JPS6387606A - Composite magnetic head - Google Patents

Composite magnetic head

Info

Publication number
JPS6387606A
JPS6387606A JP23250786A JP23250786A JPS6387606A JP S6387606 A JPS6387606 A JP S6387606A JP 23250786 A JP23250786 A JP 23250786A JP 23250786 A JP23250786 A JP 23250786A JP S6387606 A JPS6387606 A JP S6387606A
Authority
JP
Japan
Prior art keywords
magnetic
thin film
ferromagnetic
films
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23250786A
Other languages
Japanese (ja)
Inventor
Akira Urai
浦井 彰
Hideaki Karakado
唐門 秀明
Tatsuo Hisamura
達雄 久村
Tomio Kobayashi
富夫 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP23250786A priority Critical patent/JPS6387606A/en
Publication of JPS6387606A publication Critical patent/JPS6387606A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To attain a high effective permeability in the short wavelength area and to reduce the magnetic reluctance to show a good reproducing characteristic by alternately laminating a magnetic alloy thin film and an oxide magnetic thin film to form a ferromagnetic thin metallic film. CONSTITUTION:Magnetic core parts 11 and 12 consist of a ferromagnetic oxide, and multilayered films formed by alternately laminating magnetic alloy thin films 13a and 14a and oxide magnetic thin films 13b and 14b are formed on ferromagnetic thin film forming surfaces 11a and 12a, which are formed by obliquely cutting joint surfaces of magnetic core parts 11 and 12, continuously from front gaps forming surfaces to back gap forming surfaces, thereby constituting magnetic core half bodies I and II. Since the specific resistance of oxide magnetic thin films is relatively high, the eddy current loss of multilayered films formed by alternately laminating magnetic alloy thin films and oxide magnetic thin films is small and they have structures magnetically continuous in the laminating direction, the magnetic reluctance in this direction is suppressed. Thus, if multilayered films are used as ferromagnetic thin metallic films of a composite magnetic head, the effective permeability in the short wavelength area is secured, and the reproducing efficiency is improved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、ビデオチープレコータ(VTR)等の磁気記
録再生装置に搭載される磁気ヘッドに関し、特に磁気コ
ア半体が強磁性酸化物材料と強磁性金属材料との複合磁
性材料よりなる複合磁気ヘッドに関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a magnetic head mounted on a magnetic recording/reproducing device such as a video cheap recorder (VTR), and in particular, the present invention relates to a magnetic head equipped with a magnetic core half made of a ferromagnetic oxide material. and a ferromagnetic metal material.

〔発明の概要〕[Summary of the invention]

本発明は、磁気コア半体がそれぞれ主コア材に強磁性金
属薄膜を用い他の大部分を強磁性酸化物で構成し、かつ
磁気記録媒体対接面で強磁性薄膜形成面が磁気ギャップ
に対して傾いている構造の複合磁気ヘッドにおいて、 上記強磁性金属薄膜を磁性合金薄膜と酸化物磁性薄膜と
を交互に積層形成した多層膜構造とすることにより、 短波長領域での再生出力の向上を図るものである。
In the present invention, each of the magnetic core halves is composed of a ferromagnetic metal thin film as the main core material and a ferromagnetic oxide as the other part, and the ferromagnetic thin film forming surface is in the magnetic gap on the surface facing the magnetic recording medium. In a composite magnetic head with a tilted structure, the reproduction output in the short wavelength region is improved by making the ferromagnetic metal thin film have a multilayer structure in which magnetic alloy thin films and oxide magnetic thin films are alternately laminated. The aim is to

〔従来の技術〕[Conventional technology]

近年、VTR等の磁気記録再生装置には、機器の小型化
や長時間記録化等が要求され更には所謂デジタルVTR
等が出現し、これに伴って高密度記録や短波長記録が進
められている。かかる状況より、磁気記録の分野では磁
気記録媒体と磁気ヘッドの双方から種々の改良がなされ
ている。
In recent years, magnetic recording and reproducing devices such as VTRs have been required to be smaller in size and have longer recording times, and even more so-called digital VTRs have been developed.
etc., and along with this, high-density recording and short wavelength recording are progressing. Under these circumstances, in the field of magnetic recording, various improvements have been made in both magnetic recording media and magnetic heads.

すなわち、磁気記録媒体においては、いわゆるメタルテ
ープや蒸着テープ等の高抗磁力磁気記録媒体が開発され
実用化されている。一方、磁気ヘッドにおいては、狭ギ
ャップ化、狭トランク化が図られ上記高密度記録化に対
処している。
That is, among magnetic recording media, high coercive force magnetic recording media such as so-called metal tapes and vapor-deposited tapes have been developed and put into practical use. On the other hand, magnetic heads are designed to have narrower gaps and trunks to cope with the above-mentioned high-density recording.

さらに、磁気コア半体をフェライト等の強磁性酸化物単
体で構成したヘッドでは、上記高抗磁力磁気記録媒体に
対処しきれず、そこで主コア材として高飽和磁束密度合
金、すなわちセンダスト(Fe−Al−3i系合金)等
の強磁性金属材料を用い上記フェライトと組み合わせて
磁気コア半体とした複合磁気ヘッドが提案されている。
Furthermore, a head in which the magnetic core half is made of a single ferromagnetic oxide such as ferrite cannot cope with the above-mentioned high coercive force magnetic recording media. A composite magnetic head has been proposed in which a ferromagnetic metal material such as -3i alloy) is combined with the above-mentioned ferrite to form a magnetic core half.

なかでも、先に本願出順人が特開昭60−229210
号公報にて開示した磁気ヘッドは、磁気ギャップ近傍が
強磁性金属薄膜で構成されているので磁気記録媒体の高
抗磁力化に対応可能であること、トランク幅を強磁性金
属薄膜の膜厚により制御できるので狭トランク化が容易
であること、磁気ギャップが強磁性薄膜形成面に対して
傾いていることよりクロストークや擬似ギャップの影響
がないこと、強磁性金属薄膜の膜厚がトランク幅より小
さくて良いので量産性や生産性に優れること等、優れた
特徴を有している。
Among them, the person who filed the present application first filed JP-A-60-229210.
The magnetic head disclosed in the above publication is made of a ferromagnetic metal thin film in the vicinity of the magnetic gap, so it is compatible with high coercive force of magnetic recording media, and the trunk width is determined by the thickness of the ferromagnetic metal thin film. It is easy to make the trunk narrow because the magnetic gap is tilted with respect to the ferromagnetic thin film forming surface, so there is no effect of crosstalk or pseudo-gap, and the thickness of the ferromagnetic metal thin film is smaller than the trunk width. It has excellent features such as being small and good for mass production and productivity.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところで、上記強磁性金属薄膜は一般に比抵抗が小さく
、渦電流損(eddy current 1oss)が
発生し易いという根本的な問題がある。特に、高密度記
録化に伴う情報信号の短波長化が進むに従って、上記渦
電流損は顕著となり、この結果実効透磁率が減少し、再
生効率が劣化してしまうという問題を抱えている。
However, the ferromagnetic metal thin film generally has a low resistivity and has a fundamental problem that eddy current loss is likely to occur. In particular, as the wavelength of information signals becomes shorter due to higher density recording, the above-mentioned eddy current loss becomes more significant, resulting in a decrease in effective magnetic permeability and a problem of deterioration in reproduction efficiency.

そこで従来、上記欠点を解消するために、上記強磁性金
属薄膜を強磁性金属材料と3i02.Taz○s、 A
 1203. Z r○2.Si3N、等の高耐摩耗性
絶縁材料とを交互に積層形成した多層膜構造とし、上記
渦電流損を低減する方法が考えられている。
Conventionally, in order to eliminate the above-mentioned drawbacks, the ferromagnetic metal thin film was made of a ferromagnetic metal material and 3i02. Taz○s, A
1203. Z r○2. A method has been considered to reduce the eddy current loss by forming a multilayer film structure in which high wear-resistant insulating materials such as Si3N are alternately laminated.

しかしながら、前記複合磁気ヘッドは、磁気記録媒体対
接面で強磁性金属薄膜が磁気ギャップに対して傾斜して
おり、言い換えれば強磁性金属薄膜が磁路に対して傾い
た構造であるので、上述の如く絶縁膜を介在させた場合
、該絶縁膜が磁路を磁気的に分断することになり、磁気
抵抗の増大は避は難い問題となっている。この結果、再
生効率の点でまだまだ不満を残している。
However, the composite magnetic head has a structure in which the ferromagnetic metal thin film is tilted with respect to the magnetic gap on the surface facing the magnetic recording medium, or in other words, the ferromagnetic metal thin film is tilted with respect to the magnetic path. When an insulating film is interposed as in the above, the insulating film magnetically separates the magnetic path, and an increase in magnetic resistance becomes an unavoidable problem. As a result, dissatisfaction still remains in terms of regeneration efficiency.

そこで本発明は、かかる従来の実情に鑑みて提案された
もので、短波長領域での実効透磁率が大きく、同時に磁
気抵抗が小さく、良好な再生特性を示す複合磁気ヘッド
を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention was proposed in view of the conventional situation, and an object of the present invention is to provide a composite magnetic head that has a large effective magnetic permeability in a short wavelength region, a low magnetic resistance, and exhibits good reproduction characteristics. shall be.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者等は、上述の目的を達成せんものと鋭意研究を
重ねた結果、強磁性金属薄膜として磁性合金薄膜と酸化
物磁性材料とを交互に積層した膜は、渦電流損が小さく
、かつ積層方向に対して磁気的に連続構造となるので該
方向の磁気抵抗が抑えられるとの知見を得るに至った。
The inventors of the present invention have conducted intensive research to achieve the above-mentioned objectives, and have found that a film in which magnetic alloy thin films and oxide magnetic materials are alternately laminated as a ferromagnetic metal thin film has low eddy current loss and It has been found that since the structure is magnetically continuous in the lamination direction, the magnetic resistance in that direction can be suppressed.

本発明の複合磁気ヘッドは、上述の知見に基づいて提案
されたものであって、強磁性酸化物よりなる磁気コア部
とこの磁気コア部の強磁性薄膜形成面上に形成される強
磁性金属薄膜とから磁気コア半体が形成され、前記強磁
性金属薄膜同士を直列状に対向させることにより磁気ギ
ャップが構成されるとともに、磁気記録媒体対接面で上
記強磁性薄膜形成面が磁気ギャップ形成面と所要角度で
傾斜してなる複合磁気ヘッドにおいて、上記強磁性金属
薄膜は磁性合金薄膜と酸化物磁性薄膜とを交互に積層し
た多層膜構造となっていることを特徴とするものである
The composite magnetic head of the present invention has been proposed based on the above-mentioned findings, and includes a magnetic core made of a ferromagnetic oxide and a ferromagnetic metal formed on the ferromagnetic thin film forming surface of the magnetic core. A magnetic core half is formed from the thin film, and a magnetic gap is formed by making the ferromagnetic metal thin films face each other in series, and the ferromagnetic thin film formation surface forms the magnetic gap on the surface facing the magnetic recording medium. In the composite magnetic head which is inclined at a predetermined angle with respect to the surface, the ferromagnetic metal thin film has a multilayer structure in which magnetic alloy thin films and oxide magnetic thin films are alternately laminated.

〔作用〕[Effect]

酸化物磁性薄膜の比抵抗は比較的大きいので、磁性合金
薄膜と酸化物磁性薄膜とを交互に積層した多層膜は、渦
電流損が小さいことは勿論のこと、該積層方向に対して
磁気的に連続した構造となっているので該方向の磁気抵
抗を抑えられる。
Since the specific resistance of the oxide magnetic thin film is relatively high, a multilayer film in which magnetic alloy thin films and oxide magnetic thin films are alternately laminated has a small eddy current loss as well as magnetic resistance in the lamination direction. Since it has a continuous structure, magnetic resistance in that direction can be suppressed.

したがって、上記多層膜を複合磁気ヘッドの強磁性金属
薄膜として用いれば、短波長領域における実効透磁率が
確保できるので、再生効率が向上する。
Therefore, if the above-mentioned multilayer film is used as a ferromagnetic metal thin film of a composite magnetic head, effective magnetic permeability in the short wavelength region can be ensured, thereby improving reproduction efficiency.

〔実施例〕〔Example〕

以下、本発明の実施例を図面を参照しながら説明する。 Embodiments of the present invention will be described below with reference to the drawings.

第1図は本発明を適用した磁気ヘッドの一例を示す外観
斜視図、第2図はその磁気記録媒体対接面を示す要部拡
大平面図である。
FIG. 1 is an external perspective view showing an example of a magnetic head to which the present invention is applied, and FIG. 2 is an enlarged plan view of a main part showing the surface in contact with a magnetic recording medium.

この磁気ヘッドにおいては、磁気コア部(11)。In this magnetic head, a magnetic core portion (11).

(12)が強磁性酸化物5例えばM n −Z nフェ
ライトで構成され、これら磁気コア部(11)、(12
)の接合面を斜めに切欠いた強磁性薄膜形成面(lla
)。
(12) is composed of a ferromagnetic oxide 5 such as M n -Z n ferrite, and these magnetic core parts (11) and (12
) The ferromagnetic thin film forming surface (lla
).

(12a)には、フロントギャップ形成面からバックギ
ャップ形成面に至るまで連続して強磁性金属薄膜(13
)、(14) 、本発明においては磁性合金薄膜(13
a) 、 (14a)と酸化物磁性薄膜(13b) 、
 (14b)とを交互に積層した多層膜が形成され、そ
れぞれ磁気コア半体(1)、 (II)を構成している
。また、上記磁気コア部(11)、(12)の磁気ギヤ
ツブg近傍部には、磁気ギャップgのトラック幅T−を
規制するための規制溝(15)、(16)が切欠かれて
おり、強磁性金属薄膜(13) 、 (14)のみによ
り磁気ギャップgが構成されるようになっている。さら
に、上記強磁性金属薄膜(13)、 (14)の摩耗を
防止するとともに所謂当たり特性を確保するために、該
薄膜(13) 。
(12a) has a continuous ferromagnetic metal thin film (13) from the front gap forming surface to the back gap forming surface.
), (14), in the present invention, magnetic alloy thin film (13
a), (14a) and oxide magnetic thin film (13b),
(14b) are alternately laminated to form the magnetic core halves (1) and (II), respectively. In addition, regulation grooves (15) and (16) for regulating the track width T- of the magnetic gap g are cut in the magnetic core parts (11) and (12) near the magnetic gear g, A magnetic gap g is formed only by the ferromagnetic metal thin films (13) and (14). Furthermore, in order to prevent wear of the ferromagnetic metal thin films (13) and (14) and to ensure so-called contact characteristics, the thin films (13).

(14)上及びトラック幅規制溝(15) 、 (16
)内には例えば低融点ガラス等よりなる非磁性材(17
) 、 (18)が溶融充填されている。
(14) Upper and track width regulation grooves (15), (16)
) contains a non-magnetic material (17
), (18) are melt-filled.

そして、これら一対の磁気コア半体(I)、 (■)を
Sin、等のギャップスペーサを介して突き合わせ、上
記強磁性金属薄膜(13) 、 (14)同士の当接面
がトラック幅Twの磁気ギヤングgを構成している。な
お、一方の磁気コア半体(1)には情報信号を授受する
ためのコイルを巻回する巻線孔(19)が穿設されてい
る。
Then, these pair of magnetic core halves (I) and (■) are butted together via a gap spacer such as Sin, so that the contact surfaces of the ferromagnetic metal thin films (13) and (14) have a track width Tw. It constitutes a magnetic gearing g. Note that one magnetic core half (1) is provided with a winding hole (19) for winding a coil for transmitting and receiving information signals.

上記強磁性金属薄膜(13) 、 (14)は、磁気記
録媒体対接面から見た時に直列に略−直線状に連なって
おり、磁気コア半体(I)、 (II)の突き合わせ面
である接合面、すなわち磁気ギャップ形成面(10)に
対してθなる角度で傾斜している。
The ferromagnetic metal thin films (13) and (14) are connected in series in a substantially straight line when viewed from the surface facing the magnetic recording medium, and are formed at the abutting surfaces of the magnetic core halves (I) and (II). It is inclined at an angle θ with respect to a certain bonding surface, that is, the magnetic gap forming surface (10).

上記強磁性薄膜形成面(lla) 、 (12a)と磁
気ギャップ形成面(10)とがなす角度θは、206〜
8゜0の範囲に設定される。この角度θが20°よりも
小さいと隣接トランクからのクロストークが大きくなり
、望ましくは30°以上の角度を持たせるのが良い。ま
た、上記角度θを900にした場合には、膜の成膜に長
時間を要することや、膜構造が不均一化してしまうこと
、耐摩耗性が劣化すること等から、80″以下とするの
が良い。
The angle θ between the ferromagnetic thin film forming surface (lla), (12a) and the magnetic gap forming surface (10) is 206~
It is set in the range of 8°0. If this angle θ is smaller than 20°, crosstalk from adjacent trunks will increase, so it is preferable to set the angle θ to 30° or more. In addition, if the angle θ is set to 900, it will take a long time to form the film, the film structure will become uneven, and the wear resistance will deteriorate, so it should be set to 80″ or less. It's good.

このように強磁性金属薄膜(13) 、 (14)を磁
気ギャップgに対して傾けた構造とすることにより、狭
トランク化が容易となるとともに、クロストークや擬似
ギャップ等が改善される。
By forming the ferromagnetic metal thin films (13) and (14) in such a structure that they are inclined with respect to the magnetic gap g, the trunk can be easily narrowed, and crosstalk, pseudo-gaps, etc. can be improved.

ここで本発明においては、上記強磁性金属薄膜(13)
 、 (14)が、磁性合金薄膜(13a) 、 (1
4a)と酸化物磁性薄膜(13b) 、 (14b)と
を交互に積層形成した多層膜構造となっている。なお、
この強磁性金属薄膜(13) 、 (14)は、磁性合
金薄膜(13a) 、 (14a)が酸化物磁性薄膜(
13b) 、 (14b)により2層以上に分割されて
いれば何層であっても良く、本実施例では3層に分割さ
れている。
Here, in the present invention, the ferromagnetic metal thin film (13)
, (14) are magnetic alloy thin films (13a), (1
It has a multilayer structure in which oxide magnetic thin films (13b) and (14b) are alternately stacked. In addition,
These ferromagnetic metal thin films (13) and (14) are magnetic alloy thin films (13a) and (14a) which are oxide magnetic thin films (
13b) and (14b), any number of layers may be used as long as they are divided into two or more layers, and in this embodiment, it is divided into three layers.

また、上記磁性合金薄膜(13a) 、 (14a)と
酸化物磁性薄膜(13b) 、 (14b)の膜厚ff
、mは、それぞれ使用周波数領域、各薄膜(13a) 
、 (14b) 、 (13b) 、 (14b)の飽
和磁束密度や実効透磁率、成膜時間等を考慮して適宜設
定すれば良い。好ましくは、磁性合金薄膜(13a) 
、 (14a)の膜厚βは1μm〜10μm程度、酸化
物磁性薄膜(13b) 、 (14b)の膜厚mは10
0人〜1μm程度の範囲内が良好である。
Also, the film thickness ff of the magnetic alloy thin films (13a), (14a) and the oxide magnetic thin films (13b), (14b)
, m is the frequency range used, and each thin film (13a)
, (14b), (13b), and (14b) may be set appropriately in consideration of the saturation magnetic flux density, effective magnetic permeability, film forming time, etc. Preferably, a magnetic alloy thin film (13a)
, (14a) has a film thickness β of about 1 μm to 10 μm, and the oxide magnetic thin film (13b), (14b) has a film thickness m of 10 μm.
A range of about 0 to 1 μm is good.

さらに、上記磁性合金薄膜(13a) 、 (14a)
の材質としては、強磁性非晶質合金、所謂強磁性アモル
ファス合金(例えばFe、Ni、Coの1以上の元素と
P、C,B、Siの1以上の元素とからなる合金、また
はこれを主成分としAf、Ge、BeSn、I n、M
o、W、Ti、Mn、Cr、Zr。
Furthermore, the magnetic alloy thin films (13a) and (14a)
Examples of the material include ferromagnetic amorphous alloys, so-called ferromagnetic amorphous alloys (for example, alloys consisting of one or more elements of Fe, Ni, and Co and one or more elements of P, C, B, and Si, or The main components are Af, Ge, BeSn, In, M
o, W, Ti, Mn, Cr, Zr.

Hf、Nb等を含んだ合金等のメタルーメタロイド系ア
モルファス合金、あるいはCo、Hf、Zr等の遷移元
素や希土類元素を主成分とするメタル−メタル系アモル
ファス合金等)、Fe−Aff −3i系合金、Fe−
Aff系合金、Fe−3i系合金、Fe−3i−Co系
合金、Fe−Ni合金。
Metal-metaloid amorphous alloys such as alloys containing Hf, Nb, etc., or metal-metal amorphous alloys containing transition elements or rare earth elements such as Co, Hf, Zr, etc.), Fe-Aff-3i system Alloy, Fe-
Aff alloy, Fe-3i alloy, Fe-3i-Co alloy, Fe-Ni alloy.

Fe−Ga−3i系合金等が使用される。Fe-Ga-3i alloy etc. are used.

一方、上記酸化物磁性薄膜(13b) 、 (14b)
としては、その比抵抗が0.1〜1010Ωωの範囲内
のものが好適であり、具体的にはMn−Znフェライト
、Mnフェライト、Ni−Znフェライト、Niフェラ
イト、Fe−Niフェライト、Feフェライト(マグネ
タイト)等のスピネル型結晶構造を有するフェライト磁
性薄膜や、YIG、Gd1G等のガーネット型結晶構造
を有する磁性薄膜、YFed3のオルソフェライト型の
磁性薄膜等が挙げられる。
On the other hand, the oxide magnetic thin films (13b) and (14b)
It is preferable that the resistivity is within the range of 0.1 to 1010 Ωω, and specifically, Mn-Zn ferrite, Mn ferrite, Ni-Zn ferrite, Ni ferrite, Fe-Ni ferrite, Fe ferrite ( Examples include ferrite magnetic thin films having a spinel crystal structure such as magnetite), magnetic thin films having a garnet crystal structure such as YIG and Gd1G, and orthoferrite magnetic thin films such as YFed3.

さらに、上記磁性合金薄膜(13a) 、 (14a)
や磁性合金薄膜(13a) 、 (14a)の膜付は方
法としては、スパッタリング法、真空蒸着法、イオンプ
レーテインク法等の真空薄膜形成技術、あるいはメッキ
法、CVD法、LPE法等の手法が挙げられる。
Furthermore, the magnetic alloy thin films (13a) and (14a)
The thin magnetic alloy films (13a) and (14a) can be formed by vacuum thin film forming techniques such as sputtering, vacuum evaporation, and ion plate ink, or by plating, CVD, and LPE. can be mentioned.

このように本実施例の複合磁気ヘッドは、主コア部とな
る強磁性金属薄膜(13) 、 (14)を所定の比抵
抗を有する酸化物磁性薄膜(13b) 、 (14b)
と磁性合金薄膜(13a) 、 (14a)との多層膜
構造としているので、渦電流損が低減し実効透磁率が向
上する。
As described above, in the composite magnetic head of this embodiment, the ferromagnetic metal thin films (13) and (14), which serve as the main core portion, are replaced by oxide magnetic thin films (13b) and (14b) having a predetermined resistivity.
Since it has a multilayer structure of magnetic alloy thin films (13a) and (14a), eddy current loss is reduced and effective magnetic permeability is improved.

同時に、磁性膜を介在させていることより、磁路方向に
対して磁気的に連続構造となるので、ヘッドの磁気抵抗
を抑えることができる。したがって、短波長領域におけ
る実効透磁率が向上し、かつ磁気抵抗が小さくなること
より、再生効率が格段に向上する。
At the same time, since the magnetic film is interposed, a structure is formed that is magnetically continuous in the direction of the magnetic path, so that the magnetic resistance of the head can be suppressed. Therefore, the effective magnetic permeability in the short wavelength region is improved and the magnetic resistance is reduced, so that the reproduction efficiency is significantly improved.

本発明者等は、上記構成の複合磁気ヘッドに対して再生
出力特性を調べ、本発明の効果を確認した。
The present inventors investigated the reproduction output characteristics of the composite magnetic head having the above configuration and confirmed the effects of the present invention.

すなわち、上記磁性合金薄膜(13a) 、 (14a
)を膜厚lが10μmのFe−Aj2−3i系合金で構
成し、上記酸化物磁性薄膜(13b) 、 (14b)
を膜厚mが2000人のN i −Z nフェライト(
比抵抗が〜107Ωcm)で構成した5層構造とし、ト
ランク幅Twが30μmとなるように強磁性金属薄膜(
13) 。
That is, the magnetic alloy thin films (13a), (14a)
) is made of a Fe-Aj2-3i alloy with a film thickness l of 10 μm, and the oxide magnetic thin films (13b), (14b)
Ni-Zn ferrite with a film thickness m of 2000 (
It has a five-layer structure with a specific resistance of ~107 Ωcm), and a ferromagnetic metal thin film (
13).

(14)を形成してなる複合磁気ヘッドと、比較のため
に上記強磁性金属薄膜(13) 、 (14)をFe−
A6−3i系合金の単層構造とした従来の複合磁気ヘッ
ドに対して再生出力を測定し比較した。なお、上記再生
出力測定は、IMHz〜IOM)Izの範囲内で行った
。結果を第3図に示す。
(14), and for comparison, the ferromagnetic metal thin films (13) and (14) were formed using Fe-
The reproduction output of a conventional composite magnetic head having a single layer structure of A6-3i alloy was measured and compared. Note that the above reproduction output measurement was performed within the range of IMHz to IOM)Iz. The results are shown in Figure 3.

この図より明らかなように、IMHz以上の短波長領域
では本実施例の複合磁気ヘッドのほうが大きな再生出力
が得られることがわかった。特に、5MHz以上の波長
領域では1〜2dB以上の改善がみられた。また、記録
特性は従来の複合磁気ヘッドと同等の特性が得られた。
As is clear from this figure, it was found that the composite magnetic head of this embodiment can obtain a larger reproduction output in the short wavelength region of IMHz or more. In particular, an improvement of 1 to 2 dB or more was observed in the wavelength region of 5 MHz or higher. Furthermore, recording characteristics equivalent to those of conventional composite magnetic heads were obtained.

したがって、本発明を適用することにより、高密度記録
に対応した短波長記録化に好適な複合磁気ヘッドが提供
できることが確認された。
Therefore, it has been confirmed that by applying the present invention, a composite magnetic head suitable for short wavelength recording compatible with high density recording can be provided.

〔発明の効果〕〔Effect of the invention〕

以上の説明からも明らかなように、本発明の複合磁気ヘ
ッドは主磁路を構成する強磁性金属薄膜を高飽和磁束密
度合金よりなる磁性合金薄膜と、比抵抗が大きな酸化物
磁性薄膜との多層膜構造としているので、特に高周波数
領域における渦電流損が減少し実効透磁率が向上する。
As is clear from the above description, in the composite magnetic head of the present invention, the ferromagnetic metal thin film constituting the main magnetic path is composed of a magnetic alloy thin film made of a high saturation magnetic flux density alloy and an oxide magnetic thin film with a high specific resistance. Since it has a multilayer structure, eddy current loss is reduced, especially in the high frequency region, and effective magnetic permeability is improved.

同時に、磁性材料である酸化物磁性薄膜を介在させるで
いるので、磁路方向の磁気抵抗も減少する。
At the same time, since the oxide magnetic thin film, which is a magnetic material, is interposed, the magnetic resistance in the magnetic path direction is also reduced.

また、上記強磁性金属薄膜は磁気ギャップに対して傾い
た構造であるので、生産性、量産性、磁気特性の点でも
有利である。
Further, since the ferromagnetic metal thin film has a structure inclined with respect to the magnetic gap, it is advantageous in terms of productivity, mass production, and magnetic properties.

したがって、本発明を適用すれば、高密度記録に伴う短
波長記録に対して、好適な複合磁気ヘッドを安価に提供
できる。
Therefore, by applying the present invention, a composite magnetic head suitable for short wavelength recording associated with high-density recording can be provided at low cost.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の適用した複合磁気ヘッドの一実施例を
示す外観斜視図であり、第2図はその磁気記録媒体対接
面を示す要部拡大平面図である。 第3図は本発明の複合磁気ヘッドと従来の複合磁気ヘッ
ドにおける再生出力の周波数特性を示す特性図である。
FIG. 1 is an external perspective view showing an embodiment of a composite magnetic head to which the present invention is applied, and FIG. 2 is an enlarged plan view of a main part showing the surface in contact with a magnetic recording medium. FIG. 3 is a characteristic diagram showing the frequency characteristics of reproduction output in the composite magnetic head of the present invention and the conventional composite magnetic head.

Claims (1)

【特許請求の範囲】 強磁性酸化物よりなる磁気コア部とこの磁気コア部の強
磁性薄膜形成面上に形成される強磁性金属薄膜とから磁
気コア半体が形成され、前記強磁性金属薄膜同士を直列
状に対向させることにより磁気ギャップが構成されると
ともに、磁気記録媒体対接面で上記強磁性薄膜形成面が
磁気ギャップ形成面と所要角度で傾斜してなる複合磁気
ヘッドにおいて、 上記強磁性金属薄膜は磁性合金薄膜と酸化物磁性薄膜と
を交互に積層形成した多層膜構造となっていることを特
徴とする複合磁気ヘッド。
[Claims] A magnetic core half is formed from a magnetic core made of a ferromagnetic oxide and a ferromagnetic metal thin film formed on the ferromagnetic thin film forming surface of the magnetic core, and the ferromagnetic metal thin film is In a composite magnetic head in which a magnetic gap is formed by arranging the ferromagnetic thin film to face each other in series, and the ferromagnetic thin film forming surface is inclined at a predetermined angle to the magnetic gap forming surface on the surface facing the magnetic recording medium, A composite magnetic head characterized in that the magnetic metal thin film has a multilayer structure in which magnetic alloy thin films and oxide magnetic thin films are alternately laminated.
JP23250786A 1986-09-30 1986-09-30 Composite magnetic head Pending JPS6387606A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23250786A JPS6387606A (en) 1986-09-30 1986-09-30 Composite magnetic head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23250786A JPS6387606A (en) 1986-09-30 1986-09-30 Composite magnetic head

Publications (1)

Publication Number Publication Date
JPS6387606A true JPS6387606A (en) 1988-04-18

Family

ID=16940411

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23250786A Pending JPS6387606A (en) 1986-09-30 1986-09-30 Composite magnetic head

Country Status (1)

Country Link
JP (1) JPS6387606A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5305516A (en) * 1991-12-09 1994-04-26 Nikko Kyodo Company, Limited Method of manufacturing flying magnetic heads
US5537732A (en) * 1993-03-23 1996-07-23 Ngk Insulators, Ltd. Method for manufacturing a magnetic head core slider

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5305516A (en) * 1991-12-09 1994-04-26 Nikko Kyodo Company, Limited Method of manufacturing flying magnetic heads
US5537732A (en) * 1993-03-23 1996-07-23 Ngk Insulators, Ltd. Method for manufacturing a magnetic head core slider

Similar Documents

Publication Publication Date Title
KR910007861B1 (en) Magnetic head and method of fabricating same
JPH0477370B2 (en)
JPS6341127B2 (en)
JPS6387606A (en) Composite magnetic head
JP2565250B2 (en) Magnetic head
US4731299A (en) Composite magnetic material
US5726842A (en) Thin-film type magnetic head having an auxiliary magnetic film
JPS60237609A (en) Magnetic head
KR0152601B1 (en) Core of composite magnetic head and the manufacturing method
KR0155468B1 (en) Magnetic head and method of fabrication thereof
KR910000207B1 (en) Composite type magnetic head
JP2591109B2 (en) Magnetic head
JPS62205507A (en) Magnetic head
JPH05166124A (en) Magnetic head
JPH045046Y2 (en)
JPS6015807A (en) Magnetic head
JP3147434B2 (en) Magnetic head
KR100200861B1 (en) Recording and reproducing magnetic head and the manufacturing method
JP3461688B2 (en) Magnetic head and magnetic recording device using the same
JPH0630905U (en) Magnetic head
JPH0648530B2 (en) Magnetic head
JPH0278007A (en) Thin film magnetic head and production thereof
JPH01185811A (en) Magnetic head
JPH0785288B2 (en) Magnetic head manufacturing method
JPH0630907U (en) Magnetic head