JPS6375391A - Gas lubricated bearing array for two-stage single shaft turbocompressor - Google Patents

Gas lubricated bearing array for two-stage single shaft turbocompressor

Info

Publication number
JPS6375391A
JPS6375391A JP22006986A JP22006986A JPS6375391A JP S6375391 A JPS6375391 A JP S6375391A JP 22006986 A JP22006986 A JP 22006986A JP 22006986 A JP22006986 A JP 22006986A JP S6375391 A JPS6375391 A JP S6375391A
Authority
JP
Japan
Prior art keywords
compressor
bearing
gas
shaft
turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22006986A
Other languages
Japanese (ja)
Other versions
JPH0612118B2 (en
Inventor
Sadao Sato
定男 佐藤
Yoshihiro Nakayama
善裕 仲山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP61220069A priority Critical patent/JPH0612118B2/en
Publication of JPS6375391A publication Critical patent/JPS6375391A/en
Publication of JPH0612118B2 publication Critical patent/JPH0612118B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

PURPOSE:To make gas lubrication better, by installing journal bearings oppositely on the more inside than a first stage compressor and a turbine, and setting up a thrust bearing and a second stage compressor in the inward. CONSTITUTION:A first stage compressor and rotary disc wheels C1 and T of a turbine are set up at both ends of a shaft body S. Journal bearings J1 and J2 are oppositely installed in the more inside than these rotary disc wheels C1 and T looking at a shaft center direction of the shaft body S. In addition, a thrust bearing Th and a rotary disc wheel C2 of a second stage compressor are set up in the inward. Therefore, vibrations in both radial and thrust directions of the whole compressor becomes lessened, thus gas lubrication is effectively performed.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は二段一軸のターボ圧縮機における気、体潤滑軸
受の新規な配列に関し、殊にターボ圧縮機の比速度を高
め得ると共に、軸受部にかかる荷重を均等にして局所的
な損耗を抑制し、更には回転に伴う振動を抑えて動力ロ
スや軸受部にかかる過負荷を少なくすることのできる気
体潤滑軸受配列に関するものである。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a novel arrangement of gas- or body-lubricated bearings in a two-stage, single-shaft turbo compressor, and in particular can increase the specific speed of the turbo compressor, and The present invention relates to a gas-lubricated bearing arrangement that can equalize the load applied to the bearing parts to suppress local wear and tear, and further suppress vibrations caused by rotation to reduce power loss and overload applied to the bearing parts.

[従来の技術] 周知の通りターボ圧縮機とは、コンプレッサーの回転翼
車とタービンの回転翼車を同心的に連続し、高圧ガスに
よって生じるタービンの回転エネルギーを再び圧力エネ
ルギーに変換して各種気体の圧縮、航空機等の推力ある
いは自動車等の動力として活用しようとするものであり
、中でも気体潤滑軸受を採用したターボ圧縮機は、液体
潤滑軸受を採用したものに比べて軸部の機械的あるいは
化学的損耗が少なく、且つ潤滑専用の付属機器が不要で
機械の小型化が可能になるといった多くの特徴をもって
いるところから、高温ガス炉分野、ヘリウム液化分野、
宇宙開発分野(ロケットエンジン等)、航空機分野や自
動車分野等を含めた広範な分野における動力機械の動力
源等として盛んに研究が進められている。
[Prior Art] As is well known, a turbo compressor is a compressor in which the rotary impeller of a compressor and the rotary impeller of a turbine are connected concentrically, and the rotational energy of the turbine generated by high-pressure gas is converted back into pressure energy to generate various gases. Turbo compressors that use gas-lubricated bearings have lower mechanical or chemical shaft parts than those that use liquid-lubricated bearings. It has many features such as low mechanical wear and tear, no need for auxiliary equipment for lubrication, and the ability to downsize machines.
BACKGROUND ART Research is actively underway as a power source for power machines in a wide range of fields, including space development (rocket engines, etc.), aircraft, and automobiles.

本発明者らもかねてよりターボ圧縮機の性能向上と応用
分野の開拓を期して研究を進めているが、今回燃料電池
から排出されてくる高温・高圧排ガスの有するエネルギ
ーを、該燃料電池に原料ガスとして供給される水素や酸
素(又は空気)の圧縮に有効利用することはできないか
と考え研究を開始した。
The inventors of the present invention have been conducting research for some time with the aim of improving the performance of turbo compressors and developing new application fields. We started research on the idea that it could be used effectively to compress hydrogen and oxygen (or air) that are supplied as gases.

燃料電池は使用する電解質の種類により酸型、アルカリ
型、溶融炭酸塩型、固体電解質型に分類されるが、発電
の原理をりん酸型燃料電池を例にとって説明すると第8
図に略示する通りである。
Fuel cells are classified into acid type, alkaline type, molten carbonate type, and solid electrolyte type depending on the type of electrolyte used.The principle of power generation can be explained using a phosphoric acid fuel cell as an example.
As shown schematically in the figure.

当該燃料電池は正極、負極の2つの電極と電解質(りん
酸)から構成され、正極側及び負極側からは夫々高圧の
酸素(又は空気)及び水素が供給される。負荷を介して
両電極を連結すると、水素と酸素では水素の方が還元力
が強いので、負極側では水素から電極への電子の授与が
起こり(H2−2H“+2e−)、この電子は負荷を通
って正極に達し、ここで正極側へ供給されてくる酸素を
還元する(y202+2H” +2e−−2H20)。
The fuel cell is composed of two electrodes, a positive electrode and a negative electrode, and an electrolyte (phosphoric acid), and high-pressure oxygen (or air) and hydrogen are supplied from the positive electrode side and the negative electrode side, respectively. When both electrodes are connected through a load, hydrogen has a stronger reducing power than oxygen, so on the negative electrode side, hydrogen donates electrons to the electrode (H2-2H"+2e-), and these electrons are transferred to the load. The oxygen reaches the positive electrode, where the oxygen supplied to the positive electrode is reduced (y202+2H"+2e--2H20).

また電解液中では負極から正極方向へHoが8劾する。Further, in the electrolytic solution, Ho moves from the negative electrode to the positive electrode.

負荷を流れる電流の方向は電子の流れとは逆であるから
、外部回路では正極から負極方向へ電流が流れ、かくし
て電池が構成される。この燃料電池は従来の火力発電に
比べて■発電効率が高い、■騒音が少ない、■大気汚染
物質の放出が少ない、■小規模でも高い効率が得られる
、0部分負荷でも発電効率が高い、等々多くの利点を有
しているところから、将来重要な電力源になるものと期
待されている。
Since the direction of current flowing through the load is opposite to the flow of electrons, current flows from the positive electrode to the negative electrode in the external circuit, thus forming a battery. Compared to conventional thermal power generation, this fuel cell has: ■Higher power generation efficiency; ■Less noise; ■Less emission of air pollutants; ■High efficiency even on a small scale; High power generation efficiency even at zero partial load. Due to its many advantages, it is expected to become an important power source in the future.

ところで図示した様な燃料電池の作動に当たっては、燃
料(水素等)と酸素を高圧にして供給しなければならず
、そのためコンプレッサーを必要とするが、コンプレッ
サーを外部動力によって作動させるには多大なエネルギ
ーが消費される。一方燃料電池の作動時には前述の如く
電解質槽から高温・高圧の排ガスが放出され、この排ガ
スは暖房等に利用する方法が提案されてはいるものの、
必ずしも満足の行くエネルギー回収が行なわれていると
は言えない。
By the way, to operate a fuel cell like the one shown in the diagram, fuel (hydrogen, etc.) and oxygen must be supplied at high pressure, which requires a compressor, but operating a compressor using external power requires a large amount of energy. is consumed. On the other hand, when a fuel cell operates, high-temperature, high-pressure exhaust gas is released from the electrolyte tank as mentioned above, and although methods have been proposed for using this exhaust gas for purposes such as heating,
It cannot be said that satisfactory energy recovery is necessarily being carried out.

[発明が解決しようとする問題点] 本発明者らは上記の様な事情に着目し、燃料電池から排
出される高温・高圧排ガスのエネルギーを、ターボ圧縮
機を介して原料ガス(水素、酸素等)の昇圧に活用する
ことはできないかと考え、その線に沿って更に研究を進
めた。即ち上記高温・高圧の排ガスによってタービンを
回転せしめ、その回転力を原料ガスの昇圧に利用しよう
とするものである。
[Problems to be Solved by the Invention] The present inventors focused on the above-mentioned circumstances, and converted the energy of high-temperature, high-pressure exhaust gas discharged from a fuel cell into raw material gas (hydrogen, oxygen, etc.) via a turbo compressor. We thought that it could be used to boost the pressure of other substances (e.g., etc.), and proceeded with further research along this line. That is, the high-temperature, high-pressure exhaust gas is used to rotate a turbine, and the rotational force is used to increase the pressure of the raw material gas.

この様な発想を実現すべく、まずターボ圧縮機の最適機
種について検討したところ、第1に、比較的簡単な構成
で且つ原料ガスを所定の高圧力にまで高めることのでき
るものとしては二段一軸ターボ圧縮機が最適であること
、第2に、ターボ圧縮機の軸受部における摩擦抵抗を少
なくして比速度を高め、且つ軸受部の摩耗等を抑えて保
守・管理を容易にするうえでは、気体潤滑軸受機構を採
用するのが最適であることを知った。
In order to realize this idea, we first considered the optimal model of turbo compressor, and found that a two-stage turbo compressor has a relatively simple configuration and can raise the raw material gas to a predetermined high pressure. A single-shaft turbo compressor is optimal.Secondly, it reduces frictional resistance in the bearing of the turbo compressor to increase specific speed, and it also reduces wear on the bearing to facilitate maintenance and management. We learned that it is best to use a gas-lubricated bearing mechanism.

そこで気体潤滑軸受を持った二段一軸ターボ圧縮機に焦
点を絞り、該圧縮機の性能向上を期して更に研究を重ね
たところ、気体潤滑軸受の配列如何によってはターボ圧
縮機の性能がかなり変わってくるという事実をつぎとめ
た。
Therefore, we focused on a two-stage single-shaft turbo compressor with gas-lubricated bearings, and conducted further research in hopes of improving the performance of this compressor.We found that the performance of the turbo compressor changes considerably depending on the arrangement of the gas-lubricated bearings. I have kept in mind the fact that it will come.

本発明はこの様な経緯をたどり到達したものであって、
その目的は、二段一軸ターボ圧縮機における最も好まし
い気体潤滑軸受配列を明確にし、それにより該ターボ圧
縮機の性能を最大限有効に発揮せしめようとするもので
ある。
The present invention was arrived at through this process, and
The purpose is to clarify the most preferable gas-lubricated bearing arrangement in a two-stage single-shaft turbo compressor, thereby maximizing the performance of the turbo compressor.

[問題点を解決するための手段] 上記の目的を達成することのできた本発明の構成は、二
段一軸ターボ圧縮機の気体潤滑軸受配列であって、軸体
の両端に第1段コンプレッサー及びタービンの各回転翼
車が夫々配置されると共に、該軸体の軸心方向にみて前
記各回転翼車より内側に夫々ジャーナル軸受が対設され
、更に各ジャーナル軸受より内側にスラスト軸受及び第
2段コンプレッサーの回転翼車が配設されたものである
ところに要旨を有するものである。尚本発明では前述の
経緯からも明らかな様に燃料電池の排ガスエネルギー回
収に主眼を置いてターボ圧縮機の機種及び軸受潤滑の種
類を特定したが、本発明によって得られる気体潤滑軸受
配列の特徴は二段一軸構造のターボ圧縮機であるかぎり
すべて有効に発揮し得るのであって、該ターボ圧縮機の
用途自体には全く影響を受けるものではない。従って本
発明の軸受配列が適用される二段一軸ターボ圧fi機の
用途は、燃料電池の排ガスエネルギー回収に限定されず
、高温ガス化炉設備、ヘリウム液化装置、自動車等の各
種動力機械の動力源として広く活用することができる。
[Means for Solving the Problems] The configuration of the present invention that has achieved the above object is a gas-lubricated bearing arrangement of a two-stage single-shaft turbo compressor, in which a first-stage compressor and a first-stage compressor are disposed at both ends of a shaft body. Each of the rotor wheels of the turbine is disposed, and journal bearings are provided inwardly of each of the rotor wheels when viewed in the axial direction of the shaft body, and a thrust bearing and a second rotary wheel are further provided inwardly of each journal bearing. The gist is that the rotary impeller of a stage compressor is installed. In the present invention, as is clear from the above-mentioned background, the turbo compressor model and bearing lubrication type were specified with a focus on recovering fuel cell exhaust gas energy. However, the characteristics of the gas-lubricated bearing arrangement obtained by the present invention are As long as the turbo compressor has a two-stage, single-shaft structure, all of these can be effectively exhibited, and are not affected at all by the use of the turbo compressor itself. Therefore, the application of the two-stage single-shaft turbo pressure FI machine to which the bearing arrangement of the present invention is applied is not limited to the exhaust gas energy recovery of fuel cells, but also the power of various power machines such as high-temperature gasifier equipment, helium liquefaction equipment, and automobiles. It can be widely used as a source.

[作用及び実施例] 気体軸受を採用した二段一軸ターボ圧縮機の性能向上を
図るうえで特に重視すべき改善項目は下記の通りである
[Operations and Examples] In order to improve the performance of a two-stage single-shaft turbo compressor that employs gas bearings, the following are improvement items that should be particularly emphasized.

■高比速度を得るためには、インデューサ・ハブ径及び
エキスデューサ・ハブ径を小さくなし得ること。
■In order to obtain high specific speed, the inducer hub diameter and exducer hub diameter can be made small.

■気体軸受支持で高速回転する際の自動振動を回避する
ためには、軸の有する曲げ剛性を最大限有効に生かし得
る様、左右のジャーナル軸受における軸荷重が均等にな
る様に調整し得ること。
■In order to avoid automatic vibration when rotating at high speed with gas bearing support, it is necessary to adjust the shaft load on the left and right journal bearings to be equal so that the bending rigidity of the shaft can be utilized to the maximum extent possible. .

■気体軸受の点検、組込みが容易であり、且つ軸と回転
翼車はケーシング組込み前に一体的に組立てて、動的不
釣合いの修正が容易に行なえること。
■It is easy to inspect and assemble the gas bearing, and the shaft and rotary impeller can be assembled together before assembling the casing, making it easy to correct dynamic unbalance.

■軸部の物理的・化学的損耗を抑制するためには、軸受
環境、殊に軸受気体膜内に、りん酸等の酸成分や水分ダ
スト等を含み且つ高温で有害なタービン排ガスが侵入し
難いこと。
■In order to suppress physical and chemical wear on the shaft, it is necessary to prevent the intrusion of high-temperature, harmful turbine exhaust gas that contains acid components such as phosphoric acid and moisture dust into the bearing environment, especially into the bearing gas film. Difficult.

ところで二段一軸ターボ圧縮機における最も一般的な気
体潤滑軸受配列は第3図に略示する通りである。即ち第
3図においてJ、、J2はジャーナル軸受、Thはスラ
スト軸受、C1は第1段コンプレッサーの回転翼車、C
2は第2段コンプレッサーの回転翼車、Tはタービンの
回転翼車、Sは軸体を夫々示している。この図からも明
らかな様に二段一軸ターボ圧縮機の一般的な気体潤滑軸
受配列では軸体Sの両端にジャーナル軸受J、、J2が
対設され、該ジャーナル軸受J1゜J2より内側に第1
段コンデンサーの回転翼車CI及びタービンの回転翼車
Tが配置され、更に該回転翼車C1及びTよりも内側に
スラスト軸受Th、Th及び第2段コンプレッサーの回
転翼車C2が配設されている。
By the way, the most common gas-lubricated bearing arrangement in a two-stage single-shaft turbo compressor is as schematically shown in FIG. That is, in Fig. 3, J, J2 are journal bearings, Th is a thrust bearing, C1 is a rotor wheel of the first stage compressor, and C
Reference numeral 2 indicates a rotary impeller of the second stage compressor, T indicates a rotary impeller of the turbine, and S indicates a shaft body. As is clear from this figure, in a typical gas-lubricated bearing arrangement for a two-stage single-shaft turbo compressor, journal bearings J, J2 are provided oppositely at both ends of the shaft body S, and the journal bearings J1 and J2 are located inwardly. 1
A rotary impeller CI of the stage condenser and a rotary impeller T of the turbine are arranged, and further inside the rotary impellers C1 and T, thrust bearings Th and Th and a rotary impeller C2 of the second stage compressor are arranged. There is.

この様な軸受配列では、高速回転に耐える十分な軸曲げ
力を確保するため比較的大径の軸体Sが使用されており
、軸受郡全体の組立て及び点検が容易であり、殊に軸体
Sと各回転翼車CI+C2,Tの現場組付けが容易であ
るといった特徴を有している反面、軸体Sが大径である
ため各回転翼車CI 、C2、Tのハブ径を大台めに設
計しなければ駆動源たるガスの流量を十分に大きくする
ことができず、その結果各回転翼車C3゜C2、Tの比
速度は低目とならざるを得なくなり、作動効率を満足の
いく程度まで高めることができない。しかも第3図の軸
受配列では、軸受環境、殊に軸受気体膜内に、りん酸等
の酸成分や水分、ダスト等を含む高温且つ有害なタービ
ン排ガスが侵入し易いという難点があり、物理的・化学
的損耗が比較的進行し易いという欠点も指摘されている
In such a bearing arrangement, a relatively large-diameter shaft S is used to ensure sufficient shaft bending force to withstand high-speed rotation, and it is easy to assemble and inspect the entire bearing group, especially the shaft. Although it has the feature that it is easy to assemble S and each rotary impeller CI+C2, T on site, the shaft body S has a large diameter, so the hub diameter of each rotary impeller CI, C2, T can be adjusted to a large diameter. If the design is not made for this purpose, the flow rate of the gas that is the driving source cannot be made sufficiently large, and as a result, the specific speed of each rotary impeller C3, C2, and T must be low, and the operating efficiency cannot be satisfied. cannot be raised to a certain degree. Moreover, the bearing arrangement shown in Fig. 3 has the disadvantage that high-temperature and harmful turbine exhaust gas containing acid components such as phosphoric acid, moisture, dust, etc. can easily enter the bearing environment, especially into the bearing gas film.・It has also been pointed out that the disadvantage is that chemical wear and tear progresses relatively easily.

本発明者らは上記の様な難点に鑑み、軸受配列を変更す
ることによって前述の様な難点を解消することはできな
いかと考え、二段一軸型について考えられるあらゆる気
体潤滑軸受配列について夫々の利害得失を比較検討した
。その結果先に示した本発明の軸受配列を採用すれば、
従来の軸受配列に指摘される難点が著しく改善されるこ
とを知り、蕊に本発明を完成した。
In view of the above-mentioned difficulties, the inventors of the present invention thought that it would be possible to solve the above-mentioned difficulties by changing the bearing arrangement. We weighed the pros and cons. As a result, if the bearing arrangement of the present invention shown above is adopted,
The present invention was completed after realizing that the drawbacks of conventional bearing arrangements can be significantly improved.

即ち本発明に係る軸受配列の一例は第1図に略示する通
りであり、タービン圧縮機を構成する個個の部材自体は
第3図の従来例と同一であるので、同一の部材には同一
の符号を付している。本発明が従来技術と異なっている
のはそれら部材の配列構造にあり、具体的には、軸体S
の両端に第1段コンプレッサーの回転翼車C1及びター
ビンの回転翼車Tが夫々配置されると共に、該軸体Sの
軸心方向に見て前記各回転翼車C1及びTより内側には
夫々ジャーナル軸受J、、J2が対設され、更に各ジャ
ーナル軸受J、、J、より内側にスラスト軸受Th、T
h及び第2段コンプレッサーの回転翼車C2が配設され
ている。この様な軸受配列とすれば、圧縮機全体のラジ
アル方向及びスラスト方向の微振動が非常に少なくなり
、軸受気体膜内へのタービン排ガスの侵入を著しく抑制
することができ、軸部及び軸受部の物理的・化学的損耗
を最小限に抑えることができる。しかもこの軸受配列で
あれば各回転翼車C,,C2,Tのハブ径を小さめに設
計することが可能となり、ひいては各回転翼車自体を若
干小さくしても十分なガス流量を確保することができる
ので比速度が向上し、タービン圧縮機の高性能化が達成
される。
That is, an example of the bearing arrangement according to the present invention is as shown schematically in FIG. 1, and since the individual members constituting the turbine compressor themselves are the same as the conventional example shown in FIG. The same symbols are attached. The present invention differs from the prior art in the arrangement structure of these members, specifically, the shaft S
The rotary impeller C1 of the first stage compressor and the rotary impeller T of the turbine are respectively disposed at both ends of the rotary impeller C1 and the rotary impeller T of the turbine, respectively. Journal bearings J, , J2 are installed opposite each other, and thrust bearings Th, T are arranged inside each journal bearing J, , J.
h and a rotary impeller C2 of the second stage compressor. With this kind of bearing arrangement, the slight vibrations of the entire compressor in the radial and thrust directions can be extremely reduced, and the intrusion of turbine exhaust gas into the bearing gas film can be significantly suppressed. physical and chemical wear and tear on the product can be minimized. Moreover, with this bearing arrangement, it is possible to design the hub diameter of each rotary impeller C, C2, T to be smaller, and in turn, it is possible to secure a sufficient gas flow rate even if each rotary impeller itself is slightly smaller. As a result, the specific speed is improved and the performance of the turbine compressor is improved.

尚本発明で採用される軸受配列の一例は上記の通りであ
るが、この他第2図に示す如くスラスト軸受Th、Th
と第2段コンプレッサーの回転翼車C2の位置関係を図
面の左右に入れ変えた場合も第1図とほぼ同様の効果を
得ることができ、従って本発明の要件を満たす軸受配列
は第1図及び第2図として示した例に特定される。そし
てこの様な要件を満たす軸受配列の二段一軸ターボ圧縮
機は、先に改善項目として列挙した■〜■の要求のすべ
てを満たすものとなり、気体潤滑軸受を採用したことに
よる技術的特徴を最大限有効に発揮し得るものとなる。
An example of the bearing arrangement adopted in the present invention is as described above, but in addition, as shown in FIG. 2, thrust bearings Th, Th
Even if the positional relationship of the rotary impeller C2 of the second-stage compressor is switched to the left and right in the drawing, almost the same effect as in Fig. 1 can be obtained. Therefore, the bearing arrangement that satisfies the requirements of the present invention is as shown in Fig. 1. and the example shown as FIG. A two-stage single-shaft turbo compressor with a bearing arrangement that satisfies these requirements satisfies all of the requirements listed above as improvement items, and maximizes the technical features achieved by using gas-lubricated bearings. It can be used effectively to a limited extent.

ところで、二段一軸タービン圧縮機で考えられる他の気
体潤滑軸受配列としては、上記以外にも第4図、第5図
、第6図、第7図等が考えられるが、これらの軸受配列
ではいずれも本発明と同程度の性能向上を果たすことは
できない。この様に軸受配列のわずかな変更でタービン
圧縮機の性能に顕著な差が生じる理由は未解明であるが
、軸体Sの軸心方向に見た各部材の配列バランスの良否
がラジアル方向及びスラスト方向の微振動に微妙な影響
を及ぼし、且つ各回転翼車CI、C2,Tの比速度や軸
体Sにかかる曲げ力、軸受気体膜内へのタービン排ガス
の侵入等に少なからず影響を及ぼしたものと考えられる
By the way, other possible gas-lubricated bearing arrangements for a two-stage single-shaft turbine compressor include those shown in Figures 4, 5, 6, and 7 in addition to the above, but these bearing arrangements None of these methods can achieve the same level of performance improvement as the present invention. The reason why such a slight change in the bearing arrangement causes a remarkable difference in the performance of the turbine compressor is unknown, but the quality of the arrangement balance of each member in the axial direction of the shaft body S is determined by the radial direction and It has a subtle effect on microvibrations in the thrust direction, and has a considerable effect on the specific speed of each rotary impeller CI, C2, and T, the bending force applied to the shaft S, and the intrusion of turbine exhaust gas into the bearing gas film. It is thought that this may have caused

但し上記第4〜7図に示したものの中で第4図の軸受配
列は、高比速度が得られ難いという性能上の欠点は有し
ているものの、一体型円筒軸受の組立及び点検が容易で
あり、且つ軸体Sに対するスラストカラーや各回転翼車
CI 、C2、T等の現場組付けが非常に容易であると
いりた、他の軸受配列では得ることのできない利点を有
しているので、それほど高レベルの性能が要求されない
タービン圧縮機に適用する場合は、コストやメンテナン
ス性等を含めて実用性の高いものと言えるつ 本発明は以上の様に構成されるが、その特徴はあくまで
も気体潤滑軸受の配列に存在するものであるから、気体
潤滑の具体的な手段あるいは各回転翼車CI、C2,T
更には軸体Sの形状や構造、ジャーナル軸受J、、J2
やスラスト軸受Th、Thの形状や構造等は従来の二段
一軸タービン圧縮機で採用される機構、形状、構造等に
準じて理解すればよく、且つ前述の軸受配列を乱さない
範囲で任意に設計変更することが可能であり、それらは
すべて本発明の技術的範囲に含まれる。
However, among the bearing arrangements shown in Figs. 4 to 7 above, although the bearing arrangement shown in Fig. 4 has a performance disadvantage in that it is difficult to obtain a high specific speed, it is easy to assemble and inspect the integral cylindrical bearing. It also has advantages that cannot be obtained with other bearing arrangements, such as the ability to assemble the thrust collar to the shaft body S and the rotary impellers CI, C2, T, etc. on-site very easily. Therefore, when applied to a turbine compressor that does not require a very high level of performance, it can be said to be highly practical in terms of cost and maintainability. Since this exists only in the arrangement of gas-lubricated bearings, the specific means of gas lubrication or each rotary impeller CI, C2, T
Furthermore, the shape and structure of the shaft body S, journal bearings J, J2
The shape and structure of the thrust bearings Th and Th can be understood in accordance with the mechanism, shape, structure, etc. adopted in a conventional two-stage single-shaft turbine compressor, and can be arbitrarily changed as long as the above-mentioned bearing arrangement is not disturbed. Design changes are possible and all fall within the scope of the present invention.

[発明の効果] 本発明は以上の様に構成されており気体潤滑軸受配列を
厳密に規定することによって、気体潤滑の特徴が有効に
発揮され、二段一軸ターボ圧縮機の比速度を最大限に高
めて性能向上を図り、また軸部にかかるラジアル方向及
びスラスト方向の荷重を均等にすると共に振動を抑えて
局部的な損耗を抑制し、更には軸受気体膜内へのタービ
ン排ガス侵入抑制効果とも相まって軸受郡全体の寿命を
相当延長することができ、更には組付、点検等が比較的
m車でメンテナンス性も向上し得る等、実用に即した多
くの利益を享受することができる。
[Effects of the Invention] The present invention is configured as described above, and by strictly specifying the gas-lubricated bearing arrangement, the characteristics of gas lubrication are effectively exhibited, and the specific speed of the two-stage single-shaft turbo compressor can be maximized. In addition, it equalizes the radial and thrust loads applied to the shaft, suppresses vibration, and suppresses localized wear. Furthermore, it has the effect of suppressing the intrusion of turbine exhaust gas into the bearing gas film. In combination with this, the life of the bearing group as a whole can be considerably extended, and furthermore, it is possible to enjoy many practical benefits such as assembly, inspection, etc. being relatively easy to maintain with a relatively small number of vehicles.

【図面の簡単な説明】[Brief explanation of the drawing]

第1.2図は本発明に係る軸受配列の実施例を示す概略
説明図、第3図は従来の軸受配列を示す概略説明図、第
4〜7図は二段一軸タービン圧縮機において考え得る他
の軸受配列を示す概略説明図、第8図は燃料電池の原理
を示す説明図である。 Jl、J2:ジャーナル軸受 Thニスラスト軸受 CI :第1段コンプレッサーの回転翼車C2:第2段
コンプレッサーの回転翼車T:タービンの回転翼車 S:軸体
Fig. 1.2 is a schematic explanatory diagram showing an embodiment of the bearing arrangement according to the present invention, Fig. 3 is a schematic explanatory diagram showing a conventional bearing arrangement, and Figs. 4 to 7 are conceivable in a two-stage single-shaft turbine compressor. A schematic explanatory diagram showing another bearing arrangement, and FIG. 8 is an explanatory diagram showing the principle of a fuel cell. Jl, J2: Journal bearing Th Ni thrust bearing CI: 1st stage compressor rotor C2: 2nd stage compressor rotor T: Turbine rotor S: Shaft

Claims (1)

【特許請求の範囲】[Claims] 二段一軸ターボ圧縮機の気体潤滑軸受配列であって、軸
体の両端に第1段コンプレッサー及びタービンの各回転
翼車が夫々配置されると共に、該軸体の軸心方向にみて
前記各回転翼車より内側に夫々ジャーナル軸受が対設さ
れ、更に各ジャーナル軸受より内側にスラスト軸受及び
第2段コンプレッサーの回転翼車が配設されたものであ
ることを特徴とする二段一軸ターボ圧縮機の気体潤滑軸
受配列。
This is a gas-lubricated bearing arrangement for a two-stage single-shaft turbo compressor, in which rotary impellers of a first-stage compressor and a turbine are respectively disposed at both ends of a shaft body, and each of the rotary impellers of a first stage compressor and a turbine rotate as viewed in the axial direction of the shaft body. A two-stage single-shaft turbo compressor, characterized in that journal bearings are arranged opposite to each other on the inside of each journal bearing, and further, a thrust bearing and a rotary impeller of a second stage compressor are arranged on the inside of each journal bearing. gas-lubricated bearing arrangement.
JP61220069A 1986-09-17 1986-09-17 Gas-lubricated bearing arrangement for two-stage single-shaft turbo compressor Expired - Lifetime JPH0612118B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61220069A JPH0612118B2 (en) 1986-09-17 1986-09-17 Gas-lubricated bearing arrangement for two-stage single-shaft turbo compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61220069A JPH0612118B2 (en) 1986-09-17 1986-09-17 Gas-lubricated bearing arrangement for two-stage single-shaft turbo compressor

Publications (2)

Publication Number Publication Date
JPS6375391A true JPS6375391A (en) 1988-04-05
JPH0612118B2 JPH0612118B2 (en) 1994-02-16

Family

ID=16745456

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61220069A Expired - Lifetime JPH0612118B2 (en) 1986-09-17 1986-09-17 Gas-lubricated bearing arrangement for two-stage single-shaft turbo compressor

Country Status (1)

Country Link
JP (1) JPH0612118B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010059961A (en) * 2008-09-02 2010-03-18 Hamilton Sundstrand Corp Compressor and aircraft
CN108869378A (en) * 2017-05-15 2018-11-23 曼柴油机和涡轮机欧洲股份公司 Compressor
JP2021124038A (en) * 2020-02-03 2021-08-30 三菱重工コンプレッサ株式会社 Rotating machine

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5838301A (en) * 1981-08-29 1983-03-05 Shimadzu Corp Centrifugal impeller device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5838301A (en) * 1981-08-29 1983-03-05 Shimadzu Corp Centrifugal impeller device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010059961A (en) * 2008-09-02 2010-03-18 Hamilton Sundstrand Corp Compressor and aircraft
CN108869378A (en) * 2017-05-15 2018-11-23 曼柴油机和涡轮机欧洲股份公司 Compressor
JP2021124038A (en) * 2020-02-03 2021-08-30 三菱重工コンプレッサ株式会社 Rotating machine

Also Published As

Publication number Publication date
JPH0612118B2 (en) 1994-02-16

Similar Documents

Publication Publication Date Title
CN108884757B (en) Pressure booster
CN105889096A (en) Two-stage series pressurization direct-driven centrifugal air compressor of fuel cell engine
JP5260737B2 (en) Windmill
CN105736424B (en) A kind of direct-drive supercharged centrifugal air compressor of the single-stage of vehicle fuel battery engine
CN209704930U (en) A kind of two-stage gas suspension centrifugal electric directly drives the cooling system of air compressor machine
CN112460048A (en) Bipolar centrifugal air compressor
CN110886706B (en) Vehicle-mounted fuel cell gas compressor based on magnetic suspension bearing
CN112555172A (en) Centrifugal air compressor and hydrogen fuel cell system
JP2007095485A (en) Fuel cell apparatus
CN108953377B (en) A kind of liquid magnetic composite bearing towards reusable rocket turbine pump
CN205858729U (en) Centrifugal air compressor is directly driven in the two-stage series connection supercharging of fuel battery engines
CN114526161A (en) Gas turbine's intermediary machine casket and reinforcement structure thereof
WO2022105215A1 (en) Motor-embedded bearing type micro gas turbine
JPS6375391A (en) Gas lubricated bearing array for two-stage single shaft turbocompressor
US11629734B2 (en) Compressor device with turbine section water recirculation path
CN207441869U (en) A kind of fuel cell compressed air induction system of hydraulic drive
CN113007209B (en) High-heat-dissipation-rate foil type radial bearing, combined bearing and bearing heat management method
CN214577793U (en) Air-cooled compressor
JPH06288242A (en) Turbocharger having energy recovery device
CN213981357U (en) Bipolar centrifugal air compressor machine cooling system
CN101182847A (en) Magnetic axis bear turbo vacuum molecular pump with outer rotor structure
CN203335138U (en) Nitric acid tail gas expansion machine
JPS62159738A (en) Gas turbine engine
JP2022131915A (en) Fluid machine
CN201420603Y (en) Miniature gas turbine rotor system by adopting floating ring ball bearing