JPS637571B2 - - Google Patents

Info

Publication number
JPS637571B2
JPS637571B2 JP18073881A JP18073881A JPS637571B2 JP S637571 B2 JPS637571 B2 JP S637571B2 JP 18073881 A JP18073881 A JP 18073881A JP 18073881 A JP18073881 A JP 18073881A JP S637571 B2 JPS637571 B2 JP S637571B2
Authority
JP
Japan
Prior art keywords
thf
polymerization
carboxylic acid
catalyst
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP18073881A
Other languages
Japanese (ja)
Other versions
JPS5883028A (en
Inventor
Takashi Yano
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daicel Corp
Original Assignee
Daicel Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daicel Chemical Industries Ltd filed Critical Daicel Chemical Industries Ltd
Priority to JP18073881A priority Critical patent/JPS5883028A/en
Publication of JPS5883028A publication Critical patent/JPS5883028A/en
Publication of JPS637571B2 publication Critical patent/JPS637571B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Polyethers (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はポリテトラメチレングリコール(以
下、PTMGと略記する。)の製造方法の改良に関
する。詳しくは、出発原料であるテトラヒドロフ
ラン(以下、THFと略記する。)の重合に際し新
規な触媒を提供するにある。 PTMGはポリウレタンの原料等として工業的
に多方面の分野で利用されており、THFを適当
な触媒の存在下に重合して製造され、通常は数平
均分子量で1000〜3000程度のものがよく使用され
ている。 従来、THFの重合触媒としては、フルオロ硫
酸系、発煙硫酸系及び三弗化ホウ素系等と数多く
のものが知られているが、工業的に満足できるも
のは比較的少ない。例えば、フルオロ硫酸系触媒
は触媒自体の価格が高く、腐蝕性が大きいので取
扱いに難点がある。発煙硫酸系触媒は使用量が多
く、更に廃硫酸の処理をしなければならない難点
がある。又、三弗化ホウ素系触媒は重合速度の調
節が困難であるので、補助物質の追加の上で反応
条件の選択に難点がある。 本発明者は以上の欠点を克服するため、鋭意検
討を重ねた結果、ヘテロポリ酸とカルボン酸無水
物又はカルボン酸塩化物を組合せてなる触媒を用
いてTHFを重合させることにより、極めて容易
に分子量1000〜3000のPTMGを高い収率で製造
し得ることを見出し、本発明に到達した。 本発明の方法によれば、THFの重合を経る
PTMGの製造に際し、極めてわずかな触媒量と
極めて緩和な反応条件で、しかも装置への腐蝕性
がない等大きな工業的な利点を有する。又、主触
媒であるヘテロポリ酸は近年酸化反応触媒等で有
機合成の分野に利用されているが、THFの重合
触媒に使用された例は未だなく、しかも単独では
該重合触媒能がなく、カルボン酸無水物又はカル
ボン酸塩化物との組合せにより、はじめて触媒活
性が出て来ると言つた特異なものである。 本発明に使用されるヘテロポリ酸は特に限定さ
れるものではなく、最も一般的に用いられるもの
としてはケイタングステン酸、ケイモリブデン
酸、リンタングステン酸、リンモリブデン酸、ホ
ウタングステン酸、ホウモリブテン酸等が挙げら
れる。ヘテロポリ酸の使用量はTHFに対し1.0〜
10.0重量%、好ましくは1.0〜5.0重量%の範囲で
ある。なお、ヘテロポリ酸は本発明の条件下では
安定であり、加水分解系から生成物を分離した
後、後処理して循環使用することができる。 ヘテロポリ酸と併用するカルボン酸無水物又は
カルボン酸塩化物としては、例えば無水酢酸、無
水プロピオン酸、無水酪酸、塩化アセチル、塩化
プロピオニル、塩化ブチリル等が挙げられる。カ
ルボン酸無水物又はカルボン酸塩化物の使用量は
THFに対し10〜50重量%、好ましくは10〜20%
である。 触媒成分の添加方法としてはTHFにヘテロポ
リ酸を溶解若しくは懸濁させ、これにカルボン酸
無水物又はカルボン酸塩化物を滴下するのが普通
であるが、これに限定されることはない。 本発明に使用される反応温度は通常0〜60℃、
好ましくは0〜30℃の範囲である。反応時間は通
常1〜10Hr、好ましくは1〜4Hrの範囲である。
これ等の条件を厳しくすると反応液が着色し易
く、収率も低下するので好ましくない。又、重合
を行うに際しては反応器を予め窒素、アルゴン等
の不活性ガスで置換しておくことが望ましい。 本発明の方法にかゝるTHFの重合によつて得
られるPTMGの収率及び分子量は反応温度、反
応時間、触媒成分及びその使用量等によつて変化
し、各々の組合せを利用すれば、適宜任意の分子
量のものを製造することが期待できる。 重合反応終了後、反応液に水を加えて重合を停
止させ、加熱して未反応のTHFを溜去する。引
続き公知の方法で処理してPTMGを得ることが
できる。例えば、先ず得られた重合液にアルカリ
と共に、溶剤を加えて加熱し、加水分解する。次
いで、加水分解反応混合液を静置して、PTMG
を溶解した有機層と水層とに成層分離し、水洗、
分液を繰返して、該有機層を精製した後、溶剤を
溜去、乾燥すれば純粋なPTMGが回収される。 以下、実施例によつて、本発明を更に具体的に
説明する。 なお、PTMGの数平均分子量は蒸気圧滲透計
を用いて測定したものであり、水酸基価は
JIS1557−1970に従い、測定した。 実施例1〜3及び比較例 還流器、撹拌機及び温度計を付した四つ口フラ
ラスコに、THF100gを仕込み、これに表−1に
示すヘテロポリ酸を加え、撹拌しつつ外部冷却で
約0℃に保ちながら、表−1に示すカルボン酸無
水物又は塩化物を15分間かけて滴下し、引続き表
−1に示す条件でTHFの重合反応を行つた。(窒
素雰囲気下)後、反応液に水100mlを加えて反応
を停止させ、未反応のTHFを減圧蒸溜々去した。 次いで、20%水酸化ナトリウム水溶液200ml及
びn−ブチルアルコール200mlを加え、還流下で
3時間加水分解した。 更に室温まで冷却し、静置して水層を分液し、
以下、水100mlを加えて撹拌し、静置して水層を
分液する精製操作を3回繰返した。後、有機層中
のn−ブチルアルコール及び残存する水を減圧蒸
溜々去してPTMGを得た。その収量及び分子量
は表−1に示す。
The present invention relates to an improvement in a method for producing polytetramethylene glycol (hereinafter abbreviated as PTMG). Specifically, the purpose is to provide a novel catalyst for the polymerization of tetrahydrofuran (hereinafter abbreviated as THF), which is a starting material. PTMG is used industrially in many fields as a raw material for polyurethane, etc., and is produced by polymerizing THF in the presence of an appropriate catalyst, and usually has a number average molecular weight of about 1000 to 3000. has been done. Conventionally, many THF polymerization catalysts have been known, such as fluorosulfuric acid, fuming sulfuric acid, and boron trifluoride, but relatively few of them are industrially satisfactory. For example, fluorosulfuric acid catalysts are difficult to handle because they are expensive and highly corrosive. A large amount of fuming sulfuric acid catalyst is used, and waste sulfuric acid must be disposed of. Furthermore, since it is difficult to control the polymerization rate of boron trifluoride catalysts, it is difficult to select reaction conditions in addition to adding auxiliary substances. In order to overcome the above-mentioned drawbacks, the present inventor has made extensive studies and found that by polymerizing THF using a catalyst consisting of a combination of a heteropolyacid and a carboxylic acid anhydride or a carboxylic acid chloride, the molecular weight can be extremely easily reduced. It was discovered that 1000 to 3000 PTMG can be produced in high yield, and the present invention was achieved. According to the method of the present invention, through the polymerization of THF
When producing PTMG, it requires a very small amount of catalyst and very mild reaction conditions, and has great industrial advantages such as not being corrosive to equipment. In addition, heteropolyacid, which is the main catalyst, has been used in the field of organic synthesis as an oxidation reaction catalyst in recent years, but it has not yet been used as a THF polymerization catalyst, and moreover, it does not have the polymerization catalytic ability alone, and carbon It is unique in that it exhibits catalytic activity only when combined with an acid anhydride or a carboxylic acid chloride. The heteropolyacids used in the present invention are not particularly limited, and the most commonly used ones include silicotungstic acid, silicomolybdic acid, phosphotungstic acid, phosphomolybdic acid, borotungstic acid, boromolybdic acid, etc. can be mentioned. The amount of heteropolyacid used is 1.0 to THF.
10.0% by weight, preferably in the range 1.0-5.0% by weight. Note that the heteropolyacid is stable under the conditions of the present invention, and after separating the product from the hydrolysis system, it can be post-treated and recycled for reuse. Examples of the carboxylic acid anhydride or carboxylic acid chloride used in combination with the heteropolyacid include acetic anhydride, propionic anhydride, butyric anhydride, acetyl chloride, propionyl chloride, butyryl chloride, and the like. The amount of carboxylic acid anhydride or carboxylic acid chloride used is
10-50% by weight relative to THF, preferably 10-20%
It is. The usual method for adding the catalyst component is to dissolve or suspend the heteropolyacid in THF and dropwise add the carboxylic acid anhydride or carboxylic acid chloride thereto, but the method is not limited thereto. The reaction temperature used in the present invention is usually 0 to 60°C,
Preferably it is in the range of 0 to 30°C. The reaction time is usually in the range of 1 to 10 hours, preferably 1 to 4 hours.
If these conditions are made too strict, the reaction solution tends to become colored and the yield decreases, which is not preferable. Furthermore, when carrying out polymerization, it is desirable to purge the reactor with an inert gas such as nitrogen or argon in advance. The yield and molecular weight of PTMG obtained by polymerization of THF according to the method of the present invention vary depending on the reaction temperature, reaction time, catalyst components and their usage amounts, etc., and if each combination is used, It can be expected that products with arbitrary molecular weights can be produced as appropriate. After the polymerization reaction is completed, water is added to the reaction solution to stop the polymerization, and unreacted THF is distilled off by heating. PTMG can then be obtained by further processing in known manner. For example, first, an alkali and a solvent are added to the obtained polymerization solution, and the mixture is heated and hydrolyzed. Next, the hydrolysis reaction mixture was allowed to stand, and the PTMG
Stratified into an organic layer and an aqueous layer, washed with water,
After purifying the organic layer by repeating separation, pure PTMG is recovered by distilling off the solvent and drying. Hereinafter, the present invention will be explained in more detail with reference to Examples. The number average molecular weight of PTMG was measured using a vapor pressure percolation meter, and the hydroxyl value was
Measured according to JIS1557-1970. Examples 1 to 3 and Comparative Examples 100g of THF was charged into a four-necked flask equipped with a refluxer, stirrer, and thermometer, and the heteropolyacid shown in Table 1 was added thereto, and the temperature was heated to about 0°C by external cooling while stirring. The carboxylic acid anhydride or chloride shown in Table 1 was added dropwise over 15 minutes while maintaining the temperature, and then a THF polymerization reaction was carried out under the conditions shown in Table 1. After that (under nitrogen atmosphere), 100 ml of water was added to the reaction solution to stop the reaction, and unreacted THF was distilled off under reduced pressure. Next, 200 ml of 20% aqueous sodium hydroxide solution and 200 ml of n-butyl alcohol were added, and the mixture was hydrolyzed under reflux for 3 hours. Further cool to room temperature, leave to stand, and separate the aqueous layer.
Thereafter, the purification operation of adding 100 ml of water, stirring, and standing still to separate the aqueous layer was repeated three times. Thereafter, n-butyl alcohol and remaining water in the organic layer were distilled off under reduced pressure to obtain PTMG. The yield and molecular weight are shown in Table-1.

【表】 * 比較例では反応液から減圧蒸溜々去したとこ
ろ、重合物は殆んど残らず、ヘテロポリ
酸単独ではTHFの重合触媒能がないことが明ら
かである。
[Table] * In the comparative example, when the reaction solution was distilled off under reduced pressure, almost no polymer remained, and the heteropolymer was removed by distillation under reduced pressure.
It is clear that acid alone does not have the ability to catalyze the polymerization of THF.

Claims (1)

【特許請求の範囲】[Claims] 1 ヘテロポリ酸とカルボン酸無水物及びカルボ
ン酸塩化物から選ばれた1種とを組合わせてなる
触媒の存在下で、テトラヒドロフランを重合させ
ることを特徴とするポリテトラメチレングリコー
ルの製造方法。
1. A method for producing polytetramethylene glycol, which comprises polymerizing tetrahydrofuran in the presence of a catalyst comprising a combination of a heteropolyacid and one selected from carboxylic acid anhydrides and carboxylic acid chlorides.
JP18073881A 1981-11-10 1981-11-10 Preparation of polytetramethylene glycol Granted JPS5883028A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18073881A JPS5883028A (en) 1981-11-10 1981-11-10 Preparation of polytetramethylene glycol

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18073881A JPS5883028A (en) 1981-11-10 1981-11-10 Preparation of polytetramethylene glycol

Publications (2)

Publication Number Publication Date
JPS5883028A JPS5883028A (en) 1983-05-18
JPS637571B2 true JPS637571B2 (en) 1988-02-17

Family

ID=16088442

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18073881A Granted JPS5883028A (en) 1981-11-10 1981-11-10 Preparation of polytetramethylene glycol

Country Status (1)

Country Link
JP (1) JPS5883028A (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59159824A (en) * 1983-03-02 1984-09-10 Asahi Glass Co Ltd Production of polyether compound
CA1216597A (en) * 1983-05-23 1987-01-13 Atsushi Aoshima Process for producing polyetherglycol
DE3563447D1 (en) * 1984-03-28 1988-07-28 Asahi Chemical Ind Process for producing polyether polyol, the produced polyether polyol and polyurethane
JPS61123629A (en) * 1984-11-20 1986-06-11 Asahi Chem Ind Co Ltd Removal of heteropolyacid from polyalkylene ether
DE4108044A1 (en) * 1991-03-13 1992-09-17 Basf Ag METHOD FOR PRODUCING POLYOXYALKYLENE GLYCOLES
DE4108046A1 (en) * 1991-03-13 1992-09-17 Basf Ag METHOD FOR PRODUCING POLYOXYALKYLENE GLYCOL MONOESTERS FROM MONOCARBONIC ACIDS
US5302255A (en) * 1992-03-06 1994-04-12 E. I. Du Pont De Nemours And Company Reducing molecular weight distribution of polyether glycols by short-path distillation
DE4435934A1 (en) * 1994-10-07 1996-04-11 Basf Ag Process for removing heteropoly compounds from polyethers, polyesters and polyetheresters
US5648557A (en) * 1994-10-27 1997-07-15 Mobil Oil Corporation Polyether lubricants and method for their production
DE19527532A1 (en) * 1995-07-27 1997-01-30 Basf Ag Process for the preparation of polyoxytetramethylene glycol
US5756604A (en) * 1995-08-31 1998-05-26 Hodogaya Chemical Co., Ltd. Process for producing polyether, and process for recycling and reusing herteropolyacid
US6087307A (en) * 1998-11-17 2000-07-11 Mobil Oil Corporation Polyether fluids miscible with non-polar hydrocarbon lubricants

Also Published As

Publication number Publication date
JPS5883028A (en) 1983-05-18

Similar Documents

Publication Publication Date Title
US4243799A (en) Polymerization of tetrahydrofuran
US4275228A (en) Catalytic preparation of ethyl acetate
US4189566A (en) Polymerization of tetrahydrofuran
KR101545031B1 (en) Method for producing ethylene glycol dimethacrylate
JPS637571B2 (en)
JP2503178B2 (en) Process for producing glycolic acid, glycolic acid ester or polyglycolide
WO1981000846A1 (en) The use of perfluorosulfonic acid resins as catalysts for preparing esters
WO2005040246A1 (en) Acyloxy acetic acid polymer and method for producing same
US5072049A (en) Process for the preparation of bis(4-hydroxyphenyl) sulfone
JPH0623245B2 (en) Method for producing polyoxybutylene-polyoxyalkylene glycol carboxylic acid diester
JPS5912102B2 (en) Method for producing acrylic ester
JP2754220B2 (en) Lactone monomer polymerization method
JP2686824B2 (en) Process for producing dipentaerythritol hexaester compound
JPS63303937A (en) Manufacture of propynol
JP3859290B2 (en) Process for producing α-hydroxyalkylacrylic acids
JP3953133B2 (en) Method for stabilizing α-hydroxyalkylacrylic acids
US2985635A (en) Reaction products of cyclopentadiene and trichloroacetic acid
CA1151207A (en) Esterification of carboxylic acids with alcohols
JP3956444B2 (en) Method for producing butanediol
US3836575A (en) Process for the manufacture of methyl methacrylate
WO1992018452A1 (en) Preparation of trialkylacetic acids, particularly of pivalic acid, using lewis acid catalysis
JPH11269262A (en) Preparation of polytetramethylene ether glycol
JPS6312854B2 (en)
JP3062752B1 (en) Method for producing tertiary carboxylic acid and its ester using silver heteropolyacid catalyst
JPS6330931B2 (en)