JPS6385006A - Formation of ultrafine particle of oxide - Google Patents

Formation of ultrafine particle of oxide

Info

Publication number
JPS6385006A
JPS6385006A JP22840386A JP22840386A JPS6385006A JP S6385006 A JPS6385006 A JP S6385006A JP 22840386 A JP22840386 A JP 22840386A JP 22840386 A JP22840386 A JP 22840386A JP S6385006 A JPS6385006 A JP S6385006A
Authority
JP
Japan
Prior art keywords
cathode
oxygen
anode
arc discharge
ultrafine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22840386A
Other languages
Japanese (ja)
Other versions
JPH0352401B2 (en
Inventor
Hidetsugu Fuchida
英嗣 渕田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHINKU YAKIN KK
Japan Science and Technology Agency
Original Assignee
SHINKU YAKIN KK
Research Development Corp of Japan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHINKU YAKIN KK, Research Development Corp of Japan filed Critical SHINKU YAKIN KK
Priority to JP22840386A priority Critical patent/JPS6385006A/en
Publication of JPS6385006A publication Critical patent/JPS6385006A/en
Publication of JPH0352401B2 publication Critical patent/JPH0352401B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/087Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
    • B01J19/088Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J12/00Chemical processes in general for reacting gaseous media with gaseous media; Apparatus specially adapted therefor
    • B01J12/02Chemical processes in general for reacting gaseous media with gaseous media; Apparatus specially adapted therefor for obtaining at least one reaction product which, at normal temperature, is in the solid state

Abstract

PURPOSE:In producing ultrafine particles of metallic oxide by heating and evaporating a metallic material in an oxygen-containing atmosphere by arc discharge between electrodes, to obtain high-purity ultrafine particles of metallic oxide, by constituting at least the cathode of carbon. CONSTITUTION:An anode 2 and a cathode 3 consisting of carbon are arranged in a vacuum container 1 and a metallic material a (e.g. Ru or Al) is put on the top of the anode 2. Then the vacuum container 1 is evacuated by a vacuum pump 9, an oxygen-containing gas is introduced through a feed pipe 5 into the container and the container 1 is filled with an oxygen-containing atmosphere. Then DC voltage is impressed to the anode 2 and the cathode 3, arc discharge is generated, the metallic material a is heated, evaporated and brought into contact with the oxygen-containing atmosphere to form ultrafine particles of metallic oxide. Consequently, since the cathode consists of a carbon electrode, the ultrafine particles of metallic oxide are not admixed with oxides of cathode like the case of tungsten cathode.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、酸化物超微粒子の生成法に関する。[Detailed description of the invention] (Industrial application field) The present invention relates to a method for producing ultrafine oxide particles.

(従来の技術) 従来の酸化物超微粒子の生成、法としては、酸素を含ん
だ雰囲気下で高融点の金属材料を金属製電極間のアーク
放電で加熱蒸発させ、その金属酸化物超微粒子を生成す
ることが知られている。例えば、タングステンなどの金
属を陰極とし、ルテニウムやシリコンをアーク放電で加
熱蒸発させ、RuO2やSin、などの金属酸化物超微
粒子の集積体が生成される。
(Prior art) The conventional method for producing ultrafine oxide particles is to heat and evaporate a high melting point metal material by arc discharge between metal electrodes in an oxygen-containing atmosphere, and then generate ultrafine metal oxide particles. known to produce. For example, by using a metal such as tungsten as a cathode and heating and vaporizing ruthenium or silicon by arc discharge, an aggregate of ultrafine metal oxide particles such as RuO2 or Sin is generated.

(発明が解決しようとする問題点) 上記従来の生成法では、アーク放電において、タングス
テン陰極が徐々に少しづつ加熱酸化し、その酸化が生成
し、この酸化物は、金属に比べて蒸気圧が高いために超
微粒子化し蒸発しRuO2や5i02などの目的とする
生産物である酸化物超微粒子集積体中に混入した生産物
となることが不可避であった。
(Problems to be Solved by the Invention) In the above conventional production method, the tungsten cathode is heated and oxidized little by little during arc discharge, and the oxidation is produced, and this oxide has a vapor pressure higher than that of metal. Because of its high content, it was inevitable that it would become ultrafine particles and evaporate, resulting in products that were mixed into the oxide ultrafine particle aggregates, which were the desired products such as RuO2 and 5i02.

(問題点を解決するための手段) 本発明は、かかる上記の欠点を除去し、不純な金属酸化
物の混入しない目的とする金属酸化物の超微粒子集積体
のみを製造し得るようにした酸化物超微粒子の生成法に
関するもので、酸素を含んだ雰囲気下で金属材料を電極
間のアーク放電で加熱蒸発させ、その金属酸化物超微粒
子を製造する方法において、アーク放電の電極の少くと
も陰極をカーボンで構成してアーク放電を行なうように
したことを特徴とする特(実施例) 次に本発明の実施例につき説明する。添付図面の第1図
は、本発明を実施する一例の製造装置を示す。図面で(
1)は真空容器、(2)は真空容器(1)内に対向した
水冷銅ハースを兼ねた陽極、(3)は、水冷銅トーチ(
3a)の先端に黒鉛から成るカーボン筒体(3b)を螺
着して成るカーボン陰極、aは該陽極(2)の上面に収
容したRu、 si、 AI、Sn。
(Means for Solving the Problems) The present invention is an oxidation method that eliminates the above-mentioned drawbacks and makes it possible to produce only the target ultrafine particle aggregate of metal oxides without contamination with impure metal oxides. This relates to a method for producing ultrafine metal oxide particles, in which a metal material is heated and evaporated by arc discharge between electrodes in an oxygen-containing atmosphere to produce ultrafine metal oxide particles. (Embodiment) Next, embodiments of the present invention will be described. FIG. 1 of the accompanying drawings shows an example of a manufacturing apparatus for carrying out the present invention. In the drawing (
1) is a vacuum vessel, (2) is an anode that also serves as a water-cooled copper hearth that faces inside the vacuum vessel (1), and (3) is a water-cooled copper torch (
A is a carbon cathode formed by screwing a carbon cylinder (3b) made of graphite onto the tip of the anode (3a), and a is Ru, Si, AI, Sn housed on the upper surface of the anode (2).

V 、Tiなどの金属材料、(4)は、陰陽極間を接続
する放電アーク用直流電源、(5)は不活性ガスと酸素
との混合ガスを調節バルブ(6)を介して該容器(1)
内に供給するガス導入管、(7)は真空容器(1)内と
14節弁(8)を介して真空ポンプ(9)とを接続する
排気用導管を示す。上記の装置を使用し、本発明を実施
するには、真空容器(1)内を、該真空ポンプ(8)に
より真空排気する一方、ガス導入管(5)を介して真空
容器(1)内にアルゴン+30%0□の混合ガスを導入
し、100トールの混合ガス圧が真空容器(1)内に維
持されるようにし、この状態で例えば、25A 、 2
5V直流電源(4)を作動し、該陰陽極(2) (3>
間にアーク放電を発生させ、金属材料を加熱蒸発させ、
その酸素ガス雰囲気と接触させてその酸化物例えばIt
uO2や5in2など所望の超微粒子が生成される。本
発明によれば、その陰極(3)を黒鉛などのカーボンで
予め作成しであるので、その酸化物超微粒子の生成がな
く、酸化してもCO2ガスとなり、従来のような金属材
料から成る陰極の酸化物超微粒子が、RuO□や5in
2などの目的とする金B酸化物超微粒子集積体中に混入
するおそれが全くなく、純粋な11u02や5i02な
どの金属酸化物超微粒子のみの生産が可能となる。
(4) is a DC power source for a discharge arc that connects the cathode and anode; (5) is a mixed gas of inert gas and oxygen that is supplied to the container ( 1)
The gas inlet pipe (7) is an exhaust pipe that connects the inside of the vacuum container (1) with the vacuum pump (9) via the 14-node valve (8). In order to carry out the present invention using the above-mentioned apparatus, the inside of the vacuum container (1) is evacuated by the vacuum pump (8), and the inside of the vacuum container (1) is evacuated through the gas introduction pipe (5). A mixed gas of argon + 30% 0□ is introduced into the vacuum vessel (1) so that a mixed gas pressure of 100 Torr is maintained in the vacuum vessel (1), and in this state, for example, 25A, 2
Activate the 5V DC power supply (4) and connect the cathode and anode (2) (3>
An arc discharge is generated in between to heat and evaporate the metal material,
The oxide such as It is brought into contact with the oxygen gas atmosphere.
Desired ultrafine particles such as uO2 and 5in2 are produced. According to the present invention, since the cathode (3) is made of carbon such as graphite in advance, ultrafine oxide particles are not generated, and even when oxidized, it becomes CO2 gas, and the cathode (3) is made of carbon such as graphite. The ultrafine oxide particles of the cathode are RuO□ and 5in.
There is no fear that the gold B oxide ultrafine particles will be mixed into the target gold B oxide ultrafine particle aggregate such as No. 2, and it is possible to produce only pure ultrafine metal oxide particles such as 11u02 and 5i02.

上記の製法で得られたRuO2やSiO□の夫々の超微
粒子集積体につき、TEN写真やSEW写真をとり、黒
鉛の混入が全くなく、平均粒径200人の超微粒子のR
uO□、 SiO□の夫々の集積体が得られていること
を確認した。RuO2超微粒子集積体のX線回折(ター
ゲット/フィルタ(モノクロ)二Cu、 ?l1JI/
ffi流: 50KV、 200mA)の結果を第2図
に示す。RuO2のピークの他にRuのピークも少し検
出されているが、黒鉛の混入は認められない。
TEN and SEW photographs were taken of each of the ultrafine particle aggregates of RuO2 and SiO□ obtained by the above manufacturing method.
It was confirmed that aggregates of uO□ and SiO□ were obtained. X-ray diffraction of RuO2 ultrafine particle aggregate (target/filter (monochrome) 2Cu, ?l1JI/
Figure 2 shows the results for ffi current: 50 KV, 200 mA). In addition to the RuO2 peak, a small Ru peak was also detected, but no graphite was detected.

尚この生成されたRuO2超微粒子集合体を600℃で
加熱処理を施すと、RuのピークがなくなりRuO2だ
けのピークになることが分った。5i02超微粒子のX
線回折によれば、5in2のピークはブロードでありア
モルファスのようであったが、蛍光X線分析でSiのピ
ークが確認された。又白色の生成微粒子の圧粉体が10
8Ωα以上の高比抵抗値を示したことにより、生成粒子
は、Sin。
It has been found that when the RuO2 ultrafine particle aggregate thus produced is subjected to heat treatment at 600°C, the peak of Ru disappears and only the peak of RuO2 appears. 5i02 ultrafine particle X
According to line diffraction, the peak of 5in2 was broad and appeared to be amorphous, but a Si peak was confirmed by fluorescent X-ray analysis. In addition, the compacted powder of white produced fine particles was 10
Since the produced particles showed a high specific resistance value of 8Ωα or more, it was determined that they were Sin.

であると同定した。It was identified that

尚、電極中、陽極のハース部分も黒鉛などのカーボンで
構成してもよい。上記のように、少くとも陰極をカーボ
ンで作成すれば、タングステン、タンタルなどの高融点
金属材料を電極とするものに比し、材料の入手が容易で
、且つ安価な製造装置を構成できる。
Incidentally, in the electrode, the hearth portion of the anode may also be made of carbon such as graphite. As described above, if at least the cathode is made of carbon, the material is easier to obtain and a manufacturing apparatus can be constructed at a lower cost than when the electrode is made of a high melting point metal material such as tungsten or tantalum.

(発明の効果) このように本発明によるときは、金属材料を酸素雰囲気
下でアーク放電により加熱酸化蒸発させてその酸化物超
微粒子を生成するに当り、そのアーク放電電極の少くと
も陰極をカーボン電極で構成してアーク放電を行なった
ので、従来のようなダンゲステン陰極のようなその酸化
物超微粒子が目的とする金属材料の酸化物超微粒子の集
積体中に混入することがなく、良質の製品が得られ、上
記従来の生成法の不都合を解消した等の効果を有する。
(Effects of the Invention) According to the present invention, at least the cathode of the arc discharge electrode is heated to oxidize and evaporate the metal material by arc discharge in an oxygen atmosphere to generate ultrafine oxide particles. Since the arc discharge is performed using an electrode, the ultrafine oxide particles do not mix into the aggregate of ultrafine oxide particles of the target metal material, unlike the conventional Dungesten cathode. A product is obtained, and the above-mentioned disadvantages of the conventional production method are overcome.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明を実施する一例の製造表装置線図、第
2図は、その製品酸化物超微粒子のX線回折結果のグラ
フを示ず。 (1)・・・真空容器    (2)・・・陽極(3)
・・・カーボン陽極  (4)・・・直流電源(5)・
・・酸素ガス導入管 (9)・・・真空ポンプa・・・
金属材料
FIG. 1 is a production table equipment diagram of an example of carrying out the present invention, and FIG. 2 does not show a graph of the X-ray diffraction results of the product ultrafine oxide particles. (1)...Vacuum container (2)...Anode (3)
...Carbon anode (4) ...DC power supply (5)
...Oxygen gas introduction pipe (9) ...Vacuum pump a...
Metal material

Claims (1)

【特許請求の範囲】[Claims] 酸素を含んだ雰囲気下で金属材料を電極間のアーク放電
で加熱蒸発させ、その金属酸化物超微粒子を製造する方
法において、アーク放電の電極の少くとも陰極をカーボ
ンで構成してアーク放電を行なうようにしたことを特徴
とする酸化物超微粒子の生成法。
In a method of producing ultrafine metal oxide particles by heating and vaporizing a metal material by arc discharge between electrodes in an oxygen-containing atmosphere, the arc discharge is performed with at least the cathode of the arc discharge electrode made of carbon. A method for producing ultrafine oxide particles, characterized in that:
JP22840386A 1986-09-29 1986-09-29 Formation of ultrafine particle of oxide Granted JPS6385006A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22840386A JPS6385006A (en) 1986-09-29 1986-09-29 Formation of ultrafine particle of oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22840386A JPS6385006A (en) 1986-09-29 1986-09-29 Formation of ultrafine particle of oxide

Publications (2)

Publication Number Publication Date
JPS6385006A true JPS6385006A (en) 1988-04-15
JPH0352401B2 JPH0352401B2 (en) 1991-08-09

Family

ID=16875918

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22840386A Granted JPS6385006A (en) 1986-09-29 1986-09-29 Formation of ultrafine particle of oxide

Country Status (1)

Country Link
JP (1) JPS6385006A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2003028142A1 (en) 2001-09-19 2005-01-13 川崎重工業株式会社 Three-dimensional battery, electrode structure thereof, and method for manufacturing electrode material of three-dimensional battery

Also Published As

Publication number Publication date
JPH0352401B2 (en) 1991-08-09

Similar Documents

Publication Publication Date Title
WO2013157454A1 (en) Method for manufacturing metal powder
US1814719A (en) Ductile thorium and method of making the same
JP2541434B2 (en) Carbon nano tube manufacturing method
US20050221088A1 (en) Nickel powder for use as electrodes in base metal electrode multilayered ceramic capacitors
US2702239A (en) Process of arc melting zirconium
JPH0253499B2 (en)
JPH06279015A (en) Production of ultrafine silicon particle
JPS6385006A (en) Formation of ultrafine particle of oxide
US4889665A (en) Process for producing ultrafine particles of ceramics
US3615345A (en) Method for producing ultra-high purity metal
JPH0686285B2 (en) Method for producing ultrafine oxide particles
EP0651065A1 (en) Tungsten-base electrode material
US799441A (en) Process of purifying tantalum metal.
US3692645A (en) Electrolytic process
JP2754647B2 (en) Manufacturing method of electrode material
JP2596434B2 (en) Method for producing ultrafine alloy particles
JP2694659B2 (en) Method for producing ultrafine metal nitride particles
CN1526497A (en) Apparatus and method for producing high and medium melting point metal and its oxide or nitride powder
JPH0867503A (en) Production of hydrogenated titanium superfine particle
JPS61113703A (en) Production of pulverous powder
JPH04281840A (en) Production of ultrafine particle of metallic oxide and producing equipment
JPH0259418A (en) Production of superfine metal boride particles
JPS62103308A (en) Apparatus for producing ultrafine particles
US1637052A (en) Process of producing metallic carbon
JPH0158131B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees