JPS6388232A - Engine controlling number of cylinders - Google Patents

Engine controlling number of cylinders

Info

Publication number
JPS6388232A
JPS6388232A JP61233351A JP23335186A JPS6388232A JP S6388232 A JPS6388232 A JP S6388232A JP 61233351 A JP61233351 A JP 61233351A JP 23335186 A JP23335186 A JP 23335186A JP S6388232 A JPS6388232 A JP S6388232A
Authority
JP
Japan
Prior art keywords
cylinder
cylinders
engine
independent intake
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61233351A
Other languages
Japanese (ja)
Inventor
Yoriaki Fujimoto
藤本 順章
Koji Yoshimi
吉見 弘司
Isao Shimizu
功 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP61233351A priority Critical patent/JPS6388232A/en
Publication of JPS6388232A publication Critical patent/JPS6388232A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B53/00Internal-combustion aspects of rotary-piston or oscillating-piston engines
    • F02B53/04Charge admission or combustion-gas discharge
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B53/00Internal-combustion aspects of rotary-piston or oscillating-piston engines
    • F02B2053/005Wankel engines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

PURPOSE:To attain stable combustion of an engine when it is transferred from its operation reducing a number of cylinders to operation actuating all the cylinders, by supplying a mixture of minimum limit necessary for ignition to an inoperative cylinder when the engine is in the reducing a number of its cylinders. CONSTITUTION:A rotary engine E connects its three cylinders C1-C3 with primary two-part independent intake passages 25A, 25B, providing shutter valves 29A, 29B in the independent intake passages 25A, 25B of the first cylinder C1. While a fuel injection valve is provided in the primary independent intake passage 25A of each cylinder. Further an auxiliary passage 33, which is connected to the downstream side of the shutter valve 29A of the primary independent intake passage 25A in the first cylinder C1, provides a control valve 34. A control device (u), if it detects an operative condition that the engine must be operated reducing a number of its cylinders, closes the shutter valves 29A, 29B while controls the control valve 34 and the injection valve, and a mixture of minimum limit, necessary for enabling the ignition to be performed, is supplied to the inoperative cylinder C1. In this way, the engine, which suppresses the inoperative cylinder from decreasing its temperature, attains stable combustion when the engine is transferred to its operation actuating all the cylinders.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は気筒数制御エンジンに関するものである。[Detailed description of the invention] (Industrial application field) The present invention relates to an engine with controlled number of cylinders.

(従来技術) 火花点火式の多気筒エンジンにおいて、あらかじめ定め
た所定の運転領域となったとき(一般には大きな出力が
要求されない軽負荷時)に、一部の気筒の対する空気お
よび燃料の供給を停止して、当該一部の気筒を休止(燃
焼作動中止)させるようにしたものがある(特開昭55
−170433号公報参照)。
(Prior art) In a spark-ignition multi-cylinder engine, when a predetermined operating range is reached (generally during light loads where large output is not required), the supply of air and fuel to some cylinders is stopped. Some cylinders are stopped and some of the cylinders are deactivated (combustion operation is stopped).
(Refer to Publication No.-170433).

(発明が解決しようとする問題点) 上述した気筒数制御エンジンにおいては、一部の気筒を
休止させる減筒運転から、全ての気筒を作動させる全筒
運転への移行をいかにスムーズに行うかが、実用化の上
で1つの大きな問題となっている。すなわち、減筒運転
時には、休止気筒で燃焼が行われていないためその温度
がかなり低下しているため、全筒運転へ移行した際に今
迄休止されていた気筒の燃焼が不安定になる、という問
題がある。
(Problem to be Solved by the Invention) In the above-mentioned cylinder number control engine, the problem is how to smoothly transition from reduced-cylinder operation in which some cylinders are deactivated to all-cylinder operation in which all cylinders are activated. , which is a major problem in practical application. In other words, during cylinder reduction operation, combustion is not taking place in the idle cylinders and their temperature drops considerably, so when transitioning to full cylinder operation, combustion in the cylinders that have been idle until now becomes unstable. There is a problem.

これに加えて、一部の気筒を休止させるには、当該一部
の気筒に対する吸気供給をシャツタ弁によって停止させ
ることが一般に行われているが、この場合は、休止気筒
内に生じる負圧によって。
In addition, in order to deactivate some cylinders, it is common practice to stop the intake air supply to the cylinders using a shatter valve, but in this case, the negative pressure generated in the deactivated cylinders .

その排気ボートを通して他の運転気筒からの排気ガスが
休止気筒内に吸込まれて、休止気筒における点火プラグ
を汚損していしまい、全筒運転へ移行した際に着火その
ものが十分にあるいは全く行われない、というような事
態さえも生じ易いものとなっていた。
Exhaust gas from other operating cylinders is sucked into the idle cylinder through the exhaust boat, contaminating the spark plug in the idle cylinder, and ignition itself does not occur sufficiently or at all when switching to all-cylinder operation. Even situations like this were likely to occur.

本発明は以上のような事情を勘案してなされたもので、
減筒運転から全筒運転へと移行した直後から、今迄休止
されていた休止気筒の燃焼を安定して行えるようにした
気筒数制御エンジンを提供することを目的とする。
The present invention was made in consideration of the above circumstances, and
To provide an engine with cylinder number control capable of stably performing combustion in a dormant cylinder that has been paused until now immediately after shifting from reduced-cylinder operation to full-cylinder operation.

(問題点を解決するための手段、作用)前述の目的を達
成するため、本発明にあっては、減筒運転時に、休止気
筒に対して着火に必要な最小限な量の混合気を供給する
ようにしである。
(Means and operations for solving the problem) In order to achieve the above-mentioned object, the present invention supplies the minimum amount of air-fuel mixture necessary for ignition to the idle cylinder during cylinder reduction operation. That's what I do.

このような構成とすることにより、休止気筒の温度が低
くなり過ぎるのを防止することができ、また排気ポート
を通しての運転気筒からの排気ガスの逆流が防止される
With such a configuration, it is possible to prevent the temperature of the idle cylinder from becoming too low, and also prevent backflow of exhaust gas from the operating cylinder through the exhaust port.

(実施例) 以下本発明の実施例を添付した図面に基づいて説明する
(Example) Examples of the present invention will be described below based on the attached drawings.

第1図において、エンジン本体Eは、3気筒式のバンケ
ル型コータリピストンエンジン用とされている。すなわ
ち、第1図右方から左方へ順次、サイドハウジング1、
ロータハウジング2、中間ハウジング3、ロータハウジ
ング4、中間ハウジング5、ロータハウジング6、サイ
ドハウジング7とされて、同図右方から左方へ、第1気
筒C1、第2気筒C2、第3気筒C3とされている。
In FIG. 1, the engine body E is designed for a three-cylinder Wankel type co-reliable piston engine. That is, from the right to the left in FIG. 1, the side housing 1,
The rotor housing 2, the intermediate housing 3, the rotor housing 4, the intermediate housing 5, the rotor housing 6, and the side housing 7 are, from right to left in the figure, the first cylinder C1, the second cylinder C2, and the third cylinder C3. It is said that

上記各気筒C1−C5の詳細について、第1気筒CIを
例にして第2図により説明すると、ロータハウジング2
内は、この内部に配設されたロータ8によって、3つの
作動室9.10.11に画成されている。この第2図に
おいて、12Aは1次吸気ボート、13は排気ポート、
14.15は点火プラグである。したがって、第2図の
状態では、作動室9は吸気行程にあり、作動室10は膨
張行程にあり、作動室11は排気行程にある。なお、各
気筒C1〜C3共に、1次吸気ボート12Aの他に、2
次吸気ポート12Bを有する(第1図参照)。
The details of each of the cylinders C1 to C5 will be explained with reference to FIG. 2, taking the first cylinder CI as an example.
The interior is defined into three working chambers 9, 10, and 11 by the rotor 8 disposed inside. In this Figure 2, 12A is a primary intake boat, 13 is an exhaust port,
14.15 is a spark plug. Therefore, in the state shown in FIG. 2, the working chamber 9 is in the intake stroke, the working chamber 10 is in the expansion stroke, and the working chamber 11 is in the exhaust stroke. In addition, for each cylinder C1 to C3, in addition to the primary intake boat 12A, 2
It has a secondary intake port 12B (see Fig. 1).

エンジン本体Eへ吸入空気を供給する吸気通路21は、
途中にサージタンク22を備えている。
The intake passage 21 that supplies intake air to the engine body E is
A surge tank 22 is provided in the middle.

このサージタンク22には、1本の共通吸気通路23に
よって、それぞれ図示を略すエアクリーナ、エアフロー
メータを経た後、スロットルボディ24を経て吸入空気
が供給される。また、サージタンク22からは、各気筒
C1−C5毎に1次と2次との合計6本の独立吸気通路
25A、25Bに分岐されて、1次独立吸気通路25A
が1次吸気ボート12Aに連なり、2次独立吸気通路2
5Bが2次吸気ポート12Bに連なっている。
Intake air is supplied to this surge tank 22 through one common intake passage 23 through an air cleaner and an air flow meter (not shown), and then through a throttle body 24 . In addition, the surge tank 22 is branched into a total of six independent intake passages 25A and 25B, primary and secondary, for each cylinder C1 to C5.
is connected to the primary intake boat 12A, and the secondary independent intake passage 2
5B is connected to the secondary intake port 12B.

このような合計6本の各独立吸気通路25A、25Bは
、1つの吸気マニホルド26内に形成されている。また
、各気筒C1〜C3からの排気ガスは、排気マニホルド
27によって集合された後、排気管28を介して大気に
放出される。
A total of six such independent intake passages 25A, 25B are formed within one intake manifold 26. Further, exhaust gas from each cylinder C1 to C3 is collected by an exhaust manifold 27 and then released to the atmosphere via an exhaust pipe 28.

前記3つの気筒C1〜C3のうち、第1気筒C1が、あ
らかじめ定めた所定運転領域となったときに休止される
休止気筒とされる。このため、第1気筒C1用の1次、
2次の各独立吸気通路25A、25B内には、それぞれ
シャツタ弁29A、29Bが配設され、この両シャッタ
弁29A、29Bは、共通のロッド30を介して、電磁
式のアクチュエータ31によって開閉駆動される。
Among the three cylinders C1 to C3, the first cylinder C1 is a deactivated cylinder that is deactivated when a predetermined operating range is reached. For this reason, the primary for the first cylinder C1,
Shutter valves 29A and 29B are provided in each of the secondary independent intake passages 25A and 25B, and both shutter valves 29A and 29B are driven to open and close by an electromagnetic actuator 31 via a common rod 30. be done.

各気筒C1〜C3に対する燃料供給は、少なくともその
各1次独立吸気通路25A内に燃料を噴射する燃料噴射
弁32によって行われるようになっている。勿論、燃料
噴射弁32は、シャツ、り弁29Aの下流に設けられて
いる。また、所定の運転領域で休止気筒とされる第1気
筒C1の1次独立吸気通路25Aには、シャツタ弁29
A下流において、細い通路とされた補助通路33を介し
て、吸入空気が供給可能となっており、この補助通路3
3からの空気供給量が、電磁式の制御弁34によって調
整されるようになっている。
Fuel is supplied to each cylinder C1 to C3 by a fuel injection valve 32 that injects fuel into at least each primary independent intake passage 25A. Of course, the fuel injection valve 32 is provided downstream of the fuel injection valve 29A. In addition, a shatter valve 29 is provided in the primary independent intake passage 25A of the first cylinder C1, which is a deactivated cylinder in a predetermined operating range.
Downstream of A, intake air can be supplied through a narrow auxiliary passage 33, and this auxiliary passage 3
The amount of air supplied from 3 is adjusted by an electromagnetic control valve 34.

第1図、第2図中Uは、マイクロコンピュータにより構
成された制御ユニットであり、既知のよつに一少すくト
もCPU、ROM、RAM、CLOCKを備えている。
Reference numeral U in FIGS. 1 and 2 is a control unit composed of a microcomputer, and is equipped with a CPU, ROM, RAM, and CLOCK as well as known devices.

この制御ユニッ)Uには、センサ41.42からの信号
が入力がされる一方、前記アクチュエータ31.34お
よび燃料噴射弁32に対して出力される。上記センサ4
1は、スロットルボディ24内に配設されたスロットル
弁24aの開度すなわちエンジン負荷を検出するもので
あり、センサ42はエンジン回転数を検出するものであ
る。
Signals from the sensor 41.42 are input to this control unit (U), and are output to the actuator 31.34 and the fuel injection valve 32. Above sensor 4
A sensor 1 detects the opening degree of a throttle valve 24a disposed in the throttle body 24, that is, the engine load, and a sensor 42 detects the engine rotation speed.

制御ユニットUの制御概要について説明すると、減筒運
転を行う運転領域は、エンジン回転数とスロットル開度
とをパラメータとして、例えば第3図に示すA領域とさ
れている。このA領域では、シャツタ弁29A、29B
を閉じる一方、制御弁34および燃料噴射弁32を制御
して、休止される第1気筒C1に対して、点火プラグ1
4.15による着火が可能な必要最小限の混合気量を供
給する。この必要最小限の混合気量としては、失火が生
じないように、例えば第5図に示すN1LL(ノーロー
ドライン)に合せて設定することがで5る。すなわち、
第4図において、減筒運転における第1気筒CIへの混
合気量(燃料噴射量Qf、吸入空気、1Qa)を、失火
ラインγよりも若干大きいラインαに設定する。勿論、
この減筒運転のラインαは、全筒運転における混合気量
βに対して十分小さいものとなっている。
To explain the outline of the control of the control unit U, the operating region in which the cylinder reduction operation is performed is, for example, region A shown in FIG. 3, using the engine rotation speed and the throttle opening degree as parameters. In this A area, the shirtta valves 29A, 29B
At the same time, the control valve 34 and the fuel injection valve 32 are controlled to close the spark plug 1 for the first cylinder C1 to be stopped.
4.15, the minimum amount of air-fuel mixture necessary for ignition is supplied. This minimum necessary amount of air-fuel mixture can be set, for example, in accordance with N1LL (no load line) shown in FIG. 5 so as to prevent misfires. That is,
In FIG. 4, the air-fuel mixture amount (fuel injection amount Qf, intake air, 1Qa) to the first cylinder CI during cylinder reduction operation is set to a line α that is slightly larger than the misfire line γ. Of course,
The line α in this reduced-cylinder operation is sufficiently smaller than the mixture amount β in full-cylinder operation.

上述した制御ユニットUの制御内容について、第6図に
示すフローチャートを参照しつつ説明する。なお、以下
の説明でPはステップを示す。
The control contents of the control unit U mentioned above will be explained with reference to the flowchart shown in FIG. Note that in the following explanation, P indicates a step.

先ず、Plにおいてエンジン回転数とスロットル開度が
読込まれた後、P2において、第3図に示すマツプに照
して、現在減筒運転すべき領域Aであるか否かが判別さ
れる。この判別でNOのときは、全筒運転する領域なの
で、P3へ移行してシャツタ弁29A、29Bを開く、
なお、この全筒運転においては、気筒数制御を行わない
通常のエンジンと同様に、吸入空気量はスロットル弁2
4aの開度に依存し、また燃料噴射量はこの吸入空気量
に見合ったものに設定される。
First, after the engine speed and throttle opening are read at P1, it is determined at P2 whether or not the current region A is where reduced-cylinder operation is required, with reference to the map shown in FIG. When this determination is NO, it is the area where all cylinders are operated, so move to P3 and open the shutter valves 29A and 29B.
In addition, in this all-cylinder operation, the amount of intake air is controlled by the throttle valve 2, similar to a normal engine that does not control the number of cylinders.
It depends on the opening degree of 4a, and the fuel injection amount is set to match this intake air amount.

前記P2の判別でYESのときは、減筒運転を行うとき
である。このときは、P4、P5において、順次、第4
図に示すマツプに照して1着火に必要な最小限の燃料噴
射量Qfと空気量Qaとが算出される。次いで、P7に
おいてシャツタ弁29A、29Bを閉じた後、P7にお
いて、Qfの量だけ燃料噴射が行われ、またQaだけ吸
入空気が供給される。
When the determination in P2 is YES, it is time to perform cylinder reduction operation. At this time, in P4 and P5, the fourth
The minimum fuel injection amount Qf and air amount Qa required for one ignition are calculated with reference to the map shown in the figure. Next, at P7, after the shutter valves 29A and 29B are closed, at P7, fuel injection is performed by an amount of Qf, and intake air is supplied by an amount of Qa.

以上実施例について説明したが、本発明はこれに限らず
例えば次の場合をも含むものである。
Although the embodiments have been described above, the present invention is not limited thereto, and includes, for example, the following cases.

■別途補助通路33、制御弁34を設けることなく、シ
ャツタ弁29A、29Bの開度を調整することにより休
止気筒に対する混合気量(空気量)を調整するようにし
てもよい。
(2) The mixture amount (air amount) for the idle cylinders may be adjusted by adjusting the opening degrees of the shutter valves 29A and 29B without separately providing the auxiliary passage 33 and the control valve 34.

■制御ユニットUをコンピュータによって構成する場合
は、デジタル式、アナログ式のいずれであってもよい。
(2) When the control unit U is configured by a computer, it may be either a digital type or an analog type.

■往復動型のエンジンに対しても適用し得る。■Can also be applied to reciprocating engines.

■休止させるべき気筒は実施例の場合において第2気筒
とする等適宜のものを選択することができ、また休止気
筒の数は2以上であってもよい。
(2) The cylinder to be deactivated can be appropriately selected, such as the second cylinder in the case of the embodiment, and the number of deactivated cylinders may be two or more.

(発明の効果) 本発明は以上述べたことから明らかなように。(Effect of the invention) As is clear from the above description, the present invention has been made.

休止されている気筒の大きな温度低下を防止して、全筒
運転へ移行した直後から安定した燃焼を確保することが
できる。
It is possible to prevent a large temperature drop in the cylinders that are inactive, and to ensure stable combustion immediately after shifting to all-cylinder operation.

勿論、減筒運転時に休止気筒の排気ポートと運転気筒の
排気ポートとが連通しているものにあっても、この運転
気筒から休止気筒への排気ガスの逆流が防止されるので
、全筒運転へ移行した直後から休止されていた気筒の着
火を確実に行うことができる。
Of course, even if the exhaust ports of the idle cylinders and the exhaust ports of the active cylinders are in communication during reduced-cylinder operation, the backflow of exhaust gas from the active cylinders to the idle cylinders is prevented, so full-cylinder operation is possible. It is possible to reliably ignite the cylinders that have been inactive immediately after the transition to .

【図面の簡単な説明】[Brief explanation of the drawing]

WS1図は本発明の一実施例を示す全体側面図。 第2図は休止気筒の一部断面側面図。 第3図は減筒運転を行う運転領域の一例を示す図。 第4図は減筒運転時に休止気筒に対して供給する燃料量
と空気量との設定例を示す図。 第5図は失火ゾーンとノーロードラインとの関係を示す
図。 第6図は本発明の制御例を示すグラフ。 E:エンジン本体 01〜C3:気筒 U:制御ユニット 12A、12B=吸気ポート 13:排気ボート 24a:スロットル弁 25A、25B=独立吸気通路 26:吸気マニホルド 27:排気マニホルド 29A、29B:シャツタ弁 31:アクチュエータ 32:燃料噴射弁 33:補助通路 34:制御弁
Figure WS1 is an overall side view showing one embodiment of the present invention. FIG. 2 is a partially cross-sectional side view of a deactivated cylinder. FIG. 3 is a diagram showing an example of an operating range in which cylinder reduction operation is performed. FIG. 4 is a diagram showing an example of setting the amount of fuel and the amount of air supplied to the idle cylinder during cylinder reduction operation. FIG. 5 is a diagram showing the relationship between the misfire zone and the no-load line. FIG. 6 is a graph showing a control example of the present invention. E: Engine body 01 to C3: Cylinder U: Control unit 12A, 12B = intake port 13: Exhaust boat 24a: Throttle valve 25A, 25B = independent intake passage 26: Intake manifold 27: Exhaust manifold 29A, 29B: Shatta valve 31: Actuator 32: Fuel injection valve 33: Auxiliary passage 34: Control valve

Claims (1)

【特許請求の範囲】[Claims] (1)あらかじめ定めた所定の運転領域となったときに
、一部の気筒を休止させる減筒運転を行うようにした気
筒数制御エンジンにおいて、 前記所定の運転領域となったときに、休止される一部の
気筒に対して着火に必要な最小限の混合気を供給する補
正手段を備えている、 ことを特徴とする気筒数制御エンジン。
(1) In a cylinder number control engine that performs cylinder reduction operation in which some cylinders are deactivated when a predetermined operating range is reached, the cylinder number control engine is configured to perform cylinder reduction operation in which some cylinders are deactivated when the predetermined operating range is reached. A cylinder number control engine characterized by comprising a correction means for supplying a minimum amount of air-fuel mixture necessary for ignition to some of the cylinders.
JP61233351A 1986-10-02 1986-10-02 Engine controlling number of cylinders Pending JPS6388232A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61233351A JPS6388232A (en) 1986-10-02 1986-10-02 Engine controlling number of cylinders

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61233351A JPS6388232A (en) 1986-10-02 1986-10-02 Engine controlling number of cylinders

Publications (1)

Publication Number Publication Date
JPS6388232A true JPS6388232A (en) 1988-04-19

Family

ID=16953785

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61233351A Pending JPS6388232A (en) 1986-10-02 1986-10-02 Engine controlling number of cylinders

Country Status (1)

Country Link
JP (1) JPS6388232A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2496407A (en) * 2011-11-10 2013-05-15 Ford Global Tech Llc Three cylinder engine in which a cylinder may be selectively deactivated.
US9822712B2 (en) 2011-11-10 2017-11-21 Ford Global Technologies, Llc Four-cylinder engine with two deactivatable cylinders

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2496407A (en) * 2011-11-10 2013-05-15 Ford Global Tech Llc Three cylinder engine in which a cylinder may be selectively deactivated.
GB2496407B (en) * 2011-11-10 2017-11-08 Ford Global Tech Llc A three cylinder engine with a deactivatable cylinder.
US9822712B2 (en) 2011-11-10 2017-11-21 Ford Global Technologies, Llc Four-cylinder engine with two deactivatable cylinders

Similar Documents

Publication Publication Date Title
JPH0431647A (en) Operation controller of inter cylinder injection engine
JP2004324428A (en) Variable valve type internal combustion engine and control method
JPS63159614A (en) Control device for engine
JPS5853178B2 (en) cylinder number control engine
JP2617487B2 (en) Scavenging device for supercharged engine
JPH01244155A (en) Exhaust gas reflux device for engine
JP2004068767A (en) Operation control for internal combustion engine having variable valve system
JPS6388232A (en) Engine controlling number of cylinders
JPH07279698A (en) Internal combustion engine
JPS59200028A (en) Method of controlling fuel injection in internal- combustion engine
JPS61268845A (en) Control method for air-fuel ratio in internal-combustion engine
JPS60150411A (en) Cylinder number controlling engine
JPH0633803A (en) Fuel supply device of engine
JPH02163432A (en) Fuel feeding device for engine
JP2575784B2 (en) Auxiliary air supply for rotary piston engine
JP2004346868A (en) Control device for cylinder injection type internal combustion engine
JPH04298658A (en) Fuel control device for engine
JP2858707B2 (en) Engine control device
JP2003056334A (en) Exhaust emission control device for internal combustion engine
JPH06280642A (en) Air-fuel ratio control device for engine
JPH0291449A (en) Fuel control device for engine
JPS61286544A (en) Fuel supply controller for diesel engine
JPH01187356A (en) Combustion controller for engine
JPS62168951A (en) Spark assisted internal combustion engine
JPH0610774A (en) Egr control device for cylinder injection type engine