JPS6376451A - Manufacture of compound semiconductor crystal substrate - Google Patents

Manufacture of compound semiconductor crystal substrate

Info

Publication number
JPS6376451A
JPS6376451A JP21960786A JP21960786A JPS6376451A JP S6376451 A JPS6376451 A JP S6376451A JP 21960786 A JP21960786 A JP 21960786A JP 21960786 A JP21960786 A JP 21960786A JP S6376451 A JPS6376451 A JP S6376451A
Authority
JP
Japan
Prior art keywords
substrate
lattice
groove
epitaxially grown
warpage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21960786A
Other languages
Japanese (ja)
Inventor
Masakazu Ishino
正和 石野
Shinichi Komatsu
伸一 小松
Noriyuki Taguchi
矩之 田口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP21960786A priority Critical patent/JPS6376451A/en
Publication of JPS6376451A publication Critical patent/JPS6376451A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To reduce the warpage of a substrate by a method wherein, when the crystals having different lattice constants and the coefficients of thermal expansion are epitaxially grown on the substrate having a large area, the tensile stress of an epitaxial layer is alleviated by providing a lattice-like groove on the surface of the substrate in advance. CONSTITUTION:When the crystal 3 having the lattice constant and the coefficient of thermal expansion different from those of a single crystal substrate is epitaxially grown on the surface of the thin plate type single crystal substrate 1, a lattice-like groove 2 is provided on the surface of the substrate 1 in advance in order to alleviate the stress due to strain. For example, when a GaAs film 3 is formed on the Si wafer 1 of two inches or three inches long, a latticelike groove 2 is provided on the Si wafer 1. After the groove 2 has been patterned in stripe form of 20 mum in width using photoresist, the groove 2 of 10 mum in depth is formed by etching using said resist as a mask. By providing the lattice-like groove on the Si wafer as above-mentioned, the GaAs layer epitaxially grown on the groove is divided into lattice measurements. Accordingly, the stress generated on the GaAs layer can be dispersed into the inner part of the lattice measurements, and the warpage of the substrate can be alleviated.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はシリコン基板上に化合物半導体をヘテロエピタ
キシャル成長させた結晶基板の製造方法に係り、特にシ
リコン単結晶上にGIAsの単結晶を成長させるのに好
適な化合物半導体結晶基板の製造方法に関するものであ
る。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for manufacturing a crystal substrate in which a compound semiconductor is heteroepitaxially grown on a silicon substrate, and particularly relates to a method for growing a single crystal of GIAs on a silicon single crystal. The present invention relates to a method for manufacturing a compound semiconductor crystal substrate suitable for.

〔従来の技術〕[Conventional technology]

従来、8i基板の上にGaAsの単結晶をエピタキシャ
ル成長させる場合は8にとGaAsの格子定数差が4チ
あり、熱膨張係数も2.2倍異なるため結晶に応力歪が
発生して良好な単結晶を得ることが困難でありた。そこ
でこれ等応力歪を緩和するためには、例えば特開昭59
−171115号公報に示されたように8iとGaAs
の中間的物性値を有するGeのようなバッファ層を導入
する方法が用いられていた。しかし、格子定数の異なる
結晶を大面積にエピタキシャル成長させると一方の結晶
の引張り応力により基板全体が反るという問題が生じる
。この問題に対して従来の方法は伺の考慮もされていな
かった。
Conventionally, when epitaxially growing a single crystal of GaAs on an 8i substrate, the difference in lattice constant between 8i and GaAs is 4 degrees, and the coefficient of thermal expansion is also 2.2 times different, so stress strain occurs in the crystal, making it difficult to obtain a good single crystal. It was difficult to obtain crystals. Therefore, in order to alleviate these stress strains, for example,
-8i and GaAs as shown in Publication No. 171115
A method of introducing a buffer layer such as Ge having intermediate physical property values has been used. However, when crystals with different lattice constants are epitaxially grown over a large area, a problem arises in that the entire substrate warps due to the tensile stress of one crystal. Conventional methods have not even considered this problem.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記の従来技術では大面積に格子定数の異なる結晶ヲヘ
テロエビタキシャル成長する場合に生じる基板の反りに
ついて何等の考慮もされておらず、この基板上に微細加
工を必要とするデバイスを作製する場合、ホトリソグラ
フィ一工程においてマスクと基板の密着性が悪くなり露
光パターンの解像度が低下する等の問題があった。
The above conventional technology does not take into account the warpage of the substrate that occurs when crystals with different lattice constants are grown heteroepitaxially over a large area, and when manufacturing devices that require microfabrication on this substrate. In one step of photolithography, there were problems such as poor adhesion between the mask and the substrate, resulting in a decrease in the resolution of the exposed pattern.

そこで本発明の目的は大面積基板に格子定数や熱膨張係
数の異なる結晶をヘテロエビタキシャル成長する場合に
、エピタキシャル層の引張り応力を緩和して基板の反り
を少くすることにある。
Therefore, an object of the present invention is to alleviate the tensile stress of the epitaxial layer and reduce the warpage of the substrate when crystals having different lattice constants and coefficients of thermal expansion are grown heteroepitaxially on a large-area substrate.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は大面積基板の表面に格子状の溝を設け、この
上に格子定数の異なる結晶をエピタキシャル成長させる
ことにより、エピタキシャル成長層の歪応力を溝部分の
段差で横方向の比較的小さな部分に分散し、基板全体に
加わる引張り応力を小さくすることにより基板の反り量
を小さくして達成できる。
The above purpose is to provide lattice-like grooves on the surface of a large-area substrate and epitaxially grow crystals with different lattice constants on the grooves, thereby dispersing the strain stress in the epitaxially grown layer to a relatively small portion in the lateral direction using the steps in the grooves. However, by reducing the tensile stress applied to the entire substrate, the amount of warpage of the substrate can be reduced.

〔作用〕[Effect]

エピタキシャル成長の基板となる結晶表面に格子状の溝
を設けると、この溝によってエピタキシャル成長された
結晶は横方向の比較的小さな面積に分散されて成長する
ため、応力歪はその面積内にのみ働いて、基板全体の反
りは小さな値に抑制することができる。このため結晶成
長後に行うフォトリソグラフィーの工程においてマスク
と基板の密着性が良くなりパターン%偉度の低下を防止
できる等の利点がある。
When lattice-like grooves are provided on the surface of a crystal that serves as a substrate for epitaxial growth, the epitaxially grown crystals grow by being distributed over a relatively small area in the lateral direction, so stress and strain act only within that area. The warpage of the entire substrate can be suppressed to a small value. Therefore, in the photolithography process performed after crystal growth, the adhesion between the mask and the substrate is improved, and there are advantages such as preventing a decrease in pattern % quality.

〔実施例〕〔Example〕

以下、本発明の一実施例を説明する。第1図は8i基板
上に(hAsの単結晶をMBB(分子線エピタキシー)
成長させた場合の基板の大きさと反り量の関係をGaA
s層の厚さをパラメータとして示したものである。アラ
イナの解像度が次式で表わせるとすると1μmの解像度
を出すために許容される基板の反り量は10#r1以下
でなければならない。
An embodiment of the present invention will be described below. Figure 1 shows a single crystal of hAs (MBB (molecular beam epitaxy)) on an 8i substrate.
The relationship between the size of the substrate and the amount of warpage when grown is GaA.
The thickness of the s layer is shown as a parameter. Assuming that the resolution of the aligner can be expressed by the following equation, the amount of substrate warpage allowed to achieve a resolution of 1 μm must be 10#r1 or less.

2d内θ d:基板の反り量 θニアライナの性能による決まる値 ここでは31を計算に用いた。θ within 2d d: Amount of warpage of the board Value determined by the performance of the θ near liner Here, 31 was used for calculation.

基板の反り量を11114m以下にするためには第1図
よりG■穆の成長膜厚を2μmとして、基板の大きさは
150以下でなければならない。また、GaAs層の厚
さを4μmとした場合は基板の大きさは9關以下でなけ
ればならない。
In order to make the amount of warpage of the substrate 11114 m or less, the thickness of the grown film of G.sub.2 must be 2 .mu.m from FIG. 1, and the size of the substrate must be 150 mm or less. Further, when the thickness of the GaAs layer is 4 μm, the size of the substrate must be 9 mm or less.

以上の条件を満たして2インチや3インチのSiウェハ
上にGaAs膜を形成する方法として第2図に示すよう
な格子状の溝をSiウェハ上に設けた。溝はホトレジス
トで幅20amのストライプ状にパターンニングした後
、このレジストをマスクとして深さ10μmにエツチン
グして作製した。このウェハの部分断面図を第3図に、
そのウェハ上にGaAsを成長させた後の部分断面図を
第4図に示した。
As a method for forming a GaAs film on a 2-inch or 3-inch Si wafer while satisfying the above conditions, lattice-shaped grooves as shown in FIG. 2 were provided on the Si wafer. The grooves were fabricated by patterning a photoresist into stripes with a width of 20 am, and then etching to a depth of 10 μm using the resist as a mask. A partial cross-sectional view of this wafer is shown in Figure 3.
FIG. 4 shows a partial cross-sectional view after growing GaAs on the wafer.

Siウェハに格子状の溝を設けることにより、この上に
エピタキシャル成長させたGaAs層は格子寸法に分割
される。したがってGaAs層に発生する応力は格子寸
法の内部に分散され基板の反りは緩和される。格子間隔
の寸法はエピタキシャル成長させるGaAs層の厚さと
成長時の温度条件によっても適正値は異なるが、おおよ
そ第1図に示した関係が適用できるので、GaAs層の
厚さを2μm成長させる場合は格子間隔の寸法をIOW
として、反りの量を許容限界値以内におさめることがで
きる。
By providing a lattice of grooves in the Si wafer, the GaAs layer epitaxially grown thereon is divided into lattice dimensions. Therefore, the stress generated in the GaAs layer is dispersed within the lattice dimensions, and the warpage of the substrate is alleviated. The appropriate value for the lattice spacing varies depending on the thickness of the GaAs layer to be epitaxially grown and the temperature conditions during growth, but the relationship shown in Figure 1 can be applied, so when growing the GaAs layer to a thickness of 2 μm, the lattice spacing Interval dimension IOW
As a result, the amount of warpage can be kept within acceptable limits.

本実施例によれば2インチウェハのようなSiの大面積
基板上に格子定数や熱膨張係数の異なるGaAs結晶を
エピタキシャル成長させても、基板の反り量を10μm
以下の値に抑制できる効果がある。
According to this example, even if GaAs crystals with different lattice constants and coefficients of thermal expansion are epitaxially grown on a large-area Si substrate such as a 2-inch wafer, the amount of warpage of the substrate can be reduced to 10 μm.
It has the effect of suppressing it to the following values.

〔発明の効果〕〔Effect of the invention〕

本発明によれば大面積の基板結晶上に格子定数や熱膨張
係数の異なる別の結晶をエピタキシャル成長させた後も
基板の反りを一定値以下に抑えることができるので、こ
の基板を用いて微細なデバイス構造をホトリソグラフィ
ープロセスによす作製する場合に、その解像度を低下さ
せない効果がある。
According to the present invention, even after another crystal with a different lattice constant or thermal expansion coefficient is epitaxially grown on a large-area substrate crystal, the warpage of the substrate can be suppressed to a certain value or less. When fabricating a device structure using a photolithography process, it has the effect of not reducing its resolution.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例による基板の反り量の関係、
を説明する図、第2図は本発明の一実施例を示すSi基
板表面に格子状の溝を設けたことを示す説明図、第3図
はSi基板の部分断面図、第4図は8i基板の表面Ga
As結晶をエピタキシャル成長させた後の状態を示す部
分断面図である。 l・・・Si基板     2・・・格子状溝3・・・
GaAs結晶層 代理人 弁理士  小 川 勝 男 棄1図 基板Φ大3E (?lLマリ 亨1図 3、 (illA9R易a
FIG. 1 shows the relationship between the amount of warpage of a substrate according to an embodiment of the present invention.
FIG. 2 is an explanatory diagram showing a grid-like groove provided on the surface of a Si substrate according to an embodiment of the present invention, FIG. 3 is a partial cross-sectional view of the Si substrate, and FIG. 4 is an 8i Surface Ga of the substrate
FIG. 3 is a partial cross-sectional view showing a state after epitaxial growth of As crystal. l...Si substrate 2...lattice groove 3...
GaAs crystal layer agent Masaru Ogawa, patent attorney

Claims (1)

【特許請求の範囲】[Claims] 1、薄板状の単結晶基板とその基板表面に格子定数や熱
膨張係数の異なる別の結晶をエピタキシャル成長させた
半導体基板において、エピタキシャル成長膜に生じる歪
応力を緩和するためにあらかじめ基板表面に格子状の溝
を設けたことを特徴とする化合物半導体結晶基板の製造
方法。
1. In a semiconductor substrate in which a thin single-crystal substrate and another crystal with a different lattice constant or thermal expansion coefficient are epitaxially grown on the surface of the substrate, a lattice-like structure is formed on the substrate surface in advance in order to alleviate the strain stress that occurs in the epitaxially grown film. A method for manufacturing a compound semiconductor crystal substrate, characterized in that a groove is provided.
JP21960786A 1986-09-19 1986-09-19 Manufacture of compound semiconductor crystal substrate Pending JPS6376451A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21960786A JPS6376451A (en) 1986-09-19 1986-09-19 Manufacture of compound semiconductor crystal substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21960786A JPS6376451A (en) 1986-09-19 1986-09-19 Manufacture of compound semiconductor crystal substrate

Publications (1)

Publication Number Publication Date
JPS6376451A true JPS6376451A (en) 1988-04-06

Family

ID=16738180

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21960786A Pending JPS6376451A (en) 1986-09-19 1986-09-19 Manufacture of compound semiconductor crystal substrate

Country Status (1)

Country Link
JP (1) JPS6376451A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0529454A (en) * 1991-07-19 1993-02-05 Seikosha Co Ltd Manufacture of semiconductor integrated circuit chip
JP2007180556A (en) * 1997-10-07 2007-07-12 Cree Inc Nitride photonic device of group iii on silicon carbide substrate having conductive buffer intermediate layer structure
JP2008536319A (en) * 2005-04-15 2008-09-04 ラティス パワー (チアンシ) コーポレイション Method for forming an InGaAlN film and a light emitting device on a silicon substrate
JP2011129828A (en) * 2009-12-21 2011-06-30 Sumitomo Chemical Co Ltd Semiconductor substrate, electronic device, and method of manufacturing semiconductor substrate
CN105990308A (en) * 2015-03-17 2016-10-05 株式会社东芝 Semiconductor device and manufacturing method thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0529454A (en) * 1991-07-19 1993-02-05 Seikosha Co Ltd Manufacture of semiconductor integrated circuit chip
JP2007180556A (en) * 1997-10-07 2007-07-12 Cree Inc Nitride photonic device of group iii on silicon carbide substrate having conductive buffer intermediate layer structure
JP2008536319A (en) * 2005-04-15 2008-09-04 ラティス パワー (チアンシ) コーポレイション Method for forming an InGaAlN film and a light emitting device on a silicon substrate
JP2011129828A (en) * 2009-12-21 2011-06-30 Sumitomo Chemical Co Ltd Semiconductor substrate, electronic device, and method of manufacturing semiconductor substrate
CN105990308A (en) * 2015-03-17 2016-10-05 株式会社东芝 Semiconductor device and manufacturing method thereof

Similar Documents

Publication Publication Date Title
KR970003731B1 (en) Method of forming the isolation elements on the semiconductor device
JPH05121317A (en) Method for forming soi structure
GB2114808A (en) Semiconductor laser manufacture
JPS6376451A (en) Manufacture of compound semiconductor crystal substrate
JPS62213117A (en) Manufacture of semiconductor device
JPH02237021A (en) Manufacture of semiconductor device
JPS61225816A (en) Manufacture of compound semiconductor device
JPS60193324A (en) Manufacture of semiconductor substrate
JP2578092B2 (en) Etching method
JPH0612757B2 (en) Method for manufacturing SOI film
JPS6122645A (en) Substrate for semiconductor device and manufacture thereof
JPH07273025A (en) Semiconductor substrate
JPS60171737A (en) Manufacture of semiconductor device
JP3060486B2 (en) Method for forming SOI substrate
JPS6398120A (en) Crystal growth method
JPH0258322A (en) Manufacture of semiconductor wafer
JPH0434920A (en) Hetero epitaxial growth method for group iii-v compound semiconductor on different type board
JPS61284913A (en) Selective epitaxial growth method for gaas
JPH10321522A (en) Semiconductor structure and its manufacture
JPS62189720A (en) Manufacture of semiconductor device
JPS59167028A (en) Manufacture of compound semiconductor integrated circuit device
JPH02196417A (en) Selective epitaxial growth method
JPH03247597A (en) Epitaxial growth method of iii-v compound semiconductor on silicon substrate
JPS61198713A (en) Manufacture of semiconductor device
JPH02238674A (en) Semiconductor device and manufacture thereof