異方性を付与される。この圧下ロ
ール10ばワークロール(11,12) 2本を各6木
のバンクアップロールで支えるように構成している。バ
ックアップロール13、14なしの2重ロールであると
、一般に難変形性である希土類−鉄−ホウ素合金に磁気
異方性を付与するほどの強い圧下を加えることは難かし
い。
The ribbon, which is rapidly solidified by twin rolls 5 and heated if necessary in an electric heating furnace 6, is rolled down by a multi-stage rolling down roll 10 and imparted with magnetic anisotropy. This reduction roll 10 is constructed so that two work rolls (11, 12) are supported by bank up rolls each made of 6 wood. With double rolls without backup rolls 13 and 14, it is difficult to apply a pressure strong enough to impart magnetic anisotropy to the rare earth-iron-boron alloy, which is generally difficult to deform.

多段式圧下ロール10(第10−ル)に続いて同様の多
段式圧下ロール20(第20−ル)をタンデムに配置し
て2段圧下により所定の圧下量を確保することが好まし
い。圧下量はリボンの厚さ減少量比で30〜80%が好
ましい。
It is preferable to arrange a similar multi-stage reduction roll 20 (20th-rule) in tandem following the multi-stage reduction roll 10 (10th-rule) to ensure a predetermined reduction amount by two-stage reduction. The reduction amount is preferably 30 to 80% in terms of ribbon thickness reduction ratio.

磁気異方性の程度を定める加工要因は圧下量であり、ワ
ークロールの外径の設計と周速の制御により圧下量に影
響を及ぼすことができる。所望の圧下量を得るために好
ましいワークロール11゜12、21.22の外径は7
0〜150R、ワークロールの周速調整(v−z、v−
s)は20〜50 m/secである。圧下刃(T2.
Tff)は50〜1000kg/龍の範囲が一般に採用
される。
The processing factor that determines the degree of magnetic anisotropy is the amount of reduction, and the amount of reduction can be influenced by designing the outer diameter of the work roll and controlling the circumferential speed. In order to obtain the desired rolling reduction amount, the preferred outer diameter of the work rolls 11, 12 and 21, 22 is 7.
0 to 150R, work roll circumferential speed adjustment (v-z, v-
s) is 20 to 50 m/sec. Reduction blade (T2.
Tff) is generally adopted in the range of 50 to 1000 kg/dragon.

第1図に示す装置を用いて行なった実験結果を説明し、
塑性加工による異方性付与効果を具体的に示す。
Explaining the results of experiments conducted using the apparatus shown in Figure 1,
The effect of imparting anisotropy through plastic working is specifically shown.

合金組成がNd I 3.5Fe6゜B6.、になるよ
うに原料を秤量、溶解し、インゴットを得た。インゴッ
ト25gを外径20mnφ、ノズル先端穴径0.5 t
mφの石英ノズルに入れ、高周波炉で1250’Cにて
溶解し、Arガス噴出圧0.45 kg / ctAで
高炭素クロム鋼製ツインロールの間に噴出し、そしてA
r雰囲気内で5 kgのロール圧力で急冷し、厚さが約
40μmの薄体を得た。銅製ツインロールの外径は1.
00 tm、周速は30 m/sec 、ロール温度は
室温であった。
The alloy composition is NdI3.5Fe6°B6. The raw materials were weighed and melted to obtain an ingot. Ingot 25g, outer diameter 20mmφ, nozzle tip hole diameter 0.5t
mφ quartz nozzle, melted at 1250'C in a high frequency furnace, ejected between twin rolls made of high carbon chromium steel at an Ar gas injection pressure of 0.45 kg/ctA, and
It was rapidly cooled under a roll pressure of 5 kg in an r atmosphere to obtain a thin body with a thickness of about 40 μm. The outer diameter of the copper twin roll is 1.
00 tm, peripheral speed was 30 m/sec, and roll temperature was room temperature.

急冷された薄帯を直ちに多重ロール式圧下ロールを通過
させ、50kgの圧力をかけつつ圧延した。
The rapidly cooled ribbon was immediately passed through a multi-roll reduction roll and rolled while applying a pressure of 50 kg.

このワークロールの周速は30 m/sec 、ロール
表面温度は800℃とした。多重ロール式圧下ロールに
より約50%の厚み減少(圧下率=約50%)となった
。比較のために、多重ロール式圧下ロールによる液面を
しない薄体も製作し、供試した。
The peripheral speed of this work roll was 30 m/sec, and the roll surface temperature was 800°C. The thickness was reduced by approximately 50% (reduction ratio = approximately 50%) due to the multi-roll type reduction roll. For comparison, a thin body with no liquid level created by multiple roll reduction rolls was also fabricated and tested.

供試材の構造をX線回折で、また磁気的性質をVSM 
(振動試料型磁力計)で評価した。磁気特性は薄片の面
内方向と直角方向にVSMで測定し、その結果の中で形
状異方性によるものを補正した。
The structure of the sample material was determined by X-ray diffraction, and the magnetic properties were determined by VSM.
(vibrating sample magnetometer). The magnetic properties were measured by VSM in a direction perpendicular to the in-plane direction of the thin piece, and the results were corrected for shape anisotropy.

以下余白 第  1  表 第1表より、面に垂直方向のX線回折強度の比(1(0
06) / l (330) )が高い試料では面に垂
直方向にC軸(磁化容易軸)が配向し、また薄片部に垂
直方向についてのVSMを用いた磁気特性の結果から、
角型比(Br/4πMIIlk)と20kOeでの磁化
強度4πM 20 hが向上していることが分かる。
Margin below Table 1 From Table 1, the ratio of X-ray diffraction intensity in the direction perpendicular to the plane (1 (0
In samples with high 06) / l (330) ), the C axis (axis of easy magnetization) is oriented perpendicular to the surface, and from the results of magnetic properties using VSM in the direction perpendicular to the thin section,
It can be seen that the squareness ratio (Br/4πMIIlk) and the magnetization strength 4πM 20 h at 20 kOe are improved.

本発明に係る永久磁石の組成は、永久磁石としての特性
が得られるならば、特乙こ限定されるものではない。一
般には、希土類元素(Yを含む)の含有量が5〜20原
子%、ホウ素の含イI量が2−15原子%である組成が
ステップモータ、リレー等の用途に特に適・した磁気特
性を有する。この組成において所望の磁気特性を得るに
は、Nd、  Prなとの高価な希土類元素を多量に用
いなJlればならず、コスト的に問題がある。、Lり安
価な希土類元素であるLa、Ceを多量に使用した一C
式:%式%) なくとも一種)なる組成(特開昭61−159708号
公!l)に本発明に係る異方性付与手段を適用すると、
安価な異方性永久磁石が得られる。かかる組成の材料は
加工前の強度が高くかつ加工性にすぐれるため、異方性
化し易い。
The composition of the permanent magnet according to the present invention is not particularly limited as long as it can obtain the characteristics of a permanent magnet. In general, compositions with a rare earth element (including Y) content of 5 to 20 at % and a boron content of 2 to 15 at % have magnetic properties particularly suitable for use in step motors, relays, etc. has. In order to obtain the desired magnetic properties with this composition, a large amount of expensive rare earth elements such as Nd and Pr must be used, which poses a cost problem. , L-1C using large amounts of cheap rare earth elements La and Ce
When the anisotropy imparting means according to the present invention is applied to the composition (formula: % formula %)
An inexpensive anisotropic permanent magnet can be obtained. A material having such a composition has high strength before processing and excellent workability, and therefore is easily anisotropic.

本発明に係る永久磁石の塑性加工前の製造工程は、従来
の溶湯急冷法と同様である。
The manufacturing process of the permanent magnet according to the present invention before plastic working is similar to the conventional molten metal quenching method.

すなわち、原材料となる金属、合金または化合物を混合
して誘導溶解炉あるいは電気炉等により溶解する。
That is, raw material metals, alloys, or compounds are mixed and melted in an induction melting furnace, electric furnace, or the like.

次に、アルゴンガス等の不活性ガス雰囲気で溶融合金を
石英ノズルから冷却回転ロールに噴出させ、高速急冷す
る。高速急冷によって非晶質、微結晶質もしくは非晶質
−微結晶混合Mi織が得られる。これらの組織の何れに
ついても塑性加工により異方性永久磁石が得られる。な
お、非晶質組織の場合は塑性加工方法度および/または
塑性加工率を高くすることが好ましい。また結晶粒径が
1μmを越えると保磁力が低下する傾向があるため、結
晶組織の場合は粒径1μm以下が好ましい。
Next, the molten alloy is jetted from a quartz nozzle onto a cooling rotary roll in an inert gas atmosphere such as argon gas, and rapidly cooled. Amorphous, microcrystalline, or mixed amorphous-microcrystalline Mi textures can be obtained by high-speed quenching. An anisotropic permanent magnet can be obtained from any of these structures by plastic working. In addition, in the case of an amorphous structure, it is preferable to increase the degree of plastic working method and/or the plastic working rate. Furthermore, if the crystal grain size exceeds 1 μm, the coercive force tends to decrease, so in the case of a crystalline structure, the grain size is preferably 1 μm or less.

−に記した溶湯急冷法によると、薄帯、偏平条、偏平繊
維などの形状の希土類−鉄−ホウ素系材料が一般に得ら
れる。また、材料の加工性が高くないときは、冷却回転
ロールにより凝固した溶湯が寸断され不定形な粉末、フ
レーク、短い条もしくは線の形態となる。このような種
々の形状の厚み(主たる面間の距離)方向に塑性変形を
加えると厚み方向に磁気異方性が現われる。さらに、溶
湯急冷法により得られた薄帯は、塑性変形中に細断され
ても、磁気異方性は付与される。また寸法が小さいフレ
ークなどの形態の希土類−鉄−ホウ素系材料は、そのま
まの形態でもしくはさらに細断してボンド磁石に使用さ
れる。
According to the molten metal quenching method described in -, rare earth-iron-boron-based materials in the form of ribbons, flat strips, flat fibers, etc. are generally obtained. In addition, when the workability of the material is not high, the solidified molten metal is shredded by the cooling rotary roll and becomes irregularly shaped powder, flakes, short strips, or wires. When plastic deformation is applied to these various shapes in the thickness direction (distance between principal surfaces), magnetic anisotropy appears in the thickness direction. Furthermore, magnetic anisotropy is imparted to the ribbon obtained by the molten metal quenching method even if it is cut into pieces during plastic deformation. Rare earth-iron-boron materials in the form of small flakes or the like are used in bonded magnets as they are or after being further shredded.

続いてラジアル配向永久磁石の製造方法を説明する。上
記した塑性加工方法で得られた異方性永久磁石薄帯をリ
ング状に加]ニすると、該薄帯の厚み方向に優先配向し
た磁化容易軸がリングの放射方向にそろうために、ラジ
アル配向磁石となる。
Next, a method for manufacturing a radially oriented permanent magnet will be explained. When the anisotropic permanent magnet ribbon obtained by the above plastic working method is formed into a ring shape, the axis of easy magnetization, which is preferentially oriented in the thickness direction of the ribbon, is aligned in the radial direction of the ring, so that the radial orientation Becomes a magnet.

1枚の薄帯をリング状に加工してラジアル配向永久磁石
とできる場合もあるが、ステップモータ等の用途には1
枚の薄帯では表面磁束密度が不十分であるために複数枚
の薄帯を積層した積層永久磁石をラジアル配向永久磁石
とする。薄帯の積層方法は、例えば、スパイラルに巻く
;リングを何分割かした積層片を接合してリング状にす
る;など任意の方法であってよい。積層体からなるリン
グの外径面は冷却ロールによる冷却面あるいは反対面の
何れでもよく、またスパイラルコイルの巻き方向は任意
である。リングの薄帯間は必要に応じて接着を行なう。
In some cases, a single ribbon can be processed into a ring shape to make a radially oriented permanent magnet, but for applications such as step motors,
Since the surface magnetic flux density of a single thin strip is insufficient, a laminated permanent magnet made by laminating a plurality of thin strips is used as a radially oriented permanent magnet. The method for laminating the ribbons may be any method such as spirally winding or joining laminated pieces obtained by dividing a ring into a ring shape. The outer diameter surface of the ring made of a laminate may be either the surface cooled by the cooling roll or the opposite surface, and the winding direction of the spiral coil is arbitrary. Adhesion is performed between the thin strips of the ring as necessary.

接着の方法は薄帯を巻くと同時に行なってもよくあるい
はリング形成後、その間隙に接着剤を含浸させて行なっ
てもよい。接着剤含浸後加熱を行なって接着剤の樹脂を
硬化させる。
The adhesion may be performed at the same time as the ribbon is wound, or after the ring is formed, the gap may be impregnated with an adhesive. After the adhesive is impregnated, heating is performed to harden the adhesive resin.

さらに接着の方法としては薄帯同士の加熱拡散接合も可
能である。
Further, as a bonding method, heating diffusion bonding of thin ribbons is also possible.

以乍、本発明の詳細な説明する。The present invention will now be described in detail.

〔実施例〕〔Example〕

第2表の組成からなる合金を誘導溶解し、インゴットを
作成した。インゴットを粗粉砕し、片口−ルを用いた液
体急冷法により厚さが20〜100μmのリボン状薄帯
を製造した。
Ingots were prepared by induction melting alloys having the compositions shown in Table 2. The ingot was roughly pulverized and a ribbon-like thin strip having a thickness of 20 to 100 μm was produced by a liquid quenching method using a single-mouthed mill.

第2表 リボン状薄帯を400〜800℃で温間ロールを通し塑
性加工を施した。塑性加工率は40%、であった。
The ribbon-like thin strips shown in Table 2 were subjected to plastic working through warm rolls at 400 to 800°C. The plastic working rate was 40%.

薄帯の磁気的性質を第3表に示す。Table 3 shows the magnetic properties of the ribbon.

以下余白 第3表 う) 第3表より、塑性加工により残留磁束密度(Br )、
保磁力(iHc ) 、最大エネルギ積(BH)、、。
From Table 3, residual magnetic flux density (Br),
Coercive force (iHc), maximum energy product (BH),...

は向上しかつ薄帯の厚み方向に異方性(C軸配向)が付
与されることが分かる。
It can be seen that the properties are improved and anisotropy (C-axis orientation) is imparted to the ribbon in the thickness direction.

上記試料1kl、N12の薄帯をリング状に積層し、接
着し、内径23酊、外径27n、高さ6fiのラジアル
配向リングを作製した。ラジアル配向リングを8極に着
磁した。従来の5IIIco、ボンド磁石および希土類
−鉄−ホウ素ボンド磁石の表面で測定した表面゛磁束密
度を1.0としたときの各ラジアル配向永久磁石の相対
比は、試料1で、2.1.試料2で1.8であった。本
発明のラジアル配向永久磁石の性能がすぐれていること
は明らかである。
The above samples of 1kl and N12 thin strips were laminated in a ring shape and bonded together to produce a radial orientation ring with an inner diameter of 23 mm, an outer diameter of 27 nm, and a height of 6 fi. The radial orientation ring was magnetized to eight poles. When the surface magnetic flux density measured on the surface of the conventional 5IIIco, bonded magnet, and rare earth-iron-boron bonded magnet is set to 1.0, the relative ratio of each radially oriented permanent magnet is 2.1. Sample 2 had a value of 1.8. It is clear that the radially oriented permanent magnet of the present invention has excellent performance.

〔発明の効果〕〔Effect of the invention〕

(イ)本発明によると薄帯、フレーク、粉末などの状態
で異方性を有する希土類−鉄−ホウ素材料が得られる。
(a) According to the present invention, a rare earth-iron-boron material having anisotropy in the form of a ribbon, flake, powder, etc. can be obtained.

このため当該材料の磁気特性、特に最大エネルギ積の向
上が期待される。
Therefore, it is expected that the magnetic properties of the material, especially the maximum energy product, will be improved.

(0)  ラジアル配向永久磁石などの高性能異方性永
久磁石が容易に製造される。
(0) High performance anisotropic permanent magnets such as radially oriented permanent magnets are easily produced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る永久磁石を製造する装置の一例を
示す図面である。 1・・・石英ノズル、 2・・・高周波電源、3・・・
溶湯、     5・・・ツインロール、6・・・電気
加熱炉、 10.20・・・多段式圧下ロール。
FIG. 1 is a drawing showing an example of an apparatus for manufacturing a permanent magnet according to the present invention. 1...Quartz nozzle, 2...High frequency power supply, 3...
Molten metal, 5...Twin roll, 6...Electric heating furnace, 10.20...Multi-stage reduction roll.

Claims (1)

【特許請求の範囲】 1、溶湯急冷された希土類−鉄−ホウ素系材料の厚み方
向に塑性変形され、かつ厚み方向に磁気異方性を有する
材料より構成されてなることを特徴とする永久磁石。 2、前記希土類−鉄−ホウ素系材料が、基本成分として
、希土類元素(Yを含む)を5〜20原子%、ホウ素を
2〜15原子%、残部鉄を含有することを特徴とする特
許請求の範囲第1項記載の永久磁石。 3、前記希土類−鉄−ホウ素系材料が、一般式:((C
e_xLa_1_−_x)_yR_1_−_y)_z(
(Fe_1_−_u_−_wCo_wM_u)_1_−
_vB_v)_1_−_z(但し、0.4≦x≦0.9
、0.2<y≦1.0、0.05≦z≦0.3、0.0
1≦v≦0.3、0≦u≦0.2、0≦w≦0.5、又
、M=Al、Ti、V、Cr、Mn、Zr、Hf、Nb
、Ta、Mo、Ge、Sb、Sn、Bi、Ni、W、C
u、Ag等の少なくとも一種)なる組成を有することを
特徴とする特許請求の範囲第1項記載の永久磁石。 4、前記塑性加工されかつ異方性を有するリボン状の材
料の複数枚を積層し、積層体の厚み方向に異方性を具え
た特許請求の範囲第1項から第3項までの何れか1項に
記載の永久磁石。 5、前記積層体がリング状であり、ラジアル方向の異方
性を有することを特徴とする特許請求の範囲第4項記載
の永久磁石。
[Claims] 1. A permanent magnet characterized by being made of a rare earth-iron-boron material that is quenched into a molten metal and plastically deformed in the thickness direction, and has magnetic anisotropy in the thickness direction. . 2. A patent claim characterized in that the rare earth-iron-boron material contains, as basic components, 5 to 20 atomic percent of rare earth elements (including Y), 2 to 15 atomic percent of boron, and the balance iron. Permanent magnet according to the range 1 above. 3. The rare earth-iron-boron material has the general formula: ((C
e_xLa_1_-_x)_yR_1_-_y)_z(
(Fe_1_-_u_-_wCo_wM_u)_1_-
_vB_v)_1_-_z (However, 0.4≦x≦0.9
, 0.2<y≦1.0, 0.05≦z≦0.3, 0.0
1≦v≦0.3, 0≦u≦0.2, 0≦w≦0.5, and M=Al, Ti, V, Cr, Mn, Zr, Hf, Nb
, Ta, Mo, Ge, Sb, Sn, Bi, Ni, W, C
2. The permanent magnet according to claim 1, having a composition of at least one of U, Ag, etc. 4. Any one of claims 1 to 3, wherein a plurality of ribbon-shaped materials that have been subjected to plastic processing and have anisotropy are laminated, and the laminate has anisotropy in the thickness direction. Permanent magnet according to item 1. 5. The permanent magnet according to claim 4, wherein the laminate is ring-shaped and has radial anisotropy.
JP61235481A 1986-05-06 1986-10-04 Anisotropic permanent magnet Pending JPS6399501A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP10208686 1986-05-06
JP61-102086 1986-05-06

Publications (1)

Publication Number Publication Date
JPS6399501A true JPS6399501A (en) 1988-04-30

Family

ID=14317964

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61235481A Pending JPS6399501A (en) 1986-05-06 1986-10-04 Anisotropic permanent magnet

Country Status (1)

Country Link
JP (1) JPS6399501A (en)

Similar Documents

Publication Publication Date Title
US4765848A (en) Permanent magnent and method for producing same
EP2149616B1 (en) Soft magnetic thin strip, process for production of the same, magnetic parts, and amorphous thin strip
JPS5929644B2 (en) Method for modifying magnetic properties of high magnetic permeability amorphous alloy
WO2009096382A1 (en) Amorphous soft magnetic alloy, amorphous soft magnetic alloy ribbon, amorphous soft magnetic alloy powder, and magnetic core and magnetic component using the same
JPH01139738A (en) Method and apparatus for magnetic material having magnetic anisotropy
Kustas et al. Emerging opportunities in manufacturing bulk soft-magnetic alloys for energy applications: A review
JPH0366105A (en) Rare earth anisotropic powder and magnet, and manufacture thereof
JPH0257662A (en) Rapidly cooled thin strip alloy for bond magnet
US5352302A (en) Method of producing a rare-earth permanent magnet
JPS62202506A (en) Permanent magnet and manufacture thereof
USRE34838E (en) Permanent magnet and method for producing same
JP5057211B2 (en) Amorphous metal molded body and method for producing the same
JP2002060915A (en) Fe-Si-Al BASED ALLOY THIN STRIP AND ITS PRODUCTION METHOD
JPS6399501A (en) Anisotropic permanent magnet
JPH01261803A (en) Manufacture of rare-earth permanent magnet
US20190311851A1 (en) Method of producing nd-fe-b magnet
JPH0742559B2 (en) Amorphous alloy ribbon for magnetic core with excellent space factor and method for producing the same
JPS6057686B2 (en) Permanent magnetic ribbon and its manufacturing method
JPH10270224A (en) Manufacture of anisotropic magnet powder and anisotropic bonded magnet
JPS6187848A (en) High-tension soft-magnetic thin steel strip of fe-base alloy
JPH02138706A (en) Anisotropic permanent magnet
JPH01255620A (en) Production of permanent magnet material and bonded magnet
WO2004013873A1 (en) Process for producing rare earth-iron-boron magnet
JPS6321804A (en) Manufacture of permanent magnet of rare-earth iron
JPS63211705A (en) Anisotropic permanent magnet and manufacture thereof