JPH05283082A - Gas diffused electrode and manufacture thereof - Google Patents

Gas diffused electrode and manufacture thereof

Info

Publication number
JPH05283082A
JPH05283082A JP4080958A JP8095892A JPH05283082A JP H05283082 A JPH05283082 A JP H05283082A JP 4080958 A JP4080958 A JP 4080958A JP 8095892 A JP8095892 A JP 8095892A JP H05283082 A JPH05283082 A JP H05283082A
Authority
JP
Japan
Prior art keywords
gas diffusion
gas
polytetrafluoroethylene
carbon black
reaction layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4080958A
Other languages
Japanese (ja)
Inventor
Takuya Moriga
卓也 森賀
Isao Hirata
勇夫 平田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP4080958A priority Critical patent/JPH05283082A/en
Publication of JPH05283082A publication Critical patent/JPH05283082A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To provide the gas diffusion electrode having the excellent gas diffus ing performance to be used for solid polyelectrolyte fuel cell. CONSTITUTION:A sheet-like reaction layer made of hydrophilic carbon black and polytetrafluoroethylene is pressed on a gas diffused layer made of porous carbon base material having water repellency by hot-pressing, or the gas diffused layer is coated with the slurry made of hydrophilic carbon black and polytetrafluoroethylene, and after the carrying, the slurry coated gas diffused layer is dried and burned to obtain a gas diffusion electrode for solid polyelectrolyte fuel cell.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は固体高分子電解質型燃料
電池に用いるガス拡散電極及びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a gas diffusion electrode used in a solid polymer electrolyte fuel cell and a method for producing the same.

【0002】[0002]

【従来の技術】従来、上記燃料電池用のガス拡散電極と
しては親水性カーボンブラック、ポリ四弗化エチレンよ
りなる親水性シートと、撥水性カーボンブラック、ポリ
四弗化エチレンよりなる撥水性シートを圧着、圧延を複
数回繰り返して成形してなるものである。すなわち、従
来の該ガス拡散電極は親水性カーボンブラック/ポリ四
弗化エチレン(重量比で80/20〜50/50、好ま
しくは70/30〜60/40)を界面活性剤と共に溶
媒に攪拌、混合してスラリ化し、ろ過、乾燥、微粉化し
て再度溶媒を加えて混練してロール機で圧延して得た反
応層となる親水性シート(0.2〜0.4mm厚さ)
と、撥水性カーボンブラック/ポリ四弗化エチレン(重
量比で80/20〜50/50、好ましくは75/25
〜60〜40)を界面活性と共に溶媒に攪拌、混合して
スラリ化し、凝集化、ろ過、澱粉化して再度溶媒を加え
て混練してロール機で圧延して得たガス拡散層となる撥
水性シート(0.5〜2mm厚さ)とを重ね合せ、ロー
ル機で圧延して0.5〜0.8mm厚さのものとし、乾
燥、脱界面活性剤として製造されていた。
2. Description of the Related Art Conventionally, as a gas diffusion electrode for a fuel cell, a hydrophilic sheet made of hydrophilic carbon black and polytetrafluoroethylene and a water repellent sheet made of water repellent carbon black and polytetrafluoroethylene are used. It is formed by repeating pressure bonding and rolling a plurality of times. That is, in the conventional gas diffusion electrode, hydrophilic carbon black / polytetrafluoroethylene (weight ratio 80/20 to 50/50, preferably 70/30 to 60/40) is stirred in a solvent together with a surfactant, A hydrophilic sheet (0.2 to 0.4 mm thick) that becomes a reaction layer obtained by mixing and slurrying, filtering, drying, and pulverizing, adding a solvent again and kneading and rolling with a roll machine.
And water-repellent carbon black / polytetrafluoroethylene (weight ratio 80/20 to 50/50, preferably 75/25
-60 to 40) is stirred and mixed with a solvent together with a surface active agent to form a slurry, which is agglomerated, filtered, made into starch, added again with a solvent, kneaded, and rolled into a gas diffusion layer obtained by rolling with a roll machine. The sheet (0.5 to 2 mm thick) was overlaid and rolled by a rolling machine to a thickness of 0.5 to 0.8 mm, which was then manufactured as a drying and desurfactant.

【0003】このように従来の燃料電池用のガス拡散電
極は親水性シートと撥水性シートを重ね合せる前又は後
の厚みを圧延比率をコントロールすることにより、反応
層(親水性シート)と拡散層(撥水性シート)の層厚を
変化させることが行われていた。
As described above, in the conventional gas diffusion electrode for a fuel cell, the reaction layer (hydrophilic sheet) and the diffusion layer are controlled by controlling the rolling ratio before or after the hydrophilic sheet and the water-repellent sheet are superposed. The layer thickness of the (water repellent sheet) has been changed.

【0004】[0004]

【発明が解決しようとする課題】上記従来のガス拡散電
極のガス拡散層は撥水性カーボンブラック、ポリ四弗化
エチレンの混合物をロール法等を用いて圧延し、シート
状に形成されたものであり、ガス拡散通路が十分に確保
されておらず、かつ結着剤としてポリ四弗化エチレンを
含有するため電気伝導性を低下させるという欠点があっ
た。また、反応層においても親水性カーボンブラック、
ポリ四弗化エチレンの混合物をガス拡散層と同様にシー
ト状に形成されたものであり、ロール法等の圧延による
反応層の厚みに限界があり、反応層のガス拡散性に大き
く影響していた。特に、上記従来のガス拡散電極を固体
高分子電解質型燃料電池の空気極側のガス拡散電極とし
て用いた場合には、ガス拡散性の燃料電気の性能に与え
る影響は大きいものがあった。
The gas diffusion layer of the conventional gas diffusion electrode is formed by rolling a mixture of water-repellent carbon black and polytetrafluoroethylene by a roll method or the like into a sheet. However, the gas diffusion passage is not sufficiently secured, and since polytetrafluoroethylene is contained as a binder, there is a drawback that electrical conductivity is lowered. Also in the reaction layer, hydrophilic carbon black,
A mixture of polytetrafluoroethylene was formed into a sheet like the gas diffusion layer, and the thickness of the reaction layer due to rolling such as the roll method is limited, which greatly affects the gas diffusion of the reaction layer. It was In particular, when the above-mentioned conventional gas diffusion electrode is used as the gas diffusion electrode on the air electrode side of a solid polymer electrolyte fuel cell, there is a great effect on the gas-diffusible fuel-electric performance.

【0005】本発明は上記技術水準に鑑み、従来の固体
高分子電解質型燃料電池に用いられているガス拡散電極
の有する不具合を解消した固体高分子電解質型燃料電池
用ガス拡散電極及びその製造方法を提供しようとするも
のである。
In view of the above-mentioned state of the art, the present invention solves the problems of the gas diffusion electrode used in the conventional solid polymer electrolyte fuel cell, and a gas diffusion electrode for a solid polymer electrolyte fuel cell, and a method for producing the same. Is to provide.

【0006】[0006]

【課題を解決するための手段】本発明は (1)撥水性を有する多孔性炭素基材からなるガス拡散
層と、該ガス拡散層上に設けられた親水性カーボンブラ
ックとポリ四弗化エチレンからなる反応層を具備するこ
とを特徴とする固体高分子電解質型燃料電池用ガス拡散
電極。
The present invention provides (1) a gas diffusion layer made of a porous carbon substrate having water repellency, a hydrophilic carbon black and polytetrafluoroethylene provided on the gas diffusion layer. A gas diffusion electrode for a solid polymer electrolyte fuel cell, comprising a reaction layer comprising

【0007】(2)撥水性を有する多孔性炭素基材から
なるガス拡散層上に、親水性カーボンブラックとポリ四
弗化エチレンからなるシート状の反応層をホットプレス
法により圧着することを特徴とする固体高分子電解質型
燃料電池用ガス拡散電極の製造方法。
(2) A sheet-like reaction layer made of hydrophilic carbon black and polytetrafluoroethylene is pressure-bonded onto the gas diffusion layer made of a porous carbon substrate having water repellency by a hot pressing method. And a method for producing a gas diffusion electrode for a solid polymer electrolyte fuel cell.

【0008】(3)撥水性を有する多孔性炭素基材から
なるガス拡散層上に、親水性カーボンブラックとポリ四
弗化エチレンからなるスラリ状の反応層材を塗布、担持
後、乾燥、焼成することを特徴とする固体高分子電解質
型燃料電池用ガス拡散電極の製造方法。 である。
(3) A slurry-like reaction layer material composed of hydrophilic carbon black and polytetrafluoroethylene is applied on a gas diffusion layer composed of a porous carbon base material having water repellency, carried, dried and fired. A method for producing a gas diffusion electrode for a polymer electrolyte fuel cell, comprising: Is.

【0009】本発明のガス拡散層となる撥水性を有する
多孔性炭素基材とは炭素繊維織物、カーボンペーパーな
どの多孔性カーボン材をポリ四弗化エチレンを含浸、担
持させて撥水性を付与したものをいう。多孔性炭素基材
としては、一般的に体積固有抵抗:10-3〜10-1Ω−
cm、好ましくは10-2〜10-3Ω−cm、平均気孔
径:1〜200μm、好ましくは30〜150μm、気
孔率:20〜80%、好ましくは50〜70%、厚み:
0.5〜5mm、好ましくは0.7〜2mmのものが使
用される。
The water-repellent porous carbon base material which serves as the gas diffusion layer of the present invention is provided with water repellency by impregnating and supporting polytetrafluoroethylene on a porous carbon material such as carbon fiber woven fabric or carbon paper. I say what I did. As a porous carbon substrate, generally, volume resistivity: 10 −3 to 10 −1 Ω−
cm, preferably 10 −2 to 10 −3 Ω-cm, average pore diameter: 1 to 200 μm, preferably 30 to 150 μm, porosity: 20 to 80%, preferably 50 to 70%, thickness:
One having a thickness of 0.5 to 5 mm, preferably 0.7 to 2 mm is used.

【0010】また、本発明の反応層の材料となる親水性
カーボンブラックは通常用いられているもの、例えばバ
ルカンXC−72R(商品名:Cabot社製)が使用
され、反応層としては親水性カーボンブラック/ポリ四
弗化エチレン(重量比)=80/20〜50/50、好
ましくは70/30〜60/40の配合割合のものが使
用され、反応層の層厚みは一般的に20〜200μm、
好ましくは40〜100μmのものが使用される。
The hydrophilic carbon black used as the material of the reaction layer of the present invention is a commonly used one, for example, Vulcan XC-72R (trade name: manufactured by Cabot), and the reaction layer is made of hydrophilic carbon black. A blending ratio of black / polytetrafluoroethylene (weight ratio) = 80/20 to 50/50, preferably 70/30 to 60/40 is used, and the layer thickness of the reaction layer is generally 20 to 200 μm. ,
It is preferably 40 to 100 μm.

【0011】[0011]

【作用】本発明のガス拡散電極は、ガス拡散層として多
孔性炭素基材を用いているので、十分なガス拡散通路が
確保された構造となっているので、固体高分子電解質燃
料電池に使用した場合、ガス拡散性が向上し、単位面積
当りの流れる電流が著しく大きいものとなる。
The gas diffusion electrode of the present invention uses a porous carbon base material as a gas diffusion layer, and therefore has a structure in which sufficient gas diffusion passages are secured, so that it is used in a solid polymer electrolyte fuel cell. In that case, the gas diffusivity is improved, and the current flowing per unit area becomes extremely large.

【0012】[0012]

【実施例】【Example】

(実施例1)平均気孔径:40μm、気孔率:65%、
固有抵抗:2×10-2Ω−cmである多孔性炭素質基体
をポリ四弗化エチレンにより防湿化処理を施しガス拡散
層を得た。また、平均粒径:400Åの親水性カーボン
ブラックと平均粒径:0.3μmのポリ四弗化エチレン
を重量比70:30の割合で混合し、それにソルベント
ナフサを1:1.9の比率が混合してロール法により、
圧延成形し、厚さ:0.2mmのシートに成形された反
応層を得た。
(Example 1) Average pore diameter: 40 μm, porosity: 65%,
A gas diffusion layer was obtained by subjecting a porous carbonaceous substrate having a specific resistance of 2 × 10 -2 Ω-cm to a moisture-proof treatment with polytetrafluoroethylene. Further, hydrophilic carbon black having an average particle diameter of 400Å and polytetrafluoroethylene having an average particle diameter of 0.3 μm are mixed in a weight ratio of 70:30, and solvent naphtha is mixed in a ratio of 1: 1.9. By mixing and rolling,
Roll forming was performed to obtain a reaction layer formed into a sheet having a thickness of 0.2 mm.

【0013】次に、上記ガス拡散層と反応層を重ねて3
80℃、180kg/cm2 Gでホットプレスし、ガス
拡散電極1を得た。
Next, the gas diffusion layer and the reaction layer are overlapped to form 3 layers.
Gas pressing electrode 1 was obtained by hot pressing at 80 ° C. and 180 kg / cm 2 G.

【0014】(比較例1)比較のために、平均粒径:4
20Åの撥水性カーボンブラックに平均粒径:0.3m
mのポリ四弗化エチレンを重量比65:35の割合で混
合し、それにソルベントナフサを1:1.6の比率で混
合し、ロール法で圧延成形し、厚さ:1mmのシートに
成形されたガス拡散層を得た。また、実施例1と同様に
して反応層を得た。次に、上記ガス拡散層と反応層を重
ねて、380℃、180kg/cm 2 Gでホットプレス
しガス拡散電極2を得た。
Comparative Example 1 For comparison, average particle size: 4
20Å water repellent carbon black with an average particle size of 0.3 m
m polytetrafluoroethylene was mixed at a weight ratio of 65:35.
And mix it with solvent naphtha at a ratio of 1: 1.6.
Combined, roll-formed by roll method, thickness: 1mm sheet
A molded gas diffusion layer was obtained. Also, as in Example 1.
The reaction layer was obtained. Next, stack the gas diffusion layer and the reaction layer
Hey, 380 ℃, 180kg / cm 2Hot press with G
Then, the gas diffusion electrode 2 was obtained.

【0015】(比較例2)さらに比較のために、比較例
1と同様にしてガス拡散層を得、実施例1と同様にして
反応層を得、このガス拡散層と反応層を重ねてロール法
により圧着、圧延を繰り返し、ガス拡散電極3を得た。
(Comparative Example 2) For further comparison, a gas diffusion layer was obtained in the same manner as in Comparative Example 1 and a reaction layer was obtained in the same manner as in Example 1. The gas diffusion layer and the reaction layer were stacked and rolled. By repeating pressure bonding and rolling by the method, a gas diffusion electrode 3 was obtained.

【0016】こうして作ったガス拡散電極1,2及び3
のガス拡散性の評価方法として図1に略記される試験セ
ルを作製し、ガス拡散電極を隔てて片側に酸素ガス(ヘ
リウムキャリヤーガス)を、もう一方に純ヘリウムガス
を流し、酸素ガスの純ヘリウム気流中への拡散をガスク
ロマトグラフにてセルの出口2ケ所の分析ガスを測定し
ガス拡散性を評価した。このように求めたガス拡散性の
結果を、酸素のガス拡散定数として表1に示す。
The gas diffusion electrodes 1, 2 and 3 thus produced
As a method for evaluating the gas diffusivity of the above, a test cell, which is schematically shown in FIG. The gas diffusivity was evaluated by measuring the analysis gas at the two outlets of the cell using a gas chromatograph to measure the diffusion into the helium flow. The results of the gas diffusivity thus obtained are shown in Table 1 as oxygen gas diffusion constants.

【0017】[0017]

【表1】 [Table 1]

【0018】表1の結果から、上記ガス拡散定数は実用
電極における限界電流密度に対応することから本発明の
ガス拡散電極はガス拡散性が向上し、ガス拡散電極とし
て単位面積当りの流れる電流が大きい効果がある。
From the results shown in Table 1, since the gas diffusion constant corresponds to the limiting current density in the practical electrode, the gas diffusion electrode of the present invention has improved gas diffusivity, and the current flowing per unit area as the gas diffusion electrode is increased. It has a great effect.

【0019】また、上記実施例では溶媒としてソルベン
トナフサを使用したが、これに限るものではなく水やエ
タノール、イソプロピルアルコール類やn−ブタン等の
炭化水素でもよく、さらに界面活性剤の添加を行っても
よい。
Further, although solvent naphtha was used as the solvent in the above examples, the solvent is not limited to this, and water, ethanol, isopropyl alcohols, hydrocarbons such as n-butane may be used, and a surfactant is further added. May be.

【0020】(実施例2)平均気孔径:60〜120μ
m、気孔率:75%、固有抵抗:2×10-2Ω−cmで
ある多孔性炭素質基体をポリ四弗化エチレンにより防湿
化処理を施し、ガス拡散層を得た。また、平均粒径:4
00Åの親水性カーボンブラックと平均粒径:0.3μ
mのポリ四弗化エチレンを重量比50:50の割合で混
合し、それに水及び界面活性剤を加えてスラリを得た。
このスラリを上記ガス拡散層上にドクターブレード法に
より塗布した後、乾燥し、250〜300℃の低酸素雰
囲気下で焼成し反応層の厚さ:20μmのガス拡散電極
4を得た。
(Example 2) Average pore diameter: 60 to 120 μm
m, porosity: 75%, specific resistance: 2 × 10 −2 Ω-cm, a porous carbonaceous substrate was subjected to a moisture-proof treatment with polytetrafluoroethylene to obtain a gas diffusion layer. Also, the average particle size: 4
00Å hydrophilic carbon black and average particle size: 0.3μ
Polytetrafluoroethylene of m was mixed in a weight ratio of 50:50, and water and a surfactant were added thereto to obtain a slurry.
The slurry was applied onto the gas diffusion layer by the doctor blade method, dried, and fired in a low oxygen atmosphere at 250 to 300 ° C. to obtain a gas diffusion electrode 4 having a reaction layer thickness of 20 μm.

【0021】(実施例3)また、上記実施例2と同様に
して反応層の厚さ:40μmのガス拡散電極5を得た。
(Example 3) In the same manner as in Example 2 above, a gas diffusion electrode 5 having a reaction layer thickness of 40 µm was obtained.

【0022】(比較例3)平均粒径:420Åの撥水性
カーボンブラックと平均粒径:0.3mmのポリ四弗化
エチレンを重量比65:35の割合で混合し、それにソ
ルベントナフサを1:1.6の比率で混合し、ロール法
で圧延成形し、厚さ:1mmのシートに成形されたガス
拡散層を得た。また、平均粒径:400Åの親水性カー
ボンブラックと平均粒径:0.3mmのポリ四弗化エチ
レンを重量比50:50の割合で混合し、それにソルベ
ントナフサを1:1.8の比率で混合し、ロール法によ
り圧延成形し、厚さ:0.2mmのシートに成形された
反応層を得た。
(Comparative Example 3) Water-repellent carbon black having an average particle diameter of 420Å and polytetrafluoroethylene having an average particle diameter of 0.3 mm were mixed at a weight ratio of 65:35, and solvent naphtha was mixed with 1 :. The mixture was mixed at a ratio of 1.6 and roll-molded by a roll method to obtain a gas diffusion layer molded into a sheet having a thickness of 1 mm. Further, hydrophilic carbon black having an average particle size of 400Å and polytetrafluoroethylene having an average particle size of 0.3 mm are mixed in a weight ratio of 50:50, and solvent naphtha is mixed in a ratio of 1: 1.8. The mixture was mixed and roll-formed by a roll method to obtain a reaction layer formed into a sheet having a thickness of 0.2 mm.

【0023】次に、上記ガス拡散層と反応層を重ねてロ
ール法により圧着、圧延を繰り返し、反応層150μm
のガス拡散電極6を得た。
Next, the gas diffusion layer and the reaction layer were overlaid, and pressure bonding and rolling were repeated by a roll method to obtain a reaction layer of 150 μm.
The gas diffusion electrode 6 of was obtained.

【0024】上記実施例2,3及び比較例3にて作った
ガス拡散電極4,5及び6中のガス拡散性の評価方法と
して、前記図1に略記した試験セルを作製し、ガス拡散
電極を隔てて片側に酸素ガス(ヘリウムガスキャリヤ
ー)を、もう一方に純ヘリウムガスを流し、酸素ガスの
純ヘリウム気流中への拡散をガスクロマトグラフにて、
セルの出口の2ケ所の分析ガスを測定しガス拡散性を評
価した。このようにして求めたガス拡散性の結果を酸素
のガス拡散定数として表2に示す。
As a method for evaluating the gas diffusivity in the gas diffusion electrodes 4, 5 and 6 produced in Examples 2 and 3 and Comparative Example 3 described above, the test cell outlined in FIG. Oxygen gas (helium gas carrier) is made to flow on one side across and the pure helium gas is made to flow on the other side, and the diffusion of oxygen gas into the pure helium flow is analyzed by gas chromatography.
The gas diffusivity was evaluated by measuring the analysis gas at two locations at the outlet of the cell. The gas diffusivity results thus obtained are shown in Table 2 as oxygen gas diffusion constants.

【0025】[0025]

【表2】 [Table 2]

【0026】(実験例)実施例2,3及び比較例3で作
ったガス拡散電極4,5及び6上に白金を吸引塗布し、
酸化、還元処理を行い、電極の見かけ表面積当り2mg
の白金触媒を担持した触媒担持電極1,2及び3を得
た。さらに、固体高分子電解質膜(例えば、Nafio
nR117:商品名)と触媒担持電極1,2及び3をホ
ットプレス法により、それぞれセル1,2及び3を得
た。
(Experimental Example) Platinum was suction coated on the gas diffusion electrodes 4, 5 and 6 prepared in Examples 2 and 3 and Comparative Example 3,
2 mg per apparent surface area of the electrode after oxidation and reduction treatment
Catalyst-supporting electrodes 1, 2 and 3 carrying the platinum catalyst of No. 1 were obtained. Furthermore, a solid polymer electrolyte membrane (for example, Nafio
nR117: trade name) and catalyst-supporting electrodes 1, 2 and 3 were obtained by hot pressing to obtain cells 1, 2 and 3, respectively.

【0027】上記セル1,2及び3の単セル発電テスト
(燃料:水素、酸化剤:空気)を行った結果を表3に示
す。
Table 3 shows the results of the single cell power generation test (fuel: hydrogen, oxidizer: air) of the above cells 1, 2 and 3.

【0028】[0028]

【表3】 [Table 3]

【0029】表3の結果より、本発明のガス拡散電極を
用いたセルの発電性能は向上していることが明らかにな
った。
From the results shown in Table 3, it was revealed that the power generation performance of the cell using the gas diffusion electrode of the present invention was improved.

【0030】固体高分子電解質燃料電池の発電特性はア
ノード極(水素極)における活性化過電圧及び物質移動
過電圧を無視するという仮定の上で次式で示される。 E=E0 −blogi−iR 上式において、E0 :触媒活性を考慮した平衡電位、
b:ターフェル係数、R:内部抵抗{電解質抵抗、オー
ム損集電抵抗物質移動(主に反応層)抵抗、i:電流密
度}を表わす。ターフェル係数bは反応層における構造
因子によるものであり、理想的にはb=0である。すな
わち、bが小さいということは反応層中のガス拡散性が
よいということを示す。
The power generation characteristics of the solid polymer electrolyte fuel cell are expressed by the following equation on the assumption that the activation overvoltage and the mass transfer overvoltage at the anode (hydrogen electrode) are ignored. E = E 0 -blogi-iR In the above equation, E 0 : equilibrium potential in consideration of catalytic activity,
b: Tafel coefficient, R: internal resistance {electrolyte resistance, ohmic loss current collecting resistance mass transfer (mainly reaction layer) resistance, i: current density}. The Tafel coefficient b is due to the structure factor in the reaction layer, and ideally b = 0. That is, the fact that b is small means that the gas diffusion property in the reaction layer is good.

【0031】上記表3の発電テスト結果を上記式によっ
て解析した結果を表4に示す。
Table 4 shows the result of analyzing the power generation test result of Table 3 by the above formula.

【0032】[0032]

【表4】 [Table 4]

【0033】表4の結果から本発明によって反応層厚み
を薄くできることから反応層におけるガス拡散性が向上
していることが明らかになった。
From the results shown in Table 4, it is clear that the present invention can reduce the thickness of the reaction layer, and thus the gas diffusivity in the reaction layer is improved.

【0034】また、上記実施例2おいて、スラリの溶媒
として水及び界面活性剤を使用したが、これに限るもの
ではなく、エタノール、イソプロピルアルコール類やn
−ブタン類の炭化水素でもよい。
Although water and a surfactant were used as the solvent for the slurry in Example 2 above, the present invention is not limited to this, and ethanol, isopropyl alcohol and n are used.
-Butane hydrocarbons may also be used.

【0035】[0035]

【発明の効果】以上、詳述したように、本発明によれば
ガス拡散性の高いガス拡散電極を提供することができ
る。
As described above in detail, according to the present invention, a gas diffusion electrode having high gas diffusivity can be provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のガス拡散電極のガス拡散評価用の試験
セルの概略説明図
FIG. 1 is a schematic explanatory view of a test cell for evaluating gas diffusion of a gas diffusion electrode of the present invention.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 撥水性を有する多孔性炭素基材からなる
ガス拡散層と、該ガス拡散層上に設けられた親水性カー
ボンブラックとポリ四弗化エチレンからなる反応層を具
備することを特徴とする固体高分子電解質型燃料電池用
ガス拡散電極。
1. A gas diffusion layer comprising a porous carbon substrate having water repellency and a reaction layer comprising hydrophilic carbon black and polytetrafluoroethylene provided on the gas diffusion layer. A gas diffusion electrode for a solid polymer electrolyte fuel cell.
【請求項2】 撥水性を有する多孔性炭素基材からなる
ガス拡散層上に、親水性カーボンブラックとポリ四弗化
エチレンからなるシート状の反応層をホットプレス法に
より圧着することを特徴とする固体高分子電解質型燃料
電池用ガス拡散電極の製造方法。
2. A sheet-like reaction layer made of hydrophilic carbon black and polytetrafluoroethylene is press-bonded onto the gas diffusion layer made of a porous carbon substrate having water repellency by a hot pressing method. Method for producing gas diffusion electrode for polymer electrolyte fuel cell.
【請求項3】 撥水性を有する多孔性炭素基材からなる
ガス拡散層上に、親水性カーボンブラックとポリ四弗化
エチレンからなるスラリ状の反応層材を塗布、担持後、
乾燥、焼成することを特徴とする固体高分子電解質型燃
料電池用ガス拡散電極の製造方法。
3. A slurry-like reaction layer material composed of hydrophilic carbon black and polytetrafluoroethylene is applied and carried on a gas diffusion layer composed of a porous carbon substrate having water repellency,
A method for producing a gas diffusion electrode for a solid polymer electrolyte fuel cell, which comprises drying and firing.
JP4080958A 1992-04-02 1992-04-02 Gas diffused electrode and manufacture thereof Pending JPH05283082A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4080958A JPH05283082A (en) 1992-04-02 1992-04-02 Gas diffused electrode and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4080958A JPH05283082A (en) 1992-04-02 1992-04-02 Gas diffused electrode and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH05283082A true JPH05283082A (en) 1993-10-29

Family

ID=13733024

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4080958A Pending JPH05283082A (en) 1992-04-02 1992-04-02 Gas diffused electrode and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH05283082A (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6280872B1 (en) 1998-12-11 2001-08-28 Toyota Jidosha Kabushiki Kaisha Electrode for fuel cell and a method for producing the electrode
JP2007066597A (en) * 2005-08-30 2007-03-15 Dainippon Printing Co Ltd Transfer sheet, catalyst layer-electrolyte membrane stack, electrode-electrolyte membrane assembly, and manufacturing methods of them
JP2007294401A (en) * 2006-03-31 2007-11-08 Mitsubishi Heavy Ind Ltd Solid polymer electrolyte membrane electrode assembly and its manufacturing method
JP2008192337A (en) * 2007-02-01 2008-08-21 Mitsubishi Heavy Ind Ltd Solid polymer electrolyte membrane-electrode assembly and its manufacturing method
EP2036912A1 (en) 2007-09-11 2009-03-18 Samsung Electronics Co., Ltd. Phosphorous containing benzoxazine-based monomer, polymer thererof, electrode for fuel cell including the same, electrolyte membrane for fuel cell including the same, and fuel cell employing the same
EP2036910A1 (en) 2007-09-11 2009-03-18 Samsung Electronics Co., Ltd. Benzoxazine-based monomer, polymer thereof, electrode for fuel cell including the same, electrolyte membrane for fuel cell includind the same, and fuel cell using the same
EP2055706A1 (en) 2007-11-02 2009-05-06 Samsung Electronics Co., Ltd. Naphthoxazine benzoxazine-based monomer, polymer thereof, electrode for fuel cell including the polymer, electrolyte membrane for fuel cell including the polymer, and fuel cell using the electrode
EP2056390A1 (en) 2007-11-02 2009-05-06 Samsung Electronics Co., Ltd. Electrolyte membrane for fuel cell and fuel cell using the same
EP2058321A1 (en) 2007-11-02 2009-05-13 Samsung Electronics Co., Ltd. Phosphorous containing monomer, polymer thereof, electrode for fuel cell including the polymer, electrolyte membrane for fuel cell including the polymer, and fuel cell using the electrode
EP2062891A1 (en) 2007-11-06 2009-05-27 Samsung Electronics Co., Ltd. Benzoxazine-based monomer, polymer thereof, electrode for fuel cell including the polymer, electrolyte membrane for fuel cell including the polymer, and fuel cell using the electrode
JP2009231218A (en) * 2008-03-25 2009-10-08 Jsr Corp Membrane electrode assembly for stationary or portable fuel cell, stationary or portable fuel cell, and resin paste for gas diffusion layer of stationary or portable fuel cell
EP2131426A1 (en) 2008-06-03 2009-12-09 Samsung Electronics Co., Ltd. Electrode for Fuel Cell, Method of Manufacturing the Electrode, and Fuel Cell Employing the Electrode
EP2202261A1 (en) 2008-12-16 2010-06-30 Samsung Electronics Co., Ltd. Hyper-branched polymer, electrode for fuel cell including the hyper-branched polymer, electrolyte membrane for fuel cell including the hyper-branched polymer, and fuel cell including at least one of the electrode and the electrolyte membrane
EP2221303A1 (en) 2007-11-06 2010-08-25 Samsung Electronics Co., Ltd. Benzoxazine-based monomer, polymer thereof, electrode for fuel cell including the polymer, electrolyte membrane for fuel cell including the polymer, and fuel cell using the electrode
US8034508B2 (en) 2005-09-03 2011-10-11 Samsung Sdi Co., Ltd. Polybenzoxazine-based compound, electrolyte membrane including the same, and fuel cell employing the electrolyte membrane
US8119307B2 (en) 2006-12-15 2012-02-21 Samsung Sdi Co., Ltd. Electrode for fuel cell, method of manufacturing the electrode, and fuel cell employing the electrode
US8148028B2 (en) 2006-05-29 2012-04-03 Samsung Sdi Co., Ltd. Polybenzoxazines, electrolyte membrane comprising the same, and fuel cell employing the electrolyte membrane
US8298450B2 (en) 2007-10-11 2012-10-30 Samsung Electronics Co., Ltd. Polybenzimidazole-base complex, crosslinked material of polybenzoxazines formed thereof, and fuel cell using the same
US8679699B2 (en) 2006-08-22 2014-03-25 Samsung Sdi Co., Ltd Membrane electrode assembly for fuel cell and fuel cell employing the same
US8679705B2 (en) 2006-07-21 2014-03-25 Samsung Sdi Co., Ltd. Electrode for fuel cell and fuel cell employing the electrode

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6280872B1 (en) 1998-12-11 2001-08-28 Toyota Jidosha Kabushiki Kaisha Electrode for fuel cell and a method for producing the electrode
JP2007066597A (en) * 2005-08-30 2007-03-15 Dainippon Printing Co Ltd Transfer sheet, catalyst layer-electrolyte membrane stack, electrode-electrolyte membrane assembly, and manufacturing methods of them
US8034508B2 (en) 2005-09-03 2011-10-11 Samsung Sdi Co., Ltd. Polybenzoxazine-based compound, electrolyte membrane including the same, and fuel cell employing the electrolyte membrane
US8426081B2 (en) 2005-09-03 2013-04-23 Samsung Sdi Co., Ltd. Polybenzoxazine-based compound, electrolyte membrane including the same, and fuel cell employing the electrolyte membrane
US8349515B2 (en) 2005-09-03 2013-01-08 Samsung Sdi Co., Ltd. Polybenzoxazine-based compound, electrolyte membrane including the same, and fuel cell employing the electrolyte membrane
JP2007294401A (en) * 2006-03-31 2007-11-08 Mitsubishi Heavy Ind Ltd Solid polymer electrolyte membrane electrode assembly and its manufacturing method
US8580455B2 (en) 2006-05-29 2013-11-12 Samsung Sdi Co., Ltd. Crosslinked polybenzoxazines, electrolyte membrane including the same, and fuel cell employing the electrolyte membrane
US8148028B2 (en) 2006-05-29 2012-04-03 Samsung Sdi Co., Ltd. Polybenzoxazines, electrolyte membrane comprising the same, and fuel cell employing the electrolyte membrane
US8679705B2 (en) 2006-07-21 2014-03-25 Samsung Sdi Co., Ltd. Electrode for fuel cell and fuel cell employing the electrode
US8679699B2 (en) 2006-08-22 2014-03-25 Samsung Sdi Co., Ltd Membrane electrode assembly for fuel cell and fuel cell employing the same
US8119307B2 (en) 2006-12-15 2012-02-21 Samsung Sdi Co., Ltd. Electrode for fuel cell, method of manufacturing the electrode, and fuel cell employing the electrode
JP2008192337A (en) * 2007-02-01 2008-08-21 Mitsubishi Heavy Ind Ltd Solid polymer electrolyte membrane-electrode assembly and its manufacturing method
US8252890B2 (en) 2007-09-11 2012-08-28 Samsung Electronics Co., Ltd. Benzoxazine-based monomer, polymer thereof, electrode for fuel cell including the same, electrolyte membrane for fuel cell including the same, and fuel cell using the same
EP2433947A1 (en) 2007-09-11 2012-03-28 Samsung Electronics Co., Ltd. Phosphorous containing benzoxazine-based monomer
EP2036912A1 (en) 2007-09-11 2009-03-18 Samsung Electronics Co., Ltd. Phosphorous containing benzoxazine-based monomer, polymer thererof, electrode for fuel cell including the same, electrolyte membrane for fuel cell including the same, and fuel cell employing the same
EP2036910A1 (en) 2007-09-11 2009-03-18 Samsung Electronics Co., Ltd. Benzoxazine-based monomer, polymer thereof, electrode for fuel cell including the same, electrolyte membrane for fuel cell includind the same, and fuel cell using the same
US8192892B2 (en) 2007-09-11 2012-06-05 Samsung Electronics Co., Ltd. Phosphorous containing benzoxazine-based monomer, polymer thereof, electrode for fuel cell including the same, electrolyte membrane for fuel cell including the same, and fuel cell employing the same
US8298450B2 (en) 2007-10-11 2012-10-30 Samsung Electronics Co., Ltd. Polybenzimidazole-base complex, crosslinked material of polybenzoxazines formed thereof, and fuel cell using the same
US8227138B2 (en) 2007-11-02 2012-07-24 Samsung Electronics Co., Ltd. Phosphorus containing benzoxazine-based monomer, polymer thereof, electrode for fuel cell including the polymer, electrolyte membrane for fuel cell including the polymer, and fuel cell using the electrode
EP2357185A1 (en) 2007-11-02 2011-08-17 Samsung Electronics Co., Ltd. Naphthoxazine Benzoxazine-Based Monomer and Polymer Thereof
US8188210B2 (en) 2007-11-02 2012-05-29 Samsung Electronics Co., Ltd. Naphthoxazine benzoxazine-based monomer, polymer thereof, electrode for fuel cell including the polymer, electrolyte membrane for fuel cell including the polymer, and fuel cell using the electrode
US8323849B2 (en) 2007-11-02 2012-12-04 Samsung Electronics Co., Ltd. Electrolyte membrane containing a crosslinked polybenzoxazine-based compound for fuel cell and fuel cell using the same
EP2058321A1 (en) 2007-11-02 2009-05-13 Samsung Electronics Co., Ltd. Phosphorous containing monomer, polymer thereof, electrode for fuel cell including the polymer, electrolyte membrane for fuel cell including the polymer, and fuel cell using the electrode
EP2056390A1 (en) 2007-11-02 2009-05-06 Samsung Electronics Co., Ltd. Electrolyte membrane for fuel cell and fuel cell using the same
EP2055706A1 (en) 2007-11-02 2009-05-06 Samsung Electronics Co., Ltd. Naphthoxazine benzoxazine-based monomer, polymer thereof, electrode for fuel cell including the polymer, electrolyte membrane for fuel cell including the polymer, and fuel cell using the electrode
US8187766B2 (en) 2007-11-06 2012-05-29 Samsung Electronics Co., Ltd. Benzoxazine-based monomer, polymer thereof, electrode for fuel cell including the polymer, electrolyte membrane for fuel cell including the polymer, and fuel cell using the electrode
EP2221303A1 (en) 2007-11-06 2010-08-25 Samsung Electronics Co., Ltd. Benzoxazine-based monomer, polymer thereof, electrode for fuel cell including the polymer, electrolyte membrane for fuel cell including the polymer, and fuel cell using the electrode
EP2062891A1 (en) 2007-11-06 2009-05-27 Samsung Electronics Co., Ltd. Benzoxazine-based monomer, polymer thereof, electrode for fuel cell including the polymer, electrolyte membrane for fuel cell including the polymer, and fuel cell using the electrode
EP2221302A1 (en) 2007-11-06 2010-08-25 Samsung Electronics Co., Ltd. Pyrido-oxazine-based monomer, polymer thereof, electrode for fuel cell including the polymer, electrolyte membrane for fuel cell including the polymer, and fuel cell using the electrode
JP2009231218A (en) * 2008-03-25 2009-10-08 Jsr Corp Membrane electrode assembly for stationary or portable fuel cell, stationary or portable fuel cell, and resin paste for gas diffusion layer of stationary or portable fuel cell
EP2131426A1 (en) 2008-06-03 2009-12-09 Samsung Electronics Co., Ltd. Electrode for Fuel Cell, Method of Manufacturing the Electrode, and Fuel Cell Employing the Electrode
EP2202261A1 (en) 2008-12-16 2010-06-30 Samsung Electronics Co., Ltd. Hyper-branched polymer, electrode for fuel cell including the hyper-branched polymer, electrolyte membrane for fuel cell including the hyper-branched polymer, and fuel cell including at least one of the electrode and the electrolyte membrane
US8722280B2 (en) 2008-12-16 2014-05-13 Samsung Electronics Co., Ltd. Hyper-branched polymer, electrode for fuel cell including the hyper-branched polymer, electrolyte membrane for fuel cell including the hyper-branched polymer, and fuel cell including at least one of the electrode and the electrolyte membrane

Similar Documents

Publication Publication Date Title
JPH05283082A (en) Gas diffused electrode and manufacture thereof
US5865968A (en) Gas diffusion electrodes
JP5134744B2 (en) POLYMER ELECTROLYTE-MEMBRANE-ELECTRODE UNIT FOR FUEL CELL, PROCESS FOR PRODUCING THE SAME AND INK FOR MANUFACTURING THE SAME
JP4144686B2 (en) Method for producing polymer electrolyte fuel cell
JP3549241B2 (en) Electrode for polymer solid electrolyte fuel cell and joined body thereof with polymer solid electrolyte
US5728485A (en) Electrode for polymer electrolyte electrochemical cell and process of preparing same
CA2368258C (en) Gas diffusion substrates
WO2002059989A2 (en) Gas diffusion electrode manufacture and mea fabrication
US4585711A (en) Hydrogen electrode for a fuel cell
JP2007250274A (en) Electrode catalyst for fuel cell with enhanced noble metal utilization efficiency, its manufacturing method, and solid polymer fuel cell equipped with this
EP1944819A1 (en) Method for producing membrane electrode assembly for solid polymer fuel cell
JPH0652871A (en) Solid highpolymer fuel cell
KR20010104638A (en) Gas diffusion structures and gas diffusion electrodes for polymer electrolyte fuel cells
JPH0817440A (en) Electrode for polymer electrolyte-type electrochemical cell
CN110492109B (en) Wide-width humidity self-adaptive fuel cell gas diffusion layer
EP1165885B1 (en) Nonwoven web
CN101662032A (en) Cathode structure of membrane electrode assembly of direct alcohol fuel cell and manufacturing method
US4446210A (en) Fuel cell electrode
CN114361474A (en) Gas diffusion electrode, preparation method thereof and fuel cell
JP3035079B2 (en) Solid polymer electrolyte fuel cell
US20030008195A1 (en) Fluid diffusion layers for fuel cells
JP2003151564A (en) Electrode for solid high polymer fuel cell
JPH0778617A (en) Gas diffusion electrode and manufacture thereof
JPH0644984A (en) Electrode for solid high polymer electrolyte fuel cell
JPH0644985A (en) Electrode for solid high polymer electrolyte fuel cell

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20000229