JPS6378551A - Wiring connection - Google Patents

Wiring connection

Info

Publication number
JPS6378551A
JPS6378551A JP22183786A JP22183786A JPS6378551A JP S6378551 A JPS6378551 A JP S6378551A JP 22183786 A JP22183786 A JP 22183786A JP 22183786 A JP22183786 A JP 22183786A JP S6378551 A JPS6378551 A JP S6378551A
Authority
JP
Japan
Prior art keywords
semiconductor device
laser
stage
stepped
section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22183786A
Other languages
Japanese (ja)
Inventor
Hidezo Sano
秀造 佐野
Katsuro Mizukoshi
克郎 水越
Mikio Hongo
幹雄 本郷
Junzo Azuma
淳三 東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP22183786A priority Critical patent/JPS6378551A/en
Publication of JPS6378551A publication Critical patent/JPS6378551A/en
Pending legal-status Critical Current

Links

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

PURPOSE:To prevent disconnection at a stepped section and the increase of resistance, and to improve the reliability of connection by directly measuring the stepped section of the surface of a semiconductor device, varying the conditions of the irradiation of laser beams (irradiation power and a scanning rate) at the stepped section and enlarging the thickness of a deposited film in an additional wiring. CONSTITUTION:A semiconductor device 1 on an X-Y stage 10 is moved under a stepped measuring instrument 14, the position of an origin is detected, the X-Y stage 10 is shifted according to the position of coordinates at the position of correction, and an output value from the stepped measuring instrument 14 to the position of coordinates of a laser length measuring machine 18 is transmitted over a controller 20 through a data processor 19. Irregularities are measured, the X-Y stage 10 is transferred to a laser Chemical Vapor Deposition (CVD) processing section, the origin is positioned, a CVD gas is fed, irradiation power is increased or a scanning rate is decreased when the X-Y stage approaches to a stepped section with the data of the irregularities of the surface of the semiconductor device 1 from the data processor 19. Accordingly, a sufficiently thick film, step coverage, is improved even in an inclined section, thus preventing the increase of a resistance value and disconnection, etc.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、 ICやLSIなどの半導体装置の配線をレ
ーザCVDにより接続する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for connecting wiring of semiconductor devices such as ICs and LSIs by laser CVD.

〔従来の技術〕[Conventional technology]

半導体装置の修正2局部的検査、設計変更などを半なう
には、半導体装置内の任意の配線同志を接続する必要が
ある。近年、レーザCVD (ChemicalVap
or Dgpoziti on )が上記配線接続に応
用されだした。半導体装置上は1例えば第2図に示すと
と(Siなどの基板上にS i 01などの絶縁膜5.
AEなどの配線4 + S*01などの保護膜5が順次
形成されている。上記レーザCVDで配線4α、dj間
を接続する場合には、エツチング加工などにより、保護
膜5に穴6α、6bを形成して配線4α、4bの一部を
露出させる。しかる後に、 AA (CHs )j 、
 cd ((:1lj)t 。
Modification of Semiconductor Devices In order to perform local inspections, design changes, etc., it is necessary to connect arbitrary wires within the semiconductor device. In recent years, laser CVD (Chemical Vap
or Dgposition) has begun to be applied to the above-mentioned wiring connections. For example, as shown in FIG. 2, an insulating film 5.
A wiring 4 such as AE + a protective film 5 such as S*01 are sequentially formed. When connecting the wirings 4α, dj by the laser CVD, holes 6α, 6b are formed in the protective film 5 by etching or the like to expose a part of the wirings 4α, 4b. After that, AA (CHs)j,
cd ((:1lj)t.

No (Co ) 6 、およびv (co )aなど
の材料ガス雰囲気中に半導体装置1を置き、穴6αから
6b (配線4αからah )までレーザ光7を照射す
る。これにより上記材料ガスは分解し、 AE 、 C
d 、 NoおよびWなどの金属膜8を析出する(第2
図(b))。穴6hまで達したらレーザ光7の照射を停
止する。以上の工程により、配線4α、46間は接続さ
れる(第2・図(C))。
The semiconductor device 1 is placed in an atmosphere of material gases such as No (Co) 6 and v (co)a, and the laser beam 7 is irradiated from the holes 6α to 6b (from the wirings 4α to ah). As a result, the above material gas is decomposed and becomes AE, C
d, deposit a metal film 8 such as No and W (second
Figure (b)). When reaching the hole 6h, the irradiation of the laser beam 7 is stopped. Through the above steps, the wirings 4α and 46 are connected (FIG. 2 (C)).

なお、この種の方法に関連するものとしては。In addition, as related to this type of method:

エクステンデッド アプストラクツ オン ザ17ス 
コンファレンス オン ンリッド ステート デバイシ
ーズ アンド マティアリアルズ。
Extended Abstracts on the 17th
Conference on Lid State Devices and Materials.

東京、 1985年、第196頁から第196頁(Es
:tendadAbztructz  of the 
 17th Confarmncg  on 5oli
dState  Davicgz  and AIat
griaLz  、Tokyo  、+985 。
Tokyo, 1985, pp. 196-196 (Es.
:tendadAbztructz of the
17th Confarmncg on 5oli
dState Davidcgz and AIat
griaLz, Tokyo, +985.

pp 195−196 )において論じられている。pp. 195-196).

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、上記従来技術では表面が平担な基板上に一定走
査速度でレーザ光を照射し、金属膜を形成することが論
じられているのみである。すなわち1通常の半導体装置
は、第2図で示したように配線、絶縁膜および保護膜が
形成されており1表面は数μmの凹凸がある。このため
、配線を接続すべき2点間でレーザ光を一定速度で走査
させたのでは、第3図(α)に示すスパッタ蒸着による
膜上では段差部の膜厚T、が平担部の膜厚T、に比べ小
さく抵抗値が犬きくなり、第3図(b)に示すCVD膜
上では段差部での勾配が急峻のため段差部で断線を起こ
しやすいという問題がある。
However, the above-mentioned prior art only discusses forming a metal film by irradiating a substrate with a flat surface with a laser beam at a constant scanning speed. That is, as shown in FIG. 2, a typical semiconductor device has wiring, an insulating film, and a protective film formed thereon, and its surface has irregularities of several μm. For this reason, if the laser beam is scanned at a constant speed between two points where the wiring is to be connected, the film thickness T at the step part will be different from that at the flat part on the sputter-deposited film shown in Fig. 3 (α). The resistance value is small compared to the film thickness T, and the CVD film shown in FIG. 3(b) has a steep slope at the stepped portion, so there is a problem that wire breakage is likely to occur at the stepped portion.

本発明の目的は、接続すべき配線膜を上記断線や高抵抗
とならないように形成し、配線接続の信頼性を高めるこ
とにある。
An object of the present invention is to form a wiring film to be connected so as to prevent the above-mentioned disconnection or high resistance, and to improve the reliability of wiring connection.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は、レーザ光の走査方向における半導体装置表
面の凹凸をレーザ光走査に先立ち、接触式段差測定法に
より測定し、レーザ光が上記凹凸の段差部分に接近ある
いは到達したところで、レーザ照射制御手段を用いてレ
ーザ光の照射パワーを上げるかあるいは走査速度を下げ
ることにより達成される。
The above purpose is to measure the unevenness on the surface of a semiconductor device in the scanning direction of the laser beam by a contact step measurement method prior to laser beam scanning, and when the laser beam approaches or reaches the step part of the unevenness, the laser irradiation control means This can be achieved by increasing the irradiation power of the laser beam or decreasing the scanning speed.

〔作用〕[Effect]

本発明において、凹凸測定手段は電気マイクロメータや
接触式段差測定器であり、測定結果分し゛−ザ照射の制
御手段に送る。レーザ照射制御手段は1段差部に照射す
るレーザ光のエネルギを平担部よりも太きくする。すな
わち、照射パワーを上げるか、走査速度を小さくする。
In the present invention, the unevenness measuring means is an electric micrometer or a contact type height difference measuring device, and the measurement results are sent to the laser irradiation control means. The laser irradiation control means makes the energy of the laser beam irradiated on the one step portion larger than that on the flat portion. That is, the irradiation power is increased or the scanning speed is decreased.

これにより、配線金属膜の膜厚は、第4図に示すごとく
厚くなる(第4図は、 ArレーザSi基板上に照射し
、MoCC0)sからNo膜を析出させた結果を示す)
ため、段差部で膜の抵抗が大きくなったり。
As a result, the thickness of the wiring metal film increases as shown in Fig. 4 (Fig. 4 shows the result of irradiating an Ar laser onto a Si substrate and depositing a No film from MoCC0)s.
Therefore, the resistance of the membrane increases at the step part.

断線するのを防止することができる。This can prevent wire breakage.

〔実施例〕〔Example〕

以下、本発明の実施例を図に基すいて説明する。 Embodiments of the present invention will be described below with reference to the drawings.

第1図は1本発明に用いる装置の一態様であり。FIG. 1 shows one embodiment of the apparatus used in the present invention.

半導体装置表面の凹凸を位置とともに計測しながらメモ
リする段差測定部、レーザ光および観察光を半導体装置
に照射するための光学系、レーザ光の照射条件を制御す
るためのレーザ照射制御部。
A step measurement unit that measures and stores the unevenness on the surface of a semiconductor device along with its position, an optical system that irradiates the semiconductor device with laser light and observation light, and a laser irradiation control unit that controls the irradiation conditions of the laser light.

およびレーザCVDを行なうためのチャンバ部より構成
される。チャンバ部は、内部に半導体装置1を載置した
X−Yステージ10を有し、レーザ光7および観察光1
2を導入の窓13を有したチャンバ11とCVDガス供
給装置、真空排気装置(図示せず)とで構成される。1
4は半導体装置1の段差を測定する測定器であり、接触
針15により数jオーダでの段差測定を行なう。16は
X−Yステージ10上に固定の反射鏡であり、干渉計1
7.レーザ測長器18によりX−Yステージ10の移動
量を測長する。19は前記段差測定器14およびレーザ
測長器18からのデータを処理・記憶するデータ処理装
置である。
and a chamber section for performing laser CVD. The chamber section has an X-Y stage 10 on which a semiconductor device 1 is mounted, and a laser beam 7 and an observation beam 1.
2 is composed of a chamber 11 having an introduction window 13, a CVD gas supply device, and a vacuum evacuation device (not shown). 1
Reference numeral 4 denotes a measuring device for measuring the level difference of the semiconductor device 1, and the contact needle 15 measures the level difference on the order of several j. 16 is a reflecting mirror fixed on the X-Y stage 10, and the interferometer 1
7. The distance of movement of the X-Y stage 10 is measured by the laser length measuring device 18 . A data processing device 19 processes and stores data from the step measuring device 14 and the laser length measuring device 18.

20は前記データ処理装置19のデータにより、レーザ
源21からのレーザ光7をON −OFFするシャッタ
22.光量を調整する透過率可変フィルタ23.および
X−Yステージ10の駆動モータ24を制御する制御装
置である。
A shutter 22.20 turns on and off the laser beam 7 from the laser source 21 according to data from the data processing device 19. Variable transmittance filter 23 that adjusts the amount of light. and a control device that controls the drive motor 24 of the XY stage 10.

25はレーザ光位置と一致し、半導体装置1の位置決め
、観察を行なうのに用いる観察光学系のランプハウス、
26は観察装置である。
25 is a lamp house of an observation optical system that coincides with the laser beam position and is used for positioning and observing the semiconductor device 1;
26 is an observation device.

以上の構成において、まず半導体装置1表面の凹凸測定
について説明する。X−Yステージ10上に載置の半導
体装置1を段差測定器14の下に移動し、第5図に示す
様に表面上で接触針15を駆動し原点位置パターン9を
検出することにより、レーザ測長器1Bの測長距離をO
にクリアする。ところで、半導体装置の修正、設計変更
等に伴なう配線形成を行なう場合には、第2図に示す修
正箇所(6α16h18)の座標は既に明らかになって
おり、従って、前記原点位置検出後は、この座標位置に
従ってX−Yステージ10を移動する。この時、第5図
(α)に示す様に接触針15は半導体装置10表面保護
膜5上を移動し、レーザ測長器18の座標位置に対する
段差測定器14の出力値(第5図(6))をデータ処理
装置19に送る。データ処理装置内では微小距離ΔXに
対して対応する段差の差が所定の値、εを越える場合、
すなわち。
In the above configuration, measurement of irregularities on the surface of the semiconductor device 1 will be described first. By moving the semiconductor device 1 placed on the X-Y stage 10 under the step measuring device 14 and driving the contact needle 15 on the surface as shown in FIG. 5 to detect the origin position pattern 9, Set the measuring distance of laser length measuring device 1B to O.
Clear to. By the way, when wiring is to be formed due to modification or design change of a semiconductor device, the coordinates of the modification location (6α16h18) shown in FIG. 2 are already known. , the XY stage 10 is moved according to this coordinate position. At this time, the contact needle 15 moves on the surface protection film 5 of the semiconductor device 10 as shown in FIG. 6)) is sent to the data processing device 19. In the data processing device, if the difference in level corresponding to the minute distance ΔX exceeds a predetermined value, ε,
Namely.

1h(x+Δx>−h<x>+>t を満す位置データを段差値を記憶する。この結果から1
表面保護膜5の傾斜部X、−X、、X、−X4.および
X、 −X、等を抽出し、これらのデータを制御装置2
0へ送る。
1h(x+Δx>-h<x>+>t The step value is stored. From this result, 1
Inclined portions X, -X, , X, -X4 of the surface protection film 5. and X, -X, etc., and send these data to the control device 2.
Send to 0.

次に、上記データをもとに、配線8の形成について説明
する。表面保護膜5の凹凸を測定後の半導体装置1をX
−Yステージ10をモータ24で駆動することによりレ
ーザCVD処理部に移動する。ランプハウス25からの
観察光12を用いて観察装置26により、接触針15の
原点位置パター、ン9を同様に用いることで原点位置決
めを行なりた後、修正箇所(6a、6b、8 )にx−
yスy−ジ10を移動させる。
Next, the formation of the wiring 8 will be explained based on the above data. The semiconductor device 1 after measuring the unevenness of the surface protection film 5 is
- The Y stage 10 is driven by the motor 24 to move to the laser CVD processing section. The origin position pattern of the contact needle 15 is determined by the observation device 26 using the observation light 12 from the lamp house 25, and the origin position is determined by using the pattern 9 in the same manner. x-
y-move the y-ji 10.

しかる後にCVD47分供給する。レーザ光7の照射は
制御装置20からのシャッタ22開閉指令により行なう
が、前述のデータ処理装置19からの半導体装置1表M
凹凸データにともない、傾斜部X、 −Xtx、 −x
4. x、−Xa等では照射パワーを変える(傾斜部で
は照射パワーをPtからPlに大きくする。第5図(c
))、あるいは、走査速度を変える(傾斜部では走査速
度を51からS、に小さくする。第5図(11り ) 
Kより傾斜部でのレーザの照射パワーを大きくすること
ができる。なお、実際には、レーザ照射の余裕を考慮し
て傾斜部の前後に所定距離δを付加している。
After that, CVD was supplied for 47 minutes. Irradiation of the laser beam 7 is performed by commands to open and close the shutter 22 from the control device 20, but the semiconductor device 1 table M from the data processing device 19 described above is
According to the unevenness data, the slope part X, -Xtx, -x
4. For x, -Xa, etc., the irradiation power is changed (at the inclined part, the irradiation power is increased from Pt to Pl.
)) or change the scanning speed (at the slope, reduce the scanning speed from 51 to S). Figure 5 (11)
The laser irradiation power at the inclined portion can be made larger than K. Note that, in practice, a predetermined distance δ is added before and after the inclined portion in consideration of margin for laser irradiation.

この結果、傾斜部でも充分厚い膜、すなわち。This results in a film that is sufficiently thick even on the slopes, ie.

ステップカバレジの改善がなされ、抵抗値の増大および
断線などの問題がなくなる。
Step coverage is improved, and problems such as increased resistance and disconnection are eliminated.

なお、ここでは、1軸方向について説明したが直交する
軸方向についても同様の結果が得られることは言うまで
もない。
It should be noted that, although the description has been made in one axial direction, it goes without saying that similar results can be obtained in the orthogonal axial directions.

〔発明の効果〕 本発明によれば、レーザCVDで配線を追加形成して半
導体装置内の配線を接続する際、半導体装置表面の段差
を直接測定し1段差部でのレーザ光照射条件(照射パワ
ー、走査速度)を変えて、追加配線の析出膜厚を大きく
する様にしたので1段差部での断線や高抵抗化を防止で
き、接続の信頼性が大幅に向上する・
[Effects of the Invention] According to the present invention, when additional wiring is formed by laser CVD to connect the wiring in the semiconductor device, the step on the surface of the semiconductor device is directly measured and the laser beam irradiation conditions (irradiation) at one step are determined. By changing the power and scanning speed) and increasing the deposited film thickness of the additional wiring, it is possible to prevent wire breakage and high resistance at one step difference, and greatly improve the reliability of the connection.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は1本発明の一実施例の構成図、第2図は、配線
接続方法の説明図、第5図は従来技術における配線接続
方法の問題点の説明図、第4図はレーザCVDにおける
レーザ照射条件と配線膜厚の関係を示すグラフ、第5図
は1本発明の配線形成手順を示す説明図である。 1・・・・・・・・・・・・半導体装置、  4・・・
・・・・・・・・・配線75・・・・・・・・・・・・
保護膜、   7・・・・・・・・−・・レーザ光。 8・・・・・・・・−・・金属膜。 10・・・・・−・・X−Yステージ。 12・・・・・−・・観察光7  14・・・・・・・
・・段差測定器。 +8・・・・・・・・・レーザ測長器 19・・・・・・・・・データ処理装置。 20・・・・・・・・・制御装置、21・・・・・−・
・レーザ光源代理人 弁理士 小 川 #  J  ′
第1図 12、観察光   18  レーザプリ長話 21シ−
ザ兆球第4図 照喪ゴノでワ−(相文寸イa)
Fig. 1 is a block diagram of an embodiment of the present invention, Fig. 2 is an explanatory diagram of a wiring connection method, Fig. 5 is an explanatory diagram of problems in the wiring connection method in the prior art, and Fig. 4 is a laser CVD FIG. 5 is a graph showing the relationship between laser irradiation conditions and wiring film thickness, and FIG. 5 is an explanatory diagram showing the wiring forming procedure of the present invention. 1... Semiconductor device, 4...
・・・・・・・・・Wiring 75・・・・・・・・・・・・
Protective film, 7...... Laser light. 8・・・・・・・・・-・・・Metal film. 10...---X-Y stage. 12・・・・・・・・Observation light 7 14・・・・・・・
...Step measuring device. +8... Laser length measuring device 19... Data processing device. 20... Control device, 21...
・Laser light source agent Patent attorney Ogawa #J′
Figure 1 12, Observation light 18 Laser pre-long story 21 Sea
The 4th picture of the trillion ball

Claims (1)

【特許請求の範囲】[Claims] 1、レーザCVD法により配線を追加して半導体装置内
の配線を接続する方法において、半導体装置表面の凹凸
を段差測定器により、半導体装置表面の凹凸位置と対応
する様に測定し、該凹凸の段差部ではレーザ光の照射パ
ワーを上げるかあるいは走査速度を下げて、前記段差部
に形成される接続のための配線膜厚を大きくする様にし
たことを特徴とする配線接続方法。
1. In a method of connecting wiring within a semiconductor device by adding wiring using the laser CVD method, the unevenness on the surface of the semiconductor device is measured using a step measuring device so as to correspond to the position of the unevenness on the surface of the semiconductor device, and the unevenness is A wiring connection method characterized in that the irradiation power of the laser beam is increased or the scanning speed is decreased at the step portion to increase the thickness of the wiring film for connection formed at the step portion.
JP22183786A 1986-09-22 1986-09-22 Wiring connection Pending JPS6378551A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22183786A JPS6378551A (en) 1986-09-22 1986-09-22 Wiring connection

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22183786A JPS6378551A (en) 1986-09-22 1986-09-22 Wiring connection

Publications (1)

Publication Number Publication Date
JPS6378551A true JPS6378551A (en) 1988-04-08

Family

ID=16772970

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22183786A Pending JPS6378551A (en) 1986-09-22 1986-09-22 Wiring connection

Country Status (1)

Country Link
JP (1) JPS6378551A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04348525A (en) * 1991-05-27 1992-12-03 Nec Corp Interconnection forming apparatus
JP2009200373A (en) * 2008-02-25 2009-09-03 Sharp Corp Manufacturing method of semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04348525A (en) * 1991-05-27 1992-12-03 Nec Corp Interconnection forming apparatus
JP2009200373A (en) * 2008-02-25 2009-09-03 Sharp Corp Manufacturing method of semiconductor device

Similar Documents

Publication Publication Date Title
US20020006740A1 (en) Real-time in-line testing of semiconductor wafers
JPH05160074A (en) System removing material from wafer
CN100373557C (en) Etch amount detection method, etching method, and etching system
JPH04328844A (en) Manufacture of superthin film soi substrate and manufacturing device
JP2733244B2 (en) Wiring formation method
US6911350B2 (en) Real-time in-line testing of semiconductor wafers
JPH10303199A (en) Method and apparatus for processing semiconductor device
US7304728B2 (en) Test device and method for laser alignment calibration
JPS6378551A (en) Wiring connection
US7372582B2 (en) Method for fabrication semiconductor device
JPH03166744A (en) Microprocessing method for cross section
JP3214279B2 (en) Method for manufacturing semiconductor device
JP3005426B2 (en) Semiconductor wafer electrical measurement device
JPH11274044A (en) Machining method by charged beam and machining system thereof, and observation method and system by the charged beam
JP2904656B2 (en) Semiconductor wafer charge measurement method
JPS62241351A (en) Method and apparatus for connecting wiring
JPH0389523A (en) Focusing device to sample surface
JPH024974A (en) Equipment for manufacturing semiconductor device
JPH04348525A (en) Interconnection forming apparatus
JP3439450B2 (en) Method and apparatus for measuring side etching amount of semiconductor device
JPH0457327A (en) Charged beam working equipment
KR100508750B1 (en) apparatus for forming saturable oxidation layer and method of manufacturing a standard sample using the same
JP2001085299A (en) Method for correcting electron beam device, manufacture thereof and semiconductor device
US7186577B2 (en) Method for monitoring a density profile of impurities
JPH01222460A (en) Formation of wiring