JP2591109B2 - Magnetic head - Google Patents

Magnetic head

Info

Publication number
JP2591109B2
JP2591109B2 JP63268418A JP26841888A JP2591109B2 JP 2591109 B2 JP2591109 B2 JP 2591109B2 JP 63268418 A JP63268418 A JP 63268418A JP 26841888 A JP26841888 A JP 26841888A JP 2591109 B2 JP2591109 B2 JP 2591109B2
Authority
JP
Japan
Prior art keywords
magnetic
film
head
track width
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63268418A
Other languages
Japanese (ja)
Other versions
JPH02116005A (en
Inventor
俊作 村岡
高橋  健
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP63268418A priority Critical patent/JP2591109B2/en
Publication of JPH02116005A publication Critical patent/JPH02116005A/en
Application granted granted Critical
Publication of JP2591109B2 publication Critical patent/JP2591109B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 産業上の利用分野 本発明は高品位VTRやデジタルVTR等の高周波信号を効
率よく記録再生するのに適した磁気ヘッドに関するもの
である。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic head suitable for efficiently recording and reproducing a high-frequency signal such as a high-quality VTR or a digital VTR.

従来の技術 近年高品位VTRやデジタルVTRなどの広帯域の信号を取
り扱うシステムの開発が盛んになってきており、磁気記
録媒体もこのような大量の情報を記録するために、酸化
鉄系から合金粉末媒体や金属蒸着媒体等の高抗磁力媒体
へと変わりつつある。そこで磁気ヘッドとしても、これ
らの高抗磁力媒体に対応するような高飽和磁束密度を有
し周波数特性の優れた磁気ヘッドの開発が望まれてい
る。現在、飽和磁束密度の高いセンダストやアモルファ
ス合金等の金属磁性材料を用いた磁気ヘッドの開発が行
なわれているが、バルク状の金属磁性材料を用いたので
は渦電流損失が大きくとても上記システムには使えな
い。この為、上記損失をできるだけ抑えるために、金属
磁性材料を薄膜化して用いることが検討されており、例
えば金属磁性薄膜と絶縁膜との積層膜で主磁気回路を構
成することによって高周波化を図っている。
2. Description of the Related Art In recent years, systems for handling wideband signals such as high-definition VTRs and digital VTRs have been actively developed, and magnetic recording media have been used to record such a large amount of information. It is changing to a high coercive force medium such as a medium or a metal deposition medium. Therefore, it is desired to develop a magnetic head having a high saturation magnetic flux density and an excellent frequency characteristic corresponding to these high coercive force media. At present, magnetic heads using metal magnetic materials such as sendust and amorphous alloys with high saturation magnetic flux density are being developed. Cannot be used. For this reason, in order to suppress the above loss as much as possible, the use of a thin metal magnetic material has been studied. For example, a high frequency is achieved by forming a main magnetic circuit with a laminated film of a metal magnetic thin film and an insulating film. ing.

発明が解決しようとする課題 高品位VTRやデジタルVTRではその記録信号帯域は30MH
zから60MHzに達し、磁気ヘッド用コア材としてはこのよ
うな高周波帯で高い初透磁率を有するものが要求され
る。第6図は、Co系アモルファス磁性膜とSiO2膜との積
層膜及びMn−Znフェライトの初透磁率の周波数特性を示
したものである。アモルファス積層膜においては、一層
当たりの磁性膜の膜厚は渦電流損失を考慮して4μmと
し、層間のSiO2膜厚は0.2μmで5層積層したものであ
る。図において(1)は無配向の積層膜で、積層効果に
より渦電流損失は改善されているがその高周波特性は強
磁性共鳴によるスヌークの限界線で制約されており、30
MHz以上の高周波帯での初透磁率は500以下となる。した
がってこのような無配向の磁性膜をヘッドコアとして用
いたのでは前記のような高周波システムに対応する高性
能ヘッドを実現するのは困難である。一方、一軸異方性
を有するアモルファス磁性膜をその容易軸方向を揃えて
積層した多層膜の初透磁率特性は、容易軸方向に測定す
ると(2)のように全周波数帯で極めて低い初透磁率特
性を示すのに対し、困難軸方向に測定した場合は(3)
のように高周波まで高い透磁率を維持し、60MHzでも100
0以上の値を有する。しかし、このような一方向に異方
性を有する磁気コアでビデオヘッド等の比較的大きな巻
線窓の磁気ヘッドを構成した場合、その磁路中に容易軸
方向を含むことになりヘッド効率としての低下が大き
い。
Problems to be Solved by the Invention The recording signal bandwidth of a high-quality VTR or digital VTR is 30 MHz.
From 60 to 60 MHz, a core material for a magnetic head having a high initial permeability in such a high frequency band is required. FIG. 6 shows the frequency characteristics of the initial permeability of the laminated film of the Co-based amorphous magnetic film and the SiO 2 film and the Mn—Zn ferrite. In the amorphous laminated film, the thickness of the magnetic film per layer is 4 μm in consideration of the eddy current loss, and the thickness of the SiO 2 layer between layers is 0.2 μm, and five layers are laminated. In the figure, (1) is a non-oriented laminated film, in which the eddy current loss is improved by the laminating effect, but its high frequency characteristics are restricted by the snook limit line due to ferromagnetic resonance.
The initial permeability in the high frequency band above MHz is 500 or less. Therefore, if such a non-oriented magnetic film is used as a head core, it is difficult to realize a high-performance head corresponding to the above-described high-frequency system. On the other hand, the initial magnetic permeability characteristic of a multilayer film in which an amorphous magnetic film having uniaxial anisotropy is laminated with its easy axis direction aligned is extremely low in the entire frequency band as shown in (2) when measured in the easy axis direction. In contrast to the magnetic susceptibility characteristics, when measured in the hard axis direction, (3)
Maintains high magnetic permeability up to high frequencies as in
It has a value of 0 or more. However, when a magnetic head having a relatively large winding window such as a video head is formed of a magnetic core having such anisotropy in one direction, the magnetic path includes an easy-axis direction and the head efficiency is increased. The drop is large.

本発明は、このような従来の磁気ヘッドの課題を解決
することを目的とする。
An object of the present invention is to solve such a problem of the conventional magnetic head.

課題を解決するための手段 本発明は、金属磁性膜を基板で挟持した構造で、少な
くともトラック幅より大なるコア幅を有する金属磁性膜
で磁気コアを構成し且つ磁気ギャップ面に切り欠きを設
けてトラック幅を規制した磁気ヘッドにおいて、上記金
属磁性膜の厚さ方向のうち少なくともトラック幅を構成
する領域の磁化容易軸方向がすべて記録媒体摺動面と略
直交するように磁気ヘッドを構成したものである。
Means for Solving the Problems The present invention has a structure in which a metal magnetic film is sandwiched between substrates, a magnetic core is formed of a metal magnetic film having a core width larger than at least a track width, and a notch is provided on a magnetic gap surface. In the magnetic head in which the track width is regulated by using the magnetic head, the magnetic head is configured such that at least the easy axis direction of the region constituting the track width in the thickness direction of the metal magnetic film is substantially orthogonal to the recording medium sliding surface. Things.

作用 第5図はヘッド内の磁路を示す。図中A,Cは記録媒体
と略平行な方向の磁路(平行磁路)を示し、B,Dは記録
媒体と略直交する方向の磁路(直交磁路)を示してい
る。上述の構成により、ヘッド内に流れる磁束はできる
だけ初透磁率の大きな領域を流れようとするので、平行
磁路においては磁化困難軸方向となるトラック幅を構成
する領域の金属磁性膜内を流れ、直交磁路においては、
トラック幅を構成する領域内は磁化容易軸方向となり、
トラック幅を構成しない領域の初透磁率の方が高くなる
ので、その領域を流れる。したがって、ヘッド効率にも
っとも影響の大きな磁気ギャップ近傍の磁路Aにおいて
はトラック幅を構成する磁路はすべて磁化困難軸方向と
なり、磁気ヘッドとしての再生効率が高くなる。また磁
路B,Dにおいては、多少初透磁率は低くても磁路の断面
積が大きいため、磁路としてのレラクタンスを十分小さ
くすることができ、ヘッドとしての再生効率をあまり劣
化させない。すなわち、本発明の磁気ヘッドは、異方性
を有する金属磁性膜の困難軸方向の特性を有効に利用で
きるため、30MHz以上の高周波でも十分に高い効率で信
号を記録再生できる磁気ヘッドが得られるものである。
Operation FIG. 5 shows a magnetic path in the head. In the figure, A and C indicate magnetic paths in a direction substantially parallel to the recording medium (parallel magnetic paths), and B and D indicate magnetic paths in a direction substantially orthogonal to the recording medium (orthogonal magnetic paths). With the above-described configuration, the magnetic flux flowing in the head tends to flow in the region having the largest initial magnetic permeability as much as possible, so in the parallel magnetic path, the magnetic flux flows in the metal magnetic film in the region forming the track width in the hard axis direction, In an orthogonal magnetic path,
The area within the track width is in the direction of the easy axis of magnetization,
Since the initial magnetic permeability of a region that does not constitute the track width is higher, the magnetic flux flows through that region. Accordingly, in the magnetic path A near the magnetic gap, which has the greatest influence on the head efficiency, all the magnetic paths constituting the track width are in the direction of the hard axis, and the reproducing efficiency as the magnetic head is increased. Further, in the magnetic paths B and D, the cross-sectional area of the magnetic path is large even if the initial magnetic permeability is somewhat low, so that the reluctance as the magnetic path can be sufficiently reduced, and the reproduction efficiency as the head does not deteriorate much. That is, since the magnetic head of the present invention can effectively utilize the characteristics of the metal magnetic film having anisotropy in the hard axis direction, a magnetic head capable of recording and reproducing signals with sufficiently high efficiency even at a high frequency of 30 MHz or more can be obtained. Things.

実施例 以下に、本発明の実施例を図面に基づいて説明する。Embodiment An embodiment of the present invention will be described below with reference to the drawings.

第1図(a)は、本発明の第一の実施例の部分切欠斜
視図である。図において、1はアモルファス合金やセン
ダスト合金等の金属磁性膜からなり、トラック幅Twは金
属磁性膜を切り込むことにより規制されている。金属磁
性膜の容易軸方向は第1図(a)の切欠部に矢印で示し
たように、少なくともトラック幅を構成する領域3を含
む金属磁性膜においては記録媒体に略直交するように、
それ以外においては大半が記録媒体に略平行であるよう
に配置されている。これらの金属磁性膜1はSiO2等の絶
縁膜2を介して積層され、多層膜となり磁気コアを構成
している。また、一層当りの膜厚は使用周波数帯におけ
る渦電流損失を考慮した厚さ以下になっている。。この
ような多層膜はチタン酸マグネシウム系の非磁性基板4
で挟持され、巻線窓5を有する対向コアとボンディング
ガラス6によって接合され、磁気ギャップ7を形成して
いる。このような構成の磁気ヘッドにおいては、作用の
項で説明したように磁束は平行磁路ではトラック幅を構
成する領域3を含む金属磁性膜内を流れ、直交磁路にお
いてはトラック幅を構成する領域3を含まない金属磁性
膜を流れる。即ち、本実施例のヘッドは磁路がほとんど
磁化困難軸方向から構成されていることになる。前記第
6図のグラフ中(3)は金属磁性膜の磁化困難軸方向の
初透磁率の周波数特性を示している。60MHzでも1000以
上の値を有し、高周波まで高い初透磁率を維持している
ことがわかる。この初透磁率特性がヘッド特性に反映さ
れるので本発明の磁気ヘッドは、30MHz以上の高周波で
も高いヘッド特性が実現できた。尚、本実施例では金属
磁性膜単位でその異方性の方向を制御したが、一層の金
属磁性膜内においても、異方性の方向を異ならしめるこ
とが可能である。また、第1図(b)に示すような構成
にしても全く同等のヘッド特性を示すことがわかった。
また、基板4はMn−Znフェライト等の磁性基板を用いて
もよい。
FIG. 1A is a partially cutaway perspective view of the first embodiment of the present invention. In the figure, reference numeral 1 denotes a metal magnetic film such as an amorphous alloy or a sendust alloy, and the track width Tw is regulated by cutting the metal magnetic film. The direction of the easy axis of the metal magnetic film is substantially orthogonal to the recording medium in the metal magnetic film including at least the region 3 constituting the track width, as indicated by the arrow in the notch in FIG.
Other than that, most are arranged so as to be substantially parallel to the recording medium. These metal magnetic films 1 are stacked via an insulating film 2 such as SiO 2 to form a multilayer film and constitute a magnetic core. Further, the film thickness per layer is equal to or less than the thickness in consideration of the eddy current loss in the operating frequency band. . Such a multilayer film is made of a magnesium titanate-based nonmagnetic substrate 4
And is bonded by a bonding glass 6 to an opposing core having a winding window 5 to form a magnetic gap 7. In the magnetic head having such a configuration, the magnetic flux flows in the metal magnetic film including the region 3 forming the track width in the parallel magnetic path, and forms the track width in the orthogonal magnetic path, as described in the section of the operation. It flows through the metal magnetic film not including the region 3. That is, in the head of the present embodiment, the magnetic path is almost constituted by the direction of the hard axis. (3) in the graph of FIG. 6 shows the frequency characteristic of the initial magnetic permeability of the metal magnetic film in the hard axis direction. It can be seen that it has a value of 1000 or more even at 60 MHz, and maintains high initial permeability up to high frequencies. Since the initial permeability characteristics are reflected in the head characteristics, the magnetic head of the present invention can achieve high head characteristics even at a high frequency of 30 MHz or more. In this embodiment, the direction of the anisotropy is controlled for each metal magnetic film. However, the direction of the anisotropy can be made different even within one metal magnetic film. Further, it was found that even the configuration as shown in FIG. 1B shows completely the same head characteristics.
Further, the substrate 4 may be a magnetic substrate such as Mn-Zn ferrite.

第2図は本発明の第2の実施例の部分切欠斜視図であ
る。第1の実施例と異なる点はトラック幅を構成しない
金属磁性膜が無配向である点である。このような構成の
磁気ヘッドにおいては、磁束は平行磁路では磁化困難軸
方向となるトラック幅を構成する領域3を含む金属磁性
膜内を流れ、直交磁路においてはトラック幅を構成する
領域以外の無配向の金属磁性膜内を流れる。第6図のグ
ラフ中(1)は無配向の積層金属磁性膜の初透磁率の周
波数特性を示している。30MHz以上の高周波帯での初透
磁率は500以下と低いが、記録媒体と直交する方向の磁
路においては磁路の断面積が大きいため、磁路としての
レラクタンスを十分小さくすることができ、ヘッドとし
ての再生効率をあまり劣化させない。したがって、この
構成の磁気ヘッドでも30MHz以上の高周波で高いヘッド
特性が実現できた。
FIG. 2 is a partially cutaway perspective view of a second embodiment of the present invention. The difference from the first embodiment is that the metal magnetic film not constituting the track width is non-oriented. In the magnetic head having such a configuration, the magnetic flux flows in the metal magnetic film including the region 3 forming the track width in the direction of the hard axis in the parallel magnetic path, and in the orthogonal magnetic path, other than the region forming the track width. Flows through the non-oriented metal magnetic film. (1) in the graph of FIG. 6 shows the frequency characteristic of the initial permeability of the non-oriented laminated metal magnetic film. The initial magnetic permeability in the high frequency band of 30 MHz or more is as low as 500 or less, but the magnetic path in the direction perpendicular to the recording medium has a large cross-sectional area, so that the reluctance as the magnetic path can be sufficiently reduced. It does not significantly degrade the reproduction efficiency of the head. Therefore, even with the magnetic head having this configuration, high head characteristics were realized at a high frequency of 30 MHz or more.

第3図は本発明の第3の実施例の部分切欠斜視図であ
る。第1及び第2の実施例と異なる点はトラック幅以外
の領域のほとんどがMn−Znフェライトの磁性基板により
構成されている点である。このような構成の磁気ヘッド
におては、磁束は平行磁路では磁化困難軸方向となるト
ラック幅を構成する領域3の金属磁性膜内を流れ、直交
磁路においてはMn−Znフェライト内となる。第6図グラ
フ中(4)はMn−Znフェライトの初透磁率の周波数特性
を示している。30MHz以上の高周波帯での初透磁率はさ
きほどの無配向の積層金属磁性膜よりもさらに低いが、
さきほどと同じ理由でヘッドの再生効率はあまり劣化せ
ず、この構成の磁気ヘッドでも30MHz以上の高周波で高
いヘッド特性が実現できた。
FIG. 3 is a partially cutaway perspective view of a third embodiment of the present invention. The difference from the first and second embodiments is that most of the region other than the track width is made of a magnetic substrate of Mn-Zn ferrite. In the magnetic head having such a configuration, the magnetic flux flows in the metal magnetic film in the region 3 forming the track width in the direction of the hard axis in the parallel magnetic path, and in the Mn-Zn ferrite in the orthogonal magnetic path. Become. (4) in the graph of FIG. 6 shows the frequency characteristic of the initial permeability of the Mn-Zn ferrite. The initial magnetic permeability in the high frequency band of 30 MHz or higher is even lower than that of the non-oriented laminated metal magnetic film,
For the same reason as above, the reproducing efficiency of the head did not deteriorate much, and even with the magnetic head of this configuration, high head characteristics could be realized at a high frequency of 30 MHz or more.

第4図は従来の無配向の積層金属磁性膜を用いた磁気
ヘッド(d)および本発明の第1から第3の実施例の磁
気ヘッド(a),(b),(c)の相対出力の周波数特
性を示す。30MHz以上の高周波において本発明の磁気ヘ
ッドはすべて従来の磁気ヘッドを大きく上回る高周波特
性を示していることがわかる。また、本実施例のヘッド
においても若干の出力差があり、第1の実施例のヘッド
出力(a)が一番高く、第2の実施例のヘッド出力
(b)、第3の実施例のヘッド出力(c)の順になって
いる。これは、直交磁路を構成するトラック幅を構成し
ない領域の初透磁率特性を反映していると考えられる。
FIG. 4 shows the relative output of the magnetic head (d) using the conventional non-oriented laminated metal magnetic film and the magnetic heads (a), (b) and (c) of the first to third embodiments of the present invention. FIG. It can be seen that all the magnetic heads of the present invention at high frequencies of 30 MHz or higher exhibit much higher frequency characteristics than conventional magnetic heads. In the head of this embodiment, there is also a slight difference in output. The head output (a) of the first embodiment is the highest, the head output (b) of the second embodiment, and the head output (b) of the third embodiment. The order is head output (c). This is considered to reflect the initial permeability characteristics of the region that does not constitute the track width that constitutes the orthogonal magnetic path.

このような磁気ヘッドの製造方法としては、まず基板
上に金属磁性膜と絶縁膜をスパッタで交互に積層する。
次にこの多層膜が形成された基板を複数枚積み重ねて結
晶化ガラス等で接着し切断することによって上記多層膜
と基板が交互に積層されたコアブロックができる。以降
は従来のフェライトヘッドの製造方法と同じ工程を経て
第1図(a),(b)および第2図、第3図に示す磁気
ヘッドが製造できる。
As a method of manufacturing such a magnetic head, first, a metal magnetic film and an insulating film are alternately stacked on a substrate by sputtering.
Next, a plurality of substrates on which the multilayer film is formed are stacked, bonded with crystallized glass or the like, and cut to form a core block in which the multilayer film and the substrate are alternately laminated. Thereafter, the magnetic head shown in FIGS. 1 (a) and 1 (b) and FIGS. 2 and 3 can be manufactured through the same steps as the conventional method of manufacturing a ferrite head.

尚、金属磁性膜に異方性を付ける方法としては、第1
および第2の実施例では基板上に金属磁性膜を形成する
際に異方性を付けたい方向に固定磁場を印加してスパッ
タすることで実現できた。また、第3の実施例では上記
の方法のほかにギャップ接合の際に異方性を付けたい方
向に固定磁場を印加することによっても実現できた。
Incidentally, as a method of giving anisotropy to the metal magnetic film, the first method is used.
In the second embodiment, when a metal magnetic film is formed on a substrate, sputtering is performed by applying a fixed magnetic field in a direction in which anisotropy is to be provided. Further, in the third embodiment, in addition to the above-described method, it can be realized by applying a fixed magnetic field in a direction in which anisotropy is desired to be given at the time of gap joining.

発明の効果 以上述べたところから明らかなように、本発明によれ
ば、30MHz以上の高周波帯でも十分高い効率で記録再生
できる高周波用磁気ヘッドが容易に得られる。
Effects of the Invention As is apparent from the above description, according to the present invention, a high-frequency magnetic head capable of recording and reproducing with sufficiently high efficiency even in a high-frequency band of 30 MHz or more can be easily obtained.

【図面の簡単な説明】[Brief description of the drawings]

第1図(a),(b)は本発明の第1の実施例における
磁気ヘッドの一部切り欠き斜視図、第2図は本発明の第
2の実施例における磁気ヘッドの一部切り欠き斜視図、
第3図は本発明の第3の実施例における磁気ヘッドの一
部切り欠き斜視図、第4図は従来の磁気ヘッドおよび本
発明の磁気ヘッドの相対出力の周波数特性を示すグラ
フ、第5図はヘッド内の磁路を示す磁路図、第6図は異
方性の方向による金属磁性膜およびMn−Znフェライトの
初透磁率の周波数特性の測定結果を示すグラフである。 1……金属磁性膜、2……絶縁膜、3……トラック幅を
構成する領域、4……基板、 5……巻線窓、6……ボンディングガラス 7……磁気ギャップ
1A and 1B are partially cutaway perspective views of a magnetic head according to a first embodiment of the present invention, and FIG. 2 is a partially cutaway view of a magnetic head according to a second embodiment of the present invention. Perspective view,
FIG. 3 is a partially cutaway perspective view of a magnetic head according to a third embodiment of the present invention, FIG. 4 is a graph showing frequency characteristics of relative output of a conventional magnetic head and a magnetic head of the present invention, and FIG. FIG. 6 is a magnetic path diagram showing a magnetic path in the head, and FIG. 6 is a graph showing measurement results of frequency characteristics of initial magnetic permeability of the metal magnetic film and the Mn-Zn ferrite in an anisotropic direction. DESCRIPTION OF SYMBOLS 1 ... Metal magnetic film, 2 ... Insulating film, 3 ... The area | region which comprises a track width, 4 ... Substrate, 5 ... Winding window, 6 ... Bonding glass 7 ... Magnetic gap

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】金属磁性膜を基板で挟持した構造で、少な
くともトラック幅より大なるコア幅を有する金属磁性膜
で磁気コアを構成し且つ磁気ギャップ面に切り欠きを設
けてトラック幅を規制した磁気ヘッドにおいて、上記金
属磁性膜の厚さ方向のうち少なくともトラック幅を構成
する領域の磁化容易軸方向がすべて記録媒体摺動面と略
直交するように構成されていることを特徴とする磁気ヘ
ッド。
1. A structure in which a metal magnetic film is sandwiched between substrates, a magnetic core is formed of a metal magnetic film having a core width at least larger than a track width, and a notch is provided in a magnetic gap surface to regulate a track width. A magnetic head, wherein at least a region constituting a track width in a thickness direction of the metal magnetic film has an axis of easy magnetization which is substantially perpendicular to a sliding surface of a recording medium. .
【請求項2】金属磁性膜が金属磁性膜と絶縁膜とを交互
に積層した多層膜になっていることを特徴とする請求項
1記載の磁気ヘッド。
2. The magnetic head according to claim 1, wherein the metal magnetic film is a multilayer film in which a metal magnetic film and an insulating film are alternately stacked.
【請求項3】トラック幅を構成しない領域の磁気コアが
少なくとも記録媒体摺動面と略平行な磁化容易軸を有す
る金属磁性膜を含むことを特徴とする請求項1又は2記
載の磁気ヘッド。
3. The magnetic head according to claim 1, wherein the magnetic core in a region not forming the track width includes a metal magnetic film having an easy axis of magnetization substantially parallel to at least the sliding surface of the recording medium.
【請求項4】トラック幅を構成しない領域の磁気コアが
少なくとも無配向の金属磁性膜を含むことを特徴とする
請求項1又は2記載の磁気ヘッド。
4. The magnetic head according to claim 1, wherein the magnetic core in a region not forming the track width includes at least a non-oriented metal magnetic film.
【請求項5】基板が磁性基板であることを特徴とする請
求項1又は2記載の磁気ヘッド。
5. The magnetic head according to claim 1, wherein the substrate is a magnetic substrate.
JP63268418A 1988-10-25 1988-10-25 Magnetic head Expired - Lifetime JP2591109B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63268418A JP2591109B2 (en) 1988-10-25 1988-10-25 Magnetic head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63268418A JP2591109B2 (en) 1988-10-25 1988-10-25 Magnetic head

Publications (2)

Publication Number Publication Date
JPH02116005A JPH02116005A (en) 1990-04-27
JP2591109B2 true JP2591109B2 (en) 1997-03-19

Family

ID=17458210

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63268418A Expired - Lifetime JP2591109B2 (en) 1988-10-25 1988-10-25 Magnetic head

Country Status (1)

Country Link
JP (1) JP2591109B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61127103A (en) * 1984-11-22 1986-06-14 Sony Corp Manufacture of magnetic head
JPS61170911A (en) * 1985-01-22 1986-08-01 Canon Electronics Inc Magnetic head
JPS61289507A (en) * 1985-06-18 1986-12-19 Canon Inc Magnetic head
JPH0664699B2 (en) * 1987-03-05 1994-08-22 松下電器産業株式会社 Magnetic head

Also Published As

Publication number Publication date
JPH02116005A (en) 1990-04-27

Similar Documents

Publication Publication Date Title
US4868698A (en) Magnetic head
JPS63249910A (en) Magnetic head
JPH04278205A (en) Magnetic head
JP2591109B2 (en) Magnetic head
JP2933638B2 (en) Manufacturing method of magnetic head
JPH0234083B2 (en)
JP3461688B2 (en) Magnetic head and magnetic recording device using the same
JPS6015807A (en) Magnetic head
JPH0664699B2 (en) Magnetic head
JPH0192908A (en) Magnetic head
JPH0551961B2 (en)
JPH0660315A (en) Production of magnetic head
JPH02128310A (en) Magnetic head
JP2000011314A (en) Magnetic head and its production
JPH0644522A (en) Magnetic head
JPH0250309A (en) Magnetic head core
JPH1064007A (en) Magnetic head and magnetic recording and reproducing device
JPS6387606A (en) Composite magnetic head
JPH07192215A (en) Bulk type magnetic head
JPH07282414A (en) Magnetic head and its production
JPS61117714A (en) Thin film magnetic head
JPH11110714A (en) Magnetic head and magnetic recording/reproducing apparatus utilizing the same head
JP2004334970A (en) Magnetic head and its manufacturing method
JPH0765316A (en) Magnetic head
JP2000268313A (en) Soft magnetic multilayered film, magnetic head utilizing the same, and magnetic recording and reproducing apparatus utilizing the same

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071219

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081219

Year of fee payment: 12

EXPY Cancellation because of completion of term