JPS6384084A - Semiconductor light-emitting element - Google Patents

Semiconductor light-emitting element

Info

Publication number
JPS6384084A
JPS6384084A JP61227979A JP22797986A JPS6384084A JP S6384084 A JPS6384084 A JP S6384084A JP 61227979 A JP61227979 A JP 61227979A JP 22797986 A JP22797986 A JP 22797986A JP S6384084 A JPS6384084 A JP S6384084A
Authority
JP
Japan
Prior art keywords
holes
light emitting
insulating film
electrode
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61227979A
Other languages
Japanese (ja)
Inventor
Nobuhiro Motoma
信弘 源間
Koichi Mizushima
公一 水島
Toshio Nakayama
中山 俊夫
Akira Miura
明 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP61227979A priority Critical patent/JPS6384084A/en
Publication of JPS6384084A publication Critical patent/JPS6384084A/en
Pending legal-status Critical Current

Links

Landscapes

  • Led Devices (AREA)

Abstract

PURPOSE:To inject minority carriers efficiently by forming a metallic electrode brought into point-contact with a semiconductor at a plurality of points and concentrating an electric field and currents at each point contact section. CONSTITUTION:An Au electrode 3 is shaped onto an Al-added n-type ZnS crystal substrate 1 through a porous insulating film 2. the film 2 consists of an SiO2 film through a sputtering method, and circular holes 4 are formed. The electrode 3 is shaped through an evaporation method as a dotted electrode. Approximately ten holes 4 are distributed in the dot of the electrode 3, and the electrode 3 is brought into point contact with the ZnS crystal substrate 1 through the holes 4 in the film 2. In-Hg electrodes 5 are formed onto the rear of the substrate as ohmic electrodes.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、注入型の半導体発光素子に関する。[Detailed description of the invention] [Purpose of the invention] (Industrial application field) The present invention relates to an injection type semiconductor light emitting device.

(従来の技術) ■−v族族化合物半導体の結晶成長および素子形成技術
の進歩により、可視域の発光ダイオードは赤から緑の波
長域は全て実用化されている。
(Prior Art) Due to advances in crystal growth and device formation technology for (1)-V group compound semiconductors, visible light emitting diodes have been put into practical use in all wavelength ranges from red to green.

発光ダイオードによるフルカラー表示を実現するために
は、残る青色領域の発光ダイオードの実用化が課題であ
る。しかし青色発光を実現するような広い禁制帯幅の半
導体は、伝導型の制御が難しく (ZnSe、ZnS、
GaNなど)、或いは大型の基板結晶が得られない(S
 i C) 、というように結晶制御に大きい問題を抱
えている。このことが青色発光ダイオードの実現を難し
くしている主因である。
In order to realize full-color display using light-emitting diodes, the challenge is to put light-emitting diodes in the remaining blue region into practical use. However, it is difficult to control the conduction type of semiconductors with a wide forbidden band width that achieve blue light emission (ZnSe, ZnS,
GaN, etc.) or large substrate crystals cannot be obtained (S
i C), there are major problems in crystal control. This is the main reason why it is difficult to realize blue light emitting diodes.

この様な状況の中で、青色の発光が起り易いZnS、G
aNを中心に発光ダイオードの試作研究が各所で行われ
ている。ZnS、GaNは共にn型伝導は得られるが、
p型の伝導型は未だ得られていない。このため発光素子
の構造としては、金属/絶縁体/半導体というMIS型
が用いられている。M I S構造の絶縁体としてはこ
れまで、不純物庵加のZnSやGaN等の半導体膜、5
i02やall’2o3等の無機絶縁膜、ラングミュア
・ブロジェット法によるを機分子絶縁膜が用いられてい
る。しかしこれまで報告されている例は、いずれも発光
効率10−5台であり、赤色や緑色で実現されているp
n接合型発光ダイオードと比較して2桁から3桁小さい
ものしか得られていない。これは、MIS構造では十分
大きい少数キャリア注入効率が得られないからである。
Under these circumstances, ZnS and G, which tend to emit blue light,
Prototype research on light emitting diodes, mainly aN, is being conducted in various places. Both ZnS and GaN can achieve n-type conduction, but
P-type conductivity has not yet been obtained. For this reason, the MIS type metal/insulator/semiconductor structure is used as the structure of the light emitting element. Up until now, insulators for MIS structures have been semiconductor films such as ZnS and GaN with a large amount of impurities,
Inorganic insulating films such as i02 and all'2o3 and organic molecular insulating films made by the Langmuir-Blodgett method are used. However, all the examples reported so far have a luminous efficiency of 10-5 units, and the p
Compared to n-junction type light emitting diodes, only two to three orders of magnitude smaller can be obtained. This is because a sufficiently large minority carrier injection efficiency cannot be obtained in the MIS structure.

(発明が解決しようとする問題点) 以上のようにpn接合構造の発光素子では、半導体結晶
の制御の難しさから効率の高い青色発光素子は得られて
いない。またM I S型発光素子では、少数キャリア
注入を効率よく行う絶縁膜形成が難しく、やはり効率の
高%、1発光素子は得られていない。
(Problems to be Solved by the Invention) As described above, in a light emitting device having a pn junction structure, a highly efficient blue light emitting device has not been obtained due to the difficulty in controlling the semiconductor crystal. Furthermore, in the MIS type light emitting device, it is difficult to form an insulating film that efficiently injects minority carriers, and a single light emitting device with high efficiency has not been obtained.

本発明はこの様な問題を解決して、新しい少数キャリア
注入機溝を利用して高い発光効率を実現した半導体発光
素子を提供することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to solve these problems and provide a semiconductor light emitting device that achieves high luminous efficiency by utilizing a new minority carrier injector groove.

[発明の構成] (問題点を解決するための手段) 本発明にかかる発光素子は、半導体に対し、複数点で点
接触する金属電極を設け、各点接触部で電界、電流を集
中させることにより、金属電極から半導体への少数キャ
リア注入を効率よく行うようにしたことを特徴としてい
る。
[Structure of the Invention] (Means for Solving the Problems) A light emitting device according to the present invention includes metal electrodes that are in point contact with a semiconductor at multiple points, and electric fields and currents are concentrated at each point of contact. This is characterized by efficient injection of minority carriers from the metal electrode into the semiconductor.

具体的な素子構造としては、例えば金属/絶縁膜/半導
体の構造を利用し、その絶縁膜に複数の孔を開けておく
ことにより、金属電極を複数点で半導体に接触させる。
As a specific device structure, for example, a metal/insulating film/semiconductor structure is used, and a plurality of holes are made in the insulating film so that the metal electrode is brought into contact with the semiconductor at a plurality of points.

この場合、絶縁膜に形成する孔は内径が100人から3
μmの範囲が望ましい。また絶縁膜は、S i02 、
  S i3 N4 。
In this case, the hole formed in the insulating film has an inner diameter of 100 to 3
A range of μm is desirable. Moreover, the insulating film is S i02 ,
S i3 N4.

AJ203等の無機絶縁膜、ポリマー系レジスト、ラン
グミュア・ブロジェット法による有機分子の絶縁膜等が
用いられる。孔の形成には通常のリソグラフィ技術を利
用すればよい。
An inorganic insulating film such as AJ203, a polymer resist, an insulating film of organic molecules formed by the Langmuir-Blodgett method, etc. are used. Ordinary lithography techniques may be used to form the holes.

他の素子構造として、絶縁膜を用いず、複数の針状突起
を有する金属電極を直接半導体に接触させる構造を採用
することもできる。この場合、針状突起は先端の曲率半
径が100人から3μmの範囲で、突起の面積密度は1
cml12当り10−’n2から1O−12c!12に
設定することが望ましい。
As another element structure, it is also possible to adopt a structure in which a metal electrode having a plurality of needle-like protrusions is brought into direct contact with a semiconductor without using an insulating film. In this case, the radius of curvature at the tip of the needle-like protrusion ranges from 100 to 3 μm, and the areal density of the protrusion is 1
10-'n2 to 1O-12c per cml12! It is desirable to set it to 12.

半導体材料としては、■−■族族化合物半導体であるZ
nS  Se   (0≦X≦1)または■x    
  Lx −V族族化合物半導体であるGaN用いれば、青色発光
素子を得ることができる。また■−■族族化合物半導体
であるGaAs  P   (0≦X≦x   1−x 1)を用いれば、赤色から緑色の波長領域の発光素子が
得られる。
As a semiconductor material, Z, which is a ■-■ group compound semiconductor, is used.
nS Se (0≦X≦1) or ■x
If GaN, which is an Lx-V group compound semiconductor, is used, a blue light emitting device can be obtained. Furthermore, if GaAs P (0≦X≦x 1 -x 1), which is a ■-■ group compound semiconductor, is used, a light emitting element in the wavelength range from red to green can be obtained.

(作用) 本発明の素子構造とすれば、金属電極と半導体の間に順
バイアスを与えた時、複数の点接触部で電界集中に伴い
、次式で示される広がり抵抗R5Pによる電圧降下が生
じる。
(Function) With the element structure of the present invention, when a forward bias is applied between the metal electrode and the semiconductor, a voltage drop occurs due to the spreading resistance R5P shown by the following equation due to electric field concentration at multiple point contact parts. .

R9P−ρ/2d ここで、ρは半導体の比抵抗であり、dは点接触部の直
径である。この広がり抵抗による電圧降下は、半導体表
面近傍で大きく現われ、その結果表面近傍のバンドは大
きく屈曲する。このバンド屈曲により、半導体がp型の
場合は金属から電子が、半導体がn型の場合は金属電極
からホールが、それぞれ半導体に注入される。即ち金属
電極と半導体の点接触の大きさおよび面積密度を適当に
設定することにより、従来のM I S 構造では得ら
れない効率のよい少数キャリア注入が可能になり、半導
体内での電子−ホール再結合による発光を生じさせるこ
とができる。特に、pn接合の形成が難しいZnSSe
などの半導体について本発明を適用すると官用であり、
これにより青色発光素子が実現できる。
R9P-ρ/2d where ρ is the resistivity of the semiconductor and d is the diameter of the point contact. The voltage drop due to this spreading resistance appears largely near the semiconductor surface, and as a result, the band near the surface bends significantly. Due to this band bending, electrons are injected from the metal into the semiconductor when the semiconductor is p-type, and holes are injected from the metal electrode when the semiconductor is n-type. In other words, by appropriately setting the size and area density of the point contact between the metal electrode and the semiconductor, efficient minority carrier injection that cannot be obtained with the conventional MIS structure becomes possible, and electron-hole injection within the semiconductor becomes possible. Luminescence can be caused by recombination. In particular, ZnSSe is difficult to form a pn junction.
Applying the present invention to semiconductors such as
This makes it possible to realize a blue light emitting element.

(実施例) 以下、本発明の実施例を図面を参照して説明する。(Example) Embodiments of the present invention will be described below with reference to the drawings.

第1図は一実施例の発光素子である。図において、1は
AI!添加のn型ZnS結晶基板であり、この上に多孔
性絶縁膜2を介してAu電極3が形成されている。多孔
性絶縁膜2はこの実施例ではスパッタ法による1000
人の5i02膜であり、これにリソグラフィにより直径
062μmの円形の孔4を100μm間隔で設けている
。リソグラフィとしては、5i02膜にレジストを塗布
して電子線により直接パターン描画して現像し、反応性
イオンエツチング法により孔4を開けた。Au電極3は
直径360μmのドツト状電極として蒸着法により形成
した。このAu電極3のドツト内には約10個の孔4が
分布していることになり、Au電極3はこの絶縁膜2の
孔4を介してZnS結晶基板1に点接触する。基板裏面
には、オーミック電極としてln−Hg?ti極5が形
成されている。
FIG. 1 shows a light emitting device of one embodiment. In the figure, 1 is AI! This is a doped n-type ZnS crystal substrate, on which an Au electrode 3 is formed with a porous insulating film 2 interposed therebetween. In this embodiment, the porous insulating film 2 is formed by sputtering.
It is a human 5i02 membrane, and circular holes 4 with a diameter of 062 μm are formed at 100 μm intervals by lithography. As for lithography, a resist was applied to the 5i02 film, a pattern was drawn directly with an electron beam and developed, and holes 4 were made by reactive ion etching. The Au electrode 3 was formed as a dot-shaped electrode with a diameter of 360 μm by a vapor deposition method. Approximately ten holes 4 are distributed within the dots of this Au electrode 3, and the Au electrode 3 is in point contact with the ZnS crystal substrate 1 through the holes 4 of this insulating film 2. On the back side of the board, ln-Hg? is used as an ohmic electrode. A Ti pole 5 is formed.

第2図はこの実施例の発光素子の電圧−電流特性であり
、第3図は電圧と発光強度の関係である。
FIG. 2 shows the voltage-current characteristics of the light emitting element of this example, and FIG. 3 shows the relationship between voltage and luminescence intensity.

これらの図に併せて示した破線は、多孔性絶縁膜を用い
ずにAu電極を直接ZnS結晶基板に接触させたMS構
造とした場合の特性である。第2図から明らかなように
、この実施例の素子では電界集中による広がり抵抗の影
響により、MS構造の素子と比べて低い電流レベルのと
ころからiogIとVとの間の直線性が失われ始める。
The broken line shown in these figures is the characteristic when the MS structure is used in which the Au electrode is brought into direct contact with the ZnS crystal substrate without using a porous insulating film. As is clear from FIG. 2, in the device of this example, the linearity between iogI and V begins to be lost at a lower current level than in the MS structure device due to the spread resistance caused by electric field concentration. .

また第3図に示すように、青色発光が、i7ogl−V
の曲りが現われる電圧値から観測され初め、発光強度は
電圧に対して指数関数的に増大する。電圧値5vで電流
値は30mA、そのときの発光効率は1%であり、赤色
や緑色のpn接合発光素子と同程度の輝度の青色発光が
実現した。またこの発光は通電時間1000時間を経過
しても強度は変わらず、極めて安定性が優れていること
が確認された。
Furthermore, as shown in Fig. 3, blue light emission is caused by i7ogl-V
The curve begins to be observed from the voltage value at which it appears, and the emission intensity increases exponentially with the voltage. At a voltage value of 5 V and a current value of 30 mA, the luminous efficiency was 1%, and blue light emission with the same brightness as a red or green pn junction light emitting element was realized. Furthermore, the intensity of this light emission did not change even after 1000 hours of current application, and it was confirmed that the light emission was extremely stable.

第4図および第5図は上記実施例において、直径360
μmの上部Au電極に含まれる孔の個数を10個一定と
し、孔の内径を変えた時の素子特性の変化を示したも°
のである。第4図は順方向バイアス電圧5■の場合の電
流の変化であり、孔の内径が大きい程電流は増大する。
4 and 5 show the diameter 360 mm in the above embodiment.
The figure shows the change in device characteristics when the inner diameter of the holes is changed, with the number of holes included in the upper Au electrode of μm being kept constant at 10.
It is. FIG. 4 shows the change in current when the forward bias voltage is 5 cm, and the larger the inner diameter of the hole, the larger the current.

但し、孔の内径が1μm以下では発光をもたらす再結合
電流が増加する結果、電流値の減少は小さい。なお、孔
の内径100Å以下のものは、製造技術的に難しく、実
用的でない。第5図はやはり順方向バイアス電圧5vで
の発光効率と発光強度であり、孔の径が小さくなる程、
発光効率および発光強度が大きくなっている。これは、
孔の径が小さい程電界集中の効果が大きく働く結果であ
る。発光効率は、孔の直径3μm以下で0.1%以上と
実用的な値が得られている。
However, when the inner diameter of the hole is 1 μm or less, the recombination current that causes light emission increases, so that the decrease in the current value is small. Note that a hole with an inner diameter of 100 Å or less is difficult to manufacture and is not practical. Figure 5 shows the luminous efficiency and luminous intensity at a forward bias voltage of 5V, and the smaller the diameter of the hole, the more
Luminous efficiency and luminous intensity are increased. this is,
This is a result of the fact that the smaller the diameter of the hole, the greater the effect of electric field concentration. A practical value of luminous efficiency of 0.1% or more has been obtained when the diameter of the hole is 3 μm or less.

第6図および第7図は、上記実施例において孔の直径を
0.2μm一定とし、360μm径のAu71]極内で
の孔の個数を変えた時の特性変化を測定した結果である
。第6図に示すように、孔の個数を増すと電流値は増加
する。発光効率は第7図に示すように孔の個数100個
を越えると低下する。これは第6図の電流増加と対応し
ており、電流増加の結果ジュール熱が発生して素子の温
度が上昇し、非発光再結合が増すためであると思われる
。また発光強度は、孔の個数100個近傍に極大値を持
ち、この孔の内径の場合は、個数1〜103の範囲に選
ぶことが望ましい。
FIGS. 6 and 7 show the results of measuring changes in characteristics when the number of holes in the Au71] pole with a diameter of 360 μm was changed in the above example, with the diameter of the holes being constant at 0.2 μm. As shown in FIG. 6, the current value increases as the number of holes increases. As shown in FIG. 7, the luminous efficiency decreases when the number of holes exceeds 100. This corresponds to the increase in current shown in FIG. 6, and is thought to be because the increase in current generates Joule heat, increases the temperature of the element, and increases non-radiative recombination. Furthermore, the emission intensity has a maximum value near 100 holes, and the inner diameter of the holes is desirably selected within the range of 1 to 103 holes.

第8図は本発明の他の実施例の発光素子である。FIG. 8 shows a light emitting device according to another embodiment of the present invention.

この実施例が先の実施例と異なる点は、絶縁膜を用いず
、複数の針状突起6が形成されたA u 電極3を直列
n型ZnS結晶基板1に圧着させていることである。A
u電極3の直径は360μmで針状突起6は250個と
した。この実施例によっても、針状突起6により先の実
施例と同様な点接触状態が形成され、先の実施例と同様
の青色発光が認められた。針状突起の先端の曲率半径お
よび面密度と特性の関係は、先の実施例の孔の径および
面密度と特性の関係と同様の傾向を示し、曲率半径は1
00人から3μmの範囲、また突起の個数は360μm
のAu電極内で1〜103の範囲で設定することが望ま
しい。
This embodiment differs from the previous embodiment in that an A u electrode 3 on which a plurality of needle-like protrusions 6 are formed is pressed onto a series n-type ZnS crystal substrate 1 without using an insulating film. A
The diameter of the u-electrode 3 was 360 μm, and the number of needle-like protrusions 6 was 250. In this example as well, a point contact state similar to that of the previous example was formed by the needle-like protrusion 6, and blue light emission similar to that of the previous example was observed. The relationship between the radius of curvature and areal density of the tip of the needle-like protrusion and the characteristics shows the same tendency as the relationship between the diameter of the pore and the areal density and the characteristics in the previous example, and the radius of curvature is 1.
00 to 3μm range, and the number of protrusions is 360μm
It is desirable to set it within the range of 1 to 103 within the Au electrode.

本発明は上記実施例に限られない。半導体としては、ブ
リッジマン法により得られるZnS結晶の他に、MOC
VD法やM B E法により例えばGaAs基板、Ga
P基板等に形成されたZnS  Se   結晶を用い
ても、青色発光素子x      l−x が得られる。またヨウ素輸送法により形成されるZnS
、Zn5e或いはGaN結晶を用いても同様に青色発光
素子を得ることができる。またGaAs  P   結
晶基板を用いれば、赤色から  1−x 緑色までの発光素子が同様の原理で得られる。キャリア
注入用電極金属としては、Auの他に、Pt、  Al
、 Ag、  Cr、  Ti、  Pb、  W、 
 Niなどを用いることができる。第1図のような多孔
性絶縁膜を用いる構成では、絶縁膜としてスパッタ法に
よる5i02膜の他、CVDによる5i02膜やSi3
N4膜、Aノ203膜等を用いることもできる。またポ
リマー系レジストである各種のフォトレジスト、電子ビ
ーム露光用レジスト、紫外線露光用レジスト用いること
もできる。
The present invention is not limited to the above embodiments. As a semiconductor, in addition to ZnS crystal obtained by the Bridgman method, MOC
For example, GaAs substrates, Ga
A blue light emitting element x l-x can also be obtained using a ZnS Se crystal formed on a P substrate or the like. In addition, ZnS formed by the iodine transport method
, Zn5e, or GaN crystal can similarly obtain a blue light emitting device. Furthermore, if a GaAs P crystal substrate is used, light emitting elements from red to 1-x green can be obtained using the same principle. In addition to Au, electrode metals for carrier injection include Pt and Al.
, Ag, Cr, Ti, Pb, W,
Ni or the like can be used. In the structure using a porous insulating film as shown in Fig. 1, in addition to a 5i02 film made by sputtering, a 5i02 film made by CVD or a Si3
An N4 film, an A-203 film, etc. can also be used. Furthermore, various photoresists, resists for electron beam exposure, and resists for ultraviolet exposure, which are polymeric resists, can also be used.

更に、ラングミュア・ブロジェット法によるを機分子絶
縁膜例えばポリジアセチレン誘導体薄膜等を用いること
もできる。これら絶縁膜の膜厚は100人〜1μm程度
の範囲で適当に選択することができる。またこれら絶縁
膜に孔を開けるリソグラフィ手法として、通常の光露光
の他、電子線露光、紫外線露光、X線露光、イオンビー
ム露光等を利用することができ、露光後のエツチングと
して、RIEなどのドライエツチングの他、ウェット・
エツチングを用いてもよい。
Furthermore, it is also possible to use a molecular insulating film, such as a polydiacetylene derivative thin film, based on the Langmuir-Blodgett method. The thickness of these insulating films can be appropriately selected within the range of about 100 to 1 μm. In addition to normal light exposure, electron beam exposure, ultraviolet ray exposure, X-ray exposure, ion beam exposure, etc. can be used as a lithography method to create holes in these insulating films.As for etching after exposure, RIE etc. In addition to dry etching, wet etching
Etching may also be used.

[発明の効果コ 以上述べたように本発明によれば、点接触を利用した電
界、電流集中による新しいキャリア注入現象を用いて、
M I S +R造では得られない大きい注入効率を実
現した発光素子を得ることができる。
[Effects of the Invention] As described above, according to the present invention, by using a new carrier injection phenomenon due to electric field and current concentration using point contact,
It is possible to obtain a light emitting element that achieves a high injection efficiency that cannot be obtained with an M I S +R structure.

従って従来、結晶制御が難しく、良好なpn接合が得ら
れないために実現されていなかった高輝度の青色発光素
子を、本発明により実現することができる。
Therefore, the present invention makes it possible to realize a high-brightness blue light-emitting element, which has not been realized conventionally because crystal control is difficult and a good pn junction cannot be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の青色発光素子を示す図、第
2図はその電圧−電流特性を示す図、第3図は同じく電
圧−発光強度特性を示す図、第4図および第5図は絶縁
膜に設ける孔の内径と素子特性の関係を示す図、第6図
および第7図は同じく孔の個数と素子特性関係を示す図
、第8図は他の実施例の青色発光素子を示す図である。 1・・・n型ZnS結晶基板、2・・・多孔性絶縁膜、
3・・・Au電極(キャリア注入電極)、4・・・孔、
5・・・ln−Hg電極(オーミック電極)、6・・・
針状突起。 出願人代理人 弁理士 鈴江武彦 第1図 電 圧(V) 第2図 電圧(V) 第3図 子りのν9羽) (Cm) 子りの内径(cm) 第5図
FIG. 1 is a diagram showing a blue light emitting device according to an embodiment of the present invention, FIG. 2 is a diagram showing its voltage-current characteristics, FIG. 3 is a diagram also showing voltage-emission intensity characteristics, and FIGS. Figure 5 is a diagram showing the relationship between the inner diameter of holes provided in the insulating film and element characteristics, Figures 6 and 7 are diagrams showing the relationship between the number of holes and element characteristics, and Figure 8 is a diagram showing the relationship between the number of holes and element characteristics, and Figure 8 is a diagram showing blue light emission of another example. It is a figure showing an element. 1... n-type ZnS crystal substrate, 2... porous insulating film,
3...Au electrode (carrier injection electrode), 4...hole,
5...ln-Hg electrode (ohmic electrode), 6...
Needles. Applicant's representative Patent attorney Takehiko Suzue Figure 1 Voltage (V) Figure 2 Voltage (V) Figure 3 Child's ν9 blades) (Cm) Child's inner diameter (cm) Figure 5

Claims (9)

【特許請求の範囲】[Claims] (1)半導体に、複数点で点接触するキャリア注入用金
属電極を設けたことを特徴とする半導体発光素子。
(1) A semiconductor light emitting device characterized in that a metal electrode for carrier injection is provided in point contact with a semiconductor at a plurality of points.
(2)キャリア注入用金属電極は半導体基板に絶縁膜を
介して形成されており、前記絶縁膜に複数個の孔が形成
されて、この孔を介して前記金属電極が前記半導体基板
に点接触している特許請求の範囲第1項記載の半導体発
光素子。
(2) The metal electrode for carrier injection is formed on the semiconductor substrate via an insulating film, and a plurality of holes are formed in the insulating film, and the metal electrode is brought into point contact with the semiconductor substrate through the holes. A semiconductor light emitting device according to claim 1.
(3)前記キャリア注入用金属電極は複数の針状突起を
有し、その各針状突起が半導体に直接接触している特許
請求の範囲第1項記載の半導体発光素子。
(3) The semiconductor light emitting device according to claim 1, wherein the carrier injection metal electrode has a plurality of needle-like protrusions, each of which is in direct contact with the semiconductor.
(4)前記絶縁膜の複数の孔は、内径が100Åから3
μmである特許請求の範囲第2項記載の半導体発光素子
(4) The plurality of holes in the insulating film have an inner diameter of 100 Å to 3 Å.
The semiconductor light emitting device according to claim 2, which has a diameter of μm.
(5)前記針状突起は、突起先端の曲率半径が100Å
から3μmである特許請求の範囲第3項記載の半導体発
光素子。
(5) The needle-like protrusion has a radius of curvature of 100 Å at the tip of the protrusion.
3. The semiconductor light emitting device according to claim 3, which has a thickness of from 3 μm to 3 μm.
(6)前記絶縁膜は無機絶縁膜であり、複数の孔はリソ
グラフィにより形成されたものである特許請求の範囲第
2項記載の半導体発光素子。
(6) The semiconductor light emitting device according to claim 2, wherein the insulating film is an inorganic insulating film, and the plurality of holes are formed by lithography.
(7)前記絶縁膜はポリマー系レジストであり、複数の
孔はリソグラフィにより形成されたものである特許請求
の範囲第2項記載の半導体発光素子。
(7) The semiconductor light emitting device according to claim 2, wherein the insulating film is a polymer resist, and the plurality of holes are formed by lithography.
(8)前記絶縁膜はラングミュア・ブロジェット法によ
る有機分子の絶縁膜であり、複数の孔はリソグラフィに
より形成されたものである特許請求の範囲第2項記載の
半導体発光素子。
(8) The semiconductor light emitting device according to claim 2, wherein the insulating film is an insulating film of organic molecules formed by Langmuir-Blodgett method, and the plurality of holes are formed by lithography.
(9)前記半導体は、ZnS_xSe_1_−_x(0
≦x≦1)またはGaNである特許請求の範囲第1項記
載の半導体発光素子。
(9) The semiconductor is ZnS_xSe_1_-_x(0
≦x≦1) or GaN.
JP61227979A 1986-09-29 1986-09-29 Semiconductor light-emitting element Pending JPS6384084A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61227979A JPS6384084A (en) 1986-09-29 1986-09-29 Semiconductor light-emitting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61227979A JPS6384084A (en) 1986-09-29 1986-09-29 Semiconductor light-emitting element

Publications (1)

Publication Number Publication Date
JPS6384084A true JPS6384084A (en) 1988-04-14

Family

ID=16869257

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61227979A Pending JPS6384084A (en) 1986-09-29 1986-09-29 Semiconductor light-emitting element

Country Status (1)

Country Link
JP (1) JPS6384084A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012186427A (en) * 2011-03-08 2012-09-27 Toshiba Corp Semiconductor light-emitting element and method of manufacturing the same
JP2012186195A (en) * 2011-03-03 2012-09-27 Toshiba Corp Semiconductor light-emitting element and method of manufacturing the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012186195A (en) * 2011-03-03 2012-09-27 Toshiba Corp Semiconductor light-emitting element and method of manufacturing the same
US9159880B2 (en) 2011-03-03 2015-10-13 Kabushiki Kaisha Toshiba Semiconductor light emitting device and method for manufacturing the same
US9437779B2 (en) 2011-03-03 2016-09-06 Kabushiki Kaisha Toshiba Semiconductor light emitting device and method for manufacturing the same
JP2012186427A (en) * 2011-03-08 2012-09-27 Toshiba Corp Semiconductor light-emitting element and method of manufacturing the same
US8835954B2 (en) 2011-03-08 2014-09-16 Kabushiki Kaisha Toshiba Semiconductor light emitting device and method for manufacturing the same
US9142728B2 (en) 2011-03-08 2015-09-22 Kabushiki Kaisha Toshiba Semiconductor light emitting device and method for manufacturing the same

Similar Documents

Publication Publication Date Title
DE2813918C2 (en) Luminous semiconductor component
US5338944A (en) Blue light-emitting diode with degenerate junction structure
Crowder et al. Efficient injection electroluminescence in ZnTe by avalanche breakdown
JPH0246779A (en) Pn junction type light emitting diode using silicon carbide semiconductor
JPH0268968A (en) Compound semiconductor light-emitting device
JPS6384084A (en) Semiconductor light-emitting element
US20050045906A1 (en) Light emitting device
Ren et al. Blue (ZnSe) and green (ZnSe0. 9Te0. 1) light emitting diodes
EP0096509A2 (en) Electroluminescent devices
KR100389738B1 (en) SHORT WAVELENGTH ZnO LED AND METHOD FOR PRODUCING OF THE SAME
JPH05304314A (en) Light emitting diode
JPS61228684A (en) Semiconductor light emitting element
JPS6118184A (en) Light-emitting element
JPH0389568A (en) Light emitting diode and manufacture thereof
JPS61276384A (en) Blue light emitting element
JPS62101091A (en) Blue color light emitting device
JP2545212B2 (en) Blue light emitting element
CA2505805C (en) Enhanced light-emitting diode
JPS6048915B2 (en) Injection type light emitting semiconductor device and its manufacturing method
JPS54152485A (en) Electrode forming method for gallium phosphide light- emitting diode
JPH0653613A (en) Semiconductor element
JPH0467689A (en) Tunnel junction light-emitting element
JPS6379389A (en) Semiconductor light emitting device
JPH07131065A (en) Semiconductor light emitting element
JPH03270180A (en) Semiconductor light-emitting element