JPS6390620A - Supercharge control device for internal combustion engine - Google Patents

Supercharge control device for internal combustion engine

Info

Publication number
JPS6390620A
JPS6390620A JP61234526A JP23452686A JPS6390620A JP S6390620 A JPS6390620 A JP S6390620A JP 61234526 A JP61234526 A JP 61234526A JP 23452686 A JP23452686 A JP 23452686A JP S6390620 A JPS6390620 A JP S6390620A
Authority
JP
Japan
Prior art keywords
internal combustion
combustion engine
air
acceleration
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61234526A
Other languages
Japanese (ja)
Inventor
Kazuichi Ogaki
大垣 和一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP61234526A priority Critical patent/JPS6390620A/en
Publication of JPS6390620A publication Critical patent/JPS6390620A/en
Pending legal-status Critical Current

Links

Landscapes

  • Supercharger (AREA)

Abstract

PURPOSE:To always obtain an optimum accelerating performance, by providing main and auxiliary superchargers in parallel with each other and by controlling a control means for controlling the supply amount of accumulated air fed to an engine from a pressure accumulating tank connected to the auxiliary supercharger, in accordance with factors which is determined in accordance with the accelerating condition of the engine. CONSTITUTION:An auxiliary supercharger 3 such as a turbocharger or the like is connected in parallel with a main supercharger 2 such as a turbocharger or the like which is disposed in an intake-air pipe connected to an internal combustion engine. In the pipe line connecting between the auxiliary supercharger 3 and the intake-air pipe, there are disposed a pressure accumulating tank 4 and a control means 5 for controlling the supply amount of accumulated air to a desired value. Further, there is provided an accelerating factor detecting means 6 for detecting a factor in accordance with the accelerating condition of the internal combustion engine 1, such as the opening degree of a throttle valve or the like. Thus, the control means 5 is controlled by a control signal generating means 7 so that the accumulated air having an amount in accordance with the accelerating factor detected by the above-mentioned detecting means 6 is fed into the auxiliary supercharger 3 from the accumulating tank 4.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明はターボチャージャ等の過給機を装着した内燃
機関の過給制御装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a supercharging control device for an internal combustion engine equipped with a supercharger such as a turbocharger.

〔従来の技術〕[Conventional technology]

ターボチャージャでは、低回転から加速した場合の加速
応答性があまり良くない(所謂ターボラグ)問題点があ
る。これは、低回転時にタービンを回転させるためのエ
ネルギが不足することによる。
Turbochargers have a problem in that their acceleration response is not very good when accelerating from low rotation speeds (so-called turbo lag). This is due to the lack of energy to rotate the turbine at low rotation speeds.

ターボラグの解消を図るため実開昭60−120230
号公報や、実開昭61−69438号公報では蓄圧タン
クを設け、通常運転時に蓄圧タンクに加圧空気を溜めて
おき、加速運転時に蓄圧タンクからの空気を供給するこ
とにより、加速性の向上を図るようにしたものを提案し
ている。
Utility model 60-120230 to eliminate turbo lag
In the Publication No. 61-69438, a pressure accumulator tank is provided, pressurized air is stored in the pressure accumulator tank during normal operation, and air is supplied from the pressure accumulator tank during acceleration operation, thereby improving acceleration performance. We are proposing something that aims to achieve this.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来技術では、単一のターボチャージャを採用し、非過
給運転時に蓄圧タンクに圧力を溜めるようにしている。
In the conventional technology, a single turbocharger is used to store pressure in a pressure storage tank during non-supercharging operation.

そのため、加速運転が間隔をおいて実行される場合は蓄
圧が可能であるが、連続的な加速・減速を実行するよう
な場合は蓄圧タンクの圧力が足りなくなり、十分な加速
性能が得られない問題点がある。また、運転者の加速要
求に応じた加給圧を得ることができない問題点がある。
Therefore, pressure can be accumulated when acceleration operations are performed at intervals, but when acceleration and deceleration are performed continuously, the pressure in the pressure accumulation tank becomes insufficient and sufficient acceleration performance cannot be obtained. There is a problem. Further, there is a problem in that it is not possible to obtain boost pressure that corresponds to the driver's acceleration request.

この発明では、加速・減速を連続して行うような場合に
も十分な加速性能を得られるようにすると共に、運転者
の加速要求に適合した加速性能を得られるようにするこ
とを目的とする。
The purpose of this invention is to make it possible to obtain sufficient acceleration performance even when acceleration and deceleration are performed continuously, and also to make it possible to obtain acceleration performance that meets the acceleration requirements of the driver. .

〔問題点を解決するための手段〕[Means for solving problems]

この発明の内燃機関の過給制御装置は、内燃機関1に接
続される主過給機2と、主過給機2と並列に配置される
副過給機3と、副過給機3に接続される蓄圧タンク4と
、蓄圧タンク4から内燃機関へ供給される蓄圧空気の供
給量を所望に制御する手段5と、内燃機関1の加速状態
に応じた因子を検出する手段6と、加速因子検出手段6
が検出する加速状態因子に応した量の空気が供給される
ように空気供給制御手段5に制御信号を発生する手段7
とから構成される。
The supercharging control device for an internal combustion engine according to the present invention includes a main supercharger 2 connected to an internal combustion engine 1, a subsupercharger 3 disposed in parallel with the main supercharger 2, and a subsupercharger 3 connected to the internal combustion engine 1. A connected pressure storage tank 4, means 5 for controlling the supply amount of pressure storage air supplied from the pressure storage tank 4 to the internal combustion engine as desired, means 6 for detecting a factor depending on the acceleration state of the internal combustion engine 1, and an acceleration Factor detection means 6
means 7 for generating a control signal to the air supply control means 5 such that an amount of air is supplied in accordance with the acceleration state factor detected by the air supply control means 5;
It consists of

〔実施例〕〔Example〕

第2図において、10はピストン、12はコネクティン
グロッド、14は燃焼室、16は吸気弁、18は排気弁
、20はインジェクタ、22はサージタンク、24はス
ロットル弁、26はアクセルペダル、28は吸気管、3
0はエアークリーナ、32は排気管である。主ターボチ
ャージャは34で表され、排気管32内に位置するター
ビンホイール36と、吸気管28内に位置するコンプレ
ッサホイール38と、これらを連結する回転軸40とか
ら構成される。タービンホイール36を迂回するように
バイパス通路42が排気管32に連結される。ウェイス
トゲート弁44はバイパス通路42を開閉するため設け
られる。ウェイストゲート弁44はダイヤフラム・アク
チュエータ46に連結され、圧力導管48は、コンプレ
ッサホイール38の下流の吸気管圧力をアクチュエータ
46に導入する。この圧力が所定値を超えるとアクチュ
エータ46はウェイストゲート弁44を開弁させる。
In FIG. 2, 10 is a piston, 12 is a connecting rod, 14 is a combustion chamber, 16 is an intake valve, 18 is an exhaust valve, 20 is an injector, 22 is a surge tank, 24 is a throttle valve, 26 is an accelerator pedal, and 28 is an injector. Intake pipe, 3
0 is an air cleaner, and 32 is an exhaust pipe. The main turbocharger is indicated by 34 and is composed of a turbine wheel 36 located within the exhaust pipe 32, a compressor wheel 38 located within the intake pipe 28, and a rotating shaft 40 connecting these. A bypass passage 42 is connected to the exhaust pipe 32 so as to bypass the turbine wheel 36. A wastegate valve 44 is provided to open and close the bypass passage 42. The wastegate valve 44 is connected to a diaphragm actuator 46 and a pressure conduit 48 introduces intake pipe pressure downstream of the compressor wheel 38 to the actuator 46 . When this pressure exceeds a predetermined value, the actuator 46 opens the wastegate valve 44.

主ターボチャージャ34のタービン36を迂回するよう
に副排気管50が排気管32に接続され、コンプレッサ
38を迂回するように副吸気管52が吸気管28に接続
される。副ターボチャージャは54で表され、副排気管
50内に位置するタービンホイール56と、副吸気管5
2内に位置するコンプレッサホイール58と、これらを
連結する回転軸60とから構成される。副吸気管52上
に、蓄圧タンク64が設置される。66はチェック弁で
あり、蓄圧された空気がエアークリーナ側に抜けるのを
防止するものである。電磁弁68は吸気管28側に設置
される。この電磁弁68は、この実施例ではパルス信号
で駆動され、そのデユーティ比を変化させることにより
蓄圧タンク64から吸気管28に4人される蓄圧空気の
量を制御することが可能になっている。副吸気管52の
下流端と主吸気管28との接合個所に主吸気管28の空
気圧により作動される切替弁72が配置される。
A sub-exhaust pipe 50 is connected to the exhaust pipe 32 so as to bypass the turbine 36 of the main turbocharger 34, and a sub-intake pipe 52 is connected to the intake pipe 28 so as to bypass the compressor 38. The auxiliary turbocharger is represented by 54 and includes a turbine wheel 56 located within the auxiliary exhaust pipe 50 and an auxiliary intake pipe 5.
The compressor wheel 58 is located inside the compressor wheel 2, and a rotating shaft 60 connects the compressor wheel 58. A pressure accumulation tank 64 is installed on the sub-intake pipe 52. 66 is a check valve that prevents the accumulated air from escaping to the air cleaner side. The solenoid valve 68 is installed on the intake pipe 28 side. In this embodiment, the solenoid valve 68 is driven by a pulse signal, and by changing its duty ratio, it is possible to control the amount of pressurized air delivered from the pressure accumulator tank 64 to the intake pipe 28. . A switching valve 72 that is operated by the air pressure of the main intake pipe 28 is disposed at a junction between the downstream end of the auxiliary intake pipe 52 and the main intake pipe 28 .

切替弁72はその延長部72aにばね74が設けられ、
このばね74は切替弁72を図の反時計方向に回動させ
、この時主吸気管28は開放され、副吸気管52は閉鎖
される。副吸気管52内の空気圧力が高いときは切替弁
72はばね74に抗して押し開けられ、このときは副吸
気管52が開放し、主吸気管28が閉鎖される。
The switching valve 72 is provided with a spring 74 on its extension portion 72a,
This spring 74 rotates the switching valve 72 counterclockwise in the figure, and at this time, the main intake pipe 28 is opened and the auxiliary intake pipe 52 is closed. When the air pressure in the auxiliary intake pipe 52 is high, the switching valve 72 is pushed open against the spring 74, and at this time the auxiliary intake pipe 52 is opened and the main intake pipe 28 is closed.

副排気管50の上流端と排気管32との接合個所に副ウ
ェイストゲート弁80が設けされ、副ウェイストゲート
弁80はダイヤフラム・アクチュエータ82に連結され
る。アクチュエータ82は導管84によって蓄圧タンク
64に接続される。
A sub-wastegate valve 80 is provided at the junction between the upstream end of the sub-exhaust pipe 50 and the exhaust pipe 32, and the sub-wastegate valve 80 is connected to a diaphragm actuator 82. Actuator 82 is connected to accumulator tank 64 by conduit 84 .

蓄圧タンク64の圧力が所定値より小さいときにはアク
チュエータ82は副ウェイストゲート弁80を開放し、
排気ガスが副排気管50を通過することができる。これ
により、排気ガス流がタービン56に作用し、コンプレ
ッサ58より空気が蓄圧タンク64に圧送される。蓄圧
タンク64の圧力が所定値を超えるとアクチュエータ8
2は副ウェイストゲート弁80を閉鎖させる。そのため
、副ターボチャージャ54のタービン50へ排気ガスが
行かなくなり、副ターボチャージャ54は回転を停止す
る。このような作動の繰り返しにより、蓄圧タンク64
は一定圧力を常に維持するように制御される。
When the pressure in the pressure storage tank 64 is lower than a predetermined value, the actuator 82 opens the sub wastegate valve 80;
Exhaust gas can pass through the sub-exhaust pipe 50. As a result, the exhaust gas flow acts on the turbine 56, and air is force-fed from the compressor 58 to the pressure storage tank 64. When the pressure in the pressure storage tank 64 exceeds a predetermined value, the actuator 8
2 closes the secondary wastegate valve 80. Therefore, the exhaust gas does not go to the turbine 50 of the sub-turbocharger 54, and the sub-turbocharger 54 stops rotating. By repeating such operations, the pressure storage tank 64
is controlled to always maintain a constant pressure.

制御回路90は、この発明に従って、蓄圧タンクからの
蓄圧空気の導入を制御するものであり、例えば、マイク
ロコンピュータ・システムとして構成することができる
。制御回路90にスロットルセンサ92が接続される。
The control circuit 90 controls the introduction of pressure storage air from the pressure storage tank according to the present invention, and can be configured as a microcomputer system, for example. A throttle sensor 92 is connected to the control circuit 90 .

スロットルセンサ92はスロットル弁24の開度に応じ
た信号を発生する。また、制御回路90に切替弁72の
位置検出スイッチ94が接続される。このスイッチ94
は切替弁72が破線のように副吸気管52を全閉する位
置まで来ると、即ち定常状態に達すると、ONに切り替
わるようになっている。
The throttle sensor 92 generates a signal according to the opening degree of the throttle valve 24. Further, a position detection switch 94 of the switching valve 72 is connected to the control circuit 90 . This switch 94
is turned ON when the switching valve 72 reaches a position where the sub-intake pipe 52 is fully closed as shown by the broken line, that is, when a steady state is reached.

以下制御図90の作動を第3図のフローチャートによっ
て説明する。このルーチンは一定時間毎に実行される。
The operation of the control diagram 90 will be explained below with reference to the flowchart of FIG. This routine is executed at regular intervals.

ステップ100ではスロットルセンサ92により計測さ
れるスロットル弁開度θが現在のスロットル弁開度を格
納するアドレスθ7に入れられる。ステップ102では
アドレスθ7の内容と、前回のスロットル弁開度を格納
するアドレスθ7−1の内容との差Δθが算出される。
In step 100, the throttle valve opening θ measured by the throttle sensor 92 is entered into the address θ7 that stores the current throttle valve opening. In step 102, the difference Δθ between the contents of address θ7 and the contents of address θ7-1 storing the previous throttle valve opening is calculated.

Δθはスロットル弁の開度の変化割合に相当する値であ
る。即ち、運転者の加速要求を検出し、後述のように、
この加速要求に応じて加給圧が制御される。
Δθ is a value corresponding to the rate of change in the opening degree of the throttle valve. That is, it detects the driver's acceleration request and, as described later,
The boost pressure is controlled according to this acceleration request.

ステップ104ではΔθ〉δか否か、即ち現在のスロッ
トル弁開度θ7が前回このルーチンを実行したときのス
ロットル弁開度θ7−7より大きいか、換言すれば加速
中か否か判別される。δは適当な小さな正の値に設定さ
れる。加速運転中と判別すれば、ステップ106に進み
、電磁弁68への駆動パルス信号におけるデユーティ比
Du tyがマツプより算出される。ここにでデユーテ
ィ比はパルス信号の1周期におけるON時間の割合であ
り、デユーティ比が大きい程電磁弁の開度、即ち蓄圧室
64からの蓄圧空気の吐出圧力が高くなり、過給効果が
高まることを意味する。即ち、加速時における過給程度
の要求は加速条件に応じて変化するので、加速状態に応
じた最適の加速性能を得ようとするものである。この実
施例では、デユーティ比マツプは第4図に示すように小
、中、大の3段階のスロットル弁開度θと、緩、並、急
の3段階のスロットル弁開度変化割合Δθとの組合せに
よって■から■の5段階に設定される。■〜■のデユー
ティ比によって、例えば、第5図のように吐出圧が変化
される。ステップ106では、現在のスロットル弁開度
θ7と、Δθとからデユーティ比が■から■のどれか否
かを算出する。ステップ108では、算出されたデユー
ティ比を得られるように電磁弁68が駆動される。例え
ば、このルーチンの実行間隔に対してそのデユーティ比
となるような時間だけハイレベル信号が出力される。
In step 104, it is determined whether Δθ>δ, that is, whether the current throttle valve opening θ7 is larger than the throttle valve opening θ7-7 when this routine was executed last time, in other words, whether acceleration is in progress. δ is set to an appropriately small positive value. If it is determined that the accelerating operation is in progress, the process proceeds to step 106, where the duty ratio Duty in the drive pulse signal to the solenoid valve 68 is calculated from the map. Here, the duty ratio is the ratio of ON time in one cycle of the pulse signal, and the larger the duty ratio, the higher the opening degree of the solenoid valve, that is, the discharge pressure of the accumulated air from the pressure accumulation chamber 64, and the higher the supercharging effect. It means that. That is, since the degree of supercharging required during acceleration changes depending on the acceleration conditions, the objective is to obtain optimal acceleration performance depending on the acceleration conditions. In this embodiment, the duty ratio map has three stages of throttle valve opening θ, small, medium, and large, and a throttle valve opening change rate Δθ of three stages, gentle, medium, and steep, as shown in FIG. Depending on the combination, it is set in five stages from ■ to ■. For example, the discharge pressure is changed as shown in FIG. 5 according to the duty ratios (1) to (2). In step 106, it is calculated from the current throttle valve opening degree θ7 and Δθ whether the duty ratio is between ■ and ■. In step 108, the solenoid valve 68 is driven so as to obtain the calculated duty ratio. For example, a high level signal is output for a period of time that corresponds to the duty ratio with respect to the execution interval of this routine.

ステップ110ではθn−1の内容がθ、に移され次回
のルーチンで前回のスロットル弁開度として使用される
In step 110, the contents of θn-1 are transferred to θ, and used as the previous throttle valve opening degree in the next routine.

電磁弁68が開放されることで蓄圧タンク64からの蓄
圧空気は副吸気管52を介して噴出され、切替弁72を
ばね74に抗して時計方向に押し開け、燃焼室14に供
給される。かくして、加速の当初に主ターボチャージャ
34の回転の上昇の遅れがあっても、高いエンジン出力
が得られ、加速性能を向上することが可能になる。そし
て、加速運転が経過するにつれて、主ターボチャージャ
34が効いてくるので、コンプレッサ38からの空気の
圧力によって切替弁72は破線位置に向は反時計方向に
駆動され、主吸気管28を開け、副吸気管52を閉鎖す
る。
When the electromagnetic valve 68 is opened, the accumulated air from the pressure accumulation tank 64 is ejected through the auxiliary intake pipe 52, pushes the switching valve 72 open clockwise against the spring 74, and is supplied to the combustion chamber 14. . In this way, even if there is a delay in the increase in rotation of the main turbocharger 34 at the beginning of acceleration, high engine output can be obtained and acceleration performance can be improved. Then, as the acceleration operation progresses, the main turbocharger 34 becomes more effective, so the switching valve 72 is driven counterclockwise to the dashed line position by the pressure of the air from the compressor 38, opening the main intake pipe 28. The auxiliary intake pipe 52 is closed.

加速運転を終了するとステップ104でΔθ〉δではな
くなるのでステップ104よりステップ112に進み、
1Δθ1≦δ、即ち定常状態か否か判別される。1Δθ
l≦δのときは定常状態とみなされステップ114に進
み、スイッチ94がONか否か判別される。切替弁72
の破線位置への切り替わりが完了していないときは、ス
イッチ94はOFFであることから、ステップ106に
進み、電磁弁をその加速条件に適合したデユーティ比で
制御する。
When the acceleration operation is finished, it is determined in step 104 that Δθ>δ is no longer satisfied, so the process proceeds from step 104 to step 112.
It is determined whether 1Δθ1≦δ, that is, a steady state. 1Δθ
When l≦δ, it is regarded as a steady state and the process proceeds to step 114, where it is determined whether the switch 94 is ON. Switching valve 72
If the switching to the dashed line position has not been completed, the switch 94 is OFF, and the process proceeds to step 106, where the solenoid valve is controlled at a duty ratio suitable for the acceleration condition.

完全に定常運転に移行している、スイッチ94がONの
とはきは、ステップ114よりステップ116に進み、
デユーティ比Duty=Oとされる。
When the switch 94 is turned on and the operation has completely shifted to steady state, the process proceeds from step 114 to step 116.
The duty ratio Duty=O.

そのため、電磁弁68は全閉とされ、副ターボチャージ
ャ54によって蓄圧室64の圧力は一定制御される。
Therefore, the electromagnetic valve 68 is fully closed, and the pressure in the pressure accumulation chamber 64 is controlled at a constant level by the sub-turbocharger 54.

尚、減速時にはΔθく一δであるので、ステップ112
よりステップ116に進み、電磁弁68は全閉にされる
Note that during deceleration, Δθ is δ, so step 112
The process then proceeds to step 116, where the solenoid valve 68 is fully closed.

〔発明の効果〕〔Effect of the invention〕

この発明によれば、蓄圧タンクに溜められた加圧空気を
加速条件に応じた吐出圧力で導入することにより、加速
条件にマツチした最適な加速性能を得ることが可能とな
る。即ち、緩加速時には低い吐出圧の空気が、逆に急加
速時には高い吐出圧の空気が必要であるが、この発明に
よればこのような制御が実現される。そのため蓄圧され
た空気の利用効率を高めることができる。これは、副タ
ーボチャージャの不必要な作動が排除されることを意味
し、燃料消費率の向上も得られる。
According to this invention, by introducing the pressurized air stored in the pressure storage tank at a discharge pressure that corresponds to the acceleration conditions, it is possible to obtain optimal acceleration performance that matches the acceleration conditions. That is, during slow acceleration, air with a low discharge pressure is required, and conversely, during rapid acceleration, air with a high discharge pressure is required.According to the present invention, such control is realized. Therefore, it is possible to increase the utilization efficiency of the pressure-accumulated air. This means that unnecessary operation of the auxiliary turbocharger is eliminated, which also results in improved fuel consumption.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の構成図。 第2図はこの発明の実施例の構成図。 第3図は制御回路の作動を示すフローチャート。 第4図は吐出圧に相当するデユーティ比のマツプを示す
図。 第5図は各デユーティ比での吐出圧を示す図。 28・・・主吸気管 32・・・主排気管 34・・・主ターボチャージャ 50・・・副排気管 52・・・副排気管 54・・・副ターボチャージャ 64・・・蓄圧タンク 68・・・電磁弁 90・・・制御回路 92・・・スロントルセンサ 第1図 28  主吸気管 32  主排気管 u 主ターボチャージャ W 副排気管 52  副吸気管 54  副ターゴチャーノヤ 弘 蓄圧タンク 68  電磁升 第3図 第4図 デー−ティ比 第5図
FIG. 1 is a configuration diagram of this invention. FIG. 2 is a configuration diagram of an embodiment of the present invention. FIG. 3 is a flowchart showing the operation of the control circuit. FIG. 4 is a diagram showing a map of duty ratio corresponding to discharge pressure. FIG. 5 is a diagram showing the discharge pressure at each duty ratio. 28 Main intake pipe 32 Main exhaust pipe 34 Main turbocharger 50 Sub-exhaust pipe 52 Sub-exhaust pipe 54 Sub-turbocharger 64 Accumulator tank 68 ...Solenoid valve 90...Control circuit 92...Throntl sensor Fig. 1 28 Main intake pipe 32 Main exhaust pipe u Main turbocharger W Sub-exhaust pipe 52 Sub-intake pipe 54 Sub-targocharnoyahiro Accumulator tank 68 Electromagnetic square No. Figure 3 Figure 4 Data ratio Figure 5

Claims (1)

【特許請求の範囲】 以下の構成要素より成る内燃機関の過給制御装置、 内燃機関に接続される主過給機、 主過給機と並列に配置される副過給機、 副過給機に接続される蓄圧タンク、 蓄圧タンクから内燃機関へ供給される蓄圧空気の供給量
を所望に制御する手段、 内燃機関の加速状態に応じた因子を検出する手段、 加速因子検出手段が検出する加速状態因子に応じた量の
空気が供給されるように空気供給制御手段に制御信号を
発生する手段。
[Scope of Claims] A supercharging control device for an internal combustion engine comprising the following components: a main supercharger connected to the internal combustion engine; a sub-supercharger disposed in parallel with the main supercharger; A pressure accumulation tank connected to the pressure accumulation tank, means for controlling the supply amount of pressure accumulation air supplied from the pressure accumulation tank to the internal combustion engine as desired, means for detecting a factor according to an acceleration state of the internal combustion engine, and an acceleration detected by the acceleration factor detection means. Means for generating a control signal to the air supply control means so that an amount of air is supplied in accordance with the condition factor.
JP61234526A 1986-10-03 1986-10-03 Supercharge control device for internal combustion engine Pending JPS6390620A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61234526A JPS6390620A (en) 1986-10-03 1986-10-03 Supercharge control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61234526A JPS6390620A (en) 1986-10-03 1986-10-03 Supercharge control device for internal combustion engine

Publications (1)

Publication Number Publication Date
JPS6390620A true JPS6390620A (en) 1988-04-21

Family

ID=16972408

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61234526A Pending JPS6390620A (en) 1986-10-03 1986-10-03 Supercharge control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JPS6390620A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0354054A2 (en) * 1988-08-05 1990-02-07 Isuzu Ceramics Research Institute Co., Ltd. Turbocharger control system
JP2008514854A (en) * 2004-10-01 2008-05-08 クノル−ブレムゼ ジステーメ フューア ヌッツファールツォイゲ ゲゼルシャフト ミット ベシュレンクテル ハフツング Method and apparatus for increasing the torque of a reciprocating internal combustion engine, in particular a diesel engine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0354054A2 (en) * 1988-08-05 1990-02-07 Isuzu Ceramics Research Institute Co., Ltd. Turbocharger control system
JP2008514854A (en) * 2004-10-01 2008-05-08 クノル−ブレムゼ ジステーメ フューア ヌッツファールツォイゲ ゲゼルシャフト ミット ベシュレンクテル ハフツング Method and apparatus for increasing the torque of a reciprocating internal combustion engine, in particular a diesel engine
JP4696119B2 (en) * 2004-10-01 2011-06-08 クノル−ブレムゼ ジステーメ フューア ヌッツファールツォイゲ ゲゼルシャフト ミット ベシュレンクテル ハフツング Method and apparatus for increasing the torque of a reciprocating internal combustion engine, in particular a diesel engine

Similar Documents

Publication Publication Date Title
CN101415925B (en) Acceleration request determining system, and control method of internal combustion engine
US5190015A (en) Evaporated fuel discharge suppressing apparatus for an internal combustion engine
SE507030C2 (en) Exhaust gas flow system for a combustion engine equipped with a supercharger, and method applied to such a system
JP3365533B2 (en) Engine intake system with turbocharger
JP3966243B2 (en) Internal combustion engine
JPS6390620A (en) Supercharge control device for internal combustion engine
JP2006152894A (en) Throttle control device of internal combustion engine with supercharger
JP2000205055A (en) Turbocharged engine control system
US11149666B2 (en) Control method and control device for vehicular internal combustion engine
JPH0953457A (en) Supercharging pressure controller of internal combustion engine with superchager
KR100373017B1 (en) Low speed function increasing system or control method for turbo charger
JP2936746B2 (en) Engine evaporative fuel control system
JP2000282906A (en) Lean combustion internal combustion engine
JPH07332097A (en) Supercharge pressure feedback control device for internal combustion engine with supercharger
JP2522077B2 (en) Control method of engine with supercharger
JP3377573B2 (en) Control method of supercharged engine
JP2503642Y2 (en) Supercharged engine
JPS58170827A (en) Supercharging device for internal-combustion engine
JPS6034753Y2 (en) Boost pressure control device for turbocharged engines
JPS6067734A (en) Internal-combustion engine with supercharger
JP2765173B2 (en) Control method of supercharged engine
JPH04370369A (en) Ignition timing control device for engine with supercharger
JPS6030445Y2 (en) Acceleration improvement device for supercharged engines
JPH0640331U (en) Fuel supply control device for internal combustion engine with supercharger
JPH03275939A (en) Control for engine equipped with supercharger