JPS6379422A - Digital-analog converter - Google Patents

Digital-analog converter

Info

Publication number
JPS6379422A
JPS6379422A JP22537186A JP22537186A JPS6379422A JP S6379422 A JPS6379422 A JP S6379422A JP 22537186 A JP22537186 A JP 22537186A JP 22537186 A JP22537186 A JP 22537186A JP S6379422 A JPS6379422 A JP S6379422A
Authority
JP
Japan
Prior art keywords
fet
terminal
output
current
output terminal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22537186A
Other languages
Japanese (ja)
Inventor
Yukio Koike
幸生 小池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP22537186A priority Critical patent/JPS6379422A/en
Publication of JPS6379422A publication Critical patent/JPS6379422A/en
Pending legal-status Critical Current

Links

Landscapes

  • Analogue/Digital Conversion (AREA)

Abstract

PURPOSE:To attain stable conversion by feeding back an output being the result of differential amplification between an output of a weight current output of a resistance network and a reference voltage to a gate of a FET connected to the weighting current output terminal so as to make the output of the resistance network constant. CONSTITUTION:Resistors R1-R4 of the resistance network 5 outputting a weighting current are set, for example, R3=R4=R, R2=R/2, R1=R/4 to apply weighting to an output of the current. As the resistors R1-R4,FE sM11-M14 are connected in series. A reference voltage from the terminal 3 and a potential of the resistor terminals R1-R4 are given to differential amplifiers A1-A4 to apply differential amplification, its output is fed back to gates of the FETsM11-M14 to eliminate the fluctuation of the voltage of the output terminal of the resistance network 5. Digital data D1-D3 are converted into control outputs 1a-3b by a control circuit 6 and an analog signal is outputted from the FETsM21-M33. Thus, the problem of temperature and secular change is solved without increasing the occupied area of the FETs.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はD/A変換器の改良に関するもので、さらに詳
しくはMOS FETを使用した電流出力型D/A変換
器の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to improvements in D/A converters, and more particularly to improvements in current output type D/A converters using MOS FETs.

〔従来の技術〕[Conventional technology]

第3図は、従来良く知られたD/A変換器の一例である
。第3図において、1は第1のアナログ端子工0,2は
第2のアナログ出力端子Io、 3は基準電圧VREr
が印加される基準電圧端子、4は電源VDDが印加され
る電源端子、5は抵抗性素子R1〜R4より成り、電源
端子4ニジ流れ込んでくる電流よシ複数の重み付け電流
を発生する抵抗網、Mll〜M14は、抵抗網5の重み
付け電流の出力端子を一定電圧に安定化する為のFET
、M21〜M23.M31〜M33はMll〜M13よ
り流れ込んでくる重み付け電流を工0又は工0のいずれ
かに導びく、スイッチ用FET、Di〜D3はデジタル
入力端子、6はD1〜D3に印加されるデジタル入力信
号に応じてFET、M21〜M23.M31〜M33を
制御する信号1a〜3a、1b〜3bを発生する回路で
ある。
FIG. 3 shows an example of a conventionally well-known D/A converter. In FIG. 3, 1 is the first analog terminal 0, 2 is the second analog output terminal Io, and 3 is the reference voltage VRer.
4 is a power supply terminal to which the power supply VDD is applied; 5 is a resistor network consisting of resistive elements R1 to R4 and generating a plurality of weighted currents according to the current flowing into the power supply terminal 4; Mll to M14 are FETs for stabilizing the output terminal of the weighted current of the resistance network 5 to a constant voltage.
, M21-M23. M31 to M33 are switch FETs that guide the weighted current flowing in from Mll to M13 to either 0 or 0, Di to D3 are digital input terminals, and 6 is a digital input signal applied to D1 to D3. Depending on the FET, M21 to M23. This circuit generates signals 1a to 3a and 1b to 3b that control M31 to M33.

同図において、R1−R4は Mll〜M14は、R1−R4の両端にかかる電圧が、
一定値 Vn=Vnn−VRBF−Vast(i=l〜4)  
−−・(1)但しVastはMliのゲートソース間電
圧となるように大きさが決定されている。従って同R 図中ではI=Tとすると、R1には4I、  RzVc
は2I。
In the same figure, R1-R4 is Mll to M14, and the voltage applied across R1-R4 is
Constant value Vn=Vnn-VRBF-Vast (i=l~4)
--(1) However, the magnitude of Vast is determined so that it becomes the gate-source voltage of Mli. Therefore, if I=T in the same R diagram, R1 has 4I, RzVc
is 2I.

R3とR4には工の大きさの電流が流れることになる。A current of a magnitude of 1.5 mm will flow through R3 and R4.

第4図は制御回路6の論理例である。第4図中コントロ
ール出力の1は、その出力がゲートに接続され九FET
が導通する事を表わし、0は遮断する事を表わし、0は
遮断する事を表わす。例えばデジタル入力信号がD1=
O,D2=D3=1の場合、第4図からM21.M32
.M33が導通し、MB2゜M22.M23が遮断する
ことがわかる。この結果、IoKは3xIの電流が流れ
、IOには4xIの大きさの電流が流れて、デジタル入
力信号がアナログの電流に変換される。デジタル入力信
号が異なった条件の場合にも、第4図の論理に従って各
FETが導通、遮断を行い、同様にしてデジタルアナロ
グ変換が行表われる。以上述べたように第3図の条例に
おいて、デジタルアナログ変換が達成されることが理解
された。又、第3図の回路は、その構成要素が抵抗、F
ET、デジタル回路よ構成っていることと、 VDgp
電圧さえ外部で調節すれば、それらの素子の相対精度に
のみ、出力の精度が左右されるという2つの理由によシ
、極めて集積回路化に達している。
FIG. 4 is a logic example of the control circuit 6. Control output 1 in Fig. 4 has its output connected to the gate of 9 FETs.
represents conduction, 0 represents disconnection, and 0 represents disconnection. For example, if the digital input signal is D1=
If O, D2=D3=1, from FIG. 4 M21. M32
.. M33 conducts, MB2°M22. It can be seen that M23 is blocked. As a result, a current of 3xI flows through IoK, a current of 4xI flows through IO, and the digital input signal is converted into an analog current. Even when the digital input signal is under different conditions, each FET conducts conduction or disconnection according to the logic shown in FIG. 4, and digital-to-analog conversion is performed in the same manner. As described above, it was understood that digital-to-analog conversion is achieved in the regulations shown in Figure 3. In addition, the circuit shown in Fig. 3 has a resistor, F
ET is composed of a digital circuit, and VDgp
Even if the voltage is adjusted externally, the accuracy of the output depends only on the relative accuracy of those elements, for two reasons: highly integrated circuits have been reached.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところで、上述したように、従来のD/A変換器におい
ては、その重み付け電流をR1−R4より成る抵抗網の
出力端をMll〜M14よ構成るFETによって定電圧
化して得る。従って(1)式中のVast(?v!p+
のゲートソース間1!圧)はMll〜M14において一
致することが必要であるが、前述したとおシ各FETを
流れる電流は4:2:1:1の比になりている。FET
が流すことが可能な電流値はゲートソース間電圧が一定
の場合、その物理的形状で決まってしまうので、この場
合MllにはM14の4倍の形状のものが、M12には
M14の2倍の形状のものが使用される。実際には、こ
れらのFETの相対性を良好とする為、MllはM14
と同一のものを4つ並列に、M12はM14と同一のも
のを2つ並列に使用することが多い。第3図の従来例は
3bitのD/A変換器の例であるが、この型のD/A
変換器はbit数が上昇するにつれて、抵抗網の重み付
け電流の比は2のべき乗で変化するので、このF E 
’It”の回路全体に対して占める割合も蓄しく大きく
なってゆくという欠点を持っている。又Vos+の差を
産む他の要因としてMliのI” E Tの閾値Vrの
変動が存在する。通常FETにおいてはこの変動は数m
Vである。
By the way, as described above, in the conventional D/A converter, the weighting current is obtained by making the output terminal of the resistor network composed of R1-R4 a constant voltage by the FETs composed of Mll-M14. Therefore, Vast(?v!p+
Between the gate sources 1! It is necessary that the voltages (voltages) are the same in Mll to M14, but as described above, the currents flowing through each FET are in a ratio of 4:2:1:1. FET
The current value that can flow is determined by its physical shape when the gate-source voltage is constant, so in this case, Mll has a shape four times that of M14, and M12 has a shape twice that of M14. A shape of is used. Actually, in order to make the relativity of these FETs good, Mll is M14.
Four pieces identical to M12 are often used in parallel, and two pieces identical to M14 are used in parallel for M12. The conventional example in Fig. 3 is an example of a 3-bit D/A converter;
In the converter, as the bit number increases, the weighting current ratio of the resistor network changes by a power of 2, so this F E
It has the disadvantage that the ratio of 'It' to the entire circuit increases rapidly.Furthermore, another factor that causes a difference in Vos+ is the fluctuation of the threshold value Vr of I'ET of Mli. In normal FETs, this fluctuation is several meters
It is V.

もし仮に■=IVとすると、13 bitのD/Aを第
3図の従来例と同じ方法で実現するとし、最上位のPE
TのVrの変動が10mv存在した場合、最下位の重み
付け電流I=青に対して、最上位の重み付け電流は となシ、vrの変動による最上位の重み付け電流の変動
が最下位の重み付け電流を越えてしまうととがわかる。
If ■ = IV, 13-bit D/A is realized using the same method as the conventional example shown in Fig. 3, and the top PE
If there is a variation of Vr of T by 10 mV, the lowest weighted current I = blue, the highest weighted current will be the same, and the fluctuation of the highest weighted current due to the fluctuation of vr will be the lowest weighted current. If you exceed this, you will understand.

このような変動はデジタル、アナログ変換の誤差となっ
て表われ好ましくない。又、FET、Mliの単位大き
さあたりの電流駆動能力幻も変動し、この変動もやはり
Vastの変動を生じ、同様にデジタル、アナログ変換
の結果に誤差となって表われる。そのため、一般にはこ
のような変動は抵抗網を構成する抵抗をトリミングする
事により取り除かれているが、’V’r+には温度特性
や経時変化も持つ為、完全には調節できないという欠点
も持っていた。
Such fluctuations appear as errors in digital/analog conversion and are undesirable. Furthermore, the current drive capability per unit size of the FET and Mli also varies, and this variation also causes a variation in Vast, which similarly appears as an error in the results of digital and analog conversion. Therefore, such fluctuations are generally removed by trimming the resistors that make up the resistor network, but 'V'r+ also has temperature characteristics and changes over time, so it has the disadvantage that it cannot be completely adjusted. was.

上述した従来のD/A変換器のFETのゲートソース間
電圧による定電圧化の方法に対し、本発明のD/A変換
器は、抵抗網の一端の電圧と基準電圧とを差動増幅器に
よシ比較し、その結果で抵抗網の重み付け電流の出力端
につながれたFETのゲート電圧を制御することで定電
圧化をはかるもので、従来例C(おいて問題となったF
ETの占有面積の増大や温度変化や経時変化によるFE
Tの閾値変動、駆動能力の変動を問題としない、優れた
D/A変換器が提供できるという独創的内容を有する。
In contrast to the conventional D/A converter described above, in which the voltage is made constant by the gate-source voltage of the FET, the D/A converter of the present invention uses a differential amplifier to connect the voltage at one end of the resistor network and the reference voltage. By comparing the results, the gate voltage of the FET connected to the output terminal of the weighted current of the resistor network is controlled to achieve a constant voltage.
FE caused by an increase in the area occupied by ET, temperature changes, and changes over time.
The invention has an original content in that it can provide an excellent D/A converter that does not have problems with T threshold fluctuations and driving capability fluctuations.

〔問題点を解決するための手段〕[Means for solving problems]

かかる独創的内容を有する本発明のD/A変換器とは、
デジタル入力端子と、第1のアナログ出力端子と第2の
アナログ出力端子と基準電圧端子と、複数の重み付け電
流を発生する抵抗網と、前記抵抗網の重み付け電流の出
力端子におのおのソースを接続した第1のFET群中の
おのおののFETのソースに第1の入力端子を接続し、
第2の入力端子を前記基準電圧端子に接続し、出力端子
をおのおののFETのゲートに接続した差動増幅器群と
前記第1のFET群中のおのおののFETのドレインに
おのおののソースを接続し、ドレインを前記第1のアナ
ログ出力端子に接続した第2のFET群と、前記第1の
FET群中のおのおののFETのドレインにおのおのの
ソースを接続し、ドレインを前記第2のアナログ出力端
子に接続した第3のFET群と、前記デジタル入力端子
に印加されたデジタル入力信号に対応して前記第2のF
ET群及び第3のFET群のFETのゲート電圧を制御
する回路とから成ることを特徴とするD/A変換器であ
る。
The D/A converter of the present invention having such original content is as follows:
A digital input terminal, a first analog output terminal, a second analog output terminal, a reference voltage terminal, a resistor network that generates a plurality of weighted currents, and a source connected to each of the weighted current output terminals of the resistor network. connecting a first input terminal to the source of each FET in the first FET group;
A differential amplifier group having a second input terminal connected to the reference voltage terminal and an output terminal connected to the gate of each FET, and each source connected to the drain of each FET in the first FET group. , a second group of FETs whose drains are connected to the first analog output terminal, and a source of which is connected to the drain of each FET in the first group of FETs, whose drains are connected to the second analog output terminal. and a third FET group connected to the second FET group in response to a digital input signal applied to the digital input terminal.
This is a D/A converter characterized by comprising an ET group and a circuit for controlling gate voltages of FETs of a third FET group.

〔実施例〕〔Example〕

次に本発明について図面を参照して説明する。 Next, the present invention will be explained with reference to the drawings.

第1図は本発明のD/A変換器の一実施例である。第1
図において1はアナログ出力端子IO22は第2のアナ
ログ出力端子工0,3は基準電圧VDKFが印加される
基準電圧端子、4は電源VDDが印加される電源端子、
5は抵抗性素子R1〜R4よ構成シ、電源端子4よシ流
れ込んでくる電流から複数の重み付け電流を発生する抵
抗網、AiとMli(i=1〜4)は、抵抗網5の重み
付け電流の出力端子をVRBFに定電圧化する為の差動
増幅器とFET、M21〜M23.M31〜N■33は
Mll〜M13より流れ込む重み付け電流を工0又はI
oのいずれかに導びくスイッチ用FET、DI〜D3は
デジタル入力端子、6はD1〜D3に印加されるデジタ
ル入力信号に応じてFET、M21〜M23.M31〜
M33を制御する信号、1a〜3a、 1b〜3bを発
生する回路である。同図においてR1−R4は 几4=R3=几、R2=旦、R1=旦に設定されており
、前述のとおりR1−R4の一端にはVDDが残る一端
にB VREF 力印加すhテイル。従ッテ¥1=Vn
n−VngP。
FIG. 1 shows an embodiment of the D/A converter of the present invention. 1st
In the figure, 1 is an analog output terminal IO22 is a second analog output terminal; 0 and 3 are reference voltage terminals to which a reference voltage VDKF is applied; 4 is a power supply terminal to which a power supply VDD is applied;
5 is a resistance network composed of resistive elements R1 to R4 and generates a plurality of weighted currents from the current flowing into the power supply terminal 4; Ai and Mli (i=1 to 4) are weighted currents of the resistance network 5; A differential amplifier and FET, M21 to M23. M31 to N33 are the weighting currents flowing from Mll to M13.
o, DI to D3 are digital input terminals, and 6 is a FET that leads to one of the FETs M21 to M23 . M31~
This circuit generates signals 1a to 3a and 1b to 3b that control M33. In the figure, R1-R4 are set to 4=R3=3, R2=1, and R1=1, and as mentioned above, VDD is applied to one end of R1-R4, and the B VREF force is applied to the other end. Jutte ¥1=Vn
n-VngP.

VR’ 工′二TとするとR1には4I/、 R2には2I’、
 R,とR4には工′の大きさの電流が流れることにな
る。制御回路6の論理は従来例と同様に第4図で表わさ
れる。この結果第1図の実施例の回路でも従来例と同様
に、デジタル、アナログ変換が達成されることが容易に
理解できる。
VR' Engineering '2 T, then 4I/ for R1, 2I' for R2,
A current with a magnitude of 100 Ω will flow through R and R4. The logic of the control circuit 6 is shown in FIG. 4 as in the conventional example. As a result, it can be easily understood that digital-to-analog conversion can be achieved in the circuit of the embodiment shown in FIG. 1 as well as in the conventional example.

ところで、本実施例のD/A変換器においては、抵抗網
の重み付け電流出力端は、出力端電圧と基準電圧を入力
とし、出力をその重み付け電流出力端に直列に接続した
FETのゲートに接続した差動増幅器により定電圧化さ
れているので、従来例のようにFETに流れる電流の密
度が異っても差動増幅器によシ帰還がかかる為、抵抗網
の出力端子の電圧が変化することはないため、FETの
大きさを調節する必要がなくD/A変換のbit数が上
がっても、従来例のようにFETに変換器の大半を占有
されるという事は生じない。又、温度特性や経時変化に
よfiFETのVT−?Kが変化してもやはり差動増幅
器によυ帰還がかかつて補正される為、非常に安定なり
/A変換器を構成できる。
By the way, in the D/A converter of this embodiment, the weighted current output terminal of the resistor network is connected to the gate of the FET which receives the output terminal voltage and the reference voltage and whose output is connected in series to the weighted current output terminal. Since the voltage is regulated by a differential amplifier, even if the density of the current flowing through the FET differs as in the conventional example, feedback is applied to the differential amplifier, so the voltage at the output terminal of the resistor network changes. Therefore, there is no need to adjust the size of the FET, and even if the number of D/A conversion bits increases, the FET will not occupy most of the converter as in the conventional example. Also, depending on temperature characteristics and changes over time, the fiFET's VT-? Even if K changes, the υ feedback is once again corrected by the differential amplifier, so a very stable /A converter can be constructed.

本実施例において、唯一精度や経時変化が問題となるの
は差動増幅器であるが、この差動増幅器は前述の説明か
らその目的が各電流出力端の電位の安定化であるため、
直流的な利得さえ有れば良く、その応答速度は遅いもの
で十分であるとわかる。このような差動増幅器としては
、例えばチョッパー型増幅器が周知である。(例えば、
IEEEJOURNAL OF 80LID−8TAT
E CIRCUITSVOL、5C−14,No、6.
DECEMBER1979゜P912〜920中にその
ような増幅器を比較回路に適応した例があるQ一般K、
チョッパ型増幅器は、自己校正機能を有するので、素子
に対する精度の要求が緩く、又経時変化にも強い。さら
に集積回路化した場合、デバイスプロセスの進歩による
微細化の恩恵も受けやすい。チョッパ型増幅器は比較的
少数の素子(約10素子)で構成することも可能なため
、例えば8bitの場合、80素子程度となるが、従来
例では256個ものFETが必要である事と比較すると
大幅な素子数の低減もはかられたことがわかる。
In this embodiment, the only problem is the accuracy and aging of the differential amplifier, but as explained above, the purpose of this differential amplifier is to stabilize the potential at each current output terminal.
It turns out that it is sufficient to have a direct current gain, and a slow response speed is sufficient. As such a differential amplifier, for example, a chopper type amplifier is well known. (for example,
IEEEJOURNAL OF 80LID-8TAT
E CIRCUITS VOL, 5C-14, No, 6.
There is an example of applying such an amplifier to a comparator circuit in DECEMBER 1979゜P912-920.
Since the chopper type amplifier has a self-calibration function, the accuracy requirements for the elements are relaxed and it is resistant to changes over time. Furthermore, when integrated circuits are implemented, they are likely to benefit from miniaturization due to advances in device processes. Chopper type amplifiers can be constructed with a relatively small number of elements (approximately 10 elements), so for example, in the case of 8 bits, it is about 80 elements, but compared to the conventional example, which requires as many as 256 FETs. It can be seen that a significant reduction in the number of elements was achieved.

第2図は本発明の第1図とは異なった実施例である。第
2図において1は第1のアナログ出力端子工0,2は第
2のアナログ出力端子■0,3は基準電圧VREFが印
加される基準電圧端子、4は電源VDDが印加される電
源端子、5は抵抗性素子R5〜RIOよ構成υ、電源端
子4よシ流れ込んでくる電流よシ複数の重み付け電流を
発生する抵抗網、 Ai 、!: Mli(i=1〜4
)は抵抗網5の重み付け電流の出力端子をVREFに定
電圧化する為の差動増幅器とFET。
FIG. 2 shows a different embodiment of the invention from FIG. 1. In FIG. 2, 1 is the first analog output terminal; 2 is the second analog output terminal; 0, 3 is the reference voltage terminal to which the reference voltage VREF is applied; 4 is the power supply terminal to which the power supply VDD is applied; 5 is a resistive network composed of resistive elements R5 to RIO, υ, which generates multiple weighted currents from the current flowing into the power supply terminal 4, Ai,! : Mli (i=1~4
) is a differential amplifier and FET for making the weighted current output terminal of the resistor network 5 a constant voltage VREF.

M21〜M23.M31〜M33はMll〜M13よシ
流れ込む重み付け電流をIo又はIOのいずれかに導び
くスイッチ用FET、DI〜D3はデジタル入力端子、
6はD1〜D3に印加されるデジタル入力信号に応じて
FET、M21〜M23.M31〜M33を制御する信
号。
M21-M23. M31 to M33 are switch FETs that guide the weighted current flowing from Mll to M13 to either Io or IO, DI to D3 are digital input terminals,
6 are FETs, M21 to M23 . A signal that controls M31 to M33.

1a〜3a、lb〜3bを発生する回路である。同図に
おいてR5〜RIOは R6=R8=R’、R5=R7=R9=R10=2R’
に設定されている。
This is a circuit that generates signals 1a to 3a and lb to 3b. In the same figure, R5 to RIO are R6=R8=R', R5=R7=R9=R10=2R'
is set to .

ここで各重み付け電流値がどのようになるかを見てみる
Let's take a look at what each weighted current value looks like.

前述のとおシ、重み付け電流出力端は全てVREFK定
電圧化されているので、抵抗網5を流れている電流を検
討する場合、重み付け電流出力端を短絡して考えること
が可能である。
As mentioned above, all the weighted current output terminals are set to VREFK constant voltage, so when considering the current flowing through the resistor network 5, it is possible to short-circuit the weighted current output terminals.

まず、Rg、R9,RIOの接続ノード8に注目すると
、ノード8よりR9側を見た場合のインピーダンスはR
9の抵抗値2 R/であ、9、R10側を見た場合のイ
ンピーダンスはRIOの抵抗値2R′である。従ってノ
ード8にR8側から流れ込んで来た電流はR9とRIO
に2分されて流れる。次KR6,R7,Rsの接続ノー
ド7に注目すると、ノード7よシR7側を見た場合のイ
ンピーダンスはR7の抵抗値2 R/であシR8側を見
た場合のインピーダンスはR8,几9.RIOの合成抵
抗値でやはシ2fi、/となる。従ってノード71CR
6側から流れ込んで来た電流はR7とR8に2分されて
流れる。
First, if we pay attention to the connection node 8 of Rg, R9, and RIO, the impedance when looking from the node 8 to the R9 side is R
The resistance value of 9 is 2R/, and the impedance when looking at the 9 and R10 sides is the resistance value of RIO 2R'. Therefore, the current flowing into node 8 from the R8 side is connected to R9 and RIO.
It flows in two parts. Next, paying attention to the connection node 7 of KR6, R7, and Rs, when looking from the node 7 to the R7 side, the impedance is the resistance value of R7 2 R / When looking from the R8 side, the impedance is R8, 几9 .. The combined resistance value of RIO is 2fi,/. Therefore node 71CR
The current flowing from the 6 side is divided into two and flows through R7 and R8.

さらに電源端子4に注目すると端子4よシR5側を見た
場合のインピーダンスはR5の抵抗値2R′であシR6
側を見た場合のインピーダンスはR6〜RIOの合成抵
抗値でやはD 2R’となる。従りてR5とR6には同
じ大きさの電流が流れることがわかる。
Furthermore, looking at power supply terminal 4, the impedance when looking from terminal 4 to the R5 side is the resistance value 2R' of R5 and R6
The impedance when looking at the side is the combined resistance value of R6 to RIO, which is D2R'. Therefore, it can be seen that the same magnitude of current flows through R5 and R6.

と(7)!果、Vu ’ = VDD −VREPとす
ルトR9とRIOには1  、  ’IJn/−の大き
さの電流が4   2R’ 流れることになる。
And (7)! As a result, when Vu'=VDD-VREP, a current of 42R' with a magnitude of 1,'IJn/- will flow through the route R9 and RIO.

R5には4・I’、R7には2・I’、R9とRIOに
は工“の大きさの電流が流れることがわかる。本実施例
と前述の第1の実施例を比較すると、第1の実施例でI
′に相当するのが、本実施例のI″であることに気が付
く。従って、本実施例の回路でも第1の実施例と同様に
デジタル、アナログ変換が達成される事が理解される。
It can be seen that a current of 4·I' flows through R5, 2·I' flows through R7, and a current of the magnitude of In the example of 1, I
Note that I'' in this embodiment corresponds to I'' in this embodiment. Therefore, it is understood that digital-to-analog conversion can be achieved in the circuit of this embodiment as well as in the first embodiment.

第1の実施例と第2の実施例の間の大きな差はその抵抗
網の構成方法である。n bitのD/A変換器を構成
する場合、前者では(n十i)本の大きさが最大2(n
−1)倍、異なる抵抗素子が必要なの  ′に対して後
者では(n+x)本の2凡の抵抗と(n−1)本の凡の
抵抗が必要となる。一般に前者はbiti7の少ない場
合に有利であシ、後者はbit数の多い場合に有利とな
る。
The major difference between the first and second embodiments is the way the resistor network is constructed. When configuring an n-bit D/A converter, in the former case, the size of (n + i) is at most 2 (n
-1) times, different resistance elements are required, whereas in the latter case, (n+x) two resistance elements and (n-1) resistance elements are required. Generally, the former is advantageous when the number of bits 7 is small, and the latter is advantageous when the number of bits is large.

〔発明の効果〕〔Effect of the invention〕

以上説明したようK、本発明によればbit数が増すに
つれ、FETの占有面積が増大する問題や、FETの閾
値や駆動能力の温度や経時による変化の問題を解決した
、優れたD/A変換器を提供できることがわかる。
As explained above, the present invention is an excellent D/A that solves the problem of the area occupied by the FET increasing as the number of bits increases, as well as the problem of changes in the threshold value and driving capacity of the FET due to temperature and aging. It can be seen that a converter can be provided.

なお、前述したように本発明の場合、従来例及び新規に
取り入れたチョッパー型増幅器がいずれも集積回路化に
適している事から、本発明自身も極めて集積回路化に適
しているという特徴も持っておシ、その利用分野は広く
、それにより得られる利益は多大なものである。
As mentioned above, in the case of the present invention, both the conventional example and the newly introduced chopper type amplifier are suitable for integration into integrated circuits, so the present invention itself also has the characteristic that it is extremely suitable for integration into integrated circuits. However, its application fields are wide, and the benefits obtained from it are enormous.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の回路図、第2図は本発明の
異なる実施例の回路図、第3図は従来のD/A変換器の
一例の回路図、第4図は各回路の論理例である。 1・・・・・・第1のアナログ出力端子、2・・・・・
・第2のアナログ出力端子、3・・・・・・基準電圧端
子、4・・・・・・電源端子、訃・・・・・抵抗網、6
・・・・・・制御回路、M11〜M14.M21〜M2
3.M31〜M33・・・・・・FET。 A1−A4・・・・・・差動増幅器、几1〜RIO・・
・・・−抵抗性素子、D1〜D3・・・・・・デジタル
入力端子。
FIG. 1 is a circuit diagram of one embodiment of the present invention, FIG. 2 is a circuit diagram of a different embodiment of the present invention, FIG. 3 is a circuit diagram of an example of a conventional D/A converter, and FIG. 4 is a circuit diagram of an example of a conventional D/A converter. This is an example of circuit logic. 1...First analog output terminal, 2...
・Second analog output terminal, 3...Reference voltage terminal, 4...Power supply terminal, Death...Resistance network, 6
...Control circuit, M11 to M14. M21~M2
3. M31-M33...FET. A1-A4...Differential amplifier, 几1~RIO...
...-Resistive element, D1-D3...Digital input terminal.

Claims (1)

【特許請求の範囲】[Claims] デジタル入力端子と第1のアナログ出力端子と第2のア
ナログ端子と、基準電圧端子と、複数の重み付け電流を
発生する抵抗網と、前記抵抗網の重み付け電流の出力端
子におのおのソースを接続した第1のFET群と、前記
第1のFET群中のおのおののFETのソースに第1の
入力端子を接続し、第2の入力端子を前記基準電圧端子
に接続し、出力端子をおのおののFETのゲートに接続
した差動増幅器群と、前記第1のFET群中のおのおの
のFETのドレインにおのおののソースを接続しドレイ
ンを前記第1のアナログ出力端子に接続した第2のFE
T群と、前記第1のFET群中のおのおののFETのド
レインにおのおののソースを接続し、ドレインを前記第
2のアナログ出力端子に接続した第3のFET群と、前
記デジタル入力端子に印加されたデジタル入力信号に対
応して、前記第2のFET群及び前記第3のFET群の
FETのゲート電圧を制御する回路とから成ることを特
徴とするD/A変換器。
A digital input terminal, a first analog output terminal, a second analog terminal, a reference voltage terminal, a resistor network that generates a plurality of weighted currents, and a resistor network that has a source connected to each weighted current output terminal of the resistor network. A first input terminal is connected to the source of one FET group and each FET in the first FET group, a second input terminal is connected to the reference voltage terminal, and an output terminal is connected to the source of each FET in the first FET group. a differential amplifier group connected to the gate; and a second FE, the source of which is connected to the drain of each FET in the first FET group, and the drain of which is connected to the first analog output terminal.
T group, a third FET group in which each source is connected to the drain of each FET in the first FET group, and the drain is connected to the second analog output terminal, and a third FET group in which the voltage is applied to the digital input terminal. A D/A converter comprising a circuit for controlling gate voltages of FETs of the second FET group and the third FET group in response to a digital input signal.
JP22537186A 1986-09-22 1986-09-22 Digital-analog converter Pending JPS6379422A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22537186A JPS6379422A (en) 1986-09-22 1986-09-22 Digital-analog converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22537186A JPS6379422A (en) 1986-09-22 1986-09-22 Digital-analog converter

Publications (1)

Publication Number Publication Date
JPS6379422A true JPS6379422A (en) 1988-04-09

Family

ID=16828301

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22537186A Pending JPS6379422A (en) 1986-09-22 1986-09-22 Digital-analog converter

Country Status (1)

Country Link
JP (1) JPS6379422A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02179124A (en) * 1988-12-29 1990-07-12 Nec Corp Digital/analog conversion circuit
JP2011157878A (en) * 2010-02-01 2011-08-18 Toyota Motor Corp Water-cooling adapter

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54136261A (en) * 1978-04-14 1979-10-23 Nec Corp Current inversion circuit

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54136261A (en) * 1978-04-14 1979-10-23 Nec Corp Current inversion circuit

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02179124A (en) * 1988-12-29 1990-07-12 Nec Corp Digital/analog conversion circuit
JP2011157878A (en) * 2010-02-01 2011-08-18 Toyota Motor Corp Water-cooling adapter

Similar Documents

Publication Publication Date Title
US5801655A (en) Multi-channel D/A converter utilizing a coarse D/A converter and a fine D/A converter
US5111205A (en) Digital-to-analog and analog-to-digital converters
US6433717B1 (en) D/A resistor strings with cross coupling switches
US6522280B2 (en) Adjustable digital-to-analog converter
JPS61210723A (en) Digital-analog converter
US5592167A (en) Analog-digital converter using current controlled voltage reference
JPH1127068A (en) Gain control amplifier and its control method
US4168528A (en) Voltage to current conversion circuit
US4896157A (en) Digital to analog converter having single resistive string with shiftable voltage thereacross
US5594441A (en) D/A converter with constant gate voltage
US5633637A (en) Digital-to-analog converter circuit
US4567463A (en) Circuit for improving the performance of digital to analog converters
US6275179B1 (en) Digital to analog converter using a current matrix system
US5212482A (en) Digital-to-analog converter having an externally selectable output voltage range
US5729231A (en) Digital-to-analog converter having improved resistance to variations in DC current gain
US5070331A (en) High resolution D/A converter operable with single supply voltage
US4942397A (en) Elimination of linearity superposition error in digital-to-analog converters
US10333542B2 (en) Digital-to-analog converters having a resistive ladder network
US3943431A (en) Current-splitting network
JPS6379422A (en) Digital-analog converter
US4138667A (en) Segment digital/analogue converter
KR900007378B1 (en) R-2r type a/d converting circuitry
US4335356A (en) Programmable two-quadrant transconductance amplifier
US4306225A (en) Digital-to-analog converting apparatus
JP3292070B2 (en) D / A converter