JPS6386883A - Production of reaction membrane and gas diffusion membrane - Google Patents

Production of reaction membrane and gas diffusion membrane

Info

Publication number
JPS6386883A
JPS6386883A JP61231583A JP23158386A JPS6386883A JP S6386883 A JPS6386883 A JP S6386883A JP 61231583 A JP61231583 A JP 61231583A JP 23158386 A JP23158386 A JP 23158386A JP S6386883 A JPS6386883 A JP S6386883A
Authority
JP
Japan
Prior art keywords
membrane
fine powder
water
gas diffusion
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61231583A
Other languages
Japanese (ja)
Other versions
JPH0633480B2 (en
Inventor
Choichi Furuya
長一 古屋
Satoru Motoo
本尾 哲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tanaka Kikinzoku Kogyo KK
Original Assignee
Tanaka Kikinzoku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tanaka Kikinzoku Kogyo KK filed Critical Tanaka Kikinzoku Kogyo KK
Priority to JP61231583A priority Critical patent/JPH0633480B2/en
Publication of JPS6386883A publication Critical patent/JPS6386883A/en
Publication of JPH0633480B2 publication Critical patent/JPH0633480B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8803Supports for the deposition of the catalytic active composition
    • H01M4/8807Gas diffusion layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PURPOSE:To produce the title reaction membrane and gas diffusion membrane having uniform thickness by charging mixed fine powder for the reaction membrane and diffusion membrane in the water in a water tank, floating the powder, depositing the powder on a sheet, and binding the powder to the sheet by hot pressing. CONSTITUTION:The mixed fine powder 5 of hydrophilic carbon black, water-repellent carbon black, and polytetrafluoroethylene is charged into the water 2 in the water tank 1, and then floated. A 'TETORON(R)' screen 4 wound on a sheet winding roll 3 in the water tank 1 is rewound and pulled up to the oblique upper part, a powder compacting table 8 is simultaneously traveled at the same velocity, and the mixed fine powder 5 floating on the water 2 is deposited on the 'TETORON(R)' screen 4. The mixed fine powder 5 is passed through a couple of the upper and lower rolls 6 and 6' and compacted, the fine powder is bound to the screen and dehydrated, and the 'TETORON(R)' screen 4 is passed through a heater 7 and dried. The 'TETORON(R)' screen 4 is then released, the sheet mixed fine powder is cut to a specified length, the cut sheets are bound under pressure by hot pressing, and a strip reaction membrane is produced.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、燃料電池、二次電池、電気化学的リアクター
、めっき用陽極等に用いるガス拡散電極用反応膜や、電
池、気体透過膜、濃縮、加湿、除湿等に用いるガス拡散
膜を製造する方法に関する。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to reaction membranes for gas diffusion electrodes used in fuel cells, secondary batteries, electrochemical reactors, plating anodes, etc., batteries, gas permeable membranes, This invention relates to a method of manufacturing a gas diffusion membrane used for concentration, humidification, dehumidification, etc.

(従来の技術) 従来、上記用途の反応膜やガス拡散膜を製造するには、
それらの原料である混合微粉末を、フラットなプレスプ
レート上に、大概所要となるように配して、平にならし
、然る後ホットプレスにて前記混合微粉末を結着して、
反応膜やガス拡散膜を作っている。
(Prior art) Conventionally, in order to manufacture reaction membranes and gas diffusion membranes for the above uses,
The mixed fine powder, which is the raw material for these, is arranged on a flat press plate in roughly the required manner and smoothed, and then the mixed fine powder is bonded with a hot press,
We make reaction membranes and gas diffusion membranes.

(発明が解決しようとする問題点) ところが、上記の製造方法では、混合微粉末をプレスプ
レート上に均一な厚さにならすことができないので、ホ
ットプレスにより結着した際、密度むらができ、反応膜
の場合ガスと電解液が接触する通路が全面均等に微細に
分散形成されず、またガス拡散膜の場合ガスが拡散透過
する通路が全面均等に微細に分散形成されず、従って反
応膜は、気液接触反応が有効に行われず、単位面積当り
流せる電流が少ないものであり、またガス拡散膜は、ガ
スの拡散透過が十分に行われず、透過効率が悪いもので
ある。
(Problems to be Solved by the Invention) However, in the above manufacturing method, it is not possible to form the mixed fine powder on the press plate to a uniform thickness, so when it is bonded by hot pressing, density unevenness occurs. In the case of a reaction membrane, the passages through which the gas and electrolyte come into contact are not formed evenly and finely distributed over the entire surface, and in the case of a gas diffusion membrane, the passages through which the gas diffuses and permeates are not formed evenly and finely distributed over the entire surface. The gas-liquid contact reaction does not take place effectively, and the amount of current that can be passed per unit area is small, and the gas diffusion membrane does not sufficiently diffuse and permeate gas, resulting in poor permeation efficiency.

また上記の製造方法では、混合微粉末をプレスプレート
上に、大概所要の面積となるように配して平にならさな
ければならないので、甚だ作業性、生産性が悪いもので
ある。
Furthermore, in the above manufacturing method, the mixed fine powder must be arranged and flattened on the press plate to approximately the required area, resulting in extremely poor workability and productivity.

そこで本発明は、密度むらが無(、ガスを電解液が接触
する通路が全面均等に微細に分散形成された反応膜やガ
スが拡散透過する通路が全面均等に微細に分散形成され
たガス拡散膜を作ることができ、しかも作業性生産性の
良い製造方法を提供しようとするものである。
Therefore, the present invention has developed a reaction membrane in which there is no density unevenness (i.e., a reaction membrane in which the passages through which gas and electrolyte come into contact are uniformly and finely distributed over the entire surface, and a gas diffusion membrane in which the passages through which the gas diffuses and permeates are formed in finely distributed distribution evenly over the entire surface. The purpose of this invention is to provide a manufacturing method that can produce membranes and has good workability and productivity.

(問題点を解決するための手段) 上記問題点を解決するための本発明による反応膜・ガス
拡散膜の製造方法は、反応膜用混合微粉末やガス拡散膜
用混合微粉末等の原料微粉末を、水槽内の水に投入浮上
させ、次に水中にてシートを繰り出して斜上方に引き上
げて水上に浮上する原料微粉末をシート上に付着させ、
然る後ホットプレスにより原料微粉末を結着して、反応
膜やガス拡散膜を作ることを特徴とするものである。
(Means for Solving the Problems) In order to solve the above-mentioned problems, the method for producing a reaction membrane/gas diffusion membrane according to the present invention uses a raw material fine powder such as a mixed fine powder for a reaction membrane or a mixed fine powder for a gas diffusion membrane. Powder is poured into water in a water tank and floated, then a sheet is let out in the water and pulled up diagonally upwards, and the fine raw material powder that floats on the water is deposited on the sheet.
The method is characterized in that the raw material fine powders are then bound together by hot pressing to form a reaction film or a gas diffusion film.

(作用) 上記の如く本発明の反応膜・ガス拡散膜の製造方法では
、原料微粉末を水槽内の水に浮上させるので、容易に原
料微粉末が水上全面に均等に分散する。従って、その後
水中にてシートを繰り出して斜上方に引き上げて水上に
浮上する原料微粉末をシート上に付着させると、均一な
厚さとなるので、乾燥後ホラ1−プレスにより結着して
反応膜やガス拡散膜を作ると、その反応膜やガス拡散膜
は密度むらが無く、ガスと電解液が接触する通路やガス
が拡散透過する通路が全面均等に微細に分散形成された
ものとなる。
(Function) As described above, in the method for producing a reaction membrane/gas diffusion membrane of the present invention, the raw material fine powder is floated on the water in the water tank, so that the raw material fine powder is easily dispersed evenly over the entire surface of the water. Therefore, if the sheet is then let out in water and pulled up diagonally upwards, and the raw material fine powder that floats on the water is deposited on the sheet, it will have a uniform thickness, and after drying, it will be consolidated by a hollow press and the reaction film will be formed. When a reaction membrane or a gas diffusion membrane is made, the reaction membrane or gas diffusion membrane has no density unevenness, and the passages where the gas and electrolyte come into contact and the passages through which the gas diffuses and permeates are formed evenly and finely distributed over the entire surface.

(実施例) 本発明の反応膜・ガス拡散膜の製造方法の一実施例を反
応膜を作る場合について説明する。平均粒径420人の
親水性カーボンブランクと撥水性カーボンブラックと平
均粒径0.3μmのポリ四弗化エチレンの微粉末を47
4:3の割合で混合撹拌した後、この混合微粉末を図面
に示すように幅150璽■、長さ300mm、深さ15
0mmの水槽1内の水2に投入浮上させた。次に水槽l
内の一例に設けられたシート巻取ロール3に巻取られた
幅1501mの1600メツシユのテトロンスクリーン
4を繰り出しして水槽1の他側斜上方に引き上げると同
時に粉末圧縮板を同一速度で移動させ、水2上に浮上す
る混合微粉末5をテトロンスクリーン4上に付着させ、
上下一対のガイドロール6.6′を通過させて混合微粉
末5を圧して微粉末どうしの結着と共に水抜きした。次
いでそのままテトロンスクリーン4を加熱器7を通して
乾燥し、水分を完全に除去した。然る後このテトロンス
クリーン4を剥離し、所要の長さに切断したシート状混
合微粉末をホットプレスにて加圧結着して、厚さ0.1
5龍の帯状の反応膜を作った。
(Example) An example of the method for manufacturing a reaction membrane/gas diffusion membrane of the present invention will be described with reference to a case where a reaction membrane is manufactured. A hydrophilic carbon blank with an average particle size of 420, water-repellent carbon black, and fine powder of polytetrafluoroethylene with an average particle size of 0.3 μm were mixed into 47
After mixing and stirring at a ratio of 4:3, this mixed fine powder was made into a size of 150 mm wide, 300 mm long, and 15 mm deep, as shown in the drawing.
It was floated in water 2 in a 0 mm water tank 1. Next is the aquarium l
A 1,600-mesh Tetron screen 4 with a width of 1,501 m wound around a sheet winding roll 3 provided in one example of the above is let out and pulled up diagonally upward on the other side of the water tank 1, and at the same time the powder compression plate is moved at the same speed. , the mixed fine powder 5 floating on the water 2 is deposited on the Tetron screen 4,
The mixed fine powder 5 was passed through a pair of upper and lower guide rolls 6, 6' and pressed to bind the fine powders together and remove water. Next, the Tetron screen 4 was directly passed through a heater 7 to dry it to completely remove moisture. After that, this Tetron screen 4 was peeled off, and the sheet-like mixed fine powder cut into the required length was pressure-bound using a hot press to form a sheet with a thickness of 0.1 mm.
We created a band-shaped reaction membrane with 5 dragons.

こうして作った反応膜を100枚、光学顕微鏡により組
織検査した処、殆んど密度むらが無く、ガスと電解液が
接触する通路面積が全面均等に分散形成されていた。
When the structure of 100 reaction membranes thus prepared was examined using an optical microscope, it was found that there was almost no density unevenness, and the area of the passages where the gas and electrolyte came into contact were evenly distributed over the entire surface.

この反応膜は、単独にガス拡散電極として、或いはtJ
3水性のガス拡散膜に接合°して複数層のガス拡散電極
として、燃料電池、二次電池、電気化学的リアクター、
めっき用陽極等に使用される。これらに使用した際、反
応膜は、ガスと電解液が接触する通路が全面均等に分散
形成されているので、有効に気液接触反応が行われ、単
位面積当り流せる電流が大きく、極めて効率が高いもの
である。
This reaction membrane can be used alone as a gas diffusion electrode or as a tJ
3.It can be bonded to an aqueous gas diffusion membrane and used as a multilayer gas diffusion electrode in fuel cells, secondary batteries, electrochemical reactors,
Used for plating anodes, etc. When used in these applications, the reaction membrane has channels where gas and electrolyte come into contact that are evenly distributed over the entire surface, so gas-liquid contact reactions occur effectively, allowing a large current to flow per unit area, making it extremely efficient. It's expensive.

尚、上記実施例では反応膜の製造に用いた原料微粉末に
は白金等の触媒を担持させていないが、担持させても良
いものである。また上記の如く製造した反応膜には、触
媒金属化合物溶液を塗布して含浸させた後、空気中で加
熱分解し、Hz中で還元して触媒を親水性カーボンブラ
ンクに付着するようにしても良い。さらにテトロンスク
リーン4の代わりに濾紙、濾布等の他のシートを用いて
も良いものである。またステンレスシートをエンドレス
に使用することもできる。
Incidentally, in the above embodiments, the raw material fine powder used for manufacturing the reaction membrane does not support a catalyst such as platinum, but it may be supported. Alternatively, the reaction membrane produced as described above may be coated with a catalytic metal compound solution to be impregnated, and then thermally decomposed in air and reduced in Hz to adhere the catalyst to a hydrophilic carbon blank. good. Furthermore, other sheets such as filter paper or filter cloth may be used instead of the Tetron screen 4. Also, stainless steel sheets can be used endlessly.

次に本発明の反応膜、ガス拡散膜の製造方法の他の実施
例をガス拡散膜を作る場合について説明する。平均粒径
420人のt0水性カーボンブラックと平均粒径0.3
μmのポリ四弗化エチレンの微粉末を7:3の割合で混
合攪拌した後、この混合微粉末を図面に示す如く幅15
0mm、長さ300龍、深さ150鳳■の水槽1内の水
2に投入浮上させた。次に水槽1内の一例に設けられた
シート巻取ロール3に巻取られた幅150mmの160
0メソシユのテトロンスクリーン4を繰り出して水槽1
内の他側斜上方に引き上げると同時に粉末圧縮板8を同
一速度で移動させ、水2上に浮上する混合微粉末5′を
テトロンスクリーン4上に付着させ、上下一対のガイド
ロール6.6′を通過させて混合微粉末5′を圧して微
粉末どうしの結着と共に水抜きした。
Next, another embodiment of the method for manufacturing a reaction membrane and gas diffusion membrane of the present invention will be described with reference to the case where a gas diffusion membrane is manufactured. Average particle size 420 people t0 aqueous carbon black and average particle size 0.3
After mixing and stirring micron polytetrafluoroethylene fine powder at a ratio of 7:3, the mixed fine powder was mixed with a width of 15 mm as shown in the drawing.
It was floated in water 2 in a tank 1 with a diameter of 0 mm, a length of 300 mm, and a depth of 150 mm. Next, 160 sheets having a width of 150 mm are wound up on a sheet winding roll 3 provided in an example of the water tank 1.
Bring out the Tetron screen 4 with 0 mesh and open the aquarium 1.
At the same time, the powder compression plate 8 is moved at the same speed to make the mixed fine powder 5' floating on the water 2 adhere to the Tetron screen 4, and the pair of upper and lower guide rolls 6.6' The mixed fine powder 5' was compressed by passing through it to bind the fine powders together and remove water.

次いでそのままテトロンスクリーン4を加熱器7を通し
て乾燥し、水分を完全に除去した。然る後このテトロン
スクリーン4上の混合微粉末5をホットプレス8にて加
圧結着して厚さ0.5鶴の帯状のガス拡散膜10を作っ
た。
Next, the Tetron screen 4 was directly passed through a heater 7 to dry it to completely remove moisture. Thereafter, the mixed fine powder 5 on the Tetron screen 4 was pressed and bonded using a hot press 8 to form a band-shaped gas diffusion membrane 10 having a thickness of 0.5 mm.

こうして作ったガス拡散膜を100枚、光学顕微鏡によ
り組織検査した処、殆んど密度むらが無く、ガスの拡散
透過する通路面積が全面均等に分散形成されていた。
When the structure of 100 gas diffusion films thus prepared was examined using an optical microscope, it was found that there was almost no density unevenness, and the passage area through which gas diffused and permeated was evenly distributed over the entire surface.

このガス拡散膜は、その後所要の寸法、形状を截断し、
テトロンスクリーン4を剥離して、燃料電池、二次電池
のガス拡散電橋に於けるガス拡散層として、また気体透
過膜や濃縮、加湿、除湿用の茶気透過膜として使用され
る。これに使用した際、ガス拡散膜は、ガス拡散透過す
る通路が全面均等に分散形成されているので、気体や蒸
気の拡散透過が十分に行われ、極めて効率が高いもので
ある。
This gas diffusion membrane is then cut into the required dimensions and shape.
The Tetron screen 4 is peeled off and used as a gas diffusion layer in a gas diffusion bridge of a fuel cell or secondary battery, or as a gas permeable membrane or a brown air permeable membrane for concentration, humidification, and dehumidification. When used for this purpose, the gas diffusion membrane has gas diffusion and permeation passages evenly distributed over the entire surface, so that gas and vapor can be sufficiently diffused and permeated, resulting in extremely high efficiency.

(発明の効果) 以上の説明で判るように本発明の反応膜・ガス拡散膜の
製造方法によれば、均一な厚さで密度むらが無く、ガス
と電解液が接触する通路やガスが拡散透過する流路が全
面均等に微細に分ii1.形成されて、気液接触反応効
率やガスの拡散j3過効−名の極めて高い反応膜やガス
拡散膜を得ることができる。
(Effects of the Invention) As can be seen from the above explanation, according to the method for producing a reaction membrane/gas diffusion membrane of the present invention, the thickness is uniform and there is no density unevenness, and the passages where gas and electrolyte come into contact and the gas diffusion membrane are uniform. The permeating flow path is divided evenly and finely over the entire surface ii1. As a result, it is possible to obtain a reaction film or a gas diffusion film with extremely high gas-liquid contact reaction efficiency and gas diffusion efficiency.

また本発明の反応膜・ガス拡散膜の一゛J造方法では、
水槽中に投入浮上させた原料微粉末が容易に水上の全面
に均等に分散し、その後水中にてシートを繰り出して斜
上方に引き上げることにより水上に浮上する原料微粉末
がシー上に均一な厚さとなって付着するので、手間がか
からず、極めて製作作業性が良く、しかも連続的にシー
(・」二に原料微分末が均一な厚さに付着するので掻め
て生産性が良い。
In addition, in the method for manufacturing a reaction membrane/gas diffusion membrane of the present invention,
The raw material fine powder floated into the water tank is easily dispersed evenly over the entire surface of the water, and then the sheet is let out in the water and pulled up diagonally upwards, so that the raw material fine powder floats on the water to a uniform thickness on the sea. Because it adheres in a single layer, it does not take much time and is extremely easy to work with.In addition, since the raw material derivative powder adheres to a uniform thickness on the sheet continuously, productivity is high.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明の反応膜・ガス拡散膜の製造方法を示す図で
ある。 出願人  田中貴金属工業株式会社 1・・・水槽 ?・・・〃末ユ稍肱 手 続 補 正 書く方式) 昭和62年Σ月乙口 3、補正をする仔 事件との関係   特許出願人 昭和62年1月27日 5、補正の対象 明細書の発明の名称及び特許請求の範囲の(聞6、補正
の内容 (1)明細書第1頁の特許請求の範囲を別紙のJり補正
する。 (2)同第1頁第3行目の「等Jを特徴する特許請求の
範囲 反応膜用混合粉末やガス拡散膜用混合微粉末等の原料i
故粉末を、水槽内の水に投入浮上させ、次に水中にてシ
ートを繰り出して斜上方に引き上げて水上に浮上する原
料微粉末をシート上に付着させ、然る後ホットプレスに
より原料微粉末を結着して、反応膜やガス拡散膜を作る
ことを特徴とする反応膜・ガス拡散膜の製造方法。
The figure is a diagram showing a method for manufacturing a reaction membrane/gas diffusion membrane of the present invention. Applicant Tanaka Kikinzoku Kogyo Co., Ltd. 1...Aquarium?・・・〃End of procedure, continuation, amendment, writing method) Otsuguchi, Σ, 1986 3, Relationship with the case where the amendment is made Patent applicant January 27, 1988 5, of the specification to be amended (6) Contents of amendment (1) The scope of claims on page 1 of the specification is amended as shown in the attached sheet. (2) " Claims characterized by J. Raw materials i for mixed powders for reaction membranes, mixed fine powders for gas diffusion membranes, etc.
The waste powder is poured into water in a water tank and floated. Next, a sheet is fed out in the water and pulled up diagonally to make the raw material fine powder floating on the water adhere to the sheet. After that, the raw material fine powder is heated using a hot press. A method for producing a reaction membrane/gas diffusion membrane, which is characterized by forming a reaction membrane or a gas diffusion membrane by binding together the following.

Claims (1)

【特許請求の範囲】[Claims] 反応膜用混合粉末やガス拡散膜用混合微粉末等の原料微
粉末を、水槽内の水に投入浮上させ、次に水中にてシー
トを繰り出して斜上方に引き上げて水上に浮上する原料
微粉末をシート上に付着させ、然る後ホットプレスによ
り原料微粉末を結着して、反応膜やガス拡散膜等を作る
ことを特徴とする反応膜・ガス拡散膜等の製造方法。
Fine raw material powder, such as mixed powder for reaction membranes or mixed fine powder for gas diffusion membranes, is poured into water in a water tank and floated, then a sheet is let out in the water and pulled up diagonally upwards to float on the water. A method for producing a reaction membrane, a gas diffusion membrane, etc., characterized in that a reaction membrane, a gas diffusion membrane, etc. are produced by adhering the mixture onto a sheet and then binding the raw material fine powder by hot pressing.
JP61231583A 1986-09-30 1986-09-30 Method for manufacturing reaction film / gas diffusion film Expired - Lifetime JPH0633480B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61231583A JPH0633480B2 (en) 1986-09-30 1986-09-30 Method for manufacturing reaction film / gas diffusion film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61231583A JPH0633480B2 (en) 1986-09-30 1986-09-30 Method for manufacturing reaction film / gas diffusion film

Publications (2)

Publication Number Publication Date
JPS6386883A true JPS6386883A (en) 1988-04-18
JPH0633480B2 JPH0633480B2 (en) 1994-05-02

Family

ID=16925792

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61231583A Expired - Lifetime JPH0633480B2 (en) 1986-09-30 1986-09-30 Method for manufacturing reaction film / gas diffusion film

Country Status (1)

Country Link
JP (1) JPH0633480B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1006599A1 (en) * 1998-12-02 2000-06-07 Katayama Special Industries, Ltd. Method of producing electrode for battery and electrode produced by method
WO2000055933A1 (en) * 1999-03-16 2000-09-21 Johnson Matthey Public Limited Company Gas diffusion substrates

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55141071A (en) * 1979-04-23 1980-11-04 Matsushita Electric Ind Co Ltd Production of gas diffusion electrode

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55141071A (en) * 1979-04-23 1980-11-04 Matsushita Electric Ind Co Ltd Production of gas diffusion electrode

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1006599A1 (en) * 1998-12-02 2000-06-07 Katayama Special Industries, Ltd. Method of producing electrode for battery and electrode produced by method
WO2000055933A1 (en) * 1999-03-16 2000-09-21 Johnson Matthey Public Limited Company Gas diffusion substrates
US6531240B1 (en) 1999-03-16 2003-03-11 Johnson Matthey Public Limited Company Gas diffusion substrates

Also Published As

Publication number Publication date
JPH0633480B2 (en) 1994-05-02

Similar Documents

Publication Publication Date Title
US3956014A (en) Precisely-structured electrochemical cell electrode and method of making same
RU2172542C2 (en) Method for continuous production of membrane-to- electrode joint
US5561000A (en) Gas diffusion electrode with catalyst for an electrochemical cell with solid electrolyte and method for making such an electrode
US4931168A (en) Gas permeable electrode
CA2405318C (en) Gas diffusion substrate
JP3549241B2 (en) Electrode for polymer solid electrolyte fuel cell and joined body thereof with polymer solid electrolyte
GB1582517A (en) Fuel cell system utilizing ion exchange membranes and bipolar plates
RU2001108539A (en) LOCATED PERPENDICULAR MEMBRANE GAS DIFFUSION STRUCTURE IN FUEL CELLS WITH POLYMER ELECTROLYTE MEMBRANES
US4585711A (en) Hydrogen electrode for a fuel cell
GB2033820A (en) Forming an electrochemical cell
DE112005000911T5 (en) Electrolyte layer for a fuel cell, fuel cell and method for producing the electrolyte layer for the fuel cell
JP4578769B2 (en) Gas diffusion substrate
CA2767891A1 (en) Gas diffusion layer member for solid polymer type fuel cell and solid polymer type fuel cell
JPH05283082A (en) Gas diffused electrode and manufacture thereof
EP1165885B1 (en) Nonwoven web
JP3502508B2 (en) Direct methanol fuel cell
CA2098606A1 (en) Efficiency enhancement for solid-electrolyte fuel cell
US3556856A (en) Three-layer fuel cell electrode
CA2478438A1 (en) High performance fuel cells
JPS6386883A (en) Production of reaction membrane and gas diffusion membrane
JPH08148152A (en) Solid polymeric fuel cell electrode and manufacture thereof
JPH0350039B2 (en)
JPH04506583A (en) Improved electrode plate structure
JPH10189002A (en) Electrode for fuel cell and its manufacture
JPS62208553A (en) Gas diffusion electrode and its manufacture