JPS6394667A - Semiconductor integrated circuit - Google Patents

Semiconductor integrated circuit

Info

Publication number
JPS6394667A
JPS6394667A JP61239755A JP23975586A JPS6394667A JP S6394667 A JPS6394667 A JP S6394667A JP 61239755 A JP61239755 A JP 61239755A JP 23975586 A JP23975586 A JP 23975586A JP S6394667 A JPS6394667 A JP S6394667A
Authority
JP
Japan
Prior art keywords
layer
type
electrode
depletion
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61239755A
Other languages
Japanese (ja)
Inventor
Ichiro Takatsuka
一郎 高塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP61239755A priority Critical patent/JPS6394667A/en
Publication of JPS6394667A publication Critical patent/JPS6394667A/en
Pending legal-status Critical Current

Links

Landscapes

  • Element Separation (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To realize isolation between elements without employing an isolating diffused layer by a method wherein a depletion layer spread in a 2nd conductivity type layer directly below an electrode is brought into contact with a depletion layer produced by a p-n junction between a first conductivity type substrate and the 2nd conductivity type layer. CONSTITUTION:A p-type epitaxial layer 2 is formed on an n-type silicon substrate 1 by epitaxial growth and further a silicon oxide film 3 is laminated on the epitaxial layer 2 and an Al electrode 4 is formed on a part of the oxide film 3. A channel-doped type p-type MOS FET is formed by providing an Al gate electrode 6 on the p-type epitaxial layer 2 with the oxide film 3 between. Even if the p-type layer 2 and the substrate 1 are made to be equipotential by grounding the electrode 4, a depletion layer 52 produced by the electrode 4 is contacted with a depletion layer 51 produced by the p-n junction between the epitaxial layer 2 and the substrate 1 to form an element isolation layer 5. As a depletion layer 53 produced directly below the gate electrode 6 is also contacted with the depletion layer 51 of the p-n junction between the n-type substrate 1 and the p-type layer 2, a source 71 and a drain 72 are electrically separated from each other. Therefore, this FET is of normally-OFF type.

Description

【発明の詳細な説明】[Detailed description of the invention] 【発明の属する技術分野】[Technical field to which the invention pertains]

本発明は、第−R電形の半導体基板上に設けられた第二
R電形の半導体層に分離層を介して複数の素子を集積し
た半導体集積回路に関する。
The present invention relates to a semiconductor integrated circuit in which a plurality of elements are integrated on a second R-type semiconductor layer provided on a -R-th type semiconductor substrate with a separation layer interposed therebetween.

【従来技術とその問題点】[Prior art and its problems]

半導体集積回路の個別素子の分離のために、第−g電形
の基板上に設けられた第二導電形のエピタキシャル層を
貫通して基板に達する第一21!電形の拡散層を形成す
ることによって生ずるPN接合を利用することは公知で
ある。しかしこのような分離拡散層は拡散深さが深いた
め、その形成に時間を要する欠点があり、また隣接素子
との間に寄生素子が生ずるおそれがある。
In order to separate individual elements of a semiconductor integrated circuit, the first 21! It is known to utilize a PN junction created by forming an electrically shaped diffusion layer. However, since such an isolation diffusion layer has a deep diffusion depth, it has the drawback that it takes time to form, and there is also a risk that a parasitic element may be generated between adjacent elements.

【発明の目的】[Purpose of the invention]

本発明は、上述の欠点を除いて分離拡散層を用いないで
素子間の分離を行った半導体集積回路を提供することを
目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a semiconductor integrated circuit in which elements are isolated without using an isolation diffusion layer, except for the above-mentioned drawbacks.

【発明の要点】[Key points of the invention]

本発明は、第一導電形の半導体基板上に設けられた第二
導電形の層の上に絶縁膜を介して電極を備え、その際電
極の直下の第二導電形の層に広がる空乏層が第一導電形
の基板と第二導電形の層の間のpn接合による空乏層に
接触していることにより、電極あるいは半導体層に電圧
を印加しなくても素子分離層が形成され、上述の目的を
達成するものである。
The present invention provides an electrode on a layer of a second conductivity type provided on a semiconductor substrate of a first conductivity type with an insulating film interposed therebetween, and in this case, a depletion layer spreads in the layer of the second conductivity type directly below the electrode. is in contact with the depletion layer formed by the pn junction between the substrate of the first conductivity type and the layer of the second conductivity type, so that an element isolation layer is formed without applying a voltage to the electrode or the semiconductor layer, and as described above. The goal is to achieve the following objectives.

【発明の実施例】[Embodiments of the invention]

第1図は、本発明の一実施例の素子分離層部分を示し、
シリコン基板lはn形でドナー濃度10”/cwh”で
あり、主面は(100)面である。その上にエピタキシ
ャル成長により0.3−の厚さでアクセプタ濃度10”
/cm’のp形N2が、さらにその上に厚さ220人の
シリコン酸化膜3が積層され、酸化膜3の上の一部分上
にAjWi4が形成されている。n形態板1およびAJ
 ′riffi 4を接地した場合、n形態板1とp形
層2の間のpn接合の作り出す空乏151と、A7電極
4の直下に生ずる空乏層52は図にそれぞれ斜線を引い
て示したように一部が重なり合っている。 以下、空乏1’!51.52が重なる理由を説明する。 先ず記号を次のように定める。 φH=金属の仕事関数 φ、:半導体の仕事関数 Qss:半導体・酸化膜界面の固定電荷Cow:酸化膜
容1.C0X−ε。8εo/ioxε0に二酸化膜の比
誘電率 ε。:真空の誘電率 toX:酸化膜厚 1φf1 :不純物半導体と真性半与体の仕事関数の差 ε、:半導体の比誘電率 q :素1!荷 N、ニアクセブタ濃度 NB :ドナー濃度 x4 :空乏層の厚さ 1φ。l  :pn接合の拡散電位の絶対値さて、MO
3構造のしきい値電圧■、は、p形半導体に対しては、
次の式で与えられる。 Vy−φn  as  Qss/ COX + 21φ
f1+2a 3 a OQ Na lφt l / C
OX  −111Mに対してはφn = 4.1 eV
、 5i(hに対してはε。8=3.9.Siに対して
はε、−12で、Siの(100)面に対してQss”
 1.4 Xl0−@C/c+4、φs = 5.07
eV。 1φt l  =0.37eVとすると、第1図の構造
では■。 −〇となる。したがって、このMO3構造では、p形F
32とA7電極4の間に電圧を印加しなくてもp形PJ
2・酸化膜3界面では半導体層の4電形が強反転してお
り、界面の電位は周囲のp形層に比べ、21φt l 
/ q =0.74Vだけ高い、このとき界面からp形
層2内にのびる空乏層52の厚さx4は次の通りである
。 xa−J2εSεG−21φt l / q Na=0
.314 tna一方、n形態板1とp形層2の間のp
n接合の深さは0.3−だから、当然この空乏J!52
はpn接合の空乏層51に接触する。したがって、AJ
[4,p形居2.基板1の間に電圧を印加しなくても、
空乏層による素子分離が達成される。p形層にマイナス
電圧を印加しても空乏層が縮むことはないから、素子分
離は保たれる。 第2図fal、(blは、末完明番と基づく素子分離層
を用いて分離したチャネルドープ型の9MOSFETの
実施例を示し、図(alは平面図1図tblは断面図で
第1図と共通の部分には同一の符号が付されている。平
面図において二重斜線を施した部分は、第5図において
も同様にその上に電極あるいは配線が設けられない領域
を示している。チャネルドープ型の9MOSFETは、
p形エピタキシャル層2の上に酸化膜3を介してMゲー
ト電極6を設けることによって形成される。このFET
は、分離領域のA7tfi4によって囲まれ、ゲート電
極6と分離電極4の間には、広い側ではその下のp形層
2にソース71.ドレイン72が存在して配線9に接触
部10で接続され、狭い側ではわずかな間隔dを残して
いる0分離T4i4.酸化膜3.  p形エピタキシャ
ル層2.n形態板1が第1図の場合と同様に形成されて
いれば、電極4を接地してp形層2)基板1と同電位に
しても、it!Fj4が作り出す空乏層とエピタキシャ
ル層2.基板lの間のpn接合の空乏層が接触し素子分
離層5となる。同様にゲート電極6の直下に生ずる空乏
層53もn形態板1.p形F12の間のpn接合の空乏
11551に接触するため、ソース71.ドレイン72
間を電気的に遮断する。したがって、このFETはノー
マリ・オフ型である。 第3図は、分離電極4とゲート電極6の間の間隔の狭い
側の部分を示し、チャネルドープ型MOSFETの遮断
が完全であるためには、ソース・ドレイン間が空乏層に
よってすき間なく埋められなければならない、そのため
には、前述の数値を用いて第3図において次の条件が満
たされなければならない。 =0.44μm すなわち、第2図fatにおける分BTF1礒4とゲー
ト電極6との間隔dが0.44μ以下であればよい。 このようなMOSFETにおいて、ソース71゜ドレイ
ン72.基板l、ゲート電極6をすべて接地した場合、
前述したようにオフ状態となり、ソース・ドレイン間に
電流を流すことができない0次にゲート電極に適切な負
電圧を印加すると、ゲート電極の作り出す空乏層53が
収縮して第2図中)に示すようにpn接合の空乏層51
から離れオン状態になる。このとき、ドレインに負電圧
を印加すると、正孔がソースからドレインに流れる。ド
レイン電圧を下げていくと、はじめはドレイン電流は増
えていくが、pn接合とゲート電極の作り出す空乏層に
はさまれた電流経路が次第に狭くなってピンチオフを起
こし、その後は電流は増えなくなる。 第4図1a1〜(glは第2図に示した集積回路の製造
工程を示し、図(alに示すn形シリコン基板1の上に
図山)のようにp形エピタキシャル層2を形成しさらに
その上に図(C1のようにシリコン酸化膜3を形成する
0次に図+dlに示す分離電極4とゲート電極6をA7
JIの蒸着、パターニングで同時に形成したのち、図+
e)のように眉間絶縁膜8で被覆し、さらに図(f)の
ようにコンタクトホール11を形成、最後に図tanに
示す配線9を形成する。配線9には、インジウム、白金
など、仕事関数がp形層2より大きい金属を用いれば、
90層を介在させることなしに直接オーミック接触を形
成できる。 第5図は、本発明に基づき空乏層による素子分離を用い
たCMOSインバータを示し、(alが平面図、 (b
lが断面図で第2図と共通の部分には同一の符号が付さ
れている。第6図はその等価回路図で、61はn MO
S F ET、 62はpMOSFETを示す。 第5図においてはドナー濃度10’/CMコ、 (10
0)面のn形S1基板1の上に形成された厚さ0.3 
urn 、アクセプタ濃度I X 10” / cm”
のp形層2内に厚さ0.25x、  ドナー?72度I
 X 10” / cta”のnウェル12を設け、そ
の中にチャネルドープ型n M OS F ET61を
設けた。一方、チャネルドープ型pMOSFET62は
、第2図の場合と同様にp形層2内に設けた。シリコン
酸化膜3の厚さは70人であり、分離電極4.ゲー) 
’ijt Fi 6はMで形成した。ゲート電極と分離
電極の狭い側の間隙dは0.44−以下である。 配線9には仕事関数がp形1fflより大きいインジウ
ム、白金などを用いれば、pill!72と直接にオー
ミック接触を形成できるが、nウェル12には図示しな
いn゛層を介在させなければオーミック接触を形成でき
ない、しかし、p形J12.nウェル12の濃度を10
”/cm’以上とすれば、配線9にアルミニウムを用い
て直接オーミック接触を形成できる。 次に、このCMO3において、p形層2とその上の分t
jJ T44M 4 、  nウェル12とその上の分
M ?ff J’ff14をそれぞれ同電位にしても素
子分離できる理由を説明する。この場合、nウェルのな
い領域における第2図に示した実施例との相違は、酸化
膜3が薄くなっている点でけである。この領域のkl電
捲4.酸化膜3.  p形石2のMO3構造のしきい値
電圧■7は、fl1式より■7く0となる。したがって
、p形層2.酸化膜3の界面においてp形層の感電形は
強反転している。それ故、第2図の場合と全く同様にp
形rr!J2.A1電掻4を同電位にしたとき、および
p形層だけに負電圧を印加したとき、上下の空乏層の接
触により素子分離層が形成される。一方、nウェルの領
域では、A7電J!ii 4 。 酸化膜3.nウェル12のMO3構造におけるしきいイ
直N 圧V t ハ、111ニオイテlφr I  −
0,37とすると■?−〇となる。したがって、nウェ
ル12とA7 j3 j!i 4の間にバイアスを加え
ないとき、酸化膜3、nウェル12の界面において半導
体の感電形が反転しており、界面の電位は周囲のn影領
域に比較して21φr l  q =0.74Vだけ低
くなっている。 この結果、界面からのびる空乏層の厚さx4は次の通り
となる。 Xa −2tsgo・2 lφt l qNo −0,
314tnsnウェル12とp形N2との間のpn接合
の深さは0.25μであるから、この空乏層54は当然
その下のpn接合の空乏層と接触し、素子分離が行われ
る。 、〕のようなCMOSインバータの入力Vimとして十
分低い電圧を印加すると、pMOSFET62はゲート
直下の空乏層53が収縮してオンするが、nMO3FE
761はゲート直下の空乏】55が広がってオフする。 したがって9MOSFETはオンしても電流が流れない
、すると、p MOS F ETのソース71.ドレイ
ン72間の電位差はOとなり、v、、、、tmv、、と
なる、第5U!J(blはこの状態を示している。入力
vi、、として十分高い電圧を印加すると、nMOSF
ET61はゲート直下の空乏層55が収縮してオンする
が、9MO5FET62はゲート直下の空乏層53が広
がってオフする。したがって、nMOSFET62がオ
ンしても電流が流れない。 するとnMO3FE”r61のソース71.  ドレイ
ン72間の電流は0になり、■。5.−〇となる。 以上の実施例のpとnを逆にすることもできる。 また、A7電掻の代わりにドープした多結晶シリコンa
iを用いることもできる。さらに、バイポーラICにお
いて本発明に基づく空乏層による素子分離を行うことも
可能である。 【発明の効果] 本発明によれば、基板との間にpn接合を形成する層上
に絶縁膜を介して電極を設けることにより、電極に電圧
を印加しなくても空乏層の接触により素子分離層が形成
され、分離拡散工程が不要となり、分離拡散層による寄
生素子の形成のおそれもなくなる。さらにこの素子分離
層を用いてチャネルドープ型MO5FETを含むICを
製造すれば、素子分!1ffiB5部分を共通工程で形
成できるばかりでなく、従来のMO3ICに(らぺて次
の利点をもつ。 +11ソース・ドレインの選択的不純物拡散領域は、動
作原理上設ける必要がない。 (2)シたがって、従来のMゲートMO3ICのように
製造工程におけるソース・ドレインの不純物拡散領域と
ゲート電極の位置合わせ誤差がなくなる。 (31p M OS F ETあるいはnMOSFET
の一方のみを用いてICを作る場合、FETの配置。 形状1寸法は、すべての拡散工程を終えた後にゲートお
よび分El ’Riのパターニングによって決まる。し
たがって、異なる回路のICについて、製造工程を終わ
り近くまで共通化できる。 (4) CM OSを構成しても、pnpnfl造がで
きないため寄生サイリスクが発生し得ない。 (5)ソース・ドレインのpn接合の降伏やパンチスル
ーが起こり得ない。
FIG. 1 shows an element isolation layer portion of an embodiment of the present invention,
The silicon substrate l is n-type, has a donor concentration of 10''/cwh'', and has a (100) main surface. On top of that, by epitaxial growth, the acceptor concentration is 10" with a thickness of 0.3".
A p-type N2 of /cm' is further laminated thereon, and a silicon oxide film 3 with a thickness of 220 mm is laminated thereon, and AjWi4 is formed on a portion of the top of the oxide film 3. n-form plate 1 and AJ
When 'riffi 4 is grounded, the depletion 151 created by the pn junction between the n-type plate 1 and the p-type layer 2 and the depletion layer 52 generated directly under the A7 electrode 4 are shown by diagonal lines in the figure. Some overlap. Below is Depletion 1'! The reason why 51 and 52 overlap will be explained. First, the symbols are defined as follows. φH=work function of metal φ,: work function of semiconductor Qss: fixed charge at semiconductor/oxide film interface Cow: oxide film capacity 1. COX-ε. 8εo/ioxε0 is the relative dielectric constant ε of the dioxide film. : Vacuum dielectric constant to load N, near donor concentration NB: donor concentration x4: depletion layer thickness 1φ. l : Absolute value of diffusion potential of pn junction Now, MO
The threshold voltage ■ of the three structures is, for a p-type semiconductor,
It is given by the following formula. Vy-φn as Qss/ COX + 21φ
f1+2a 3 a OQ Na lφt l / C
For OX -111M φn = 4.1 eV
, 5i (ε for h. 8 = 3.9. ε for Si, -12, Qss for the (100) plane of Si
1.4 Xl0-@C/c+4, φs = 5.07
eV. If 1φt l =0.37eV, then ■ in the structure shown in FIG. −〇. Therefore, in this MO3 structure, p-type F
P-type PJ without applying voltage between 32 and A7 electrode 4
2. At the interface of the oxide film 3, the 4 electric type of the semiconductor layer is strongly inverted, and the potential of the interface is 21φt l compared to the surrounding p-type layer.
/q=0.74V higher, in this case the thickness x4 of the depletion layer 52 extending from the interface into the p-type layer 2 is as follows. xa-J2εSεG-21φt l / q Na=0
.. 314 tna On the other hand, p between n-type plate 1 and p-type layer 2
Since the depth of the n junction is 0.3-, naturally this depletion J! 52
contacts the depletion layer 51 of the pn junction. Therefore, A.J.
[4, p form 2. Even if no voltage is applied between the substrates 1,
Element isolation is achieved by the depletion layer. Even if a negative voltage is applied to the p-type layer, the depletion layer does not shrink, so device isolation is maintained. Figure 2 (fal, (bl) shows an example of a channel-doped 9MOSFET isolated using an element isolation layer based on the final complete pattern, and Figure (al is a plan view, Figure 1 is a cross-sectional view. The same reference numerals are given to the common parts.The double hatched parts in the plan view similarly indicate the areas on which no electrodes or wiring are provided in FIG. The channel doped type 9 MOSFET is
It is formed by providing an M gate electrode 6 on the p-type epitaxial layer 2 with an oxide film 3 interposed therebetween. This FET
are surrounded by the isolation region A7tfi4, and between the gate electrode 6 and the isolation electrode 4, the source 71. is connected to the underlying p-type layer 2 on the wide side. A drain 72 is present and connected to the wiring 9 at a contact 10, leaving a small spacing d on the narrow side at 0 separation T4i4. Oxide film 3. p-type epitaxial layer 2. If the n-type plate 1 is formed in the same way as in FIG. 1, even if the electrode 4 is grounded and has the same potential as the p-type layer 2) and the substrate 1, it! Depletion layer and epitaxial layer created by Fj4 2. The depletion layer of the pn junction between the substrates 1 contacts to form an element isolation layer 5. Similarly, the depletion layer 53 formed directly under the gate electrode 6 is also formed in the n-type plate 1. The source 71 . drain 72
electrically isolate the Therefore, this FET is a normally off type. FIG. 3 shows the narrow side part between the separation electrode 4 and the gate electrode 6. In order for the channel-doped MOSFET to be completely cut off, the gap between the source and drain must be filled with a depletion layer. For this purpose, the following conditions must be met in FIG. 3 using the aforementioned numerical values. =0.44 μm That is, the distance d between the BTF 1 and the gate electrode 6 in fat in FIG. 2 should be 0.44 μm or less. In such a MOSFET, the source 71°, the drain 72. When the substrate l and gate electrode 6 are all grounded,
As mentioned above, when an appropriate negative voltage is applied to the zero-order gate electrode, which is in the off state and no current can flow between the source and drain, the depletion layer 53 created by the gate electrode contracts, resulting in the state (in Figure 2). As shown, the depletion layer 51 of the pn junction
away from the device and turn on. At this time, when a negative voltage is applied to the drain, holes flow from the source to the drain. When the drain voltage is lowered, the drain current initially increases, but the current path between the pn junction and the depletion layer created by the gate electrode gradually narrows, causing pinch-off, and the current no longer increases. 4.1a1-(gl shows the manufacturing process of the integrated circuit shown in FIG. 2, in which a p-type epitaxial layer 2 is formed on the n-type silicon substrate 1 shown in al) as shown in the figure On top of that, a silicon oxide film 3 is formed as shown in Figure C1.
After forming JI at the same time by vapor deposition and patterning,
It is covered with a glabellar insulating film 8 as shown in e), and further a contact hole 11 is formed as shown in FIG. If a metal such as indium or platinum, whose work function is larger than that of the p-type layer 2, is used for the wiring 9,
Direct ohmic contact can be formed without intervening 90 layers. FIG. 5 shows a CMOS inverter using element isolation by a depletion layer based on the present invention, (al is a plan view, (b
1 is a cross-sectional view, and parts common to those in FIG. 2 are given the same reference numerals. Figure 6 is its equivalent circuit diagram, where 61 is n MO
S FET, 62 indicates pMOSFET. In Figure 5, the donor concentration is 10'/CM, (10
0) formed on the n-type S1 substrate 1 with a thickness of 0.3
urn, acceptor concentration I x 10"/cm"
In the p-type layer 2 of 0.25x thickness, donor? 72 degrees I
An n-well 12 of x 10"/cta" was provided, and a channel-doped nMOS FET 61 was provided therein. On the other hand, a channel-doped pMOSFET 62 was provided in the p-type layer 2 as in the case of FIG. The thickness of the silicon oxide film 3 is 70 mm, and the thickness of the separation electrode 4. game)
'ijt Fi 6 was formed by M. The gap d between the gate electrode and the separation electrode on the narrow side is 0.44- or less. If indium, platinum, etc., which has a work function larger than p-type 1ffl, is used for the wiring 9, the pill! Although an ohmic contact can be formed directly with the p-type J12. The concentration of n-well 12 is set to 10
If it is more than "/cm', a direct ohmic contact can be formed using aluminum for the wiring 9. Next, in this CMO3, the p-type layer 2 and the layer t above it can be formed.
jJ T44M 4, n well 12 and above M? The reason why elements can be separated even if ff J'ff14 are set to the same potential will be explained. In this case, the only difference from the embodiment shown in FIG. 2 in the region without the n-well is that the oxide film 3 is thinner. KL electric winding in this area 4. Oxide film 3. The threshold voltage ■7 of the MO3 structure of the p-type stone 2 becomes ■7×0 from the fl1 formula. Therefore, p-type layer 2. At the interface of the oxide film 3, the electric shock type of the p-type layer is strongly inverted. Therefore, just as in the case of Fig. 2, p
Shape rr! J2. When the A1 electrode 4 is set to the same potential and when a negative voltage is applied only to the p-type layer, an element isolation layer is formed by contact between the upper and lower depletion layers. On the other hand, in the n-well area, A7 electric J! ii 4. Oxide film 3. Threshold N pressure V t in MO3 structure of n-well 12, 111 nitride lφr I −
If it is 0.37, ■? −〇. Therefore, n-well 12 and A7 j3 j! When no bias is applied during i4, the electric shock type of the semiconductor is reversed at the interface between the oxide film 3 and the n-well 12, and the potential at the interface is 21φr l q =0. It is lower by 74V. As a result, the thickness x4 of the depletion layer extending from the interface is as follows. Xa −2tsgo・2 lφt l qNo −0,
Since the depth of the pn junction between the 314tnsn well 12 and the p-type N2 is 0.25μ, this depletion layer 54 naturally comes into contact with the depletion layer of the pn junction below, and element isolation is performed. , ] When a sufficiently low voltage is applied as the input Vim of a CMOS inverter such as
761 is a depletion directly under the gate] 55 expands and turns off. Therefore, even if MOSFET 9 is turned on, no current flows.Then, the source of pMOSFET 71. The potential difference between the drains 72 becomes O, and v, , tmv, 5th U! J(bl indicates this state. When a sufficiently high voltage is applied as the input vi, , the nMOSF
In ET61, the depletion layer 55 directly under the gate contracts and turns on, but in 9MO5FET62, the depletion layer 53 directly under the gate expands and turns off. Therefore, even if the nMOSFET 62 is turned on, no current flows. Then, the current between the source 71 and drain 72 of nMO3FE"r61 becomes 0, and becomes ■.5.-〇. It is also possible to reverse p and n in the above example. Also, instead of A7 electric scratching polycrystalline silicon a doped with
i can also be used. Furthermore, it is also possible to perform element isolation using a depletion layer based on the present invention in a bipolar IC. Effects of the Invention According to the present invention, by providing an electrode via an insulating film on a layer that forms a pn junction with a substrate, the device can be activated by contacting the depletion layer without applying a voltage to the electrode. A separation layer is formed, eliminating the need for a separation and diffusion process, and eliminating the possibility of formation of parasitic elements due to the separation and diffusion layer. Furthermore, if an IC including a channel-doped MO5FET is manufactured using this element isolation layer, the number of elements will be reduced! Not only can the 1ffiB5 portion be formed in a common process, but it also has the following advantages compared to conventional MO3ICs: There is no need to provide selective impurity diffusion regions for the +11 source and drain due to the principle of operation. Therefore, there is no alignment error between the source/drain impurity diffusion region and the gate electrode during the manufacturing process as in conventional M-gate MOSFETs (31p MOSFET or nMOSFET).
When making an IC using only one of the FET placement. Feature 1 dimensions are determined by the patterning of the gate and portions El'Ri after completing all diffusion steps. Therefore, for ICs with different circuits, the manufacturing process can be shared until almost the end. (4) Even if a CM OS is configured, a parasitic cyber risk cannot occur because pnpnfl cannot be constructed. (5) Breakdown and punch-through of source/drain pn junctions cannot occur.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による素子分湘の原理を示す断面図、第
2図は本発明の一実施例の一部分を示し、talは平面
図、(b)は断面図、第3図は第2図の実施例における
分A1電掻とゲート電極の部分を示す断面図、第4図は
第2図の実施例の製造工程を順次示す断面図、第5図は
本発明の別の実施例の一部分を示し、tarは平面図、
(b)は断面図、第6図は第5図の実施例の等価回路図
である。 1:n形Sii板、2;9分M電極、5:素子公開L5
1.52.53.54.55:空乏層、6:ゲート電極
、71:ソース、72ニドレイン、9:配線。 々1に溝a十山口 鰻 フ ] 第5図 an 第6図
FIG. 1 is a cross-sectional view showing the principle of element distribution according to the present invention, FIG. 4 is a sectional view showing the manufacturing process of the embodiment of FIG. 2, and FIG. 5 is a sectional view of another embodiment of the present invention. A part is shown, tar is a plan view,
(b) is a sectional view, and FIG. 6 is an equivalent circuit diagram of the embodiment shown in FIG. 1: n-type Sii plate, 2: 9 minute M electrode, 5: element open L5
1.52.53.54.55: Depletion layer, 6: Gate electrode, 71: Source, 72 Nidrain, 9: Wiring. Fig. 5 an Fig. 6

Claims (1)

【特許請求の範囲】 1)第一導電形の半導体基板上に設けられた第二導電形
の半導体層に分離層を介して複数の素子が集積されるも
のにおいて、第二導電形の層上に絶縁膜を介して電極を
備え、その際電極の直下の前記第二導電形の層に広がる
空乏層が第一導電形の基板と前記第二導電形の層の間の
pn接合による空乏層に接触することにより分離層が形
成されることを特徴とする半導体集積回路。 2)特許請求の範囲第1項記載の回路において、分離層
を介してチャネルドープ型MOSFETが集積されたこ
とを特徴とする半導体集積回路。
[Claims] 1) In a device in which a plurality of elements are integrated via a separation layer on a semiconductor layer of a second conductivity type provided on a semiconductor substrate of a first conductivity type, is provided with an electrode via an insulating film, and in this case, the depletion layer extending to the layer of the second conductivity type directly below the electrode is a depletion layer formed by a pn junction between the substrate of the first conductivity type and the layer of the second conductivity type. A semiconductor integrated circuit characterized in that a separation layer is formed by contacting the semiconductor integrated circuit. 2) A semiconductor integrated circuit according to claim 1, characterized in that a channel doped MOSFET is integrated through a separation layer.
JP61239755A 1986-10-08 1986-10-08 Semiconductor integrated circuit Pending JPS6394667A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61239755A JPS6394667A (en) 1986-10-08 1986-10-08 Semiconductor integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61239755A JPS6394667A (en) 1986-10-08 1986-10-08 Semiconductor integrated circuit

Publications (1)

Publication Number Publication Date
JPS6394667A true JPS6394667A (en) 1988-04-25

Family

ID=17049441

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61239755A Pending JPS6394667A (en) 1986-10-08 1986-10-08 Semiconductor integrated circuit

Country Status (1)

Country Link
JP (1) JPS6394667A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0271556A (en) * 1988-09-06 1990-03-12 Toshiba Corp Semiconductor device
WO2000013234A1 (en) * 1998-08-28 2000-03-09 Telefonaktiebolaget Lm Ericsson Integrated circuits
JP2005244077A (en) * 2004-02-27 2005-09-08 Nec Electronics Corp Semiconductor device
WO2016132417A1 (en) * 2015-02-18 2016-08-25 富士電機株式会社 Semiconductor integrated circuit

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0271556A (en) * 1988-09-06 1990-03-12 Toshiba Corp Semiconductor device
WO2000013234A1 (en) * 1998-08-28 2000-03-09 Telefonaktiebolaget Lm Ericsson Integrated circuits
US6291859B1 (en) 1998-08-28 2001-09-18 Telefonaktiebolaget Lm Ericsson Integrated circuits
JP2005244077A (en) * 2004-02-27 2005-09-08 Nec Electronics Corp Semiconductor device
JP4615229B2 (en) * 2004-02-27 2011-01-19 ルネサスエレクトロニクス株式会社 Semiconductor device
WO2016132417A1 (en) * 2015-02-18 2016-08-25 富士電機株式会社 Semiconductor integrated circuit
JPWO2016132417A1 (en) * 2015-02-18 2017-06-15 富士電機株式会社 Semiconductor integrated circuit
US9893065B2 (en) 2015-02-18 2018-02-13 Fuji Electric Co., Ltd. Semiconductor integrated circuit

Similar Documents

Publication Publication Date Title
US5323059A (en) Vertical current flow semiconductor device utilizing wafer bonding
US5072287A (en) Semiconductor device and method of manufacturing the same
JP2766240B2 (en) High voltage semiconductor device
US6407413B1 (en) Semiconductor device with guard ring and Zener diode layer thereover
JPH10214907A (en) Semiconductor device and its manufacture
JP2667465B2 (en) Semiconductor device
JPS6394667A (en) Semiconductor integrated circuit
JP2000068372A (en) Semiconductor device and manufacture thereof
JPH04291952A (en) Semiconductor device
JPH08195443A (en) Semiconductor device and its manufacture
JP2753011B2 (en) High breakdown voltage planar semiconductor device and method of manufacturing the same
JP2004221218A (en) Transistor having schottky diode
JPH0379035A (en) Mos transistor and manufacture thereof
JP3217552B2 (en) Horizontal high voltage semiconductor device
US5008724A (en) Semiconductor device
JPS62123736A (en) Semiconductor device
JP2560218B2 (en) Method for manufacturing semiconductor device
JPS60117755A (en) Manufacture of semiconductor device
JPH0472770A (en) Manufacture of semiconductor device
JPH0341479Y2 (en)
JPH04196440A (en) Semiconductor device
JPH05129425A (en) Semiconductor device and manufacture thereof
JPH0997853A (en) Semiconductor integrated circuit and its manufacturing method
JPH03155659A (en) Semiconductor device
JPH06181312A (en) Manufacture of semiconductor device