JPS637843A - Catalyst for reforming methanol - Google Patents

Catalyst for reforming methanol

Info

Publication number
JPS637843A
JPS637843A JP61153473A JP15347386A JPS637843A JP S637843 A JPS637843 A JP S637843A JP 61153473 A JP61153473 A JP 61153473A JP 15347386 A JP15347386 A JP 15347386A JP S637843 A JPS637843 A JP S637843A
Authority
JP
Japan
Prior art keywords
catalyst
platinum
rhodium
palladium
methanol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61153473A
Other languages
Japanese (ja)
Inventor
Hiroshi Fujita
浩 藤田
Akira Shirohana
城鼻 明
Tetsuya Imai
哲也 今井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP61153473A priority Critical patent/JPS637843A/en
Publication of JPS637843A publication Critical patent/JPS637843A/en
Pending legal-status Critical Current

Links

Landscapes

  • Hydrogen, Water And Hydrids (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE:To increase a selectivity of methanol decomposition reaction and a low-temperature activity by carrying a combination of rhodium and platinum or of rhodium and palladium on a carrier containing rutile-type titania to form a catalyst. CONSTITUTION:An anatase-type titania or alumina carrier coated with titania is calcined at a temperature of at least 600 deg.C, preferably 800-1,000 deg.C, to form a carrier containing rutile type titania. On said carrier, an active metal such as rhodium, platinum, palladium or the like is carried by immersing the carrier in an aqueous solution of a compound of nitrate or chloride of said metal and then drying and calcining to form a catalyst for reforming methanol. The carrying quantity of platinum or palladium is preferred to be 0.1-5wt%, and that of rhodium is 10-50wt% based on platinum or palladium.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はメタノール改質用触媒に関するものである。更
に詳しくはメタノールを水素及び−酸化炭素を含むガス
に改質する触媒として低温で高活性、高選択性を賦与し
ているためカーボン析出のない長寿命の触媒を提供する
ものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a catalyst for methanol reforming. More specifically, as a catalyst for reforming methanol into a gas containing hydrogen and carbon oxide, it provides a long-life catalyst that does not deposit carbon because it has high activity and high selectivity at low temperatures.

〔従来の技術〕[Conventional technology]

メタノールは石炭、天然ガスなどから合成ガスを経由し
て、大規模に製造することができ。
Methanol can be produced on a large scale from coal, natural gas, etc. via synthetic gas.

しかも輸送が容易であることから将来石油に代る二ネμ
ギー源あるいは種々化学工業原料として大きな関心がも
たれている。その利用法の一つとしてメタノールを水素
と一酸化炭素を含むガスに分解し、これを自動車用無公
害燃料あるいは還元ガス製造用原料として利用する方法
がある。
In addition, because it is easy to transport, it will become an alternative to petroleum in the future.
It is of great interest as a source of energy or as a raw material for various chemical industries. One method of using it is to decompose methanol into a gas containing hydrogen and carbon monoxide, and use this as a pollution-free fuel for automobiles or as a raw material for producing reducing gas.

一方、この分解ガスから水素を分離し、この水素を燃料
電池発電用燃料として、又9石油精製工業における各種
有機化合物の水素化などの水素源として利用でき、−酸
化炭素についても。
On the other hand, hydrogen can be separated from this cracked gas and used as a fuel for fuel cell power generation and as a hydrogen source for hydrogenation of various organic compounds in the petroleum refining industry.

各種有機化合物のカルボニル化プロセスに利用できる。It can be used in the carbonylation process of various organic compounds.

メタノールの分解反応は、熱力学的には比較的低温で起
こりうるが、これを経済的に行わせるためには触媒の存
在が不可欠である。
Thermodynamically, the decomposition reaction of methanol can occur at relatively low temperatures, but the presence of a catalyst is essential in order to carry it out economically.

従来、メタノールを分解する触媒としては。Traditionally, it has been used as a catalyst to decompose methanol.

アルミナ(以下r Al2O3Jと記す)などの担体に
、白金などの白金属元素又は銅、ニッケル。
A platinum metal element such as platinum, copper, or nickel on a carrier such as alumina (hereinafter referred to as rAl2O3J).

クロム、亜鉛などの卑金属元素及びその酸化物などを担
持した触媒が提案されている。
Catalysts supporting base metal elements such as chromium and zinc and their oxides have been proposed.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

これらの触媒は低温活性に乏しくまた耐熱性がないなど
現在までのところ多くの問題点を残している。例えばγ
−A1203又はアナターゼ型のチタニアなどをそのま
ま担体として用い、白金を担持した触媒については目的
の反応■のみが起こるという選択性が低く、ジメチルエ
ーテル、メタン、カーボンなどの生成する副反応■が起
こりやすいという問題がある。
These catalysts still have many problems to date, such as poor low-temperature activity and lack of heat resistance. For example, γ
- Catalysts that use A1203 or anatase-type titania as a carrier and support platinum have low selectivity in that only the desired reaction (■) occurs, and side reactions (■) that produce dimethyl ether, methane, carbon, etc. are likely to occur. There's a problem.

主反応■ 0M30H→2H2+c。Main reaction ■ 0M30H→2H2+c.

副反応(り  2CH30H−+CH30CH3+ H
20CH30H−C−1−H2+H20 CH3QH−4−H2→C)(4+ H20CH,OI
=[−1−Co−+CH4−1−Co2上記反応のうち
、■はメタノール分解の主反応で、この際生成した分解
ガスは分解反応の吸熱量相当分(約22にCal/Fn
ol )だけ分解ガスの発熱量が増加するという利点が
あり熱効率改善につながる。
Side reaction (2CH30H−+CH30CH3+ H
20CH30H-C-1-H2+H20 CH3QH-4-H2→C) (4+ H20CH, OI
=[-1-Co-+CH4-1-Co2 Among the above reactions, ■ is the main reaction of methanol decomposition, and the cracked gas generated at this time is equivalent to the endothermic amount of the decomposition reaction (approximately 22% of Cal/Fn
This has the advantage that the calorific value of the decomposed gas increases by an amount equal to .ol), which leads to an improvement in thermal efficiency.

しかし9反応■のような副反応が起こるとこの反応はい
ずれも発熱反応であるため熱効率の面からはむしろ損失
となる。
However, if a side reaction such as 9 reaction ① occurs, this reaction is an exothermic reaction, and therefore results in a loss in terms of thermal efficiency.

さらにこの分解ガスを各種プロセスの水素源などに利用
する場合1反応■によって副生ずる水、エーテル類など
は分離、精製を困難にする要因となる。また反応■のう
ちカーボン生成反応は、触媒の劣化あるいはりアクタ−
の閉塞などをきたし、長期安定操業の妨げとなる。
Furthermore, when this cracked gas is used as a hydrogen source for various processes, water, ethers, etc. produced as by-products in one reaction (2) become a factor that makes separation and purification difficult. In addition, among reactions (2), the carbon production reaction is due to catalyst deterioration or
This can lead to blockages, etc., and impede long-term stable operations.

本発明は、上記の問題点を解消し、低温活性が高く、メ
タノールからの水素、−酸化炭素を含むガスへの分解反
応において活性9選択性。
The present invention solves the above problems, has high low-temperature activity, and has 9 selectivity in the decomposition reaction of methanol to gas containing hydrogen and carbon oxide.

寿命とも極めて優れた触媒を提供することを目的とした
ものである。
The purpose is to provide a catalyst with extremely excellent longevity.

〔問題点を解決するための手段〕[Means for solving problems]

従来、触媒担体として用いられている比表面積の大キい
酸性作用のあるアナターゼ型のチタニア担体を、高温で
熱処理することによりルチル型に結晶転移させると、比
表面積は小さくなるが酸性作用が殆んどなくなり、脱水
素反応(主反応■)により選択性が向上すること、さら
に、活性金属としての白金又はパラジウムに第2成分と
してロジウムを加えれば、低温活性向上に効果があるこ
とを見出した。すなわち9氷上 発明はルチル型の戸タニアを含有する担体にロジウムと
白金、又はロジウムとパラジウムとを担持させたことを
特徴とす°るメタノール改質用触媒を提案するものであ
る。
If the anatase type titania support, which has been conventionally used as a catalyst support and has a large specific surface area and has a strong acidic effect, is crystallized into a rutile type by heat treatment at high temperature, the specific surface area will be small but the acidic effect will be almost nonexistent. They found that the selectivity was improved by the dehydrogenation reaction (main reaction ■), and that adding rhodium as a second component to platinum or palladium as the active metal was effective in improving low-temperature activity. . That is, the invention on ice proposes a methanol reforming catalyst characterized in that rhodium and platinum, or rhodium and palladium are supported on a carrier containing rutile-type dotania.

〔作用〕[Effect]

ここで/L/−!−ル型のチタニアを含有する担体は。 Here /L/-! - A carrier containing titania of the type.

アナターゼ型のチタニア又は、アルミナ担体にチタニア
をコーティングもたものなどを、600°C以上の温度
、好ましくは800−1000°Cの温度範囲で焼成す
ることで容易に得られる。
It can be easily obtained by firing anatase-type titania or an alumina carrier coated with titania at a temperature of 600°C or higher, preferably in the temperature range of 800-1000°C.

次にこのようにして得られた担体にロジウム。Next, rhodium was added to the support thus obtained.

白金、パラジウムなどの活性金属を担持させる方法は常
法でよく2例えば上記金属の硝酸塩又は塩化物などの化
合物の水溶液に担体を浸した後、乾燥焼成することによ
り容易に得られる。
Active metals such as platinum and palladium may be supported by conventional methods.2 For example, active metals such as platinum and palladium can be easily obtained by soaking the support in an aqueous solution of a compound such as a nitrate or chloride of the metal, followed by drying and firing.

活性体としての白金、パラジウムの担持量は0.1〜5
wt%(触媒全重量基準)が好ましく、これに第2成分
として添加するロジウムは白金。
The supported amount of platinum and palladium as active substances is 0.1 to 5.
Wt% (based on the total weight of the catalyst) is preferable, and the rhodium added as a second component is platinum.

又はパラジウムに対し10wt%以下では効果がなく、
50wt%以上ではコスト高となるため、 10〜5Q
 wt%の範囲とすることが好ましい。以上のようにし
て、ロジウムと白金又はロジウムとパラジウムを担持さ
せた後、水素還元処理を行うとロジウム、白金、パラジ
ウムが酸化物状態から金属状態に変わシ初期活性が発現
する。
Or, it is not effective if it is less than 10 wt% with respect to palladium,
10-5Q as the cost will be high if it exceeds 50wt%
It is preferable to set it as the range of wt%. After supporting rhodium and platinum or rhodium and palladium as described above, when hydrogen reduction treatment is performed, rhodium, platinum, and palladium change from an oxide state to a metal state and exhibit initial activity.

またロジウム、白金、パラジウムの酸化状態でもメタノ
ールと反応させると初期活性は低いが生成する水素、−
酸化炭素によって数時間後にはロジウム、白金、パラジ
ウムは還元され活性が発現する。
In addition, even in the oxidized state of rhodium, platinum, and palladium, when they are reacted with methanol, the initial activity is low, but hydrogen, -
After several hours, rhodium, platinum, and palladium are reduced by carbon oxide and their activity is expressed.

但し、この場合、メタノールとの反応条件によっては急
激な発熱を起こす場合があり、これによって失活するこ
とがある。
However, in this case, depending on the reaction conditions with methanol, rapid heat generation may occur, which may lead to deactivation.

従って、この発熱を防止するためにも予め水素還元処理
を行うことが好ましい。
Therefore, in order to prevent this heat generation, it is preferable to perform a hydrogen reduction treatment in advance.

以上のようにして得られた触媒はメタノールを水素、−
酸化炭素を含むガスに改質する反応に対し目的の反応の
選択性に優れaoo’cという低温で高活性、高選択性
を示すものである。
The catalyst obtained as described above converts methanol into hydrogen, -
It has excellent selectivity for the desired reaction in the reaction of reforming into a gas containing carbon oxide, and exhibits high activity and high selectivity at a low temperature of AOO'C.

以下、実施例により9本発明を具体的に説明する。Hereinafter, the present invention will be specifically explained with reference to Examples.

〔実施例〕〔Example〕

〔実施例1〕 粒径2〜4mmのアナターゼ型のチタニア担体を800
’Cで24時間焼成を行い、/I/チ〜型のチタニア担
体を得た。ルチル型に結晶転移していることはX線回折
によシ同定した。このルチル型チタニア担体を塩化ロジ
ウム及び塩化白金酸の混合水溶液に浸漬し、乾燥後50
0’Cで3時間焼成しテpt 0.4 wt%、 Rh
 O,1wt%(触媒全重量基準)を担持した触媒1を
調製した。この触媒を400℃で8時間3.5%水素気
液中で還元し表1に示す条件で活性評価試験を行い表2
の結果を得た。なお比較触媒として従来の7チターゼ型
のfly’ニア担体にpto、4wt%、 Rh o、
1 wt%(触媒全重量基準)を担持した触媒を調製し
1反応温度400°Cでの活性評価試験を行った結果を
表2に併せて示した。
[Example 1] Anatase type titania carrier with a particle size of 2 to 4 mm was
Calcination was performed for 24 hours at 'C' to obtain a /I/C type titania support. The crystal transition to rutile type was confirmed by X-ray diffraction. This rutile type titania support was immersed in a mixed aqueous solution of rhodium chloride and chloroplatinic acid, and after drying,
Calcined at 0'C for 3 hours, Tept 0.4 wt%, Rh
Catalyst 1 supporting 1 wt% of O (based on the total weight of the catalyst) was prepared. This catalyst was reduced in a 3.5% hydrogen gas liquid at 400°C for 8 hours, and an activity evaluation test was conducted under the conditions shown in Table 1.
The results were obtained. As a comparative catalyst, pto, 4 wt%, Rho,
A catalyst supporting 1 wt% (based on the total weight of the catalyst) was prepared and an activity evaluation test was conducted at a reaction temperature of 400° C. The results are also shown in Table 2.

表1゜ 表2゜ 〔実施例2〕 実施例1と同じ方法で得たルチル型チタニア担体を、塩
化ロジウムと塩化白金酸及び塩化ロジウムと塩化パラジ
ウムの水溶液に各々浸漬し。
Table 1 Table 2 [Example 2] A rutile titania support obtained in the same manner as in Example 1 was immersed in an aqueous solution of rhodium chloride and chloroplatinic acid and rhodium chloride and palladium chloride.

乾燥後500’Cで8時間焼成して表3に示す組成の触
媒2〜13を調製した。これらの触媒について実施例1
と同様にして水素還元処理した後。
After drying, catalysts 2 to 13 having the compositions shown in Table 3 were prepared by calcining at 500'C for 8 hours. Example 1 for these catalysts
After hydrogen reduction treatment in the same manner as above.

反応温度を850’Cにした以外は表1に示す条件で活
性評価試験を行い表3の結果を得た。
The activity evaluation test was conducted under the conditions shown in Table 1, except that the reaction temperature was 850'C, and the results shown in Table 3 were obtained.

また白金、パラジウムを各々Q5 wt%(触媒全重量
基準)担持した触媒14.15を調製し同様に水素還元
処理した後、400°Cでの活性評価試験を行い結果を
表3に併せて示した。
In addition, a catalyst 14.15 carrying Q5 wt% of platinum and palladium (based on the total weight of the catalyst) was prepared and subjected to hydrogen reduction treatment in the same manner, followed by an activity evaluation test at 400°C, and the results are also shown in Table 3. Ta.

夙下企白 表  3 〔実施例3〕 実施例1で得たルチル型チタニア担体を塩化ロジウムの
水溶液中に浸漬した後、乾燥し1次いで硝酸白金の水溶
液に浸漬してこれを乾燥。
Table 3 [Example 3] The rutile type titania support obtained in Example 1 was immersed in an aqueous solution of rhodium chloride, dried, and then immersed in an aqueous solution of platinum nitrate and dried.

焼成(500°Cで3時間)してRh Q、1 wt%
、 Pt□、4wt%(触媒全重量基準)を含有する触
媒を調製した。この触媒について実施例1と同じ方法で
水素還元処理をし反応温度を400°Cに変えた以外は
表1に示す条件と同じ方法で活性評価試験を行った結果
、触媒1と同様の性能が得られた。
Calcined (3 hours at 500°C) to give RhQ, 1 wt%
, Pt□, 4 wt% (based on the total weight of the catalyst). This catalyst was subjected to hydrogen reduction treatment in the same manner as in Example 1, and an activity evaluation test was conducted under the same conditions as shown in Table 1, except that the reaction temperature was changed to 400°C. As a result, the same performance as Catalyst 1 was found. Obtained.

〔実施例4〕 実施例1で調製した触媒lをステンレス製の反応管に5
cc充填し400°Cでメタノールを5cc/h連続供
給し200時間の耐久性試験を行った。この結果メタノ
ール反応率及び分解ガス組成とも初期と殆んど変化がな
く、触媒表面へのカーボン析出もないことを確認した。
[Example 4] 5 l of the catalyst prepared in Example 1 was placed in a stainless steel reaction tube.
A durability test was conducted for 200 hours by filling the tube with cc and continuously supplying methanol at 5 cc/h at 400°C. As a result, it was confirmed that there was almost no change in the methanol reaction rate and cracked gas composition from the initial stage, and that there was no carbon precipitation on the catalyst surface.

以上の実施例では粒状触媒について記述しであるが、触
媒の形状を特に限定するものではなく、ハニカム状、板
状などの触媒形状で用いて良いことは云うまでもない。
Although granular catalysts are described in the above embodiments, the shape of the catalyst is not particularly limited, and it goes without saying that catalyst shapes such as honeycomb shapes and plate shapes may be used.

又実施例では、メタノール単独の場合について記述しで
あるが、水蒸気、空気などを含有したガスとの共存下で
メタノール改質を行わせても良い。
Further, in the examples, the case where methanol alone is used is described, but methanol reforming may be performed in the coexistence with a gas containing water vapor, air, etc.

〔発明の効果〕〔Effect of the invention〕

以上の実施例の結果から明らかなように1本発明の触媒
はメタノールを水素、−酸化炭素を含むガスに改質する
反応に対し、目的とする反応の選択性に優れ、かつ30
0°Cという低温においても高活性を示し、長時間の運
転でも活性の低下が少ない触媒である。
As is clear from the results of the above examples, the catalyst of the present invention has excellent selectivity for the desired reaction in the reaction of reforming methanol into a gas containing hydrogen and carbon oxide, and
This catalyst shows high activity even at low temperatures of 0°C, and its activity does not decrease much even during long-term operation.

Claims (1)

【特許請求の範囲】[Claims] ルチル型のチタニアを含有する担体に、ロジウムと白金
又はロジウムとパラジウムとを担持させたことを特徴と
するメタノール改質用触媒。
A methanol reforming catalyst characterized in that rhodium and platinum or rhodium and palladium are supported on a carrier containing rutile-type titania.
JP61153473A 1986-06-30 1986-06-30 Catalyst for reforming methanol Pending JPS637843A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61153473A JPS637843A (en) 1986-06-30 1986-06-30 Catalyst for reforming methanol

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61153473A JPS637843A (en) 1986-06-30 1986-06-30 Catalyst for reforming methanol

Publications (1)

Publication Number Publication Date
JPS637843A true JPS637843A (en) 1988-01-13

Family

ID=15563339

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61153473A Pending JPS637843A (en) 1986-06-30 1986-06-30 Catalyst for reforming methanol

Country Status (1)

Country Link
JP (1) JPS637843A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5292704A (en) * 1989-05-01 1994-03-08 Allied-Signal Inc. Catalyst for destruction of organohalogen compounds

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5292704A (en) * 1989-05-01 1994-03-08 Allied-Signal Inc. Catalyst for destruction of organohalogen compounds

Similar Documents

Publication Publication Date Title
JPWO2002038268A1 (en) Hydrocarbon reforming catalyst and hydrocarbon reforming method using the same
KR101437072B1 (en) Catalyst for efficient co2 conversion and method for preparing thereof
JP2000176287A (en) Catalyst for methanol synthesis and synthetic method of methanol
CN111589462A (en) Nickel-based catalyst, preparation method and application
EP1312412B1 (en) Process for producing hydrogen-containing gas
JP4724973B2 (en) Dimethyl ether reforming catalyst and method for producing hydrogen-containing gas using the catalyst
JP4016100B2 (en) Catalyst for water gas shift reaction
JPS58193738A (en) Catalyst for production of gas enriched with hydrogen
JPS6082137A (en) Reforming catalyst of methanol
CN117545554A (en) Method for preparing a water gas shift catalyst, catalyst and method for reducing carbon monoxide content
JPS637843A (en) Catalyst for reforming methanol
JPS60202740A (en) Catalyst for reforming methanol
JPS60122038A (en) Catalyst for reforming methanol
JP4202087B2 (en) Dimethyl ether reforming catalyst and method for producing hydrogen-containing gas using the catalyst
JPS6082136A (en) Reforming catalyst of methanol
JPH02307802A (en) Method for reforming methanol
JP4831800B2 (en) Dimethyl ether reforming catalyst and dimethyl ether reforming method
JPS60137434A (en) Catalyst for reforming methanol
JPH0371174B2 (en)
JPH0576341B2 (en)
JPS637842A (en) Catalyst for reforming methanol
JPH0211301B2 (en)
JPS59199043A (en) Catalyst for reforming methanol
JPH0347895B2 (en)
JPS59131501A (en) Modification of methanol with steam