JPS6384870A - Abrasive grain flow polishing machine - Google Patents

Abrasive grain flow polishing machine

Info

Publication number
JPS6384870A
JPS6384870A JP22966186A JP22966186A JPS6384870A JP S6384870 A JPS6384870 A JP S6384870A JP 22966186 A JP22966186 A JP 22966186A JP 22966186 A JP22966186 A JP 22966186A JP S6384870 A JPS6384870 A JP S6384870A
Authority
JP
Japan
Prior art keywords
media
abrasive grains
workpiece
fine hole
fluidity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22966186A
Other languages
Japanese (ja)
Inventor
Junji Nakada
順二 中田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP22966186A priority Critical patent/JPS6384870A/en
Publication of JPS6384870A publication Critical patent/JPS6384870A/en
Pending legal-status Critical Current

Links

Landscapes

  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Abstract

PURPOSE:To promptly further surely polish a fine hole, by dispersedly holding abrasive grains in fluidized media passing through the through hole of a workpiece and applying an ultrasonic vibration to the media so that the media decrease the viscosity improving the fluidity. CONSTITUTION:Abrasive grains 4 of diamond or the like, for instance, of about #1000 and media 5, for instance, of silicone rubber or the like, having fluidity and dispersedly holding said abrasive grains, are allowed to pass through a fine hole 1 from its one opening of a workpiece 2, held to a holding part 3, and an ultrasonic vibration is applied to the holding part 3 from an ultrasonic wave applying part 7. Consequently, a device uniformly disperses the abrasive grains 4 in the media 5 while softens a binding material, for instance, silicone rubber by generating heat. As a result, the media 5 remarkably improve the fluidity by substantially decreasing the viscosity resistance. Accordingly, the device, which allows the media 5 to smoothly pass through in the fine hole 1 generating no blocking, enables the fine hole 1 to be high accurately further high efficiently polished.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は、特に内径が1罵薦以下の微細穴加工に好適す
る砥粒流動加工装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Field of Application) The present invention relates to an abrasive fluid flow machining device particularly suitable for machining micro-holes with an inner diameter of 1 mm or less.

(従来の技術) パ従来、内径がln+以下の微細穴内面の研磨加−」士
法としては、ワイヤを微細穴に挿通して研磨するワイヤ
ラップ加工法や微細大中を砥粒と粘弾性を有する結合材
とを混練してなるメディアを圧接移動させることにより
研磨する砥粒流動加工法がある。
(Conventional technology) Conventionally, methods for polishing the inner surface of microscopic holes with an inner diameter of ln+ or less include the wire lapping method in which a wire is inserted into the microscopic hole and polished, and the polishing method for polishing microscopic holes with abrasive grains and viscoelastic materials. There is an abrasive flow processing method in which polishing is carried out by moving a media made by kneading a binder having a bonding material under pressure.

しかるに、前者のワイヤラップ加工法では、生産性が悪
く、製品のコスト増の主因となっていた。
However, the former wire wrapping method has poor productivity and is the main cause of increased product costs.

他方、後者の砥粒流動加工法は、内径がI 111以上
の微細穴の場合には、生産性がよく量産に適しているが
、内径が1tm以下の微細穴加工では、砥粒が通過しに
<<、加工能率が低くなる欠点をもっている。
On the other hand, the latter abrasive flow processing method has good productivity and is suitable for mass production in the case of micro holes with an inner diameter of I111 or more, but when processing micro holes with an inner diameter of 1 tm or less, the abrasive grains cannot pass through. <<, has the disadvantage of low machining efficiency.

(発明が解決しようとする問題点) 本発明は、上述したように、1mz以下の微細穴加工を
高精度かつ高能率で行う適当な加工法がないことに着目
してなされたもので、微***の研磨を迅速かつ確実に行
うことができる砥粒流動加工装置を提供することを目的
とする。
(Problems to be Solved by the Invention) As mentioned above, the present invention was made by focusing on the fact that there is no suitable machining method for machining micro holes of 1 ms or less with high precision and high efficiency. An object of the present invention is to provide an abrasive flow processing device that can quickly and reliably polish holes.

〔発明の構成〕[Structure of the invention]

(問題点を解決するための手段と作用)通孔を有する被
加工物を保持する保持部と、この保持部により保持され
ている被加工物の通孔に砥粒及びこの砥粒を分散保持す
る流動性の結合材からなるメディアをして通過させるメ
ディア供給部と、上記メディアに超音波振動を印加する
超音波印加部とからなり、超音波の印加によりメディア
の粘性を低下させることKより、その流動性暮向上させ
るようにしたものである。
(Means and effects for solving the problem) A holding part that holds a workpiece having a through hole, and abrasive grains and dispersion and holding of the abrasive grains in the through holes of the workpiece held by this holding part. It consists of a media supply section that allows media made of a fluid binder to pass through, and an ultrasonic application section that applies ultrasonic vibrations to the media, and reduces the viscosity of the media by applying ultrasonic waves. , to improve its liquidity.

(実施例) 以下、本発明の一実施例を図面を参照して詳述する。(Example) Hereinafter, one embodiment of the present invention will be described in detail with reference to the drawings.

図は、この実施例の砥粒流動加工装置を示している。こ
の装置は、例えば内径が500μmの微細穴(1)を有
する板状の被加工物(2)を保持する保持部(3)と、
この保持部(3)K保持されている被加工物(2)の微
細穴(1)の一方の開口から他方の開口に例えばメツシ
ュサイズ# 1000程度のダイヤモンドなどの砥粒(
4)・・・とこの砥粒を分散保持する例えばシリコーン
ゴムなどの流動性を有する結合材とからなるメ、部(3
)に超音波振動を印加する超音波印加部(7)とから構
成されている。しかして、保持部(3)は、被加工物(
2)を上端面中央部に保持する円筒状の下治具(8)と
、この下治具(8)上方に同軸的に配設されこの下治具
(8)とともに被加工物(2)を挾持する円筒状の上治
具(9)とからなっている。上記下治具(8)の上端面
には、被加工物(2)を嵌合・埋設する凹部(8りが凹
設されている。一方、メディア供給部(6)は、上端面
に下治具(8)が同軸に連結され固定して設けられた円
筒状の下クランパα1と、下端面に上治具(9)が同軸
に連結され図示せぬ加圧機構により下クランパ翰に対し
て押圧される円筒状の上クランパ(11Jと、下クラン
パ(IQに摺動自在に嵌挿されたピストンa3と、この
ピストンα2を上下方向に駆動する駆動機構(図示せず
)と、メディア(5)を下クランパ部内に圧入させるメ
ディア圧入機構(図示せず)とからなっている。上記、
上、下り2ンパαυ、α0の対向端部は、拡径して鍔部
(lla)、 (loa)となっている。さらに、超音
波印加部(力は、先端部が下−ンQ3に超音波振動を発
生させる超音波源Iとからなっている。
The figure shows the abrasive fluid processing apparatus of this embodiment. This device includes a holding part (3) that holds a plate-shaped workpiece (2) having a microhole (1) with an inner diameter of 500 μm, for example;
This holding part (3) K holds abrasive grains such as diamond (about mesh size #1000) from one opening of the fine hole (1) of the workpiece (2) to the other opening.
4)... and a fluid binder such as silicone rubber that disperses and holds the abrasive grains (3).
) and an ultrasonic applying section (7) that applies ultrasonic vibrations to the ultrasonic wave. Therefore, the holding part (3) holds the workpiece (
A cylindrical lower jig (8) for holding the workpiece (2) at the center of the upper end surface, and a workpiece (2) disposed coaxially above the lower jig (8). It consists of a cylindrical upper jig (9) that holds the. The upper end surface of the lower jig (8) is provided with a recess (8) into which the workpiece (2) is to be fitted and buried. A cylindrical lower clamper α1 has a jig (8) coaxially connected and fixed, and an upper jig (9) is coaxially connected to the lower end surface and is pressed against the lower clamper by a pressure mechanism (not shown). A cylindrical upper clamper (11J), a piston a3 slidably inserted into the lower clamper (IQ), a drive mechanism (not shown) that drives this piston α2 in the vertical direction, and a media ( 5) into the lower clamper section.
Opposite ends of the two upper and lower dampers αυ and α0 have enlarged diameters to form flanges (lla) and (loa). Furthermore, the ultrasonic wave applying unit (force consists of an ultrasonic source I whose tip generates ultrasonic vibrations in the lower part Q3).

しかして、上記構成の砥粒流動加工装置の作動について
述べる。
The operation of the abrasive fluid processing apparatus having the above configuration will now be described.

まず、上クランパ(9)を上方(矢印(15a)方向)
に移動させ、被加工物(2)を凹部鵠に嵌合させる。つ
ぎに、上クランパ(9)を下降(矢印(15b)方向)
させ、被加工物(2)を上、下治具(9)i8)により
挟圧保持する。このとき下治具(8)の上側開口は、被
加工物(2)により閉塞されている。つづいて、メディ
ア圧入機構より下クランパaC内にメディア(5)を供
給する。
First, move the upper clamper (9) upward (in the direction of arrow (15a)).
to fit the workpiece (2) into the recess. Next, lower the upper clamper (9) (in the direction of arrow (15b))
The workpiece (2) is held under pressure by the upper and lower jigs (9) i8). At this time, the upper opening of the lower jig (8) is closed by the workpiece (2). Subsequently, the media (5) is supplied into the lower clamper aC from the media press-fitting mechanism.

同時に、超音波源Iを起動させ超音波ホーン(13より
超音波を下治具(8)を介して被加工物(2)に印加す
る。かくて、駆動機構を作動させてピストンαりを矢印
(15a)方向に上昇させる。すると、メディア(5)
は、ピスト/Q″!Jにより押し上げられ、被加工物(
2)の微細穴(1)を通過して下夛2ンパ(9)から上
クランパ0υに圧送される。このとき、微細穴(1)を
通過するメディア(5)には超音波振動が印加される。
At the same time, the ultrasonic source I is started and ultrasonic waves are applied from the ultrasonic horn (13) to the workpiece (2) via the lower jig (8). Raise it in the direction of the arrow (15a).Then, the media (5)
is pushed up by the piston/Q''!J, and the workpiece (
It passes through the fine hole (1) of 2) and is fed under pressure from the lower clamper (9) to the upper clamper 0υ. At this time, ultrasonic vibrations are applied to the medium (5) passing through the minute holes (1).

このため、メディア(5)内の砥粒(4)・・・が均一
に分散するとともに、発熱により結合材(例えばシリコ
ーンゴム)が軟化する。その結果、メディア(5)の粘
性抵抗が大幅に低下し、流動性が著しく向上する。
Therefore, the abrasive grains (4) in the media (5) are uniformly dispersed, and the binding material (for example, silicone rubber) is softened by heat generation. As a result, the viscous resistance of the media (5) is significantly reduced and the fluidity is significantly improved.

したがって、メディア(5)は、微細穴(1)中をつま
ることなく円滑に通過することができるので、高精度か
つ高能率で微細穴(1)を研磨加工することができる。
Therefore, the media (5) can smoothly pass through the fine holes (1) without clogging, so that the fine holes (1) can be polished with high precision and efficiency.

なお、上記実施例においては、微細穴が1個の場合を例
示しているが、複数穴の場合にも適用でき、とくKこの
場合、加工能率がすこぶる向上する。また、超音波振動
の印加方向は、微細穴の径方向のみならず、軸方向でも
よい。また、超音波ホーンの取付位置は、上、下クラン
パであってもよい。
In the above embodiments, the case where there is one fine hole is illustrated, but it can also be applied to the case where there are a plurality of holes, and in this case, the processing efficiency is greatly improved. Further, the direction in which the ultrasonic vibration is applied may be not only the radial direction of the microhole but also the axial direction. Further, the ultrasonic horn may be attached to the upper or lower clamper.

〔発明の効果〕〔Effect of the invention〕

本発明の砥粒流動加工装置は、流動メディアに超音波を
印加することにより、その流動性を高めるようにしたも
ので、内径1鵡以下の微細穴の研磨加工を高精度かつ高
能率で行うことができる。
The abrasive fluid processing device of the present invention is designed to increase the fluidity of fluid media by applying ultrasonic waves to it, and can polish micro holes with an inner diameter of 1 mm or less with high precision and high efficiency. be able to.

ことに、多数の微細穴の同時研磨加工に適用した場合に
格別の効果を奏する。
Particularly, when applied to the simultaneous polishing of a large number of fine holes, it is particularly effective.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の一実施例の砥粒流動装置の構成図である
。 (1):微細穴(通孔)、 (2):被加工物、(3)
:保持部、   (4):砥 粒、(5):メディア、
(e):メディア供給部、(7):超音波印肌部。 代理人 弁理士  則 近 憲 佑 同     竹 花 喜久男
The drawing is a configuration diagram of an abrasive flow device according to an embodiment of the present invention. (1): Microhole (through hole), (2): Workpiece, (3)
: Holding part, (4): Abrasive grain, (5): Media,
(e): Media supply section, (7): Ultrasonic impression section. Agent Patent Attorney Nori Chika Yudo Kikuo Takehana

Claims (1)

【特許請求の範囲】[Claims] 通孔を有する被加工物を保持する保持部と、この保持部
により保持されている被加工物の通孔に砥粒及び上記砥
粒を分散保持する流動性の結合材からなるメディアを供
給かつ通過させ上記通孔を研磨加工するメディア供給部
と、上記通孔を通過するメディアに超音波振動を印加す
る超音波印加部とを具備することを特徴とする砥粒流動
加工装置。
A holding part that holds a workpiece having a through hole, and a media consisting of abrasive grains and a fluid binder that disperses and holds the abrasive grains are supplied to the through hole of the workpiece held by the holding part. An abrasive flow processing device comprising: a media supply unit that polishes the media passing through the through holes; and an ultrasonic application unit that applies ultrasonic vibrations to the media passing through the through holes.
JP22966186A 1986-09-30 1986-09-30 Abrasive grain flow polishing machine Pending JPS6384870A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22966186A JPS6384870A (en) 1986-09-30 1986-09-30 Abrasive grain flow polishing machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22966186A JPS6384870A (en) 1986-09-30 1986-09-30 Abrasive grain flow polishing machine

Publications (1)

Publication Number Publication Date
JPS6384870A true JPS6384870A (en) 1988-04-15

Family

ID=16895696

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22966186A Pending JPS6384870A (en) 1986-09-30 1986-09-30 Abrasive grain flow polishing machine

Country Status (1)

Country Link
JP (1) JPS6384870A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004345022A (en) * 2003-05-22 2004-12-09 Fuji Heavy Ind Ltd Gear and its manufacturing method
KR100462995B1 (en) * 2002-01-30 2004-12-23 윈텍 이엔지(주) An apparatus for polishing the inner wall of the through hole of a silicon cathode
CN105945709A (en) * 2016-04-27 2016-09-21 大连交通大学 Abrasive water nozzle inner hole grinding machining fixture and method
CN108214276A (en) * 2018-03-26 2018-06-29 哈尔滨工业大学 High frequency three-phase flow polishes burr remover
CN108326725A (en) * 2017-12-28 2018-07-27 西安航天发动机有限公司 A kind of 3D printing double shrouded wheel abrasive Flow finishing processing device
CN108326724A (en) * 2017-12-28 2018-07-27 西安航天发动机有限公司 A kind of 3D printing air turbine shell abrasive Flow finishing processing device
CN109732467A (en) * 2019-01-17 2019-05-10 太原理工大学 The round tube inner wall precision finishing device of elliptical vibration compound static pressure abrasive flows

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100462995B1 (en) * 2002-01-30 2004-12-23 윈텍 이엔지(주) An apparatus for polishing the inner wall of the through hole of a silicon cathode
JP2004345022A (en) * 2003-05-22 2004-12-09 Fuji Heavy Ind Ltd Gear and its manufacturing method
JP4502594B2 (en) * 2003-05-22 2010-07-14 富士重工業株式会社 Gear manufacturing method
CN105945709A (en) * 2016-04-27 2016-09-21 大连交通大学 Abrasive water nozzle inner hole grinding machining fixture and method
CN108326725A (en) * 2017-12-28 2018-07-27 西安航天发动机有限公司 A kind of 3D printing double shrouded wheel abrasive Flow finishing processing device
CN108326724A (en) * 2017-12-28 2018-07-27 西安航天发动机有限公司 A kind of 3D printing air turbine shell abrasive Flow finishing processing device
CN108326724B (en) * 2017-12-28 2019-12-24 西安航天发动机有限公司 3D prints air turbine casing abrasive particle stream finishing processingequipment
CN108326725B (en) * 2017-12-28 2020-05-08 西安航天发动机有限公司 3D prints closed impeller abrasive flow finishing processingequipment
CN108214276A (en) * 2018-03-26 2018-06-29 哈尔滨工业大学 High frequency three-phase flow polishes burr remover
CN108214276B (en) * 2018-03-26 2020-04-24 哈尔滨工业大学 High-frequency three-phase flow polishing and deburring device
CN109732467A (en) * 2019-01-17 2019-05-10 太原理工大学 The round tube inner wall precision finishing device of elliptical vibration compound static pressure abrasive flows
CN109732467B (en) * 2019-01-17 2020-07-31 太原理工大学 Circular tube inner wall precision finishing processing device for elliptical vibration composite static pressure abrasive material flow

Similar Documents

Publication Publication Date Title
JPS6384870A (en) Abrasive grain flow polishing machine
JP4155872B2 (en) Lapping machine manufacturing method
JP2002283225A (en) Machining device and machining method of concave spherical surface
WO2006030854A1 (en) Complex profile body polishing method and polishing apparatus
JPH0120035B2 (en)
CN207043869U (en) A kind of electrostriction ultrasonic vibration burnishing device
JPH1126404A (en) Polishing apparatus
JP4705971B2 (en) Lapping machine manufacturing equipment
JPS6373625A (en) Formation of resin thin film layer for semiconductor wafer mounting
JP2021130187A (en) Method and device for performing flat processing and hemisphere-face processing of tip of small-diameter straight pin tip
JP3407691B2 (en) Grinding method of cylindrical shape of hard brittle material with belt drive rotation applying method
JPH11333702A (en) Device and method for generating spherical surface
JP3412859B2 (en) Cutting and grinding equipment
JPS6362659A (en) Precise finishing method with complex vibration grinding wheel
JPH03198332A (en) Polishing method and apparatus
JPH11320390A (en) Surface plate for surface machining device and method of using same
JPS6362662A (en) Precise finishing method with grinding wheel overlapped with supersonic and low frequency vibration
JPS61142002A (en) Optical member machining unit
JPS5662755A (en) Method and device for superfinishing by giving vibration to grinder
JPH1086052A (en) Polishing method for optical fiber connector
JP2005169556A (en) Polishing device and polishing method
JP2848971B2 (en) Bonding method of thin plate
JPH0569309A (en) Super finishing method
JP2002239879A (en) Ultrasonic vibration machining method
JP3703632B2 (en) Truing and dressing equipment for grinding tools