JPS6388435A - Analysis of vanadium - Google Patents

Analysis of vanadium

Info

Publication number
JPS6388435A
JPS6388435A JP23334086A JP23334086A JPS6388435A JP S6388435 A JPS6388435 A JP S6388435A JP 23334086 A JP23334086 A JP 23334086A JP 23334086 A JP23334086 A JP 23334086A JP S6388435 A JPS6388435 A JP S6388435A
Authority
JP
Japan
Prior art keywords
vanadium
fuel oil
concentration
approximate value
esr
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23334086A
Other languages
Japanese (ja)
Inventor
Toshiro Nishi
敏郎 西
Taketoshi Furusawa
古沢 武敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP23334086A priority Critical patent/JPS6388435A/en
Publication of JPS6388435A publication Critical patent/JPS6388435A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/60Arrangements or instruments for measuring magnetic variables involving magnetic resonance using electron paramagnetic resonance

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To determine an approximate value of vanadium concentration in a short time and with ease, by determining a solid or liquid sample containing vanadium by electron spin resonance CONSTITUTION:A fixed amount of (about 100mg) of a fuel oil is made to fill a cell (with the outer diameter of about 5mm) for electron spin resonance (ESR) measurement to measure ESR, which enables the learning of an approximate value of vanadium concentration without pretreatment. When the vanadium concentration in the fuel oil is low, the ESR measuring cell is filled with a fixed amount of fuel oil and immersed into a liquefied nitrogen Dewar container to suppress the rotation effect or the like of a solvent, which ensures a highly sensitive spectrum to enable the learning of an approximate value of the amount of vanadium with a low concentration. this permits quick determination of vanadium concentration in the fuel oil and thus, corrosion inhibition, temperature control or the like is implemented corresponding to the results thereby preventing a trouble due to vanadium.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はバナジウムの簡易分析法に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a simple method for analyzing vanadium.

〔従来の技術〕[Conventional technology]

ボイラや舶用機関の燃料として使用されている重油は燃
費低減や軽質油の需要増大のだめ、常圧蒸留残留油、減
圧蒸留残油から接触分解法、熱分解法により軽質油を採
った後の残油に一部軽質油が混合された粗悪重油が多く
なってきた。
In order to reduce fuel consumption and increase demand for light oil, heavy oil used as fuel for boilers and marine engines is produced by extracting light oil from atmospheric distillation residual oil and vacuum distillation residual oil by catalytic cracking or thermal cracking. Increasingly, inferior heavy oil, which is a mixture of light oil and oil, is becoming more common.

特に陸上の公害規制強化によりこれら粗悪重油の用途に
おける大型舶用ディーゼル機関や大型ボイラの燃料油の
占める割合は増大しつつある。
In particular, due to the tightening of pollution regulations on land, the proportion of fuel oil for large marine diesel engines and large boilers in the use of these inferior heavy oils is increasing.

これらの粗悪重油は原油中の硫黄分やバナジウム、ニッ
ケル等の金属分が濃縮されており、これらの性状に起因
して種々のトラブルが数多く発生している。燃料油中に
バナジウム分が多くなると低融点のバナジウム化合物の
生成による高温腐食が発生する。これらのトラブルを未
然に防止するため、使用燃料油中のバナジウム量を把握
し、的確な対策をたてる必要がある。
These poor-quality heavy oils are enriched with sulfur and metals such as vanadium and nickel in crude oil, and many problems occur due to these properties. When the vanadium content increases in fuel oil, high-temperature corrosion occurs due to the formation of vanadium compounds with low melting points. In order to prevent these problems from occurring, it is necessary to understand the amount of vanadium in the fuel oil used and take appropriate measures.

燃料油中のバナジウムの分析はJP工やABTMでは灰
化した後その灰分を酸に溶解した後、吸光光度法や原子
吸光光度法により行われているが、これらの方法では測
定精度は良いが装置が複雑かつ高価であり、和尚な化学
的知識と時間を要する欠点がある。
At JP Kogyo and ABTM, analysis of vanadium in fuel oil is carried out by ashing, dissolving the ash in acid, and then using spectrophotometry or atomic absorption spectrometry, but although these methods have good measurement accuracy, The disadvantage is that the equipment is complex and expensive, and requires sophisticated chemical knowledge and time.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明は、上記のような欠点を解消し、短時間で簡易的
に燃料油中のバナジウム濃度の概略値を求めうる方法を
提供することにあシ、それに対応した腐食抑制剤の添加
や温度制御等を行なうことによシバナジウムに起因する
トラブルを未然に防止するようにしたものである。
The present invention aims to solve the above-mentioned drawbacks and to provide a method that can easily determine the approximate value of the vanadium concentration in fuel oil in a short time. By performing controls, etc., troubles caused by Sivanadium can be prevented.

〔問題点を解決するための手段及び作用〕本発明は、燃
料油中のバナジウムに敏感な電子スピン共鳴法(Ele
ctron Elpin Re5onance以下ZS
Rと略す。)を用いて、スペクトルのピークの高さから
前処理なしにバナジウム濃度を簡易に求めることを特徴
としたバナジウムの簡易分析方法である。
[Means and effects for solving the problems] The present invention utilizes an electron spin resonance method (ELE) sensitive to vanadium in fuel oil.
ctron Elpin Re5onance ZS
Abbreviated as R. ) is a simple analysis method for vanadium that is characterized in that the vanadium concentration can be easily determined from the height of the peak of the spectrum without any pretreatment.

〔実施v11〕 EEIR測定用セル(外径5−)に、一定量(約100
!n9)の燃料油を充填し、EF3Rを測定することに
より、前処理なしくバナジウム濃度の概略値と知ること
ができる。第1図にその結果を示す。
[Implementation v11] A certain amount (approximately 100
! By filling fuel oil (n9) and measuring EF3R, the approximate value of the vanadium concentration can be determined without pretreatment. Figure 1 shows the results.

〔実施例2〕 燃料油中のバナジウム濃度が低い時は、!EIR測定用
セルに、一定量の燃料油を充填し、セルを液体窒素ジュ
ーワー浸積することにより溶媒の回転効果等が押えられ
、感度のよいスペクトルが得られる為、低濃度のバナジ
ウム量の概略値と知ることができる。第2図にその結果
を示す。実施例1の第1図に比較し、好感度分析が可能
であることが判る。
[Example 2] When the vanadium concentration in fuel oil is low,! By filling the EIR measurement cell with a certain amount of fuel oil and immersing the cell in a liquid nitrogen dewar, the rotation effect of the solvent can be suppressed and a sensitive spectrum can be obtained. You can know the value. Figure 2 shows the results. Comparison with FIG. 1 of Example 1 shows that favorability analysis is possible.

第3図は、第2図の作成に用いた燃料油中のバナジウム
のEFJRスペクトルを示すもので、矢印で示した部分
が、各種燃料に適用してもスペクトルの形が変化せず定
量分析に適した部分であシ、強度測定に用いたピーク高
さに相当する部分である。
Figure 3 shows the EFJR spectrum of vanadium in fuel oil used to create Figure 2. The part indicated by the arrow does not change the shape of the spectrum even when applied to various fuels, making it suitable for quantitative analysis. A suitable part is the part corresponding to the peak height used for intensity measurement.

〔発明の効果〕〔Effect of the invention〕

以上詳述した如く、本発明によれば、燃料油中のバナジ
ウム濃度の迅速定量が可能であシ、それに対応した腐食
抑制や温度制御等を実施することにより、バナジウムに
起因するトラブルを未然に防止することが可能である。
As detailed above, according to the present invention, it is possible to quickly quantify the vanadium concentration in fuel oil, and by implementing corresponding corrosion suppression, temperature control, etc., troubles caused by vanadium can be prevented. It is possible to prevent this.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、バナジウム含量の多い燃料油を室温にてKS
Rにより、バナジウム濃度分求めた結果の図表である。 第2図は、バナジウム含量の少ない燃料油を液体窒素温
度にてiRにより、バナジウム濃度を求めた結果の図表
である。 第3図は、FXf?Hによりバナジウム濃度を決定する
のに用いたスペクトルのピーク高さの位置を示すもので
ある。 復代理人  内 1)  明 復代理人  萩 原 亮 − 復代理人  安 西 町 夫 第3図 磁場− ’n −’5 (o匣ゼノ −8” 0D−へ姫わろ
Figure 1 shows the KS of fuel oil with a high vanadium content at room temperature.
This is a chart showing the results of vanadium concentration determined using R. FIG. 2 is a chart showing the results of determining the vanadium concentration of fuel oil with a low vanadium content by iR at liquid nitrogen temperature. Figure 3 shows FXf? It shows the position of the peak height of the spectrum used to determine the vanadium concentration using H. Sub-agents 1) Meifuku agent Ryo Hagiwara - Sub-agent Machi Anzai Figure 3 magnetic field - 'n -'5 (o box Zeno -8" 0D- to Himewaro

Claims (1)

【特許請求の範囲】[Claims] バナジウムを含有する固体あるいは液体の試料を、電子
スピン共鳴法により求めることを特徴とするバナジウム
の分析法。
A vanadium analysis method characterized by determining a solid or liquid sample containing vanadium by electron spin resonance method.
JP23334086A 1986-10-02 1986-10-02 Analysis of vanadium Pending JPS6388435A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23334086A JPS6388435A (en) 1986-10-02 1986-10-02 Analysis of vanadium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23334086A JPS6388435A (en) 1986-10-02 1986-10-02 Analysis of vanadium

Publications (1)

Publication Number Publication Date
JPS6388435A true JPS6388435A (en) 1988-04-19

Family

ID=16953615

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23334086A Pending JPS6388435A (en) 1986-10-02 1986-10-02 Analysis of vanadium

Country Status (1)

Country Link
JP (1) JPS6388435A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0554359A1 (en) * 1990-10-26 1993-08-11 Mobil Oil Corp Method for detecting fuel dilution of marine lubricating oils.
JP2012149576A (en) * 2011-01-19 2012-08-09 Mitsubishi Heavy Ind Ltd Engine system
WO2013087076A1 (en) * 2011-12-12 2013-06-20 Nanonord A/S A method for quantitative determination of sodium in petroleum fuel
US9714909B2 (en) 2011-12-12 2017-07-25 Nanonord A/S Method of determining catalytic fines in an oil

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0554359A1 (en) * 1990-10-26 1993-08-11 Mobil Oil Corp Method for detecting fuel dilution of marine lubricating oils.
EP0554359A4 (en) * 1990-10-26 1994-02-23 Mobil Oil Corporation
JP2012149576A (en) * 2011-01-19 2012-08-09 Mitsubishi Heavy Ind Ltd Engine system
WO2013087076A1 (en) * 2011-12-12 2013-06-20 Nanonord A/S A method for quantitative determination of sodium in petroleum fuel
US9714909B2 (en) 2011-12-12 2017-07-25 Nanonord A/S Method of determining catalytic fines in an oil

Similar Documents

Publication Publication Date Title
Myers et al. Determination of hydrocarbon-type distribution and hydrogen/carbon ratio of gasolines by nuclear magnetic resonance spectrometry
Owens et al. Determination of nitrogen-15 at sub-microgram levels of nitrogen using automated continuous-flow isotope ratio mass spectrometry
Suzuki et al. A high-temperature catalytic oxidation method for the determination of dissolved organic carbon in seawater: analysis and improvement
Popp et al. Determination of concentration and carbon isotopic composition of dissolved methane in sediments and nearshore waters
US3853474A (en) Method of burning combustible fluids for further analysis
KR101282749B1 (en) Method for determining the content of diesel fuel in a lubricating oil of a combustion engine
JPS6388435A (en) Analysis of vanadium
CN108593606B (en) Method for testing germanium content in coal by utilizing atomic fluorescence spectroscopy
CN114200049A (en) Method for detecting normal hexane and cyclohexanone in retired land soil
CN111474280A (en) Method for detecting trace aluminum element in compound amino acid injection
EP0075467A1 (en) Method for analyzing total trace nitrogen
Ueda et al. Preconcentration of gallium (III) and indium (III) by coprecipitation with hafnium hydroxide for electrothermal atomic absorption spectrometry
CN110057934A (en) A method of with ferrocene and bicyclopentadiene in GC-MS detection soil
Shapiro et al. Rapid determination of carbon dioxide in silicate rocks
Robbins Analysis of petroleum for trace metals. Determination of trace quantities of manganese in petroleum and petroleum products by heated vaporization atomic absorption
Mayer et al. Polarographic microdetermination of sulfate
White Fluorine Resonance Spectra-Structure Correlations for Perhalogenated Propanes.
Thompson et al. Communication. Enhanced sensitivity in the determination of mercury by inductively coupled plasma atomic-emission spectrometry
JPS5513840A (en) Producer for sample gas for atomic absorption analysis
Kitamaki et al. Accurate characterization of sulfur in biodiesel fuel certified reference material
Baker et al. Determination of Micro Quantities of Cyanide in Presence of Large Excess of Sulfide
Farley et al. Flowing Oxygen Schöniger Combustion for Large Samples.
CN218369527U (en) Head space bottle
Kuck et al. Spherical ground glass joints vs. rubber tubing connectors on the C and H absorption train: A statistical study
JP3445957B2 (en) Residue analysis in liquefied gas