JPS6385320A - Infrared ray detector - Google Patents

Infrared ray detector

Info

Publication number
JPS6385320A
JPS6385320A JP23166186A JP23166186A JPS6385320A JP S6385320 A JPS6385320 A JP S6385320A JP 23166186 A JP23166186 A JP 23166186A JP 23166186 A JP23166186 A JP 23166186A JP S6385320 A JPS6385320 A JP S6385320A
Authority
JP
Japan
Prior art keywords
sodium nitrite
pyroelectric
electrode
pyroelectric material
ray detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23166186A
Other languages
Japanese (ja)
Inventor
Kenji Iijima
賢二 飯島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP23166186A priority Critical patent/JPS6385320A/en
Publication of JPS6385320A publication Critical patent/JPS6385320A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve sensitivity, by constituting a pyroelectric type infrared ray detector by providing an electrode to sodium nitrile unidirectionally polarized so as to arrange the same to the surface vertical to the polarizing direction of said sodium nitrite. CONSTITUTION:The direction of the polarizing axis of a pyroelectric material 1 composed of a monocrystal of sodium nitrite formed from an aqueous solution by the evaporation method is shown by an arrow 2 and coincides with the b-axis of the crystal. An electrode 3 is formed to the sodium nitrite pyroelectric material 1 by the vapor deposition of gold or nichrome. Infrared rays are allowed to irradiate the element thus formed in the direction shown by an arrow 5. The pyroelectric material 1 composed of the monocrystal of sodium nitrite has high sensitivity as compared with a conventional one and also has high Curie temp.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は焦電型の赤外線検出素子に関する。[Detailed description of the invention] Industrial applications The present invention relates to a pyroelectric infrared detection element.

従来の技術 常温近くの物体表面の温度や温度分布を接触せずに測定
するためには、その物体が温度に応じて放射する熱ふ(
射線を検知する方法が用いられることが多い。常温付近
の温度に対応するふく射線は、波長IOμm近くに極大
値をもつ赤外領域に分布しているため、これを検知する
ためにはこの領域に感度を有する赤外線検出素子が必要
である。
Conventional technology In order to measure the temperature and temperature distribution on the surface of an object near room temperature without contact, it is necessary to measure the heat radiation that the object emits according to its temperature.
A method of detecting rays is often used. Radiation corresponding to temperatures near room temperature is distributed in the infrared region with a maximum value near the wavelength IO μm, so in order to detect this radiation, an infrared detection element having sensitivity in this region is required.

赤外線検出素子は量子型と熱望に大別できる。Infrared detection elements can be roughly divided into quantum type and aspiration type.

量子型のものは高感度で応答も速いが、狭い波長領域の
光にだけしか感度がなく、利用にあたっては素子を低温
にする必要があるという欠点がある。熱望の検出素子は
感度・応答速度で量子型に劣るが、感度に波長依存性が
なく、冷却が不要であるという優れた特徴を持っている
。焦電型の赤外線検出素子は熱望のなかでも感度が高く
応答速度も速く、サミスタポロメータのようにバイアス
電源も必要としないという利点を持っている。
Quantum type devices have high sensitivity and fast response, but they have the disadvantage that they are only sensitive to light in a narrow wavelength range, and the device must be kept at a low temperature to be used. Although Aspiration's detection element is inferior to the quantum type in terms of sensitivity and response speed, it has the excellent characteristics of no wavelength dependence in sensitivity and no need for cooling. Pyroelectric infrared detection elements have the advantage of being highly sensitive and fast in response, and do not require a bias power source like the samista polometer.

焦電型の赤外線検出素子の出力Vは、焦電材料の誘電率
をε、体積比熱をcV、焦電係数をγとするとvocγ
/ε・cvであることが知られている。そこで焦電材料
は焦電係数が太き(、誘電率と体積比熱が小さい材料が
大きな出方を与えることが分かる。この他に、焦電材料
は通常強誘電体であるが、そのキュリー温度(Tc)が
低(常温に近いと使用温度が制限される。また、現在は
焦電材料と信号処理回路をハイブリットに結合して検出
素子を組み立てているが、将来的には半導体素子の上に
直接焦電材料を作りこんだ一体型検出素子が必要となる
。そこで、作成温度は低いものほど有利である。現在、
主に用いられている焦電材料はTGS(トリグリシンサ
ルフェート)、LiTaO5PbTies、PVDF(
ポリフッ化ビニリデン)などである。
The output V of a pyroelectric infrared detection element is vocγ, where the permittivity of the pyroelectric material is ε, the volumetric specific heat is cV, and the pyroelectric coefficient is γ.
/ε·cv. Therefore, it can be seen that pyroelectric materials have a large pyroelectric coefficient (and a material with a small dielectric constant and volumetric specific heat) gives a large effect.In addition, pyroelectric materials are usually ferroelectrics, but their Curie temperature (Tc) is low (close to room temperature, the operating temperature is restricted.Also, currently detection elements are assembled by hybrid combination of pyroelectric materials and signal processing circuits, but in the future it will be possible to use semiconductor elements. An integrated detection element in which the pyroelectric material is directly fabricated is required.Therefore, the lower the fabrication temperature is, the more advantageous it is.Currently,
The main pyroelectric materials used are TGS (triglycine sulfate), LiTaO5PbTies, and PVDF (
polyvinylidene fluoride), etc.

発明が解決しようとする問題点 TGSは焦電係数が大きく誘電率が小さいので大きな性
能指数を持っていおり、水溶液から結晶化出来るので優
れた材料であるが、キュリー温度が49℃と室温近傍に
ある為、使用温度が制限される。PbTiO3やL i
 T a O2はキュリー温度が高(性能指数も大きい
ので安定動作の高感度赤外線検出素子を提供する。しか
し、これら材料の作成のためには、 1000℃を越え
る高温が必要となる。
Problems to be Solved by the Invention TGS has a large pyroelectric coefficient and a small dielectric constant, so it has a large figure of merit, and it is an excellent material because it can be crystallized from an aqueous solution, but its Curie temperature is 49°C, near room temperature. Therefore, the operating temperature is limited. PbTiO3 and Li
Since T a O2 has a high Curie temperature (and a large figure of merit), it provides a highly sensitive infrared detection element with stable operation. However, high temperatures exceeding 1000° C. are required to create these materials.

PVDFはキュリー温度も120℃でやや高(性能指数
もかなり大きいので良い材料であるが均一な特性の材料
が出来に(いという欠点がある。
PVDF has a rather high Curie temperature of 120°C (its figure of merit is also quite large), so it is a good material, but it has the drawback of not being able to produce a material with uniform properties.

以上のように従来の焦電材料には性能指数が大きく、低
温で作成でき、動作温度領域の広い材料はなかった。
As described above, there has been no conventional pyroelectric material that has a large figure of merit, can be made at low temperatures, and has a wide operating temperature range.

問題点を解決するための手段 単一分極化した亜硝酸ナトリウムの分極方向と垂直な面
に電極を設けて焦電型赤外線検出素子を構成する。
Means for Solving the Problem A pyroelectric infrared detection element is constructed by providing an electrode on a plane perpendicular to the polarization direction of single-polarized sodium nitrite.

作用 上記構成の素子は、水溶液から作成でき、キュリー温度
が160℃と高く、性能指数が大きな亜硝酸ナトリウム
を焦電材料として用いているので、低温で作成でき感度
も高い。
Function The element having the above structure can be made from an aqueous solution and uses sodium nitrite as the pyroelectric material, which has a high Curie temperature of 160° C. and a large figure of merit, so it can be made at low temperatures and has high sensitivity.

実施例 第1図、第2図に亜硝酸ナトリウム(NaNO2)を用
いた赤外線検出素子の実施例を示す。図においてlは水
溶液から蒸発法で作成された亜硝酸ナトリウムの単結晶
からなる焦電材料である。この単結晶は例えば1XIX
0.02mmの大きさに切断、研摩しである。この結晶
の分極軸の方向は矢印2の方向で、結晶のb軸に一致す
る。3は上記亜硝酸ナトリウム単結晶に付けられた電極
で、金またはニクロムなどを蒸着して形成される。4は
電気信号取り出し用リード線である。赤外線は矢印5の
方向から素子に照射される。第1図の実施例は分極の方
向と垂直に電極3をつけ、電極方向から赤外線を照射す
る場合、第2図は分極の方向と垂直な面に電極3を付け
、分極と垂直な方向から赤外線を照射する場合について
示しである。
Embodiment FIGS. 1 and 2 show an embodiment of an infrared detection element using sodium nitrite (NaNO2). In the figure, l is a pyroelectric material made of a single crystal of sodium nitrite prepared from an aqueous solution by an evaporation method. This single crystal is, for example, 1XIX
It was cut to a size of 0.02mm and polished. The direction of the polarization axis of this crystal is the direction of arrow 2, which coincides with the b-axis of the crystal. Reference numeral 3 denotes an electrode attached to the sodium nitrite single crystal, which is formed by vapor-depositing gold, nichrome, or the like. 4 is a lead wire for taking out electric signals. Infrared rays are irradiated onto the element from the direction of arrow 5. In the embodiment shown in Fig. 1, the electrode 3 is attached perpendicular to the direction of polarization, and infrared rays are irradiated from the direction of the electrode. This figure shows a case where infrared rays are irradiated.

本発明の亜硝酸ナトリウムからなる焦電材料について、
従来の材料との比較を表に示す。この表から明らかなよ
うに、本発明の赤外線検出素子は、従来のものに比べて
感度が高く、キュリー温度も高い。
Regarding the pyroelectric material made of sodium nitrite of the present invention,
A comparison with conventional materials is shown in the table. As is clear from this table, the infrared detection element of the present invention has higher sensitivity and higher Curie temperature than conventional ones.

発明の効果 本発明の赤外線検出素子は、亜硝酸ナトリウムを用いた
ものであり、感度が高く、キュリー温度が高く、作成温
度が低(、従来の物に比較して工業的に非常に有用な物
である。
Effects of the Invention The infrared detection element of the present invention uses sodium nitrite, and has high sensitivity, a high Curie temperature, and a low manufacturing temperature (compared to conventional ones, it is industrially very useful). It is a thing.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は本発明の一実施例における焦電型赤
外線検出素子の断面図である。 1・・・焦電材料、2・・・分極方向、3・・・電極、
4・・・リード線、5・・・赤外線。
FIGS. 1 and 2 are cross-sectional views of a pyroelectric infrared detecting element according to an embodiment of the present invention. 1... Pyroelectric material, 2... Polarization direction, 3... Electrode,
4...Lead wire, 5...Infrared rays.

Claims (1)

【特許請求の範囲】[Claims] 単一分極化した亜硝酸ナトリウムの分極方向と垂直な面
に電極を設けた焦電型赤外線検出素子。
A pyroelectric infrared detection element with electrodes placed on a plane perpendicular to the polarization direction of single-polarized sodium nitrite.
JP23166186A 1986-09-30 1986-09-30 Infrared ray detector Pending JPS6385320A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23166186A JPS6385320A (en) 1986-09-30 1986-09-30 Infrared ray detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23166186A JPS6385320A (en) 1986-09-30 1986-09-30 Infrared ray detector

Publications (1)

Publication Number Publication Date
JPS6385320A true JPS6385320A (en) 1988-04-15

Family

ID=16926998

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23166186A Pending JPS6385320A (en) 1986-09-30 1986-09-30 Infrared ray detector

Country Status (1)

Country Link
JP (1) JPS6385320A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5578858A (en) * 1992-10-13 1996-11-26 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Infrared radiation absorption device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5578858A (en) * 1992-10-13 1996-11-26 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Infrared radiation absorption device

Similar Documents

Publication Publication Date Title
Whatmore Pyroelectric ceramics and devices for thermal infra-red detection and imaging
Whatmore et al. Ferroelectric materials for thermal IR sensors state-of-the-art and perspectives
Beerman Improvement in the pyroelectric infrared radiation detector
JPH09500234A (en) Pyro detector with oriented and grown pyroelectric layer and method of making
CN104465850B (en) Pyroelectric infrared detector based on Graphene absorbed layer and manufacture method thereof
US3604933A (en) Electromagnetic radiation-detection device comprising ferroelectric sensing, reference and temperature-stabilizing components
Beerman The pyroelectric detector of infrared radiation
US3773564A (en) Lead titanate pyroelectric infra-red intensity detector
US3932753A (en) Pyroelectric device with coplanar electrodes
Choi et al. Epitaxially grown pyroelectric infrared sensor array for human body detection
JPS6385320A (en) Infrared ray detector
JPS637611B2 (en)
Neumann et al. Application of P (VDF/TrFE) thin films in pyroelectric detectors
Xu et al. Domain Reengineering of the [011]‐Poled PMN–0.35 PT Single Crystals for Dielectric Bolometer Arrays
JPS63124924A (en) Pyroelectric type infrared array element
US4492857A (en) Pyroelectric detector and vidicon
JPS60171425A (en) Pyroelectric type heat detection element
JPS63129677A (en) Pyroelectric infrared-ray array device and manufacture thereof
JPH06109536A (en) Infrared measuring equipment
JPS63124923A (en) Pyroelectric type infrared array element
JPS5852176B2 (en) Pyroelectric detection element
JP2564939Y2 (en) Thermopile infrared detector
Kuwano et al. The Pyroelectric Sensor
JPS59141427A (en) Thin film of ferroelectric material
JPH04357888A (en) Pyroelectric infrared ray detecting element